WO2024001461A1 - 一种高压铝电解电容器用电解液及高压铝电解电容器 - Google Patents

一种高压铝电解电容器用电解液及高压铝电解电容器 Download PDF

Info

Publication number
WO2024001461A1
WO2024001461A1 PCT/CN2023/089978 CN2023089978W WO2024001461A1 WO 2024001461 A1 WO2024001461 A1 WO 2024001461A1 CN 2023089978 W CN2023089978 W CN 2023089978W WO 2024001461 A1 WO2024001461 A1 WO 2024001461A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
aluminum electrolytic
mass content
solvent
solute
Prior art date
Application number
PCT/CN2023/089978
Other languages
English (en)
French (fr)
Inventor
禤裕汉
钟玲
黄丽青
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2024001461A1 publication Critical patent/WO2024001461A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors

Definitions

  • the invention belongs to the technical field of electrolyte for aluminum electrolytic capacitors, and specifically relates to an electrolyte suitable for high-voltage aluminum electrolytic capacitors above 500V and a high-voltage aluminum electrolytic capacitor.
  • Aluminum electrolytic capacitors are widely used in important industries such as industry, home appliances, and aerospace, and play an irreplaceable role. As the scope of use of aluminum electrolytic capacitors increases, the requirements for the voltage resistance of aluminum electrolytic capacitors are gradually increasing. At present, aluminum electrolytic capacitor products in the 500-600V voltage range on the market often use conductivity to ensure the voltage resistance of the products. Lower aluminum electrolytic capacitors, such as the 500V aluminum electrolytic capacitor products used on the market, use aluminum electrolyte conductivity of 1.2mS/cm, 550V aluminum electrolytic capacitor products use the aluminum electrolyte conductivity of 1.0mS/cm, 600V aluminum The conductivity of the aluminum electrolyte used in electrolytic capacitor products is 0.6mS/cm.
  • the electric field strength of aluminum electrolytic capacitors is large, which can easily speed up the migration rate of impurity ions. It can also cause the impurity ions in the aluminum matrix lattice to migrate out, accelerating corrosion of the aluminum foil and affecting the capacitor parameters. In severe cases, Will cause the capacitor to fail.
  • the marked service life of high-voltage aluminum electrolytic capacitor products on the market is basically 105°C 2000H. The main reason is that aluminum capacitors are more prone to corrosion failure in the later stages of use.
  • this application provides an electrolyte for high-voltage aluminum electrolytic capacitors and a high-voltage aluminum electrolytic capacitor.
  • the present invention provides an electrolyte for high-voltage aluminum electrolytic capacitors.
  • the electrolyte includes a solvent, a solute and an additive.
  • the solute includes a main solute B and an anti-corrosion material A.
  • the main solute B It is a compound represented by structural formula 1:
  • R includes the main carbon chain and the branch chains located on the main carbon chain.
  • the main carbon chain of R includes a length of 10 to 26 carbon atoms.
  • the number of branch chains of R is 1 to 10, and the branch chains of R are each independent. is selected from a linear or branched chain hydrocarbon group with 1 to 10 carbon atoms, a linear or branched oxygen-containing hydrocarbon group with 1 to 10 carbon atoms;
  • the electrolyte satisfies the following relationship: 0.1 ⁇ 10 3 ⁇ ( ⁇ m ⁇ p)/(r ⁇ ) ⁇ 1.5;
  • the conductivity of the electrolyte at 25°C, unit mS/cm;
  • eta viscosity of the electrolyte, unit mPa ⁇ s.
  • the oxygen-containing hydrocarbon group includes carbonyl group, ester group or carboxyl group.
  • the water content m of the electrolyte is 2% to 4%.
  • the viscosity ⁇ of the electrolyte is 80 mPa ⁇ s ⁇ eta ⁇ 300 mPa ⁇ s.
  • the mass content of the main solute B in the electrolyte is 10% to 25%.
  • the anti-corrosion material A is a complex obtained by reacting an inorganic acid and a polyol in an ethylene glycol solvent;
  • the inorganic acid includes one or more of boric acid, molybdic acid and silicic acid;
  • the polyol includes one or more of mannitol, xylitol, sorbitol and quercetin;
  • the mass content of the anti-corrosion material A in the electrolyte is 8% to 15%.
  • the anti-corrosion material A is a complex obtained by reacting boric acid and mannitol in an ethylene glycol solvent.
  • the solvent includes a main solvent and a co-solvent
  • the main solvent includes one or more of ethylene glycol, diethylene glycol, and glycerol;
  • the co-solvent includes N,N-dimethylformamide, diethylene glycol monobutyl ether, diethylene glycol dibutyl ether, diglycerol One or more of alcohol methyl ether, ⁇ -butyrolactone, sulfolane, n-butanol;
  • the mass content of the main solvent in the electrolyte is 26% to 65.49%; the mass content of the co-solvent in the electrolyte is 8% to 15%.
  • the electrolyte further includes an auxiliary solute, which includes one of sebacic acid and its ammonium salts, azelaic acid and its ammonium salts, dodecanedioic acid and its ammonium salts, boric acid, and ammonium pentaborate. species or species;
  • the mass content of the auxiliary solute in the electrolyte is 1% to 3%.
  • the additives include hydrogen elimination agent, waterproofing agent and flash fire enhancing agent;
  • the hydrogen elimination agent includes one or more of p-nitrobenzyl alcohol, m-nitroacetophenone, o-nitrobenzene, p-nitrophenol, ammonium p-nitrobenzoate, and p-nitrobenzoic acid;
  • the waterproof mixture includes one or more of ammonium hypophosphite, hypophosphite, sorbitol, mannitol, silicic acid compounds, and aluminum silicate salts;
  • the flash fire enhancing agent includes one or more of polyethylene glycol, polypropylene glycol, propylene glycol block polyether, polyacrylamide, polyvinyl alcohol, and inorganic nano-silica with a molecular weight of 600 to 6000;
  • the mass content of the hydrogen elimination agent in the electrolyte is 0.5% to 2%; the mass content of the waterproof mixture in the electrolyte is 0.01% to 2%; The mass content of flash fire enhancing agent in the electrolyte is 7% to 12%.
  • the present application provides a high-voltage aluminum electrolytic capacitor, including an anode foil, a cathode foil and electrolytic paper arranged on the same side of the anode foil and cathode foil.
  • the electrolytic paper is impregnated with an electrolyte, and the electrolyte is the above-mentioned The electrolyte used in the high-voltage aluminum electrolytic capacitor.
  • the moisture content in the electrolyte is between 1% and 5%, which can provide sufficient oxygen anions, improve the oxidation efficiency of the anode foil, and repair the oxide film in time, thereby increasing the service life of the aluminum electrolytic capacitor; the moisture content of the electrolyte The content is controlled between 1% and 5%, and the viscosity of the electrolyte is in the range of 80mPa ⁇ s ⁇ 400mPa ⁇ s, which can increase the ion migration rate, maintain the high conductivity of the electrolyte, and ensure good infiltration effect of the core containing dipping device.
  • the electrolyte for high-voltage aluminum electrolytic capacitors provided by this application adjusts the conductivity and viscosity of the electrolyte by controlling the water content m, the main solute B content p, and the anti-corrosion material A content r in the electrolyte, so that the relationship is satisfied 0.1 ⁇ 10 3 ⁇ ( ⁇ m ⁇ p)/(r ⁇ ) ⁇ 1.5, and 1% ⁇ m ⁇ 5%, 80mPa ⁇ s ⁇ 400mPa ⁇ s, the prepared electrolyte has high conductivity rate and flash voltage to avoid capacitor breakdown, valve leakage, corrosion and other failure phenomena.
  • the prepared aluminum electrolytic capacitor can withstand high voltages above 500V, and has a service life of 105°C and 5000H.
  • the electrolyte for high-voltage aluminum electrolytic capacitors.
  • the electrolyte includes a solvent, a solute and an additive.
  • the solute includes a main solute B and an anti-corrosion material A.
  • the main solute B is represented by structural formula 1. Show compound:
  • R includes the main carbon chain and the branch chains located on the main carbon chain.
