WO2024001800A1 - 摄像头模组及电子设备 - Google Patents

摄像头模组及电子设备 Download PDF

Info

Publication number
WO2024001800A1
WO2024001800A1 PCT/CN2023/100291 CN2023100291W WO2024001800A1 WO 2024001800 A1 WO2024001800 A1 WO 2024001800A1 CN 2023100291 W CN2023100291 W CN 2023100291W WO 2024001800 A1 WO2024001800 A1 WO 2024001800A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixing
camera module
units
magnet
magnetic
Prior art date
Application number
PCT/CN2023/100291
Other languages
English (en)
French (fr)
Inventor
安琪
丁肇元
黄昌福
秦诗鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024001800A1 publication Critical patent/WO2024001800A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • Embodiments of the present application relate to the field of terminal technology, and in particular to a camera module and electronic equipment.
  • the camera module in the related technology cooperates with each other through induction magnets and multiple Hall sensors to achieve position detection.
  • the induction magnet is arranged on the moving parts of the camera module, and multiple Hall sensors are arranged at equal intervals along the movement direction of the induction magnet and are arranged facing the induction magnet.
  • the multiple magnetic field signals detected by the multiple Hall sensors can be determined. Check whether the moving parts are at the predetermined position.
  • Embodiments of the present application provide a camera module and electronic equipment that can compensate for accuracy errors caused by dynamic changes in the distance between the magnet and the magnetic sensor, and can improve the position detection accuracy of the moving parts of the camera module.
  • a first aspect of this application provides a camera module, which at least includes: an imaging unit and a position detection unit.
  • the imaging unit includes a moving component that moves in a first direction.
  • the position detection unit includes two movable parts and two sets of fixed units. The two movable members are respectively fastened to opposite ends of the moving component and located between the two sets of fixed units, and the two movable members are spaced apart along the second direction. Wherein, the second direction is perpendicular to the first direction.
  • Each set of the fixing units includes at least one fixing piece, and the two sets of fixing units are arranged oppositely along the second direction.
  • the plurality of the fixing pieces of each group of the fixing units are spaced apart along the first direction.
  • One of the movable part and the fixed part is a magnet
  • the other of the movable part and the fixed part is a magnetic sensor.
  • the magnetic sensor is used to detect the magnetic field intensity of the magnet corresponding to the magnetic sensor.
  • the embodiment of the present application since one of the fixed part and the movable part is a magnet, and the other is a magnetic sensor, taking the movable part as a magnet and the fixed part as a magnetic sensor as an example, the embodiment of the present application
  • the distance between the moving part and one of the fixed units increases, and the distance between the moving part and the other set of fixed units decreases.
  • the distance detected by one of the fixed units As the magnetic field intensity becomes smaller, the magnetic field intensity detected by another set of fixed units becomes larger.
  • the movable component is a magnetic sensor
  • the fixed component is a magnet
  • the movable component is a magnet
  • the fixed component is a magnetic sensor
  • each group of the fixing units includes the same number of the fixing pieces.
  • each group of the fixing units includes one fixing part, two fixing parts, or three fixing parts.
  • all the fixing pieces of the fixing units in one group correspond to all the fixing pieces of the fixing units in another group in a one-to-one correspondence.
  • the number of fixing pieces of the two sets of fixing units is different.
  • the difference between the number of the fixing parts of one set of the fixing units and the number of the fixing parts of the other set of the fixing units is 1 , 2 or 3.
  • one set of the fixing units includes one fixing piece, and the other set of fixing units includes two or three fixing pieces.
  • the fixing pieces of one set of fixing units are located at the other set of fixing units.
  • the other set of fixing units when the other set of fixing units includes three fixing pieces, the fixing pieces of one set of fixing units are aligned with the fixing pieces along the second direction.
  • the fixing parts in the middle of the three fixing parts of the other set of fixing units are arranged oppositely.
  • the two magnets are arranged to attract each other along the second direction, or the two magnets are arranged to repel each other along the second direction.
  • the magnetic sensor is any one of the following sensors: a Hall sensor, a giant magnetoresistive sensor, a tunneling magnetoresistive sensor, an anisotropic magnetoresistive sensor or an integrated sensor signal processing chip.
  • the moving component is a lens set or a photosensitive chip.
  • the lens set includes at least one lens moving along a first direction.
  • the lens group includes at least one lens moving in the first direction, and the two movable members are fastened to the same lens.
  • each of the magnetic sensors is electrically connected to the control unit.
  • the control unit is configured to receive the magnetic field signal uploaded by each magnetic sensor and determine the position of the moving component based on all the magnetic field signals.
  • it further includes: a driving unit.
  • the driving unit is electrically connected to the control unit and drivingly connected to the moving component.
  • the control unit is also used to control the driving unit to drive the moving component to move in the first direction according to the magnetic field signal.
  • each magnetic sensor is individually electrically connected to the control unit.
  • all the magnetic sensors in each group of the fixed units are electrically connected to the same connection end of the control unit.
  • the magnet is a magnet or magnet.
  • a second aspect of this application provides an electronic device, including a housing and a camera module as described in any one of the above.
  • the camera module is arranged on the housing.
  • Figure 1 is a schematic structural diagram of a camera module in related technology
  • Figure 2 is a schematic diagram of the relative distance between the induction magnet and the Hall sensor in the related art
  • FIG. 3 is a schematic diagram of various units of the camera module provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of the application scenario of the camera module provided by the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a camera module provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of the magnet provided by the embodiment of the present application shifting to the right in the second direction;
  • Figure 7 is a schematic diagram when the sensing directions of the magnetic sensors on both sides of the moving component are the same according to the embodiment of the present application;
  • Figure 8 is a schematic diagram when the sensing directions of the magnetic sensors on both sides of the moving part are opposite according to the embodiment of the present application;
  • Figure 9 is a schematic diagram of the detection effect of the embodiment shown in Figure 6;
  • Figure 10 is a schematic diagram of the detection effect of a camera module in related technologies
  • Figure 11 is a schematic structural diagram of the first position detection unit provided by the embodiment of the present application.
  • Figure 12 is a schematic structural diagram of the second position detection unit provided by the embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a third position detection unit provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of the fourth position detection unit provided by the embodiment of the present application.
  • Figure 15 is a schematic structural diagram of the fifth position detection unit provided by the embodiment of the present application.
  • Figure 16 is a schematic structural diagram of a sixth position detection unit provided by an embodiment of the present application.
  • Figure 17 is a schematic structural diagram of the seventh position detection unit provided by the embodiment of the present application.
  • Figure 18 is a schematic structural diagram of an eighth position detection unit provided by an embodiment of the present application.
  • Figure 19 is a schematic diagram of two magnets arranged to attract each other according to the embodiment of the present application.
  • Figure 20 is another schematic diagram of two magnets arranged to attract each other according to the embodiment of the present application.
  • Figure 21 is a schematic diagram of two magnets repelling each other provided by the embodiment of the present application.
  • Figure 22 is another schematic diagram of two magnets repelling each other provided by the embodiment of the present application.
  • Figure 23 is a schematic diagram of the cooperation between the magnet and the magnetic sensor provided by the embodiment of the present application.
  • Figure 24 is another schematic diagram of the cooperation between the magnet and the magnetic sensor provided by the embodiment of the present application.
  • Figure 25 is another schematic diagram of the cooperation between the magnet and the magnetic sensor provided by the embodiment of the present application.
  • Figure 26 is a schematic diagram of the connection between the magnetic sensor and the control unit provided by the embodiment of the present application.
  • Figure 27 is another schematic diagram of the connection between the magnetic sensor and the control unit provided by the embodiment of the present application.
  • Figure 28 is another schematic diagram of the connection between the magnetic sensor and the control unit provided by the embodiment of the present application.
  • Camera module 100. Imaging unit; 110. Moving parts; 120. Lens set; 130. Photosensitive chip; 200. Position detection unit; 210. Movable parts; 220. Fixed unit; 221. Fixtures; 230. Magnet; 240. Magnetic sensor; 300. Control unit; 400. Drive unit; 500, amplifier; 600. Analog-to-digital converter; 20. Light source; 710. Hall sensor; 720. Inductive magnet; 730. Moving parts; 740. Processor; X, first direction; Y, second direction.
  • the electronic devices usually include camera modules 10 .
  • the camera module 10 can shoot and collect external images, thereby allowing the electronic device to implement functions such as shooting or video calling.
  • the electronic device can be a common terminal such as a mobile phone, a tablet computer, a notebook computer or a personal digital assistant (PDA).
  • PDA personal digital assistant
  • the camera modules 10 of more and more electronic devices are equipped with anti-shake functions and automatic zoom functions. Both the anti-shake functions and the automatic zoom functions require the use of high-precision Sensor with position detection function for position feedback.
  • Figure 1 is a schematic structural diagram of a camera module in the related art
  • Figure 2 is a schematic diagram of the relative distance between the induction magnet and the Hall sensor in the related art.
  • the camera module 10 in the related art cooperates with a single induction magnet 720 and multiple Hall sensors 710 to detect the position of the moving part 730 of the camera module 10.
  • the moving part 730 may be a camera module.
  • Group 10 sports lenses can realize the zoom function by moving the sports lenses.
  • the induction magnet 720 is fastened to the moving part 730, and the moving part 730 can drive the induction magnet 720 to move along the X direction in FIG. 1 .
  • the plurality of Hall sensors 710 are arranged at intervals along the movement direction of the induction magnet 720 (refer to the X direction in FIG. 1 ) and facing the induction magnet 720 .
  • the plurality of Hall sensors 710 remain motionless relative to the induction magnet 720 .
  • the sensor 710 sends the detected magnetic field strength to the processor 740 of the camera module 10 , and the processor 740 determines the current position of the moving part 730 based on the received magnetic field strength.
  • the relative distance between the induction magnet 720 and the Hall sensor 710 such as the distance in the Y direction in Figure 1, or the distance in the Y upward direction in Figure 2
  • the magnetic field intensity detected by the Hall sensor 710 also changes, resulting in changes in detection accuracy, which will reduce position detection accuracy.
  • the magnetic field intensity detected by the Hall sensor 710 will become larger, and the processor 740 will increase the magnetic field intensity according to the Hall sensor 710
  • the detected current magnetic field strength adjusts the moving distance of the moving part 730 so that the magnetic field strength detected by the Hall sensor 710 is the same as the magnetic field strength corresponding to the preset position.
  • the actual position of the moving part 730 will be the same as the magnetic field strength corresponding to the preset position.
  • There is a deviation in the predetermined position Therefore, when the relative distance between the induction magnet 720 and the Hall sensor 710 changes, an accuracy error will occur.
  • the magnetic field intensity detected by the magnetic sensor 240 will be inaccurate, which will reduce the position detection accuracy.
  • an embodiment of the present application provides an electronic device, which includes a housing and a camera module 10 disposed on the housing.
  • the shape of the casing may depend on the type of the electronic device. For example, when the electronic device is a mobile phone, the shape of the casing may be a rectangular flat structure.
  • the camera module 10 may be embedded on the side wall of the casing. .
  • FIG. 3 is a schematic diagram of various units of the camera module provided by the embodiment of the present application
  • FIG. 4 is a schematic diagram of the application scenario of the camera module provided by the embodiment of the present application.
  • the camera module 10 at least includes an imaging unit 100 , a position detection unit 200 , a control unit 300 and a driving unit 400 .
  • the imaging unit 100 is configured to receive light emitted by the light source 20 and process the received light to form an image.
  • the imaging unit 100 may at least include a lens set 120 and a photosensitive chip 130 that are stacked along the optical axis direction.
  • the lens set 120 is used to project the light emitted by the external light source 20 onto the photosensitive chip 130 .