  • the main carbon chain length of R is 10 to 26 carbon atoms
  • the number of branch chains of R is 1 to 10
  • the branch chains of R are each independently Selected from linear or branched chain hydrocarbon groups with 1 to 10 carbon atoms, and linear or branched oxygen-containing hydrocarbon groups with 1 to 10 carbon atoms;
  • the electrolyte satisfies the following relationship: 0.1 ⁇ 10 3 ⁇ ( ⁇ m ⁇ p)/(r ⁇ ) ⁇ 1.5;
  • the conductivity of the electrolyte at 25°C (mS/cm);
  • eta viscosity of the electrolyte (mPa ⁇ s).
  • the branch chain of R on the main solute B can be selected from C1 to C10 straight-chain hydrocarbon groups, which can be methyl, ethyl, propyl, octyl, etc., and the branch chain of R can also have 1 to 10 carbon atoms.
  • branched chain hydrocarbon group such as isopropyl, isobutyl, etc.
  • the branched chain of R on the main solute B can also be selected from linear or branched oxygen-containing hydrocarbon groups with 1 to 10 carbon atoms, such as methyl acetate, methyl propionate, etc.
  • the oxygen-containing hydrocarbon group includes a carboxyl group, a carbonyl group or an ester group;
  • the carboxyl group can be an acetate group, a propionate group, or a group containing one carboxyl group, or it can also contain two or more carboxyl groups;
  • the carbonyl group can be It is formyl, acetyl, isobutyryl, etc.;
  • the ester group can be ethyl acetate, propyl acetate, propyl propionate, etc.
  • the main solute B can be one or more of the following compounds:
  • the main solute B serves as a high-voltage electrolyte.
  • the length of the main carbon chain of R in the compound shown in structural formula 1 is in the range of 10 to 26 carbon atoms.
  • the main solute B has good solubility in the solvent of the electrolyte, has the effect of improving the conductivity of the electrolyte, and is beneficial to the electrochemical reaction of the capacitor.
  • the addition amount of the main solute B will have a great impact on the viscosity of the electrolyte. If the viscosity of the electrolyte is too high, the ion migration rate will be reduced and it will not be conducive to the impregnation operation during the production of capacitors. Therefore, electrolysis
  • the content of the main solute B in the liquid depends on the required conductivity. It is also necessary to ensure that the viscosity of the electrolyte is in the range of 80mPa ⁇ s ⁇ eta ⁇ 400mPa ⁇ s, and more preferably 80mPa ⁇ s ⁇ eta ⁇ 300mPa ⁇ s.
  • the mass content of the main solute B in the electrolyte is 10% to 25%.
  • the electrolyte contains a certain amount of water, which helps to ionize the main solute in the electrolyte, thus improving the conductivity of the electrolyte to a certain extent; at the same time, water can also improve the oxygen supply capacity of the electrolyte and help repair the dielectric layer. , from this aspect, it is appropriate that the moisture content in the electrolyte is above 1%.
  • the electrolyte contains a lot of water, which easily forms a hydration film Al(OH) 3 on the foil surface, causing the capacitor capacity to decrease; at the same time Due to the low boiling point of water, when the capacitor is used under high temperature conditions, the internal pressure increases, causing the valve to leak and fail; in addition, the excessive water content in the electrolyte makes it easier for sulfate and chloride ions to precipitate. Increases the risk of capacitor corrosion. Therefore, the maximum water content in the electrolyte should not exceed 5%, which can be 1%, 1.5%, 2%, 2.5%, 2.8%, 3.2%, 3.6%, 4.2%, 4.5%, 5.0 %, preferably 2% to 4%.
  • the anti-corrosion material A is a complex obtained by reacting an inorganic acid and a polyol in an ethylene glycol solvent;
  • the inorganic acid includes one or more of boric acid, molybdic acid and silicic acid;
  • the polyol includes one or more of mannitol, xylitol, sorbitol and quercetin;
  • the mass content of the anti-corrosion material A in the electrolyte is 8% to 15%.
  • the amount of anti-corrosion material A added to the electrolyte can be 8%, 8.5%, 9.0%, 9.6%, 10.4%, 10.9%, 11.5%, 12%, 12.6%, 13%, 13.8%, 14%, 14.3 %, 15%.
  • Anti-corrosion material A is applied to the electrolyte and has an anti-corrosion effect.
  • the electrolyte is used as a working electrolyte in high-voltage aluminum electrolytic capacitors to prevent impurity ions from corroding the aluminum foil and improve the corrosion resistance of the capacitor.
  • anti-corrosion Material A can react with water to adjust the moisture content of the electrolyte, which can better solve the stability problem caused by increased moisture in the capacitor.
  • the anti-corrosion material A is a complex obtained by reacting boric acid and mannitol in an ethylene glycol solvent.
  • the electrolyte used in the high-voltage aluminum electrolytic capacitor provided by this application satisfies the relationship 0.1 ⁇ 10 3 ⁇ ( ⁇ m ⁇ p)/(r ⁇ ) ⁇ 1.5, where ⁇ is the conductivity of the electrolyte and m is the electrolyte Medium moisture content, p is the main content of solute B, r is the content of anti-corrosion material A, eta is the viscosity of the electrolyte, and 1% ⁇ m ⁇ 5%, 80mPa ⁇ s ⁇ 400mPa ⁇ s, which has Excellent conductivity and high flash voltage meet the needs of capacitors with operating voltages up to 500V.
  • the prepared capacitor has good corrosion resistance, and the life test reaches 105°C 5000H, and has high reliability.
  • the solvent includes a main solvent and a co-solvent
  • the main solvent includes one or more of ethylene glycol, diethylene glycol, and glycerol
  • the main solvent is mostly selected from alcohol compounds. , which can ensure good solubility for the main solute B, anti-corrosion material A, auxiliary solute and additives.
  • the cosolvent includes one of N,N-dimethylformamide, diethylene glycol monobutyl ether, diethylene glycol dibutyl ether, diethylene glycol methyl ether, ⁇ -butyrolactone, sulfolane, and n-butanol. Or several; the co-solvent cooperates with the main solvent to increase the solubility of the main solute B, anti-corrosion material A, additives, etc., and stabilize the solvent.
  • the main solvent is The mass content of the electrolytic solution is 26% to 65.49%; the mass content of the co-solvent in the electrolyte is 8% to 15%.
  • the main solvent is added in a relatively large amount, and it mainly plays the role of dissolving the main solute B, anti-corrosion material A, auxiliary solutes, additives and other solutes.
  • the added amount of the co-solvent is lower than the main solvent and serves to assist the dissolution of the main solvent.
  • the electrolyte further includes auxiliary solutes, which include sebacic acid and its ammonium salts, azelaic acid and its ammonium salts, dodecanedioic acid and its ammonium salts, boric acid, pentanoic acid, One or more types of ammonium borate;
  • auxiliary solutes which include sebacic acid and its ammonium salts, azelaic acid and its ammonium salts, dodecanedioic acid and its ammonium salts, boric acid, pentanoic acid, One or more types of ammonium borate;
  • the mass content of the auxiliary solute in the electrolyte is 1% to 3%.
  • auxiliary solute can be 1%, 1.5%, 1.7%, 2.0%, 2.3%, 2.5%, 2.7%, 3.0%.
  • the amount of auxiliary solute added is between 1% and 3%.
  • the auxiliary solute is used to increase the conductivity of the electrolyte.
  • the electrolyte further includes additives, which include hydrogen elimination agents, waterproofing mixtures and flash fire enhancing agents;
  • the hydrogen elimination agent includes one or more of p-nitrobenzyl alcohol, m-nitroacetophenone, o-nitrobenzene, p-nitrophenol, ammonium p-nitrobenzoate, and p-nitrobenzoic acid; Since the electrolyte will repair the oxide film on the anode foil and produce hydrogen, the hydrogen elimination agent mainly reacts with the hydrogen through the hydrogen elimination compound to reduce the hydrogen in the aluminum electrolytic capacitor and prevent explosion due to excessive hydrogen.
  • the waterproof mixture includes one or more of ammonium hypophosphite, hypophosphite, sorbitol, mannitol, silicic acid compounds, and aluminum silicate salts; phosphates, silicate and other substances are added to the waterproof mixture to aluminum In the capacitor electrolyte, these substances present in the electrolyte can form a passivation layer on the surface of the aluminum oxide film, effectively inhibiting hydration.
  • the flash fire enhancing agent includes one or more of polyethylene glycol, polypropylene glycol, propylene glycol block polyether, polyacrylamide, polyvinyl alcohol, and inorganic nano-silica with a molecular weight of 600 to 6000; lightning lifting
  • the agent can increase the flash voltage of the electrolyte and ensure that the capacitor will not be broken down due to flash fire of the electrolyte in the event of overvoltage.
  • the mass content of the hydrogen elimination agent in the electrolyte is 0.5% to 2%, and the addition amount of the hydrogen elimination agent can be 0.5%, 1%, 1.5%, or 2%.
  • the amount of hydrogen eliminator added is between 0.5% and 2%, the hydrogen gas generated in the capacitor can be effectively eliminated and the safety performance of the capacitor can be improved.
  • the mass content of the waterproof mixture in the electrolyte is 0.01% to 2%, and the addition amount of the waterproof mixture can be 0.01%, 0.5%, 1.0%, 1.5%, 2.0% , as long as the addition amount of the waterproof mixture is between 0.01% and 2%, the effect of inhibiting hydration can be fully exerted.
  • the mass content of the flash fire improving agent in the electrolyte is 7% to 12%, and the added amount of the flash fire improving agent can be 7%, 8%, 9%, 10%, 11%, 12%.
  • the amount of flash enhancer added is between 7% and 12%, it can increase the flash voltage of the electrolyte and ensure that the capacitor will not be broken down due to flash fire of the electrolyte in the event of overvoltage. .
  • the present application provides a high-voltage aluminum electrolytic capacitor, including an anode foil, a cathode foil and electrolytic paper arranged on the same side of the anode foil and cathode foil.
  • the electrolytic paper is impregnated with an electrolyte, and the electrolyte is the above-mentioned The electrolyte used in the high-voltage aluminum electrolytic capacitor.
  • High-voltage aluminum electrolytic capacitors use the above-mentioned electrolyte, and the aluminum electrolytic capacitors prepared have the characteristics of high conductivity, high withstand voltage, and excellent corrosion resistance.
  • a method for preparing electrolyte for high-voltage aluminum electrolytic capacitors including the following steps:
  • the main solvent is ethylene glycol with a mass content of 55.5%
  • the auxiliary solvent is ⁇ -butyrolactone with a mass content of 8%
  • the main solute B is the B1 compound with a mass content of 15%
  • the auxiliary solute is pentaboric acid with a mass content of 1.5%.
  • Ammonium the flash fire enhancer is 2% polyvinyl alcohol 105 by mass, 6% nano-silica by mass
  • the added water is 1.0% by mass
  • the anti-corrosion material A selects an A1 compound with a mass content of 10% to eliminate hydrogen.
  • the mass content of the selected agent is 0.5% p-nitrobenzyl alcohol
  • the mass content of the waterproof mixture is 0.5% ammonium hypophosphite; then they are mixed evenly to form an electrolyte for high-voltage aluminum electrolytic capacitors.
  • a method for preparing electrolyte for high-voltage aluminum electrolytic capacitors including the following steps:
  • the main solvent is diethylene glycol with a mass content of 35.5%
  • the auxiliary solvent is N,N-dimethylformamide with a mass content of 15%
  • the main solute B is a B2 compound with a mass content of 20%
  • the auxiliary solute is a B2 compound with a mass content of 20%.
  • the flash fire enhancing agent is selected from the group consisting of polyvinyl alcohol 2000 with a mass content of 2.5%, nano-silica with a mass content of 6%, the added water mass content is 2.3%, and the anti-corrosion material A is selected with a mass content of
  • the mass content of the hydrogen elimination agent is 1.2% p-nitrobenzoic acid
  • the mass content of the waterproof mixture is 0.2% sorbitol; then mix them evenly to form an electrolyte for high-voltage aluminum electrolytic capacitors.
  • a method for preparing electrolyte for high-voltage aluminum electrolytic capacitors including the following steps:
  • the main solvent is glycerol with a mass content of 40%
  • the auxiliary solvent is diethylene glycol monobutyl ether with a mass content of 10%
  • the main solute B is a B3 compound with a mass content of 18%
  • the auxiliary solute is nonyl with a mass content of 2.8%.
  • the diacid and flash fire enhancing agent are selected from polyacrylamide with a mass content of 2.1%
  • the added water mass content is 2.8%
  • the anti-corrosion material A selects an A3 compound with a mass content of 15%.
  • the mass content of the hydrogen elimination agent is 1.6% m-nitroacetophenone
  • the mass content of the waterproof mixture is 1.1% aluminum silicate; then they are mixed evenly to form an electrolyte for high-voltage aluminum electrolytic capacitors.
  • a method for preparing electrolyte for high-voltage aluminum electrolytic capacitors including the following steps:
  • the main solvent is ethylene glycol with a mass content of 55%
  • the auxiliary solvent is butyrolactone with a mass content of 12.5%
  • the main solute B is the B1 compound with a mass content of 10%
  • the auxiliary solute is ammonium sebacate with a mass content of 1%.
  • the flash fire enhancing agent is polyethylene glycol 2000 with a mass content of 10%
  • the water mass content added is 4.2%
  • the anti-corrosion material A is selected with a mass content of 20% A1 compound
  • the hydrogen elimination agent is selected with a mass content of 2% nitrate.
  • the mass content of the waterproof mixture is 1.8% mannitol; then mix it evenly to form an electrolyte for high-voltage aluminum electrolytic capacitors.
  • a method for preparing electrolyte for high-voltage aluminum electrolytic capacitors including the following steps:
  • the main solvent is diethylene glycol with a mass content of 40%
  • the auxiliary solvent is n-butanol with a mass content of 8%
  • the main solute B is a B2 compound with a mass content of 10%
  • the auxiliary solute is azelaic acid with a mass content of 1.5%.
  • the flash fire enhancing agent is selected from polyvinyl alcohol 105 with a mass content of 4%, nano-silica with a mass content of 4%, the added water mass content is 5.0%, the anti-corrosion material A is selected from the A1 compound with a mass content of 25%, and the hydrogen elimination agent Select the mass content of ammonium p-nitrobenzoate to be 1.1%, and select the waterproof mixture to have a mass content of 1.4% hypophosphorous acid; then mix them evenly to form an electrolyte for high-voltage aluminum electrolytic capacitors.
  • a method for preparing electrolyte for high-voltage aluminum electrolytic capacitors including the following steps:
  • the main solvent is ethylene glycol with a mass content of 49.3%
  • the auxiliary solvent is cyclobutanol with a mass content of 14%.
  • Sulfone the main solute B is the B1 compound with a mass content of 11%
  • the flash fire enhancing agent is selected from the mass content of 6% polyvinyl alcohol 105, the mass content of 5% polyethylene glycol 2000, the added water mass content is 1.2%
  • for the hydrogen elimination agent select a mass content of 2% p-nitrophenol
  • for the waterproofing mixture select a mass content of 1.5% ammonium hypophosphite; then mix them evenly to form a high-voltage aluminum electrolytic capacitor.
  • Use electrolyte the main solvent is ethylene glycol with a mass content of 49.3%
  • the auxiliary solvent is cyclobutanol with a mass content of 14%.
  • Sulfone the main solute B is the B1 compound with
  • a method for preparing electrolyte for high-voltage aluminum electrolytic capacitors including the following steps:
  • the main solvent is ethylene glycol with a mass content of 41.9%
  • the auxiliary solvent is butyrolactone with a mass content of 11%
  • the main solute B is a B3 compound with a mass content of 13%
  • the flash fire enhancer is selected from polyethylene with a mass content of 10% Alcohol 105, add water with a mass content of 2.1%, anti-corrosion material A with a mass content of 20% A3 compound, hydrogen elimination agent with a mass content of 2% m-nitroacetophenone; then mix them evenly to form high-pressure aluminum Electrolyte for electrolytic capacitors.