  • the chip 130 processes the received light to form an image.
  • the lens group 120 or the photosensitive chip 130 can be moved. Therefore, the lens group 120 can be used as the moving component 110, or the photosensitive chip 130 can be used as the moving component 110.
  • the photosensitive chip 130 is used as the moving component 110 .
  • the driving unit 400 is electrically connected to the control unit 300 and drivingly connected to the moving component 110, so that the driving unit 400 can move the moving component 110 to the target position.
  • the moving component 110 is a photosensitive chip.
  • the photosensitive chip 130 can move from the dotted line position to the solid line along the X direction in Figure 4 to change the position of the photosensitive chip 130 in the X direction in Figure 4.
  • the solid line automatic zoom function .
  • control unit 300 is electrically connected to the position detection unit 200 and the driving unit 400 respectively.
  • the control unit 300 can control the driving unit 400 according to the current position of the moving component 110 detected by the position detection unit 200, thereby ensuring that the movement The component 110 can be moved to a target position to meet usage requirements.
  • the position detection unit 200 includes a magnet 230 and a magnetic sensor 240.
  • the magnet 230 and the magnetic sensor 240 are provided on opposite sides of the moving part 110.
  • Each magnet 230 cooperates with at least one magnetic sensor 240.
  • the distance between one magnet 230 and the magnetic sensor 240 corresponding to the magnet 230 becomes larger, the distance between the other magnet 230 and the magnetic sensor 240 corresponding to the magnet 230 becomes smaller, so that the magnetic sensor on the side of the moving part 110
  • the magnetic field intensity detected by 240 increases, and the magnetic field intensity detected by the magnetic sensor 240 on the other side decreases. Since the distance between the magnetic sensors 240 on both sides remains unchanged, the magnetic field intensity detected by the magnetic sensors 240 on both sides is adjusted.
  • the calculation can compensate for the accuracy error caused by the change in the distance between the magnet 230 and the magnetic sensor 240, improve the accuracy of the magnetic field intensity detected by the magnetic sensor 240, and improve the position detection accuracy.
  • each magnetic sensor 240 is electrically connected to the control unit 300, and each magnetic sensor 240 is used to convert the collected magnetic field intensity into a magnetic field signal and can upload the magnetic field signal to the control unit 300, and then the control unit 300 determines the current position of the moving part 110 based on receiving all magnetic field signals.
  • the application scenario for the arrangement of the magnetic sensor 240 and the magnet 230 provided by the embodiment of the present application is the camera module 10, which is used to determine the position of the moving part 110 of the imaging unit 100, thereby realizing the automatic zoom function. and compensation to correct jitter effects.
  • the application scenarios of the arrangement of the magnetic sensor 240 and the magnet 230 provided by the embodiment of the application are not limited to the camera module 10.
  • the arrangement of the magnetic sensor 240 and the magnet 230 provided by the embodiment of the application can also be applied to industrial machine tools, Robots and the like have usage scenarios where the relative position of the moving part is detected and fed back.
  • Figure 5 is a schematic structural diagram of a camera module provided by an embodiment of the present application.
  • the camera module 10 of the embodiment of the present application at least includes: an imaging unit 100 and a position detection unit 220.
  • the imaging unit 100 is used to receive light emitted by the external light source 20 and process the received light to form an image.
  • the imaging unit 100 may include a moving component 110 that moves along a first direction (X direction in FIG. 5 ). By changing the movement The position of the moving component 110 in the first direction can realize the automatic zoom function to meet the user's shooting needs.
  • the moving component 110 can be the lens group 120 or the photosensitive chip 130 of the imaging unit 100 .
  • the position detection unit 220 is used to detect the position of the moving component 110 to ensure that the moving component 110 can move to the target position.
  • the position detection unit 220 may include two movable members 210 and two sets of fixed units 220 . Among them, two movable parts 210 are respectively fastened and installed on the opposite ends of the moving part 110. The movable parts 210 can follow the moving part 110 to move in the first direction. It should be noted that when the moving part 110 is the lens group 120 When the lens group 120 is configured, the lens group 120 may include at least one lens that moves along the first direction, and the two movable members 210 are fastened to the same lens.
  • the two movable parts 210 are spaced apart along the second direction and are located between the two sets of fixed units 220. Each movable part 210 corresponds to a set of fixed units 220 and is in the second direction (Y direction in Figure 5) with the fixed units 220. ) interval setting. Wherein, the second direction is perpendicular to the first direction.
  • the fixed unit 220 can be disposed near the target position.
  • the fixed unit 220 and the movable part 210 cooperate with each other to determine the actual position of the moving part 110 .
  • the fixing unit 220 can be disposed on a non-moving component of the camera module 10 , or the fixing unit 220 can be disposed on a non-moving component of the electronic device.
  • the fixing unit 220 can be disposed on the housing of the camera module 10 or, when the fixing part 221 of the fixing unit 220 is a sensor, the fixing unit 220 can be disposed on the printed circuit board of the camera module 10, which is not specifically limited here.
  • Each set of fixing units 220 may include at least one fixing piece 221 , that is, each set of fixing units 220 may include 1, 2, 3, 4, 10, etc., number of fixing pieces 221 .
  • each set of fixing units 220 includes multiple fixing parts 221
  • the multiple fixing parts 221 of each set of fixing units 220 are spaced apart along the first direction.
  • the number of the multiple fixing parts 221 may be 2, 3, 4, 5, Positive integer quantities such as 6, 7, 8, 9, 10, 11, 12, 13, 14, 1516, etc.
  • the two sets of fixed units 220 are arranged relative to each other along the second direction. This arrangement helps to improve the coincidence between the magnetic field intensity detected by the two sets of fixed units 220 and the magnetic field intensity-stroke curve fitted by the stroke data. Helps improve detection accuracy.
  • One of the movable part 210 and the fixed part 221 is a magnet 230
  • the other of the movable part 210 and the fixed part 221 is a magnetic sensor 240.
  • the magnetic sensor 240 is used to detect the magnetic field intensity of the magnet 230 corresponding to the magnetic sensor 240 .
  • the magnet 230 may be a magnet, a magnet, or a magnetic field generator capable of generating a magnetic field. It can be understood that since the movable part 210 follows the movement of the moving part 110, the position of the fixed part 221 always remains fixed.
  • the magnetic sensor 240 is the fixed part 221, or, When the magnetic sensor 240 is the movable component 210 , correspondingly, the magnet 230 is the fixed component 221 .
  • the magnet 230 when the magnet 230 is the movable part 210 and the magnetic sensor 240 is the fixed part 221, it helps to reduce the difficulty of arrangement and detection of the position detection unit 220.
  • the magnetic sensor 240 detects the magnetic field intensity of the magnet 230 and converts it into a magnetic field signal and sends the magnetic field signal to the control unit 300.
  • the control unit 300 can determine whether the moving part 110 moves to the target position according to the magnetic field signal.
  • the detection principle for the control unit 300 to determine the position of the moving part 110 based on the magnetic field signal is: the stroke of the moving part 110 has a linear relationship with the magnetic field strength, that is, each stroke value of the moving part 110 in the first direction corresponds to a unique Determine the strength of the magnetic field.
  • the control unit 300 will control The moving distance of the moving part 110 is to ensure that the moving part 110 moves to the target position.
  • Figure 6 is a schematic diagram of the magnets shifted to the right in the second direction provided by the embodiment of the present application.
  • the two magnets 230 are shifted to the right by a certain distance in the second direction (for example, A in Figure 6)
  • the distance between the magnet 230 on the right side of the moving part 110 (not shown in FIG. 6 ) and the magnetic sensor 240 on the right side in the second direction becomes smaller, so that the magnetic field intensity detected by the magnetic sensor 240 on the right side becomes smaller.
  • the intensity of the magnetic field detected by the magnetic sensor 240 on the left side decreases.
  • the magnetic field intensity detected by the magnetic sensor 240 on the right side after the offset is increased compared with the magnetic field intensity detected when the magnetic sensor 240 on the right side is not shifted to the right.
  • the part is just approximately equal to the reduced part of the magnetic field intensity detected by the left magnetic sensor 240 after the offset.
  • the magnitude of the magnetic field sensed by the magnetic sensor 240 is basically not affected by changes in the distance between the magnet 230 and the magnetic sensor 240 corresponding to the magnet 230, which helps to reduce the accuracy error, so as to Improve position detection accuracy.
  • the calculation method (addition or subtraction) of the magnetic field intensity detected by the magnetic sensor 240 on the left and the magnetic field intensity detected by the magnetic sensor 240 on the right depends on the arrangement of the magnets 230 (attraction or repulsion). ) and the sensing direction of the magnetic sensor 240 (for example, the K direction in FIG. 7 or FIG. 8 ), the sensing direction of the magnetic sensor 240 is parallel to the second direction. In addition, the orientation of the sensing direction of the magnetic sensor 240 may depend on the magnetic field. The installation direction of sensor 240.
  • FIG. 7 is a schematic diagram when the sensing directions of the magnetic sensors on both sides of the moving component are the same according to the embodiment of the present application.
  • the magnetic field strengths on both sides of the moving part 110 are added.
  • the two magnets 230 are arranged to repel each other (not shown in the figure), and the sensing directions of the magnetic sensors 240 on both sides of the moving part 110 are opposite, the magnetic field strengths on both sides of the moving part 110 are added.
  • Figure 8 is a schematic diagram of the magnetic sensors on both sides of the moving part provided by the embodiment of the present application when the sensing directions are opposite.
  • Figure 8 when two magnets 230 are arranged to attract each other, and the magnetic sensors on both sides of the moving part 110 When the sensing directions of 240 are opposite, the magnetic field strengths on both sides of the moving part 110 are subtracted.
  • the two magnets 230 are arranged to repel each other (not shown in the figure) and the sensing directions of the magnetic sensors 240 on both sides of the moving part 110 are the same, the magnetic field strengths on both sides of the moving part 110 are subtracted.
  • the calculation method of the magnetic field intensity detected by the left magnetic sensor 240 and the magnetic field intensity detected by the right magnetic sensor 240 depends on the two magnets 230
  • the two magnets 230 are attracted to each other.
  • the magnetic field strengths detected by all the magnetic sensors 240 are added together to compensate. Due to the accuracy error caused by the change in the distance between the magnet 230 and the magnetic sensor 240, the position detection accuracy can be improved.
  • the magnetic field strengths detected by the magnetic sensors 240 of each group of fixed units 220 are added together. , and then the magnetic field intensities detected by the two sets of fixed units 220 are subtracted, so that the accuracy error caused by the change in the distance between the magnet 230 and the magnetic sensor 240 can be compensated, and the position detection accuracy can be improved.
  • the calculation method of the magnetic field intensity is described by taking the sensing directions of the magnetic sensors 240 on both sides of the moving part 110 as an example.
  • FIG. 9 is a schematic diagram of the detection effect of the embodiment shown in FIG. 6 .
  • H1, H2, H3 and H4 respectively represent a
  • (H1+H2+H3+H4) represents the sum operation when the two magnets 230 are arranged to attract each other.
  • a100 represents that the distance between the magnet 230 and the magnetic sensor 240 in the second direction decreases by 100um
  • b100 represents that the distance between the magnet 230 and the magnetic sensor 240 in the second direction increases by 100um
  • b150 represents that the distance between the magnet 230 and the magnetic sensor 240 increases by 100um.
  • the distance in the second direction increases by 150um, and c represents that the distance between the magnet 230 and the magnetic sensor 240 in the second direction does not change. It can be seen from FIG. 9 that when the distance between the magnet 230 and the magnetic sensor 240 changes in the second direction, the magnetic field intensity does not change during the same stroke.
  • Figure 10 is a schematic diagram of the detection effect of a camera module in the related art.
  • H1 and H2 in Figure 10 represent the summation operation of the magnetic field strengths detected by the two Hall sensors 710. It can be seen from Figure 10 that due to the change in the distance between the induction magnet 720 and the Hall sensor 710, the same During the stroke, the magnetic field intensity detected by the Hall sensor 710 will change (become larger or smaller).