  • a method for preparing electrolyte for high-voltage aluminum electrolytic capacitors including the following steps:
  • the main solvent is ethylene glycol with a mass content of 47.5%
  • the auxiliary solvent is ⁇ -butyrolactone with a mass content of 8%
  • the main solute B is the B1 compound with a mass content of 15%
  • the auxiliary solute is 2.5% by mass.
  • Ammonium acid, the flash fire enhancing agent is 2.5% polyethylene glycol 2000 by mass, 6% nano-silica by mass, the added water is 0.5% by mass
  • the anti-corrosion material A selects A1 compound with a mass content of 17%.
  • the mass content of the hydrogen elimination agent is 0.5% p-nitrobenzyl alcohol, and the mass content of the waterproof mixture is 0.5% ammonium hypophosphite; then they are mixed evenly to form an electrolyte for high-voltage aluminum electrolytic capacitors.
  • a method for preparing electrolyte for high-voltage aluminum electrolytic capacitors including the following steps:
  • the main solvent is ethylene glycol with a mass content of 63%
  • the auxiliary solvent is ⁇ -butyrolactone with a mass content of 8%
  • the main solute B is the B1 compound with a mass content of 10%
  • the auxiliary solute is 2.5% by mass.
  • Ammonium diphosphate is 2.5% polyethylene glycol 2000 by mass, 6% nano-silica by mass
  • the added water is 2% by mass
  • the anti-corrosion material A selects A1 compound with a mass content of 5%.
  • the hydrogen elimination agent is selected with a mass content of 0.5% p-nitrobenzyl alcohol, and the waterproof mixture is selected with a mass content of 0.5% ammonium hypophosphite; then they are mixed evenly to form an electrolyte for high-voltage aluminum electrolytic capacitors.
  • a method for preparing electrolyte for high-voltage aluminum electrolytic capacitors including the following steps:
  • the main solvent is ethylene glycol with a mass content of 29.5%
  • the auxiliary solvent is ⁇ -butyrolactone with a mass content of 8%
  • the main solute B is the B1 compound with a mass content of 15%
  • the auxiliary solute is 2.5% by mass of 12-butyrolactone.
  • Ammonium diphosphate the flash fire enhancing agent is 2.5% polyethylene glycol 2000 by mass, 6% nano-silica by mass
  • the added water is 5.5% by mass
  • the anti-corrosion material A selects an A2 compound with a mass content of 30%.
  • the hydrogen elimination agent is selected with a mass content of 0.5% p-nitrobenzyl alcohol, and the waterproof mixture is selected with a mass content of 0.5% ammonium hypophosphite; then they are mixed evenly to form an electrolyte for high-voltage aluminum electrolytic capacitors.
  • a method for preparing electrolyte for high-voltage aluminum electrolytic capacitors including the following steps:
  • the main solvent is ethylene glycol with a mass content of 62%
  • the auxiliary solvent is ⁇ -butyrolactone with a mass content of 12%
  • the main solute B is the B1 compound with a mass content of 5%
  • the auxiliary solute is 2.5% by mass.
  • Ammonium diphosphate the flash fire enhancing agent is 2.5% polyethylene glycol 2000 by mass, 6% nano-silica by mass
  • the added water is 1.0% by mass
  • the anti-corrosion material A selects A1 compound with a mass content of 8%.
  • the hydrogen elimination agent is selected with a mass content of 0.5% p-nitrobenzyl alcohol, and the waterproof mixture is selected with a mass content of 0.5% ammonium hypophosphite; then they are mixed evenly to form an electrolyte for high-voltage aluminum electrolytic capacitors.
  • the electrolytes of Examples 1-7 and Comparative Examples 1-4 are used as working electrolytes to prepare aluminum electrolytic capacitors, which include the following steps: the battery core includes anode foil, cathode foil, and electrolytic paper made of aluminum foil, and the battery core is immersed in the following In the electrolytes of Ratios 1-4 and Examples 1-7, an aluminum shell and colloidal particles are used for assembly and sealing to obtain a high-voltage aluminum electrolytic capacitor.
  • the electrolytes prepared in Examples 1-7 and Comparative Examples 1-4 were used in aluminum electrolytic capacitors as working electrolytes to prepare aluminum electrolytic capacitors.
  • the capacitors were subjected to a 105°C high temperature load life test experiment. The specific tests are as follows:
  • Examples 1-7 and Comparative Examples 1-4 used a 500V 470 ⁇ F, 35 ⁇ 50 specification core package for life verification. Each example made 10 capacitors for life experiments; the test results are shown in Table 3.
  • Cap is the capacitance of the capacitor
  • ⁇ C is the capacitance attenuation rate of the capacitor before and after the DC load life test
  • DF is the dielectric loss
  • LC is the leakage current.
  • Comparative Example 2 Compared with Comparative Example 1, the content of anti-corrosion material A in the electrolyte of Comparative Example 2 is reduced, resulting in a decrease in the flash voltage of the electrolyte. Although Comparative Example 2 increases the water content and improves the conductivity of the electrolyte, the added anti-corrosion material A Insufficient content makes the value of the electrolyte relationship equation 10 3 ⁇ ( ⁇ ⁇ m ⁇ p)/(r ⁇ ⁇ ) too large, causing corrosion failure and breakdown failure in the life test of the prepared capacitor.
  • Comparative Example 3 an excess amount of water was added compared to Comparative Example 2, and at the same time, a sufficient amount of anti-corrosion material A was added so that the electrolyte relationship equation 10 3 ⁇ ( ⁇ ⁇ m ⁇ p)/(r ⁇ ⁇ ) was in the range of 0.1 to 1.5. within, but the conductivity of the electrolyte is still very low. This is because the proportion of solvent in the electrolyte is too low, resulting in a low conductivity of the electrolyte. During the capacitor life experiment, the center opening valve leaked and failed, and the life span was shortened. It is speculated that The moisture content in the electrolyte is relatively high.
  • Comparative Example 4 increased the content of solvent. However, because the content of the main solute B in the electrolyte is too low, adding water to the electrolyte does not improve the conductivity of the electrolyte, and the viscosity of the electrolyte is also low. During the life test of the capacitor, there are valve opening leakage failures and breakdown failures. .
  • the electrolyte not only needs to have a moisture content of 1% to 5% and a viscosity in the range of 80 to 400 mPa ⁇ s, but also has the conductivity ⁇ and water content in the electrolyte.