  • the camera module 10 provided by the embodiment of the present application is provided with mutually matched magnets 230 and magnetic sensors 240 on opposite sides of the moving part 110. Due to the spacing between the magnetic sensors 240 on both sides in the second direction, Remaining unchanged, when the moving part 110 deflects in the second direction, the magnetic field intensity detected by the magnetic sensor 240 on one side becomes larger, and the magnetic field intensity detected by the magnetic sensor 240 on the other side becomes smaller. By comparing the two sides of the moving part 110 By calculating the magnetic field intensity detected by the magnetic sensor 240 on the side, the position detection accuracy can be improved.
  • the following describes the position detection unit 220 in the embodiment of the present application in detail, taking the movable member 210 as the magnet 230 and the fixed member 221 as the magnetic sensor 240.
  • Figure 11 is a schematic structural diagram of the first position detection unit provided by the embodiment of the present application.
  • Figure 12 is a schematic structural diagram of the second position detection unit provided by the embodiment of the present application.
  • Figure 13 is a third type of position detection unit provided by the embodiment of the present application. Structural diagram of the position detection unit.
  • each group of fixing units 220 includes the same number of fixing pieces 221. Such an arrangement helps to improve the position detection accuracy.
  • the number of fixing pieces 221 included in each group of fixing units 220 can be determined according to the use requirements, the internal space of the camera module 10 and other factors.
  • the number of fixing pieces 221 in each group of fixing units 220 can be 1, 2, or 3. , 4, etc., so that the ratio of the number of fixing pieces 221 of the two sets of fixing units 220 is 1:1 (as shown in Figure 9 ), 2:2 (as shown in Figure 10 ), 3:3 (as shown in Figure 11 ), 4:4, 5:5 and other ratios.
  • the greater the number of magnetic sensors 240 the closer the magnetic field intensity-stroke curve (the curve shown in Figure 9) fitted to the magnetic field intensity detected by the magnetic sensors 240 is to a straight line.
  • a greater number of magnetic sensors 240 helps to improve linearity, and the higher the linearity, the closer the current magnetic field intensity detected by the magnetic sensors 240 is to the determined magnetic field intensity, which helps to improve position detection accuracy.
  • each group of fixed units 220 may include two magnetic sensors 240 , and the two magnetic sensors 240 of the two groups of fixed units 220 are respectively arranged symmetrically.
  • FIG. 14 is a schematic structural diagram of a fourth position detection unit provided by an embodiment of the present application
  • FIG. 15 is a schematic structural diagram of a fifth position detection unit provided by an embodiment of the present application.
  • the magnetic sensors 240 on both sides of the moving part 110 may be arranged staggered along the first direction.
  • each group of fixed units 220 may include two magnetic sensors 240 .
  • all the magnetic sensors 240 are arranged at intervals in sequence, or, as shown in FIG. 15 , one magnetic sensor 240 of one set of fixed units 220 partially overlaps another magnetic sensor 240 of another set of fixed units 220 .
  • Figure 16 is a schematic structural diagram of the sixth position detection unit provided by the embodiment of the present application.
  • Figure 17 is a schematic structural diagram of the seventh position detection unit provided by the embodiment of the present application.
  • Figure 18 is the eighth type of position detection unit provided by the embodiment of the present application. Structural diagram of the position detection unit.
  • the number of fixing parts 221 of the two sets of fixing units 220 is different.
  • the number of fixing parts 221 of one of the two sets of fixing units 220 is equal to the number of fixing parts 221 of one of the two sets of fixing units 220 .
  • the number of all the magnetic sensors 240 on the top side of the moving part 110 may be smaller than the number of all the magnetic sensors 240 on the bottom side of the moving part 110 , or, the moving part 110 The number of all magnetic sensors 240 on the bottom side may be greater than the number of all magnetic sensors 240 on the top side of the moving part 110 .
  • the difference between the number of fixing parts 221 of one set of fixing units 220 and the number of fixing parts 221 of another set of fixing units 220 is a positive integer.
  • the number of fixing parts 221 of one set of fixing units 220 is a positive integer.
  • the difference between the number and the number of fixing pieces 221 of another set of fixing units 220 can be 1, 2, 3, etc. For example:
  • the number of fixing parts 221 of one set of fixing units 220 is 1, and the number of fixing parts 221 of another set of fixing units 220 is 2, so that the number of fixing parts 221 of the two sets of fixing units 220 is 2.
  • the difference for piece 221 is 1.
  • the number of fixing pieces 221 of one set of fixing units 220 is 2, and the number of fixing pieces 221 of another set of fixing units 220 is 3, so that the number of fixing pieces 221 of the two sets of fixing units 220 is 3.
  • the difference of the fixing piece 221 is 1.
  • the number of fixing parts 221 of one set of fixing units 220 is 1, and the number of fixing parts 221 of another set of fixing units 220 is 3, so that the number of fixing parts 221 of the two sets of fixing units 220 is 3.
  • the difference of the fixing piece 221 is 2.
  • all the fixing pieces 221 of the fixed units 220 with a small number are spaced apart. are arranged, and all the fixing pieces 221 of the small number of fixing units 220 are located in the middle of all the fixing pieces 221 of the large number of fixing units 220 in the first direction, so that the two sets of fixing units 220 are symmetrically arranged opposite to the moving part 110 both sides.
  • all the fixing pieces 221 of the small number of fixing units 220 are located in the middle of all the fixing pieces 221 of the large number of fixing units 220 in the first direction, so that the two sets of fixing units 220 are symmetrically arranged opposite to the moving part 110 both sides.
  • one group of fixed units 220 includes one magnetic sensor 240
  • another group of fixed units 220 includes two magnetic sensors 240 , wherein the magnetic sensors 240 of one group of fixed units 220 are in the first direction. Located upward in the middle of the two magnetic sensors 240 of another set of fixed units 220 .
  • one group of fixed units 220 includes two magnetic sensors 240
  • another group of fixed units 220 includes three magnetic sensors 240
  • one group of fixed units 220 includes two magnetic sensors 240 .
  • another The three magnetic sensors 240 of one set of fixed units 220 are spaced apart in the first direction, and the two sensors of one set of fixed units 220 are respectively located in the middle of two adjacent magnetic sensors 240 of another set of fixed units 220 . .
  • one group of fixed units 220 includes one magnetic sensor 240
  • another group of fixed units 220 includes three magnetic sensors 240, wherein the magnetic sensors 240 of one group of fixed units 220 are in the second
  • the magnetic sensor 240 at the middle position of the three magnetic sensors 240 of the other group of fixed units 220 is arranged opposite to the magnetic sensor 240 in the direction.
  • the magnetic sensor 240 is any one of the following sensors: a Hall sensor 710, a giant magnetoresistive sensor, a tunneling magnetoresistive sensor, an anisotropic magnetoresistive sensor, or an integrated sensor signal processing chip.
  • each group of fixed units 220 includes multiple magnetic sensors 240
  • all the magnetic sensors 240 of each group of fixed units 220 may be of the same type, or each group of fixed units 220 may include at least two types of magnetic sensors 240 , for example, each group of fixed units 220 includes a Hall sensor 710 and a giant magnetoresistive sensor.
  • the magnetic sensors 240 of the two sets of fixing units 220 may also be of the same type.
  • the magnetic sensors 240 of the two sets of fixing units 220 may both be Hall sensors 710 .
  • all the magnetic sensors 240 of the position detection unit 220 can use the same type of magnetic sensors 240, which helps to reduce the difficulty of adaptation and assembly of the position detection unit 220, and can reduce manufacturing costs.
  • the magnet 230 may be a two-pole magnet 230 magnetized with two poles, and the N pole and S pole of the two-pole magnet 230 are sequentially arranged in the first direction.
  • FIG. 19 is a schematic diagram of the arrangement of two magnets attracting each other provided by the embodiment of the present application.
  • FIG. 20 is another schematic diagram of the arrangement of two magnets attracting each other provided by the embodiment of the application.
  • FIG. 21 is a schematic diagram of two magnets repelling each other provided by an embodiment of the present application.
  • FIG. 22 is another schematic diagram of a mutually repelling arrangement of two magnets provided by an embodiment of the present application.
  • a neutral zone may be provided between the N pole and the S pole of the magnet 230 , and the neutral zone may be disposed opposite to the magnetic sensor 240 , or the neutral zone may not be disposed opposite to the magnetic sensor 240 .
  • Figure 23 is a schematic diagram of the cooperation between the magnets and the magnetic sensors provided by the embodiment of the present application.
  • the magnetic sensor 240 is in the third One direction is located at the middle position of the magnet 230 , that is, the magnetic sensor 240 is opposite to the connection between the N pole and the S pole of the magnet 230 .
  • Figure 24 is another schematic diagram of the cooperation between the magnet and the magnetic sensor provided by the embodiment of the present application. As shown in Figure 24, the N pole and S pole of the magnet 230 Each pole corresponds to a magnetic sensor 240.
  • Figure 25 is another schematic diagram of the cooperation between the magnets and the magnetic sensors provided by the embodiment of the present application. As shown in Figure 25, the S pole, N pole and S pole of the magnet 230 The connection point with the N pole corresponds to a magnetic sensor 240 respectively.
  • the magnetic sensor 240 opposite to the connection between the N pole and the S pole of the magnet 230 becomes disposed opposite to the neutral zone.
  • Figure 26 is a schematic diagram of the connection between the magnetic sensor and the control unit provided by the embodiment of the present application.
  • Figure 27 is a schematic diagram of the connection between the magnetic sensor and the control unit provided by the embodiment of the present application.
  • FIG. 28 is another schematic diagram of the connection between the magnetic sensor and the control unit provided by the embodiment of the present application. It should be noted that in Figures 26 to 28, vdd is equivalent to the positive electrode, and Gnd is equivalent to the negative electrode.
  • each magnetic sensor 240 is electrically connected to the control unit 300 individually, or, as shown in FIG. 26 and FIG. 27 .
  • all the magnetic sensors 240 of each group of fixed units 220 are electrically connected to the same connection end of the control unit 300, which helps to reduce the number of connection ends occupied by the control unit 300 and improves the application of the position detection unit 220. scope.
  • it may also include: an amplifier 500 and an analog-to-digital converter 600.
  • the output end of the analog-to-digital converter 600 is electrically connected to the connection end of the control unit 300.
  • the analog-to-digital converter 600 The input terminal is electrically connected to the output terminal of the amplifier 500, and the two input terminals of the amplifier 500 are electrically connected to the two interfaces of the magnetic sensor 240 respectively.
  • connection scheme of the magnetic sensors 240 and the control unit 300 is described in detail below, taking each group of fixed units 220 including two magnetic sensors 240 as an example:
  • each magnetic sensor 240 is electrically connected to the power supply individually, and each magnetic sensor 240 is electrically connected to a connection end of the control unit 300 through an amplifier 500 and an analog-to-digital amplifier 500 to realize each magnetic sensor 240. Independently electrically connected to the control unit 300.
  • Each magnetic sensor 240 is electrically connected to a connection end of the control unit 300 through an amplifier 500 and an analog-to-digital amplifier 500, so that each magnetic sensor 240 can be independently connected. electrically connected to the control unit 300.
  • the two magnetic sensors 240 of each group of fixed units 220 are electrically connected to the same power supply, and the two magnetic sensors 240 of each group of fixed units 220 are connected to the control unit 300 through an amplifier 500 and an analog-to-digital amplifier 500.
  • One connection end is electrically connected, so that all the magnetic sensors 240 of each group of fixed units 220 are electrically connected to the same connection end of the control unit 300 .
  • all the magnetic sensors 240 of one group of fixed units 220 are electrically connected to a connection end of the control unit 300 through an amplifier 500 and an analog-to-digital converter 600, and all the magnetic sensors 240 of the other group of fixed units 220 are electrically connected to one connection end of the control unit 300.
  • the control unit 300 is electrically connected to a connection end of the control unit 300 through an amplifier 500 and an analog-to-digital amplifier 500 respectively, when the control unit 300 operates on the magnetic field signals uploaded by the two groups of fixed units 220, the magnetic field signals uploaded by each group of fixed units 220 Both sums of the signals need to be divided by 2 to ensure that the magnetic field strength remains the same.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a fixed connection.
  • Indirect connection through an intermediary can be the internal connection between two elements or the interaction between two elements.
  • plural means two or more.
  • the term “and/or” in this article is just an association relationship that describes related objects, indicating that three relationships can exist. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • the character "/" in this article generally indicates that the related objects before and after are an “or” relationship; in the formula, the character "/" indicates that the related objects before and after are a "division" relationship.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the implementation of the present application.
  • the implementation of the examples does not constitute any limitations.

Abstract

本申请实施例提供一种摄像头模组及电子设备。摄像头模组至少包括成像单元以及位置检测单元。成像单元包括沿第一方向运动的运动部件。位置检测单元包括两个可动件以及两组固定单元。两个可动件分别紧固安装在运动部件的相对两端上并位于两组固定单元之间,且两个可动件沿第二方向间隔设置,每组固定单元均包括至少一个固定件,且两组固定单元沿第二方向相对设置。可动件和固定件中的其中一个为磁体,且可动件和固定件中的另一个为磁传感器。磁传感器用于检测与该磁传感器所对应的磁体的磁场强度。通过在运动部件两侧设置相互配合的磁传感器和磁体,可以补偿由于磁体和磁传感器之间的间距变化而带来的精度误差,可以提高位置检测精度。

Description

摄像头模组及电子设备
本申请要求于2022年06月28日提交中国专利局、申请号为202210740020.7、申请名称为“摄像头模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及终端技术领域,特别涉及一种摄像头模组及电子设备。
背景技术
在摄像头模组中,为了补偿修正抖动影响以及实现自动变焦功能,需要使用具有高精度位置检测功能的传感器,进行位置反馈。
相关技术中的摄像头模组通过感应磁石和多个霍尔传感器相互配合,以实现位置检测。其中,感应磁石设置在摄像头模组的运动部件上,多个霍尔传感器沿感应磁石的运动方向等间隔排布并面向感应磁石设置,通过多个霍尔传感器检测到的多个磁场信号可以确定出运动部件是否在预定位置处。
然而,相关技术中的摄像头模组的运动部件的位置检测精度低。
发明内容
本申请实施例提供一种摄像头模组及电子设备,可以补偿由于磁体和磁传感器之间的间距发生动态改变而带来的精度误差,可以提高摄像头模组的运动部件的位置检测精度。
本申请第一方面提供一种摄像头模组,其至少包括:成像单元以及位置检测单元。所述成像单元包括沿第一方向运动的运动部件。所述位置检测单元包括两个可动件以及两组固定单元。所述两个可动件分别紧固安装在所述运动部件的相对两端上并位于所述两组固定单元之间,且两个所述可动件沿第二方向间隔设置。其中,所述第二方向与所述第一方向垂直。每组所述固定单元均包括至少一个固定件,且两组所述固定单元沿所述第二方向相对设置。当每组所述固定单元均包括多个所述固定件时,每组所述固定单元的多个所述固定件沿所述第一方向间隔设置。所述可动件和所述固定件中的其中一个为磁体,且所述可动件和所述固定件中的另一个为磁传感器。所述磁传感器用于检测与该磁传感器所对应的所述磁体的磁场强度。
本申请实施例提供的摄像头模组,由于固定件和可动件中的其中一个为磁体,另一为磁传感器,以可动件为磁体,固定件为磁传感器为例,本申请实施例的运动部件沿第二方向运动时,运动部件与其中一组固定单元之间的间距增加,且运动部件与另一组固定单元之间的间距减小,对应地,其中一组固定单元检测到的磁场强度变小,另一组固定单元检测到的磁场强度变大,通过将两组固定单元检测到的磁场强度进行相加或相减操作,可以补偿由于磁体与磁传感器之间的间距变化所带来的精度误差,可以提高运动部件的位置检测精度。
在一种可能的实施方式中,所述可动件为磁传感器,且所述固定件为磁体。
在一种可能的实施方式中,所述可动件为磁体,且所述固定件为磁传感器。
在一种可能的实施方式中,每组所述固定单元均包括相同数量的所述固定件。
在一种可能的实施方式中,每组所述固定单元均包括一个所述固定件、两个所述固定件或三个所述固定件。
在一种可能的实施方式中,其中一组的所述固定单元的所有所述固定件与另一组的所述固定单元的所有所述固定件一一对应。
在一种可能的实施方式中,两组所述固定单元的所述固定件的数量不相同。
在一种可能的实施方式中,两组所述固定单元中的其中一组所述固定单元的所述固定件的数量与另一组所述固定单元的所述固定件的数量之差为1、2或3。
在一种可能的实施方式中,所述其中一组所述固定单元包括一个所述固定件,且所述另一组所述固定单元包括两个或三个所述固定件。
在一种可能的实施方式中,当所述另一组所述固定单元包括两个所述固定件时,所述其中一组所述固定单元的所述固定件位于所述另一组所述固定单元的两个所述固定件的中间处。
在一种可能的实施方式中,当所述另一组所述固定单元包括三个所述固定件时,所述其中一组所述固定单元的所述固定件沿所述第二方向与所述另一组所述固定单元的三个所述固定件的中间处的所述固定件相对设置。
在一种可能的实施方式中,两个所述磁体沿第二方向相吸设置,或者,两个所述磁体沿第二方向相斥设置。
在一种可能的实施方式中,所述磁传感器为以下传感器中的任意一个:霍尔传感器、巨磁阻传感器、隧穿磁阻传感器、各向异性磁阻传感器或集成传感器信号处理芯片。
在一种可能的实施方式中,所述运动部件为镜片组或感光芯片。所述镜片组包括至少一片沿第一方向运动的镜片。当所述运动部件为所述镜片组时,所述镜片组包括至少一片沿第一方向运动的镜片,所述两个可动件紧固安装在同一个所述镜片上。
在一种可能的实施方式中,还包括:控制单元。每个所述磁传感器均与所述控制单元电连接。所述控制单元用于接收每个所述磁传感器所上传的磁场信号并根据所有的所述磁场信号确定出所述运动部件的位置。
在一种可能的实施方式中,还包括:驱动单元。所述驱动单元与所述控制单元电连接并与所述运动部件驱动连接。所述控制单元还用于根据所述磁场信号控制所述驱动单元驱动所述运动部件沿第一方向运动。
在一种可能的实施方式中,每个所述磁传感器均单独与所述控制单元电连接。
在一种可能的实施方式中,每组所述固定单元的所有的所述磁传感器均与所述控制单元的同一个连接端电连接。
在一种可能的实施方式中,所述磁体为磁石或磁铁。
本申请第二方面提供一种电子设备,包括壳体和如上述任一项所述的摄像头模组。所述摄像头模组设置在所述壳体上。
附图说明
图1为相关技术中的摄像头模组的结构示意图;
图2为相关技术中的感应磁石与霍尔传感器的相对距离的示意图;
图3为本申请实施例提供的摄像头模组的各个单元之间的示意图;
图4为本申请实施例提供的摄像头模组的应用场景示意图;
图5为本申请实施例提供的摄像头模组的结构示意图;
图6为本申请实施例提供的磁体在第二方向上向右偏移的示意图;
图7为本申请实施例提供的运动部件两侧的磁传感器的感测方向相同时的示意图;
图8为本申请实施例提供的运动部件两侧的磁传感器的感测方向相反时的示意图;
图9为图6所示实施例的检测效果示意图;
图10为相关技术中的摄像头模组的检测效果示意图;
图11为本申请实施例提供的第一种位置检测单元的结构示意图;
图12为本申请实施例提供的第二种位置检测单元的结构示意图;
图13为本申请实施例提供的第三种位置检测单元的结构示意图;
图14为本申请实施例提供的第四种位置检测单元的结构示意图;
图15为本申请实施例提供的第五种位置检测单元的结构示意图;
图16为本申请实施例提供的第六种位置检测单元的结构示意图;
图17为本申请实施例提供的第七种位置检测单元的结构示意图;
图18为本申请实施例提供的第八种位置检测单元的结构示意图;
图19为本申请实施例提供的两个磁体相吸设置的一种示意图;
图20为本申请实施例提供的两个磁体相吸设置的另一种示意图;
图21为本申请实施例提供的两个磁体相斥设置的一种示意图;
图22为本申请实施例提供的两个磁体相斥设置的另一种示意图;
图23为本申请实施例提供的磁体与磁传感器配合的一种示意图;
图24为本申请实施例提供的磁体与磁传感器配合的另一种示意图;
图25为本申请实施例提供的磁体与磁传感器配合的又一种示意图;
图26为本申请实施例提供的磁传感器与控制单元的一种连接示意图;
图27为本申请实施例提供的磁传感器与控制单元的另一种连接示意图;
图28为本申请实施例提供的磁传感器与控制单元的又一种连接示意图。
附图标记说明:
10、摄像头模组;
100、成像单元;
110、运动部件;
120、镜片组;
130、感光芯片;
200、位置检测单元;
210、可动件;
220、固定单元;
221、固定件;
230、磁体;
240、磁传感器;
300、控制单元;
400、驱动单元;
500、放大器;
600、模数转换器;
20、光源;
710、霍尔传感器;720、感应磁石;730、运动件;740、处理器;
X、第一方向;
Y、第二方向。
具体实施方式
随着电子设备的功能不断强大,电子设备中通常包括有摄像头模组10。摄像头模组10可以拍摄和采集外界影像,从而让电子设备实现拍摄或者视频通话等功能。其中,电子设备可以是手机、平板电脑、笔记本电脑或掌上电脑(personal digital assistant,PDA)等常见终端。在拍摄照片时,为了提高摄像头模组10的拍摄质量,越来越多的电子设备的摄像头模组10都配置有防抖功能和自动变焦功能,防抖功能和自动变焦功能均需要使用高精度位置检测功能的传感器,以进行位置反馈。
图1为相关技术中的摄像头模组的结构示意图,图2为相关技术中的感应磁石与霍尔传感器的相对距离的示意图。
参考图1和图2,相关技术中的摄像头模组10通过单个感应磁石720和多个霍尔传感器710相互配合,以检测摄像头模组10的运动件730的位置,运动件730可以是摄像头模组10的运动镜片,通过移动运动镜片可以实现变焦功能。其中,感应磁石720紧固安装在运动件730上,运动件730可以带动感应磁石720沿图1中X方向运动。多个霍尔传感器710沿感应磁石720的运动方向(参考图1中的X方向)间隔设置并面向感应磁石720设置,多个霍尔传感器710相对于感应磁石720保持不动,多个霍尔传感器710将检测到的磁场强度发送给摄像头模组10的处理器740,处理器740根据接收到的磁场强度确定出运动件730的当前位置。然而,当感应磁石720与霍尔传感器710之间的相对距离(例如图1中Y方向上的间距,或,图2中Y向上的距离)发生变化时,霍尔传感器710检测到的磁场强度也发生变化,从而导致检测精度发生变化,会降低位置检测精度。例如,当霍尔传感器710与感应磁石720之间的相对距离减小时,运动件730运动至预定位置时,霍尔传感器710检测到的磁场强度会变大,处理器740会根据霍尔传感器710检测到的当前磁场强度调整运动件730的运动距离,以使得霍尔传感器710检测到的磁场强度与预设位置所对应的磁场强度相同,但是这样调整后,会使得运动件730的实际位置与预定位置存在偏差,因此,感应磁石720与霍尔传感器710之间的相对距离发生变化时会带来精度误差,磁传感器240检测的磁场强度不准确,会降低位置检测精度。
基于此,本申请实施例提供一种电子设备,该电子设备包括壳体以及设置在壳体上的摄像头模组10。其中,壳体的形状可以取决于电子设备的类型,例如,当电子设备为手机时,壳体的形状可以是矩形的平板结构,另外,摄像头模组10可以嵌设在壳体的侧壁上。
图3为本申请实施例提供的摄像头模组的各个单元之间的示意图,图4为本申请实施例提供的摄像头模组的应用场景示意图。
参考图3,在本申请实施例中,摄像头模组10至少包括成像单元100、位置检测单元200、控制单元300和驱动单元400。成像单元100用于接收光源20发出的光线并将接收的光线经过处理形成图像。在一些示例中,参考图4,成像单元100至少可以包括沿光轴方向层叠设置的镜片组120和感光芯片130,镜片组120用于将外部光源20发出的光线投射到感光芯片130上,感光芯片130将接收到的光线经过处理形成图像。为了实现摄像头模组10的自动变焦功能,可以通过移动镜片组120或感光芯片130,因此,可以将镜片组120作为运动部件110,或者,将感光芯片130作为运动部件110,例如,参考图4,将感光芯片130作为运动部件110。