  • m the content of main solute B p, the content of anti-corrosion material A r, and the viscosity of electrolyte eta also need to satisfy the relationship 0.1 ⁇ 10 3 ⁇ ( ⁇ m ⁇ p)/(r ⁇ ) ⁇ 1.5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

为克服现有铝电解电容器在高压下易腐蚀失效、寿命低的问题,本申请提供了提供一种高压铝电解电容器用电解液及高压铝电解电容器,电解液主溶质B、防腐蚀材料A和溶剂,所述电解液满足以下关系式:0.1≤103×(σ×m×p)/(r×η)≤1.5,且1%≤m≤5%,80mPa·s≤η≤400mPa·s,制备得到的电解液具有较高的电导率、闪火电压,避免电容器出现击穿、开阀漏液、腐蚀等失效现象发生,制备得到的铝电解电容器可耐500V以上高压,具有高的电导率、高耐压和良好的耐腐蚀性能,且使用寿命达到105℃5000H的效果。

Description

一种高压铝电解电容器用电解液及高压铝电解电容器 技术领域
本发明属于铝电解电容器用电解液技术领域,具体涉及一种适用于500V以上的高压铝电解电容器用电解液及高压铝电解电容器。
背景技术
铝电解电容器应用领域十分广泛,涉及到工业、家电、航天等重要行业,起着不可替代的重要作用。随着铝电解电容器使用范围的增加,对铝电解电容器的耐压能力要求也逐渐提高;现阶段市场上500~600V电压段的铝电解电容器产品,为保证产品的耐压能力,往往使用电导率较低的铝电解电容器,如市场上使用的500V铝电解电容器产品使用的铝电解液电导率为1.2mS/cm,550V铝电解电容器产品使用的铝电解液电导率为1.0mS/cm,600V铝电解电容器产品使用的铝电解液电导率为0.6mS/cm。低电导率的铝电解液虽能很好的应对高耐压的需求,但其应用到铝电解电容器时,铝电解电容器产品的DF(介质损耗,DF=损耗能量/储存能量)值则会相对较大,容易导致铝电解电容器在使用时发热量大,缩短产品的使用寿命。
同时,铝电解电容器在高压环境下,电场强度大,容易使杂质离子的迁移速率变快,还能使铝基体晶格中的杂质离子迁移出来,加快对铝箔造成腐蚀,影响电容器参数,严重时会造成电容器的失效。目前,市场上的铝电解电容器高压产品标注的使用寿命基本是105℃2000H,最主要的原因就是铝电容器在使用后期更容易出现腐蚀失效。
发明内容
针对现有铝电解电容器在高压下易腐蚀失效、寿命低的问题,本申请提供一种高压铝电解电容器用电解液及高压铝电解电容器。
本发明解决上述技术问题所采用的技术方案如下:
一方面,本发明提供了一种高压铝电解电容器用电解液,所述电解液包括溶剂、溶质和添加剂,所述溶质包括主溶质B和防腐蚀材料A,所述主溶质B 为结构式1所示化合物:
其中,R包括主碳链以及位于主碳链上的支链,R的主碳链包括长度为10~26个碳原子,R的支链数量为1~10个,且R的支链各自独立地选自碳原子数1~10的直链或支链的烃基、碳原子数1~10的直链或支链的含氧烃基;
所述电解液满足以下关系式:
0.1≤103×(σ×m×p)/(r×η)≤1.5;
且1%≤m≤5%,80mPa·s≤η≤400mPa·s;
其中:σ:所述电解液25℃的电导率,单位mS/cm;
m:所述电解液的含水量,单位%;
p:主溶质B在所述电解液中的质量含量,单位%;
r:防腐蚀材料A在所述电解液中的质量含量,单位%;
η:所述电解液的粘度,单位mPa·s。
优选的,所述含氧烃基包括羰基、酯基或羧基。
优选的,所述电解液的含水量m为2%~4%。
优选的,所述电解液的粘度η为80mPa·s≤η≤300mPa·s。
优选的,以电解液的总质量为100%计,所述主溶质B在电解液中的质量含量为10%~25%。
优选的,所述防腐蚀材料A为无机酸与多元醇在乙二醇溶剂中反应得到的配合物;
所述无机酸包括硼酸、钼酸和硅酸中的一种或几种;所述多元醇包括甘露醇、木糖醇、山梨糖醇和槲皮素中的一种或几种;
以电解液的总质量为100%计,所述防腐蚀材料A在电解液中的质量含量为8%~15%。
优选的,所述防腐蚀材料A为硼酸和甘露醇在乙二醇溶剂中反应得到的配合物。
优选的,所述溶剂包括主溶剂和助溶剂,所述主溶剂包括乙二醇、二甘醇、丙三醇中的一种或几种;
所述助溶剂包括N,N-二甲基甲酰胺、二甘醇单丁醚、二甘醇二丁醚、二甘 醇甲醚、γ-丁内酯、环丁砜、正丁醇中的一种或几种;
以电解液的总质量为100%计,所述主溶剂在电解液中的质量含量为26%~65.49%;所述助溶剂在电解液中的质量含量为8%~15%。
优选的,所述电解液还包括辅助溶质,所述辅助溶质包括癸二酸及其铵盐、壬二酸及其铵盐、十二双酸及其铵盐、硼酸、五硼酸铵中的一种或几种;
以电解液的总质量为100%计,所述辅助溶质在电解液中的质量含量为1%~3%。
优选的,所述添加剂包括消氢剂、防水合剂和闪火提升剂;
所述消氢剂包括对硝基苯甲醇、间硝基乙酰苯、邻硝基苯甲醚、对硝基苯酚、对硝基苯甲酸铵、对硝基苯甲酸中的一种或多种;
所述防水合剂包括次亚磷酸铵、次亚磷酸、山梨糖醇、甘露醇、硅酸化合物、硅酸铝盐中的一种或多种;
所述闪火提升剂包括分子量为600~6000的聚乙二醇、聚丙二醇、丙二醇嵌段聚醚、聚丙烯酰胺、聚乙烯醇、无机纳米二氧化硅中的一种或多种;
以电解液的总质量为100%计,所述消氢剂在电解液中的质量含量为0.5%~2%;所述防水合剂在电解液中的质量含量为0.01%~2%;所述闪火提升剂在电解液中的质量含量为7%~12%。
另一方面,本申请提供一种高压铝电解电容器,包括阳极箔、阴极箔和设置于阳极箔和阴极箔同侧的电解纸,所述电解纸上浸有电解液,所述电解液为上述所述的高压铝电解电容器用电解液。
有益效果:
电解液中的水份含量在1%-5%之间,能够提供足够的氧负离子,提高阳极箔的氧化效率,及时对氧化膜修补,从而提高铝电解电容器的使用寿命;电解液的水份含量控制在1%~5%之间,电解液粘度在80mPa·s~400mPa·s范围内,具有提高离子迁移速率、保持电解液具有较高的电导率,保证芯包含浸具良好的浸润效果;本申请提供的高压铝电解电容器用的电解液,通过控制电解液中的含水量m、主溶质B含量p、防腐蚀材料A含量r来调节电解液的电导率和粘度,使得满足关系式0.1≤103×(σ×m×p)/(r×η)≤1.5,且1%≤m≤5%,80mPa·s≤η≤400mPa·s,制备得到的电解液具有较高的电导率、闪火电压,避免电容器出现击穿、开阀漏液、腐蚀等失效现象发生,制备得到的铝电解电容器可耐500V以上高压,且使用寿命达到105℃5000H的效果。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本申请一实施例提供了一种高压铝电解电容器用电解液,所述电解液包括溶剂、溶质和添加剂,所述溶质包括主溶质B和防腐蚀材料A,所述主溶质B为结构式1所示化合物:
其中,R包括主碳链以及位于主碳链上的支链,R的主碳链长度为10~26个碳原子,R的支链数量为1~10个,且R的支链各自独立地选自碳原子数1~10的直链或支链烃基、碳原子数1~10的直链或支链的含氧烃基;
所述电解液满足以下关系式:
0.1≤103×(σ×m×p)/(r×η)≤1.5;
且1%≤m≤5%,80mPa·s≤η≤400mPa·s;
其中:σ:所述电解液25℃的电导率(mS/cm);
m:所述电解液的含水量(%);