在本申请实施例中,驱动单元400与控制单元300电连接并与运动部件110驱动连接,从而驱动单元400能够使运动部件110运动至目标位置,例如,参考图4,运动部件110为感光芯片130时,感光芯片130在驱动单元400的作用下,沿图4中X方向可以由虚线位置移动至实线处,以改变感光芯片130在图4中X方向上的位置,实线自动变焦功能。
在本申请实施例中,控制单元300分别与位置检测单元200和驱动单元400电连接,控制单元300可以根据位置检测单元200检测到的运动部件110的当前位置控制驱动单元400,从而可以确保运动部件110能够运动至目标位置,以满足使用需求。
在本申请实施例中,位置检测单元200包括磁体230和磁传感器240,在运动部件110的相对两侧均设置有磁体230和磁传感器240,每个磁体230均与至少一个磁传感器240配合,其中一个磁体230与该磁体230对应的磁传感器240之间的间距变大时,另一个磁体230与该磁体230对应的磁传感器240之间的间距变小,从而运动部件110一侧的磁传感器240检测的磁场强度增加,另一侧的磁传感器240检测到的磁场强度减小,由于两侧的磁传感器240之间的间距保持不变,对两侧的磁传感器240检测到的磁场强度进行运算,可以补偿由于磁体230与磁传感器240之间的间距发生变化而带来的精度误差,可以提高磁传感器240检测的磁场强度的准确性,可以提高位置检测精度。
可以理解的是,每个磁传感器240均与控制单元300电连接,每个磁传感器240用于将采集到的磁场强度转换为磁场信号并能够将该磁场信号上传至控制单元300,随后控制单元300根据接收到所有的磁场信号确定出运动部件110的当前位置。
需要说明的是,本申请实施例提供的磁传感器240和磁体230的布置方式所针对的应用场景为摄像头模组10,用于确定成像单元100的运动部件110的位置,从而可以实现自动变焦功能和补偿修正抖动影响。当然,本申请实施例提供的磁传感器240和磁体230的布置方式针对应用场景不仅限于摄像头模组10,例如,申请实施例提供的磁传感器240和磁体230的布置方式还可以应用于工业机床、机器人等具有检测并反馈运动部的相对位置的使用场景。
下面对本申请实施例提供的摄像头模组10的实现方式进行阐述。
图5为本申请实施例提供的摄像头模组的结构示意图。
参见5所示,本申请实施例的摄像头模组10,至少包括:成像单元100以及位置检测单元220。成像单元100用于接收外部光源20发出的光线并接收的光线经过处理形成图像,成像单元100可以包括沿第一方向(如图5中X方向)运动的运动部件110,通过改变运 动部件110在第一方向上的位置,可以实现自动变焦功能,以满足用户的拍摄需求,例如,运动部件110可以为成像单元100的镜片组120或感光芯片130。
位置检测单元220,用于检测运动部件110的位置,以确保运动部件110能够运动至目标位置。位置检测单元220可以包括两个可动件210以及两组固定单元220。其中,两个可动件210分别紧固安装在运动部件110的相对两端上,可动件210可以跟随运动部件110沿第一方向运动,需要说明的是,当运动部件110为镜片组120时,镜片组120可以包括至少一片沿第一方向运动的镜片,两个可动件210紧固安装在同一个镜片上。两个可动件210沿第二方向间隔设置并位于两组固定单元220之间,每个可动件210对应一组固定单元220且与固定单元220在第二方向(如图5中Y方向)上间隔设置。其中,第二方向与第一方向垂直。
可以理解的是,在运动部件110沿第一方向运动的过程中,固定单元220相对于运动部件110的位置始终保持不变,可以降低检测难度,另外,固定单元220可以设置在目标位置附近。当运动部件110运动至目标位置时,固定单元220与可动件210相互配合,可以确定运动部件110的实际位置。固定单元220可以设置在摄像头模组10上不移动的零部件上,或者,固定单元220可以设置在电子设备上不移动的零部件上,例如,固定单元220可以设置在摄像头模组10的外壳上,或者,当固定单元220的固定件221为传感器时,固定单元220可以设置在摄像头模组10的印制电路板上,在此不作具体限制。
每组固定单元220均可以包括至少一个固定件221,即每组固定单元220可以包括1、2、3、4、10等数量的固定件221。当每组固定单元220均包括多个固定件221时,每组固定单元220的多个固定件221沿第一方向间隔设置,多个固定件221的数量可以是2、3、4、5、6、7、8、9、10、11、12、13、14、1516等正整数数量。另外,两组固定单元220沿第二方向相对设置,如此设置,有助于提高两组固定单元220所检测到的磁场强度与行程数据所拟合形成的磁场强度-行程曲线的重合度,有助于提高检测精度。
可动件210和固定件221中的其中一个为磁体230,且可动件210和固定件221中的另一个为磁传感器240。磁传感器240用于检测与该磁传感器240所对应的磁体230的磁场强度。磁体230可以是磁石、磁铁或者能够产生磁场的磁场发生器。可以理解的是,由于可动件210跟随运动部件110运动,固定件221的位置始终保持不动,因此,磁体230为可动件210时,对应地,磁传感器240为固定件221,或者,磁传感器240为可动件210时,对应地,磁体230为固定件221。其中,当磁体230为可动件210且磁传感器240为固定件221时,有助于降低位置检测单元220布置难度以及检测难度。
磁传感器240检测到磁体230的磁场强度会转换成磁场信号并将磁场信号发送给控制单元300,控制单元300可以根据磁场信号可以确定出运动部件110是否运动至目标位置。其中,控制单元300根据磁场信号确定运动部件110的位置的检测原理为:运动部件110的行程与磁场强度呈线性关系,即运动部件110在第一方向上的每个行程值均对应一个唯一的判断磁场强度。当磁传感器240检测到的当前磁场强度等于目标位置处的判断磁场强度时,可知运动部件110已运动至目标位置。当磁传感器240检测到的当前磁场强度与目标位置处的判断磁场强度存在偏差时,控制单元300会根据磁传感器240检测到的当前磁场强度与目标位置处的判断磁场强度的偏差值大小,控制运动部件110的运动距离,以确保运动部件110运动至目标位置。
下面以可动件210为磁体230,固定件221为磁传感器240且每个磁体230对应两个磁传感器240为例对本申请实施例如何补偿精度误差的原理进行详细说明:
图6为本申请实施例提供的磁体在第二方向上向右偏移的示意图,如图6所示,两个磁体230在第二方向上向右偏移一定距离(例如图6中A)时,运动部件110(未在图6中示出)右侧的磁体230与右侧的磁传感器240在第二方向上的间距变减小,从而右侧的磁传感器240检测到的磁场强度变大,运动部件110左侧的磁体230与左侧的磁传感器240在第二方向上的间距变大,从而左侧的磁传感器240检测到的磁场强度减小。由于两侧的磁传感器240在第二方向上的间距始终保持不变,与未向右偏移时检测到的磁场强度相比,偏移后的右侧的磁传感器240检测到的磁场强度增加的部分刚好约等于偏移后的左侧的磁传感器240检测到的磁场强度减小的部分,因此,通过对左侧的磁传感器240检测到的磁场强度和右侧磁传感器240检测到的磁场强度进行相应运算,可以确保在相同行程下,磁传感器240感受到的磁场大小值基本不受磁体230与该磁体230所对应的磁传感器240的间距变化影响,有助于减小精度误差,以提高位置检测精度。
其中,左侧的磁传感器240检测到的磁场强度和右侧磁传感器240检测到的磁场强度的运算方式(相加或相减)取决于磁体230的排布方式(相吸设置或相斥设置)和磁传感器240的感测方向(例如图7或图8中的K方向),磁传感器240的感测方向平行于第二方向,另外,磁传感器240的感测方向的朝向可以取决于磁传感器240的安装方向。
图7为本申请实施例提供的运动部件两侧的磁传感器的感测方向相同时的示意图。如图7所示,当两个磁体230相吸设置时,且运动部件110两侧的磁传感器240的感测方向相同时,运动部件110两侧的磁场强度相加。当两个磁体230相斥设置(图中未示出)时,且运动部件110两侧的磁传感器240的感测方向相反时,运动部件110两侧的磁场强度相加。
图8为本申请实施例提供的运动部件两侧的磁传感器的感测方向相反时的示意图,如图8所示,当两个磁体230相吸设置时,且运动部件110两侧的磁传感器240的感测方向相反时,运动部件110两侧的磁场强度相减。当两个磁体230相斥设置(图中未示出)时,且运动部件110两侧的磁传感器240的感测方向相同时,运动部件110两侧的磁场强度相减。
因此,当运动部件110两侧的磁传感器240的感测方向确定时,左侧的磁传感器240检测到的磁场强度和右侧磁传感器240检测到的磁场强度的运算方式取决于两个磁体230的排布,例如,当运动部件110两侧的磁传感器240的感测方向相同时,两个磁体230相吸设置,对应地,所有的磁传感器240检测到的磁场强度相加,便可以补偿由于磁体230与磁传感器240的间距变化所带来的精度误差,可以提高位置检测精度。当运动部件110两侧的磁传感器240的感测方向相同时,且两个磁体230在第二方向上是相斥设置时,每组固定单元220的磁传感器240所检测到的磁场强度相加,然后两组固定单元220检测到的磁场强度相减,便可以补偿由于磁体230与磁传感器240的间距变化所带来的精度误差,可以提高位置检测精度。
需要说明的是,在本申请实施例中,以运动部件110两侧的磁传感器240的感测方向相同为例来描述磁场强度的运算方式。
图9为图6所示实施例的检测效果示意图。图9中,H1、H2、H3和H4分别代表一 个磁传感器240并且两个磁体230在第二方向上相吸设置,(H1+H2+H3+H4)代表了两个磁体230相吸设置时的加和运算。图9中:a100代表磁体230与磁传感器240在第二方向上的间距减小100um,b100代表磁体230与磁传感器240在第二方向上的间距增加100um,b150代表磁体230与磁传感器240在第二方向上的间距增加150um,c代表磁体230与磁传感器240在第二方向上的间距未发生变化。从图9可知,磁体230和磁传感器240在第二方向上的间距发生变化时,在相同行程时,磁场强度不会发生变化。
图10为相关技术中的摄像头模组的检测效果示意图。图10中的H1和H2代表了两个霍尔传感器710所检测到的磁场强度的加和运算,从图10可知,由于感应磁石720和霍尔传感器710之间的间距发生变化后,在相同行程下,霍尔传感器710检测到的磁场强度会发生变化(变大或变小)。
因此,通过图9和图10对比可知,本申请实施例提供的磁体230与磁传感器240的布置方式,可以补偿由于磁体230与磁传感器240之间的间距发生变化而带来的精度误差,可以提高磁传感器240检测的磁场强度的准确性,可以提高位置检测精度。
综上所述,本申请实施例提供的摄像头模组10在运动部件110的相对两侧分别设置有相互配合的磁体230和磁传感器240,由于两侧的磁传感器240在第二方向上的间距始终保持不变,运动部件110沿第二方向发生偏移时,一侧的磁传感器240检测的磁场强度变大,另一侧的磁传感器240检测的磁场强度变小,通过对运动部件110两侧的磁传感器240检测到的磁场强度进行运算,可以提高位置检测精度。