p:主溶质B在所述电解液中的质量含量(%);
r:防腐蚀材料A在所述电解液中的质量含量(%);
η:所述电解液的粘度(mPa·s)。
具体的,主溶质B上R的支链可以选自C1~C10的直链烃基,可以是甲基、乙基、丙基、辛基等,R的支链还可以是碳原子数1~10的支链烃基,如可以是异丙基、异丁基等。主溶质B上的R的支链还可以选自碳原子数1~10的直链或支链的含氧烃基,如可以是乙酸甲酯基、丙酸甲酯基等。
在一些优选的实施例中,含氧烃基包括羧基、羰基或酯基;如羧基可以是乙酸基、丙酸基等包含一个羧基的基团,还可以是包含二个及以上的羧基;羰基可以是甲酰基、乙酰基、异丁酰基等;酯基可以是乙酸乙酯、乙酸丙酯、丙酸丙酯等。
主溶质B可以是以下化合物中的一种或几种:
主溶质B作为高压电解质,结构式1所示化合物中R的主碳链长度为10~26个碳原子范围内,随着碳链增长,长碳链的羧酸铵盐附着于氧化膜表面,更有效的保护氧化膜的耐压薄弱处,使电解液的闪火电压随碳链的增长而逐渐提高。主溶质B在电解液的溶剂中溶解性能较好,具有提高电解液电导率的作用,同时有利于电容器的电化学反应。但要注意的是,主溶质B的添加量对电解液的粘度会产生较大影响,电解液粘度过高会使离子迁移速率变小、也不利于电容器制作过程中的含浸操作,因此,电解液中主溶质B的含量取决于需要的电导率大小之外,还需保证电解液的粘度在80mPa·s≤η≤400mPa·s范围内,更优选在80mPa·s≤η≤300mPa·s。
在一些优选的实施例中,以电解液的总质量为100%计,所述主溶质B在电解液中的质量含量为10%~25%。
电解液中含有一定量的水,有助于电解液中主溶质的电离、从而一定程度提高了电解液的电导率;同时水也能提升电解液的供氧能力,有助于介质层的修补,从这方面考虑,电解液中的水份含量在1%以上是合适的。另外,电解液中含较多的水,容易在箔表面生成水合膜Al(OH)3,导致电容器容量下降;同时 由于水的沸点较低,电容器在高温条件下使用时,内部的压力增大造成开阀漏液失效;此外,电解液中含过高的水份使得硫酸根、氯离子的析出变得容易,加大了电容器腐蚀风险,因此,电解液中含水量最高不超过5%,可以是1%、1.5%、2%、2.5%、2.8%、3.2%、3.6%、4.2%、4.5%、5.0%,优选2%~4%。
在一些优选的实施例中,所述防腐蚀材料A为无机酸与多元醇在乙二醇溶剂中反应得到的配合物;
所述无机酸包括硼酸、钼酸和硅酸中的一种或几种;所述多元醇包括甘露醇、木糖醇、山梨糖醇和槲皮素中的一种或几种;
以电解液的总质量为100%计,所述防腐蚀材料A在电解液中的质量含量为8%~15%。
防腐蚀材料A在电解液中的添加量可以是8%、8.5%、9.0%、9.6%、10.4%、10.9%、11.5%、12%、12.6%、13%、13.8%、14%、14.3%、15%。防腐蚀材料A应用到电解液中,具有防腐蚀的作用,电解液作为工作电解液应用到高压铝电解电容器中,能防止杂质离子对铝箔的腐蚀,提高电容器的耐腐蚀性能;另外,防腐蚀材料A能与水发生反应来调节电解液的水分含量,能较好解决电容器水分升高带来的稳定性问题。
在一些优选实施例中,所述防腐蚀材料A为硼酸和甘露醇在乙二醇溶剂中反应得到的配合物的配合物。
本申请提供的高压铝电解电容器用的电解液,满足关系式0.1≤103×(σ×m×p)/(r×η)≤1.5,其中σ为电解液的电导率,m为电解液中水份含量,p为主溶质B的含量,r为防腐蚀材料A的含量,η为电解液的粘度,且1%≤m≤5%,80mPa·s≤η≤400mPa·s,其具有优秀的电导率、较高的闪火电压,满足工作电压最高500V的电容器的需求,且制备得到的电容器具有良好的耐腐蚀性能,寿命试验达到105℃5000H,具有较高的可靠性。
在一些优选的实施例中,所述溶剂包括主溶剂和助溶剂,所述主溶剂包括乙二醇、二甘醇、丙三醇中的一种或几种;主溶剂多选自醇类化合物,可以保证对主溶质B、防腐蚀材料A、辅助溶质、添加剂具有良好的溶解性。
所述助溶剂包括N,N-二甲基甲酰胺、二甘醇单丁醚、二甘醇二丁醚、二甘醇甲醚、γ-丁内酯、环丁砜、正丁醇中的一种或几种;助溶剂与主溶剂协同,起到增加主溶质B、防腐蚀材料A、添加剂等的溶解性,稳定溶剂的作用。
在一些优选的实施例中,以电解液的总质量为100%计,所述主溶剂在电解 液中的质量含量为26%~65.49%;所述助溶剂在电解液中的质量含量为8%~15%。
主溶剂的添加量占比较大,主要起到溶解主溶质B、防腐蚀材料A、辅助溶质、添加剂等溶质的作用,助溶剂的添加量低于主溶剂的添加量,起到辅助主溶剂溶解溶质的作用,两者相互协同,增加溶剂的溶解性和稳定性。
在一些优选的实施例中,所述电解液还包括辅助溶质,所述辅助溶质包括癸二酸及其铵盐、壬二酸及其铵盐、十二双酸及其铵盐、硼酸、五硼酸铵中的一种或几种;
以电解液的总质量为100%计,所述辅助溶质在电解液中的质量含量为1%~3%。
辅助溶质添加量可以是1%、1.5%、1.7%、2.0%、2.3%、2.5%、2.7%、3.0%。辅助溶质添加量在1%~3%之间,辅助溶质用以提高电解液的电导率。
在一些优选的实施例中,所述电解液还包括添加剂,所述添加剂包括消氢剂、防水合剂和闪火提升剂;
所述消氢剂包括对硝基苯甲醇、间硝基乙酰苯、邻硝基苯甲醚、对硝基苯酚、对硝基苯甲酸铵、对硝基苯甲酸中的一种或多种;由于电解液会对阳极箔上的氧化膜进行修复,产生氢气,消氢剂主要通过消氢化合物与氢气反应,减少铝电解电容器内的氢气,防止因氢气过多产生爆炸。
所述防水合剂包括次亚磷酸铵、次亚磷酸、山梨糖醇、甘露醇、硅酸化合物、硅酸铝盐中的一种或多种;防水合剂中添加磷酸根、硅酸根等物质至铝电容器电解液中,这些物质存在于电解液可在氧化铝膜表面形成钝化层,达到有效抑制水合的作用。
所述闪火提升剂包括分子量为600~6000的聚乙二醇、聚丙二醇、丙二醇嵌段聚醚、聚丙烯酰胺、聚乙烯醇、无机纳米二氧化硅中的一种或多种;闪电提升剂可以提升电解液的闪火电压,保证电容器在过压的情况下,不会因电解液闪火导致电解纸被击穿。
以电解液的总质量为100%计,所述消氢剂在电解液中的质量含量为0.5%~2%,消氢剂的添加量可以是0.5%、1%、1.5%、2%,只要消氢剂的添加量满足在0.5%~2%之间,能有效消除电容器中产生的氢气,提高电容器的安全性能。以电解液的总质量为100%计,所述防水合剂在电解液中的质量含量为0.01%~2%,防水合剂的添加量可以是0.01%、0.5%、1.0%、1.5%、2.0%,只要防水合剂的添加量在0.01%~2%之间,充分发挥抑制水合的作用。以电解液的总 质量为100%计,所述闪火提升剂在电解液中的质量含量为7%~12%,闪火提升剂的添加量可以是7%、8%、9%、10%、11%、12%,只要闪火提升剂的添加量在7%~12%之间,提升电解液的闪火电压,保证电容器在过压的情况下,不会因电解液闪火导致电解纸被击穿。
另一方面,本申请提供一种高压铝电解电容器,包括阳极箔、阴极箔和设置于阳极箔和阴极箔同侧的电解纸,所述电解纸上浸有电解液,所述电解液为上述所述的高压铝电解电容器用电解液。
高压铝电解电容器使用上述的电解液,制备得到的铝电解电容器具有高电导、高耐压、且耐腐蚀性能优良的特点。
以下通过实施例对本发明进行进一步的说明。
表1主溶质B、防腐材料A不同编号对应的具体化合物
实施例1
一种高压铝电解电容器用电解液的制备方法,包括以下步骤:
主溶剂选质量含量为55.5%的乙二醇、辅助溶剂选质量含量为8%的γ-丁内酯,主溶质B为质量含量15%的B1化合物,辅助溶质为质量含量1.5%的五硼酸铵,闪火提升剂为质量含量2%聚乙烯醇105,质量含量6%纳米二氧化硅,加入的水质量含量为1.0%,防腐蚀材料A选质量含量为10%的A1化合物,消氢剂选质量含量为0.5%对硝基苯甲醇,防水合剂选质量含量为0.5%次亚磷酸铵;之后将其混合均匀,形成高压铝电解电容器用电解液。
实施例2
一种高压铝电解电容器用电解液的制备方法,包括以下步骤:
主溶剂选质量含量为35.5%的二甘醇、辅助溶剂选质量含量为15%的N,N-二甲基甲酰胺,主溶质B为质量含量20%的B2化合物,辅助溶质为质量含量 2.3%的十二双酸铵,闪火提升剂选自质量含量2.5%聚乙烯醇2000,质量含量6%纳米二氧化硅,加入的水质量含量为2.3%,防腐蚀材料A选质量含量为15%的A2化合物,消氢剂选质量含量为1.2%对硝基苯甲酸,防水合剂选质量含量为0.2%山梨糖醇;之后将其混合均匀,形成高压铝电解电容器用电解液。
实施例3
一种高压铝电解电容器用电解液的制备方法,包括以下步骤:
主溶剂选质量含量为40%的丙三醇、辅助溶剂选质量含量为10%的二甘醇单丁醚,主溶质B为质量含量18%的B3化合物,辅助溶质为质量含量2.8%的壬二酸,闪火提升剂选自质量含量2.1%聚丙烯酰胺,质量含量6.6%聚乙二醇1000,加入的水质量含量为2.8%,防腐蚀材料A选质量含量为15%的A3化合物,消氢剂选质量含量为1.6%间硝基乙酰苯,防水合剂选质量含量为1.1%硅酸铝盐;之后将其混合均匀,形成高压铝电解电容器用电解液。
实施例4
一种高压铝电解电容器用电解液的制备方法,包括以下步骤:
主溶剂选质量含量为55%的乙二醇、辅助溶剂选质量含量为12.5%的丁内酯,主溶质B为质量含量10%的B1化合物,辅助溶质为质量含量1%的癸二酸铵,闪火提升剂为质量含量10%聚乙二醇2000,加入的水质量含量为4.2%,防腐蚀材料A选质量含量为20%的A1化合物,消氢剂选质量含量为2%对硝基苯酚,防水合剂选质量含量为1.8%甘露醇;之后将其混合均匀,形成高压铝电解电容器用电解液。
实施例5
一种高压铝电解电容器用电解液的制备方法,包括以下步骤:
主溶剂选质量含量为40%的二甘醇、辅助溶剂选质量含量为8%的正丁醇,主溶质B为质量含量10%的B2化合物,辅助溶质为质量含量1.5%的壬二酸,闪火提升剂选自质量含量4%聚乙烯醇105,质量含量4%纳米二氧化硅,加入的水质量含量为5.0%,防腐蚀材料A选质量含量为25%的A1化合物,消氢剂选质量含量为1.1%对硝基苯甲酸铵,防水合剂选质量含量为1.4%次亚磷酸;之后将其混合均匀,形成高压铝电解电容器用电解液。
实施例6
一种高压铝电解电容器用电解液的制备方法,包括以下步骤:
主溶剂选质量含量为49.3%的乙二醇、辅助溶剂选质量含量为14%的环丁 砜,主溶质B为质量含量11%的B1化合物,闪火提升剂选自质量含量6%聚乙烯醇105,质量含量5%聚乙二醇2000,加入的水质量含量为1.2%,防腐蚀材料A选质量含量为10%的A2化合物,消氢剂选质量含量为2%对硝基苯酚,防水合剂选质量含量为1.5%次亚磷酸铵;之后将其混合均匀,形成高压铝电解电容器用电解液。
实施例7
一种高压铝电解电容器用电解液的制备方法,包括以下步骤:
主溶剂选质量含量为41.9%的乙二醇、辅助溶剂选质量含量为11%的丁内酯,主溶质B为质量含量13%的B3化合物,闪火提升剂选自质量含量10%聚乙烯醇105,加入的水质量含量为2.1%,防腐蚀材料A选质量含量为20%的A3化合物,消氢剂选质量含量为2%间硝基乙酰苯;之后将其混合均匀,形成高压铝电解电容器用电解液。
对比例1
一种高压铝电解电容器用电解液的制备方法,包括以下步骤:
主溶剂选质量含量为47.5%的乙二醇、辅助溶剂选质量含量为8%的γ-丁内酯,主溶质B为质量含量15%的B1化合物,辅助溶质为质量含量2.5%的十二酸铵,闪火提升剂为质量含量2.5%聚乙二醇2000,质量含量6%纳米二氧化硅,加入的水质量含量为0.5%,防腐蚀材料A选质量含量为17%的A1化合物,消氢剂选质量含量为0.5%对硝基苯甲醇,防水合剂选质量含量为0.5%次亚磷酸铵;之后将其混合均匀,形成高压铝电解电容器用电解液。
对比例2
一种高压铝电解电容器用电解液的制备方法,包括以下步骤:
主溶剂选质量含量为63%的乙二醇、辅助溶剂选质量含量为8%的γ-丁内酯,主溶质B为质量含量10%的B1化合物,辅助溶质为质量含量2.5%的十二双酸铵,闪火提升剂为质量含量2.5%聚乙二醇2000,质量含量6%纳米二氧化硅,加入的水质量含量为2%,防腐蚀材料A选质量含量为5%的A1化合物,消氢剂选质量含量为0.5%对硝基苯甲醇,防水合剂选质量含量为0.5%次亚磷酸铵;之后将其混合均匀,形成高压铝电解电容器用电解液。
对比例3
一种高压铝电解电容器用电解液的制备方法,包括以下步骤:
主溶剂选质量含量为29.5%的乙二醇、辅助溶剂选质量含量为8%的γ-丁内酯,主溶质B为质量含量15%的B1化合物,辅助溶质为质量含量2.5%的十二双酸铵,闪火提升剂为质量含量2.5%聚乙二醇2000,质量含量6%纳米二氧化硅,加入的水质量含量为5.5%,防腐蚀材料A选质量含量为30%的A2化合物,消氢剂选质量含量为0.5%对硝基苯甲醇,防水合剂选质量含量为0.5%次亚磷酸铵;之后将其混合均匀,形成高压铝电解电容器用电解液。
对比例4
一种高压铝电解电容器用电解液的制备方法,包括以下步骤:
主溶剂选质量含量为62%的乙二醇、辅助溶剂选质量含量为12%的γ-丁内酯,主溶质B为质量含量5%的B1化合物,辅助溶质为质量含量2.5%的十二双酸铵,闪火提升剂为质量含量2.5%聚乙二醇2000,质量含量6%纳米二氧化硅,加入的水质量含量为1.0%,防腐蚀材料A选质量含量为8%的A1化合物,消氢剂选质量含量为0.5%对硝基苯甲醇,防水合剂选质量含量为0.5%次亚磷酸铵;之后将其混合均匀,形成高压铝电解电容器用电解液。
测试实施例1-7和对比例1-4制备得到的电解液在25℃的粘度、电导率、水份含量、闪火电压,具体测试结果见表2。
表2实施例1-7和对比例1-4电解测试数据表
将实施例1-7和对比例1-4的电解液以工作电解液制备铝电解电容器,包括如下步骤:电芯包括铝箔制作的阳极箔、阴极箔、电解纸,将电芯分别浸入以下对比例1-4和实施例1-7的电解液中,采用铝壳和胶粒组立封口,得到高电压铝电解电容器。
将实施例1-7和对比例1-4制备得到的电解液用于铝电解电容器作为工作电解液,制备成铝电解电容器,对电容器进行105℃高温负荷寿命测试实验,具体测试如下:
将实施例1-7和对比例1-4使用500V 470μF,35×50规格的芯包进行寿命验证,每个实施例各做10颗电容器进行寿命实验;测试结果见表3。
测定结果如表3所示,其中Cap为电容器的电容,ΔC为直流负荷寿命测试前后电容器电容量衰减率,DF是介质损耗,LC为漏电流。
铝电解液电容器寿命实验参数合格标准:ΔC在±20%以内,DF介质损耗≤40%。
表3实施例1-7和对比例1-4寿命测试性能数据