下面以可动件210为磁体230,且固定件221为磁传感器240对本申请实施例的位置检测单元220进行详细说明。
图11为本申请实施例提供的第一种位置检测单元的结构示意图,图12为本申请实施例提供的第二种位置检测单元的结构示意图,图13为本申请实施例提供的第三种位置检测单元的结构示意图。
在一些可能的实现方式中,每组固定单元220均包括相同数量的固定件221,如此设置,有助于提高位置检测精度。
每组固定单元220所包括的固定件221的数量可以根据使用需求、摄像头模组10的内部空间等因素而定,例如,每组固定单元220的固定件221的数量可以为1、2、3、4等数量,从而两组固定单元220的固定件221的数量比为1:1(如图9所示)、2:2(如图10所示)、3:3(如图11所示)、4:4、5:5等比值。
需要说明的是,磁传感器240的数量越多,磁传感器240检测出来的磁场强度所拟合出来的磁场强度-行程曲线(如图9所示的曲线)也越趋近于一条直线,换言之,磁传感器240的数量越多,有助于提高线性度,而线性度越高,磁传感器240检测到的当前磁场强度也越接近于判断磁场强度,有助于提高位置检测精度。
在一些示例中,沿第一方向,其中一组的固定单元220的所有固定件221与另一组的固定单元220的所有固定件221一一对应(如图11-图13所示),即运动部件110两侧的磁传感器240对称设置,如此设置,有助于提高重合度,从而磁传感器240检测到的磁场强度与行程所拟合形成的磁场强度-行程曲线为一条曲线,有助于提高位置检测精度。例如,如图12所示,每组固定单元220均可以包括两个磁传感器240,两组固定单元220的两个磁传感器240分别对称设置。
图14为本申请实施例提供的第四种位置检测单元的结构示意图,图15为本申请实施例提供的第五种位置检测单元的结构示意图。
在另一些示例中,沿第一方向,运动部件110两侧的磁传感器240可以沿第一方向错位布置,例如,如图14所示,每组固定单元220可以包括两个磁传感器240,在第一方向上,所有的磁传感器240依次间隔设置,或者,如图15所示,其中一组固定单元220的其中一个磁传感器240与另一组固定单元220的另一个磁传感器240部分重叠。
图16为本申请实施例提供的第六种位置检测单元的结构示意图,图17为本申请实施例提供的第七种位置检测单元的结构示意图,图18为本申请实施例提供的第八种位置检测单元的结构示意图。
在一些可能的实现方式中,如图16所示,两组固定单元220的固定件221的数量不相同,换言之,两组固定单元220中的其中一组固定单元220的固定件221的数量与另一组固定单元220的固定件221的数量存在差值,如此设置,有助于提高位置检测单元220的应用范围,并可以提高位置检测精度。
可以理解的是,如图16所示,以运动部件110为中心,运动部件110顶侧的所有磁传感器240的数量可以小于运动部件110底侧的所有磁传感器240的数量,或者,运动部件110底侧的所有磁传感器240的数量可以大于运动部件110顶侧的所有磁传感器240的数量。
需要说明的是,其中一组固定单元220的固定件221的数量与另一组固定单元220的固定件221的数量的差值为正整数,例如,其中一组固定单元220的固定件221的数量与另一组固定单元220的固定件221的数量的差值可以1、2、3等数值。例如:
在一些示例中,如图16所示,其中一组固定单元220的固定件221的数量为1个,另一组固定单元220的固定件221的数量为2,从而两组固定单元220的固定件221的差值为1。
在另一些示例中,如图17所示,其中一组固定单元220的固定件221的数量为2个,另一组固定单元220的固定件221的数量为3,从而两组固定单元220的固定件221的差值为1。
在又一些示例中,如图18所示,其中一组固定单元220的固定件221的数量为1个,另一组固定单元220的固定件221的数量为3,从而两组固定单元220的固定件221的差值为2。
为了确保两组固定单元220所检测出来的磁场强度与行程拟合出来的磁场强度-行程曲线的重合度,使得磁场强度-行程曲线为一条曲线,数量少的固定单元220的所有固定件221间隔设置,且数量少的固定单元220的所有固定件221在第一方向上位于数量多的固定单元220的所有固定件221的中间处,以使得两组固定单元220对称布置在运动部件110的相对两侧。例如:
在一些示例中,如图16所示,其中一组固定单元220包括一个磁传感器240,另一组固定单元220包括两个磁传感器240,其中一组固定单元220的磁传感器240在第一方向上位于另一组固定单元220的两个磁传感器240的中间处。
在另一些示例中,如图17所示,其中一组固定单元220包括两个磁传感器240,另一组固定单元220包括三个磁传感器240,其中一组固定单元220的两个磁传感器240和另 一组固定单元220的三个磁传感器240在第一方向上间隔设置,并且,其中一组固定单元220的两个传感器分别位于另一组固定单元220的相邻两个磁传感器240的中间处。
在又一示例中,如图18所示,其中一组固定单元220包括一个磁传感器240,另一组固定单元220包括三个磁传感器240,其中一组固定单元220的磁传感器240在第二方向上与另一组固定单元220的三个磁传感器240的中间位置处的磁传感器240相对设置。
在一些可能的实现方式中,磁传感器240为以下传感器中的任意一个:霍尔传感器710、巨磁阻传感器、隧穿磁阻传感器、各向异性磁阻传感器或集成传感器信号处理芯片。
需要说明的是,当每组固定单元220包括多个磁传感器240时,每组固定单元220的所有磁传感器240的种类可以相同,或者,每组固定单元220包括至少两种类型的磁传感器240,例如,每组固定单元220包括霍尔传感器710和巨磁阻传感器。另外,两组固定单元220的磁传感器240的类型也可以相同,例如,两组固定单元220的磁传感器240均可以为霍尔传感器710。
可以理解的是,位置检测单元220的所有磁传感器240可以采用同一类型的磁传感器240,有助于降低位置检测单元220的适配难度以及装配难度,并可以降低制造成本。
在一些可能的实现方式中,磁体230可以是以两个极磁化的两极磁体230,并且两极磁体230的N极和S极在第一方向上顺序的布置。
图19为本申请实施例提供的两个磁体相吸设置的一种示意图,图20为本申请实施例提供的两个磁体相吸设置的另一种示意图。
如图19或图20所示,当两个磁体230相吸设置时,其中一个磁体230的N极在第二方向上与另一个磁体230的S极相对设置,且其中一个磁体230的S极在第二方向上与另一个磁体230的N极相对设置。
图21为本申请实施例提供的两个磁体相斥设置的一种示意图,图22为本申请实施例提供的两个磁体相斥设置的另一种示意图。
如图21或图22所示,当两个磁体230相斥设置时,其中一个磁体230的N极在第二方向上与另一个磁体230的N极相对设置,且其中一个磁体230的S极在第二方向上与另一个磁体230的S极相对设置。
可选地,在磁体230的N极和S极之间还可以设置有中性区,中性区可以与磁传感器240相对设置,或者,中性区可以不与磁传感器240相对设置。
为了提高检测精度,每个磁体230对应的磁传感器240的数量为一个时,图23为本申请实施例提供的磁体与磁传感器配合的一种示意图,如图23所示,磁传感器240在第一方向上位于磁体230中间位置处,即磁传感器240与磁体230的N极和S极的连接处相对。当每个磁体230对应的磁传感器240的数量为两个时,图24为本申请实施例提供的磁体与磁传感器配合的另一种示意图,如图24所示,磁体230的N极和S极分别对应一个磁传感器240,另外,磁传感器240可以位于N极或S极的中心。当每个磁体230对应三个磁传感器240时,图25为本申请实施例提供的磁体与磁传感器配合的又一种示意图,如图25所示,磁体230的S极、N极以及S极和N极的连接处分别对应一个磁传感器240。
需要说明的是,当磁体230具有中性区时,与磁体230的N极和S极的连接处相对的磁传感器240变为与中性区相对设置。
图26为本申请实施例提供的磁传感器与控制单元的一种连接示意图,图27为本申请 实施例提供的磁传感器与控制单元的另一种连接示意图,图28为本申请实施例提供的磁传感器与控制单元的又一种连接示意图。需要说明的是,图26-图28中,vdd相当于正极,Gnd相当于负极。
为了将磁传感器240检测到的磁场强度发送至控制单元300,在一些可能的实现方式中,如图26和图27所示,每个磁传感器240均单独与控制单元300电连接,或者,如图28所示,每组固定单元220的所有的磁传感器240均与控制单元300的同一个连接端电连接,有助于减少占用控制单元300的连接端的数量,可以提高位置检测单元220的应用范围。
可选地,如图26-图28所示,还可以包括:放大器500和模数转换器600,模数转换器600的输出端与控制单元300的连接端电连接,模数转换器600的输入端与放大器500的输出端电连接,放大器500的两个输入端分别与磁传感器240的两个接口电连接。
下面以每组固定单元220包括两个磁传感器240为例详细描述磁传感器240与控制单元300的连接方案:
参考图26,每个磁传感器240均单独与电源电连接,且每个磁传感器240均通过一个放大器500和一个模数放大器500与控制单元300的一个连接端电连接,实现每个磁传感器240单独与控制单元300电连接。
参考图27,四个磁传感器240与同一个电源电连接,每个磁传感器240均通过一个放大器500和一个模数放大器500与控制单元300的一个连接端电连接,实现每个磁传感器240单独与控制单元300电连接。
参考图28,每组固定单元220的两个磁传感器240与同一个电源电连接,且每组固定单元220的两个磁传感器240均通过一个放大器500和一个模数放大器500与控制单元300的一个连接端电连接,实现每组固定单元220的所有的磁传感器240均与控制单元300的同一个连接端电连接。
需要说明的是,其中一组固定单元220的所有磁传感器240均通过一个放大器500和一个模数转换器600与控制单元300的一个连接端电连接,另一组固定单元220的所有磁传感器240分别通过一个放大器500和一个模数放大器500与控制单元300的一个连接端电连接时,控制单元300在对两组固定单元220所上传的磁场信号进行运算时,每组固定单元220上传的磁场信号之和均需要除以2,以确保磁场强度保持不变。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。在本申请实施例的描述中,“多个”的含义是两个或两个以上,除非是另有精确具体地规定。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请实施例的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有” 以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本文中的术语“多个”是指两个或两个以上。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (17)

  1. 一种摄像头模组,其特征在于,至少包括:成像单元以及位置检测单元;
    所述成像单元包括沿第一方向运动的运动部件;
    所述位置检测单元包括两个可动件以及两组固定单元;
    所述两个可动件分别紧固安装在所述运动部件的相对两端上并位于所述两组固定单元之间,且两个所述可动件沿第二方向间隔设置;其中,所述第二方向与所述第一方向垂直;
    每组所述固定单元均包括至少一个固定件,且两组所述固定单元沿所述第二方向相对设置;当每组所述固定单元均包括多个所述固定件时,每组所述固定单元的多个所述固定件沿所述第一方向间隔设置;
    所述可动件和所述固定件中的其中一个为磁体,且所述可动件和所述固定件中的另一个为磁传感器;
    所述磁传感器用于检测与该磁传感器所对应的所述磁体的磁场强度。
  2. 根据权利要求1所述的摄像头模组,其特征在于,所述可动件为磁体,且所述固定件为磁传感器。
  3. 根据权利要求2所述的摄像头模组,其特征在于,每组所述固定单元均包括相同数量的所述固定件。
  4. 根据权利要求3所述的摄像头模组,其特征在于,每组所述固定单元均包括一个所述固定件、两个所述固定件或三个所述固定件。
  5. 根据权利要求3或4所述的摄像头模组,其特征在于,其中一组的所述固定单元的所有所述固定件与另一组的所述固定单元的所有所述固定件一一对应。
  6. 根据权利要求2所述的摄像头模组,其特征在于,两组所述固定单元的所述固定件的数量不相同。
  7. 根据权利要求6所述的摄像头模组,其特征在于,两组所述固定单元中的其中一组所述固定单元的所述固定件的数量与另一组所述固定单元的所述固定件的数量之差为1、2或3。
  8. 根据权利要求7所述的摄像头模组,其特征在于,所述其中一组所述固定单元包括一个所述固定件,且所述另一组所述固定单元包括两个或三个所述固定件。
  9. 根据权利要求8所述的摄像头模组,其特征在于,当所述另一组所述固定单元包括两个所述固定件时,所述其中一组所述固定单元的所述固定件位于所述另一组所述固定单元的两个所述固定件的中间处;或者,
    当所述另一组所述固定单元包括三个所述固定件时,所述其中一组所述固定单元的所述固定件沿所述第二方向与所述另一组所述固定单元的三个所述固定件的中间处的所述固定件相对设置。
  10. 根据权利要求2-9任一项所述的摄像头模组,其特征在于,两个所述磁体沿第二方向相吸设置,或者,两个所述磁体沿第二方向相斥设置。
  11. 根据权利要求1至10任一项所述的摄像头模组,其特征在于,所述磁传感器为以下传感器中的任意一个:霍尔传感器、巨磁阻传感器、隧穿磁阻传感器、各向异性磁阻传感器或集成传感器信号处理芯片。
  12. 根据权利要求1至11任一项所述的摄像头模组,其特征在于,所述运动部件为镜片组或感光芯片;
    当所述运动部件为所述镜片组时,所述镜片组包括至少一片沿第一方向运动的镜片,所述两个可动件紧固安装在同一个所述镜片上。
  13. 根据权利要求1至12任一项所述的摄像头模组,其特征在于,还包括:控制单元;
    每个所述磁传感器均与所述控制单元电连接;
    所述控制单元用于接收每个所述磁传感器所上传的磁场信号并根据所有的所述磁场信号确定出所述运动部件的位置。
  14. 根据权利要求13所述的摄像头模组,其特征在于,还包括:驱动单元;所述驱动单元与所述控制单元电连接并与所述运动部件驱动连接;
    所述控制单元还用于根据所述磁场信号控制所述驱动单元驱动所述运动部件沿第一方向运动。
  15. 根据权利要求13或14所述的摄像头模组,其特征在于,每个所述磁传感器均单独与所述控制单元电连接;或者,
    每组所述固定单元的所有的所述磁传感器均与所述控制单元的同一个连接端电连接。
  16. 根据权利要求1-15任一项所述的摄像头模组,其特征在于,所述磁体为磁石或磁铁。
  17. 一种电子设备,其特征在于,包括壳体和如权利要求1至16任一项所述的摄像头模组;所述摄像头模组设置在所述壳体上。
PCT/CN2023/100291 2022-06-28 2023-06-14 摄像头模组及电子设备 WO2024001800A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210740020.7 2022-06-28
CN202210740020.7A CN117376684A (zh) 2022-06-28 2022-06-28 摄像头模组及电子设备

Publications (1)

Publication Number Publication Date
WO2024001800A1 true WO2024001800A1 (zh) 2024-01-04

Family

ID=89382883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100291 WO2024001800A1 (zh) 2022-06-28 2023-06-14 摄像头模组及电子设备

Country Status (2)

Country Link
CN (1) CN117376684A (zh)
WO (1) WO2024001800A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8818181B1 (en) * 2013-08-19 2014-08-26 Samsung Electronics Co., Ltd. Camera module, and position detector and position detection method used in the camera module
CN109951702A (zh) * 2019-03-29 2019-06-28 华为技术有限公司 位置检测机构、移动终端及位置检测方法
CN209057292U (zh) * 2018-12-13 2019-07-02 北京小米移动软件有限公司 摄像头模组和电子设备
CN111886480A (zh) * 2018-04-06 2020-11-03 村田机械株式会社 位置检测系统以及行驶系统
CN113301246A (zh) * 2020-02-24 2021-08-24 三星电机株式会社 相机模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8818181B1 (en) * 2013-08-19 2014-08-26 Samsung Electronics Co., Ltd. Camera module, and position detector and position detection method used in the camera module
CN111886480A (zh) * 2018-04-06 2020-11-03 村田机械株式会社 位置检测系统以及行驶系统
CN209057292U (zh) * 2018-12-13 2019-07-02 北京小米移动软件有限公司 摄像头模组和电子设备
CN109951702A (zh) * 2019-03-29 2019-06-28 华为技术有限公司 位置检测机构、移动终端及位置检测方法
CN113301246A (zh) * 2020-02-24 2021-08-24 三星电机株式会社 相机模块

Also Published As

Publication number Publication date
CN117376684A (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
CN106537215B (zh) 透镜架驱动装置和搭载有摄像机的移动终端
US8320753B2 (en) Handshake correction apparatus
CN101331385B (zh) 位置检测装置
WO2021110091A1 (zh) 一种音圈马达、摄像模组及电子设备
US10401641B2 (en) Camera system and lens unit therof
US9407799B2 (en) Position detection apparatus
US7132824B2 (en) Position detector, camera-shake compensation mechanism, and image capture apparatus
US8073317B2 (en) Positioning device, shake correcting device and electronics
US20220360200A1 (en) Camera module
JP5124879B2 (ja) 位置検出装置、および、その位置検出装置を用いた電子機器
JP2008045919A (ja) 位置検出装置、ブレ補正装置、レンズ鏡筒及び光学機器
EP3415967A1 (en) Lens drive device
CN106773451B (zh) 摄像头模组光学防抖的实现方法
JP3873515B2 (ja) 位置検出装置
WO2024001800A1 (zh) 摄像头模组及电子设备
JP4855454B2 (ja) 位置検出装置及びその位置検出装置を用いた電子機器
JP5074342B2 (ja) 位置検出装置及びその位置検出装置を用いた電子機器
JP5594086B2 (ja) 変位検出装置
CN210609394U (zh) 照相机模块
CN112540444B (zh) 镜头模块与电子装置
JP6368185B2 (ja) 線形運動デバイスの位置センサ及びその位置センサを用いた線形運動デバイスの位置制御装置
WO2022165654A1 (zh) 检测装置、摄像模组及电子设备
WO2022260253A1 (ko) 가이드 프리 이미지센서 액추에이터
CN112099181B (zh) 镜头驱动装置及摄像装置
CN209858822U (zh) 透镜驱动装置、照相装置以及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829981

Country of ref document: EP

Kind code of ref document: A1