通过表1-3知,对比例1中电解液水份含量不足,电解液粘度过大,导致电解液电导率偏低,制备的电容器电容偏低、损耗过大,后续寿命实验中发热过多导致电容器开阀漏液失效严重。调整电解液中水份含量,如实施例1-7,增加电解液中水份的含量,电解液的粘度降低,电解液的闪火电压增加,制备得到的电容器105℃寿命实验,电容器无漏液异常。相对于对比例1,对比例2电解液防腐蚀材料A含量减少,导致电解液的闪火电压下降,虽然对比例2增加水份含量,提高电解液的电导率,但加入的防腐蚀材料A含量不够使得电解液关系式103×(σ×m×p)/(r×η)值偏大,制备的电容器寿命实验中腐蚀失效、击穿失效。对比例3相对于对比例2加入过量的水,同时加入足够量的防腐蚀材料A,使得电解液关系式103×(σ×m×p)/(r×η)在0.1~1.5的范围内,但电解液的电导率仍然很低,这是因为电解液中的溶剂占比过低,导致电解液的电导率较低;电容器寿命实验时中开阀漏液失效、寿命时长短,推测电解液中的水份含量较高,电解液中水份的存在会招来介电体膜层的劣化、并提高电解液电容器的内部蒸气压力、以及因封口部分的破损和电解液的蒸发散失而引起寿命缩短,而不能维持长时间的稳定性。对比例4相对于对比例3,增加溶剂的含量, 但因为电解液中的主溶质B含量过低,电解液中加入水份也没有提升电解液的电导率,电解液的粘度也较低,电容器寿命实验时有开阀漏液失效、击穿失效。
通过上述对比例1-4和实施例1-7知,电解液不仅需要满足水份含量在1%~5%、粘度在80~400mPa·s范围,且电解液中的电导率σ、含水量m、主溶质B含量p、防腐蚀材料A含量r、电解液η粘度还需要满足关系式0.1≤103×(σ×m×p)/(r×η)≤1.5,这三种条件同时满足,制备得到的电解液才具有较高的电导率、闪火电压,避免电容器出现击穿、开阀漏液、腐蚀等失效现象发生,制备得到的铝电解电容器可耐500V以上高压,具有高的电导率、高耐压和良好的耐腐蚀性能,且使用寿命达到105℃5000H的效果。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种高压铝电解电容器用电解液,其特征在于,所述电解液包括溶剂、溶质和添加剂,所述溶质包括主溶质B和防腐蚀材料A,所述主溶质B为结构式1所示化合物:
    其中,R包括主碳链以及位于主碳链上的支链,R的主碳链包括长度为10~26个碳原子,R的支链数量为1~10个,且R的支链各自独立地选自碳原子数1~10的直链或支链的烃基、碳原子数1~10的直链或支链的含氧烃基;
    所述电解液满足以下关系式:
    0.1≤103×(σ×m×p)/(r×η)≤1.5;
    且1%≤m≤5%,80mPa·s≤η≤400mPa·s;
    其中,σ:所述电解液25℃的电导率,单位mS/cm;
    m:所述电解液的含水量,单位%;
    p:主溶质B在所述电解液中的质量含量,单位%;
    r:防腐蚀材料A在所述电解液中的质量含量,单位%;
    η:所述电解液的粘度,单位mPa·s。
  2. 根据权利要求1所述的高压铝电解电容器用电解液,其特征在于,所述含氧烃基包括羰基、酯基或羧基。
  3. 根据权利要求1所述的高压铝电解电容器用电解液,其特征在于,所述电解液的含水量m为2%~4%。
  4. 根据权利要求1所述的高压铝电解电容器用电解液,其特征在于,所述电解液的粘度η为80mPa·s≤η≤300mPa·s。
  5. 根据权利要求1所述的高压铝电解电容器用电解液,其特征在于,以电解液的总质量为100%计,所述主溶质B在电解液中的质量含量为10%~25%。
  6. 根据权利要求1所述的高压铝电解电容器用电解液,其特征在于,所述防腐蚀材料A为无机酸与多元醇在乙二醇溶剂中反应得到的配合物;
    所述无机酸包括硼酸、钼酸和硅酸中的一种或几种;所述多元醇包括甘露醇、木糖醇、山梨糖醇和槲皮素中的一种或几种;
    以电解液的总质量为100%计,所述防腐蚀材料A在电解液中的质量含量为 8%~15%。
  7. 根据权利要求6所述的高压铝电解电容器用电解液,其特征在于,所述防腐蚀材料A为硼酸和甘露醇在乙二醇溶剂中反应得到的配合物。
  8. 根据权利要求1所述的高压铝电解电容器用电解液,其特征在于,所述溶剂包括主溶剂和助溶剂,所述主溶剂包括乙二醇、二甘醇、丙三醇中的一种或几种;
    所述助溶剂包括N,N-二甲基甲酰胺、二甘醇单丁醚、二甘醇二丁醚、二甘醇甲醚、γ-丁内酯、环丁砜、正丁醇中的一种或几种;
    以电解液的总质量为100%计,所述主溶剂在电解液中的质量含量为26%~65.49%;所述助溶剂在电解液中的质量含量为8%~15%。
  9. 根据权利要求1所述的高压铝电解电容器用电解液,其特征在于,所述电解液还包括辅助溶质,所述辅助溶质包括癸二酸及其铵盐、壬二酸及其铵盐、十二双酸及其铵盐、硼酸、五硼酸铵中的一种或几种;
    以电解液的总质量为100%计,所述辅助溶质在电解液中的质量含量为1%~3%。
  10. 根据权利要求1所述的高压铝电解电容器用电解液,其特征在于,所述添加剂包括消氢剂、防水合剂和闪火提升剂;
    所述消氢剂包括对硝基苯甲醇、间硝基乙酰苯、邻硝基苯甲醚、对硝基苯酚、对硝基苯甲酸铵、对硝基苯甲酸中的一种或多种;
    所述防水合剂包括次亚磷酸铵、次亚磷酸、山梨糖醇、甘露醇、硅酸化合物、硅酸铝盐中的一种或多种;
    所述闪火提升剂包括分子量为600~6000的聚乙二醇、聚丙二醇、丙二醇嵌段聚醚、聚丙烯酰胺、聚乙烯醇、无机纳米二氧化硅中的一种或多种;
    以电解液的总质量为100%计,所述消氢剂在电解液中的质量含量为0.5%~2%;所述防水合剂在电解液中的质量含量为0.01%~2%;所述闪火提升剂在电解液中的质量含量为7%~12%。
  11. 一种高压铝电解电容器,其特征在于,包括阳极箔、阴极箔和设置于阳极箔和阴极箔同侧的电解纸,所述电解纸上浸有电解液,所述电解液为权利要求1~10任意一项所述的高压铝电解电容器用电解液。
PCT/CN2023/089978 2022-06-27 2023-04-23 一种高压铝电解电容器用电解液及高压铝电解电容器 WO2024001461A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210734742.1A CN115172056A (zh) 2022-06-27 2022-06-27 一种高压铝电解电容器用电解液及高压铝电解电容器
CN202210734742.1 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024001461A1 true WO2024001461A1 (zh) 2024-01-04

Family

ID=83487535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089978 WO2024001461A1 (zh) 2022-06-27 2023-04-23 一种高压铝电解电容器用电解液及高压铝电解电容器

Country Status (2)

Country Link
CN (1) CN115172056A (zh)
WO (1) WO2024001461A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172056A (zh) * 2022-06-27 2022-10-11 深圳新宙邦科技股份有限公司 一种高压铝电解电容器用电解液及高压铝电解电容器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031443A (ja) * 2002-07-08 2003-01-31 Rubycon Corp 電解コンデンサ駆動用電解液及びこれを使用した電解コンデンサ
CN1529892A (zh) * 2001-09-26 2004-09-15 如碧空株式会社 电解电容器驱动用电解液和电解电容器
CN1950970A (zh) * 2004-05-10 2007-04-18 株式会社日本触媒 用于电解液的材料、含离子材料的组合物及其用途
CN105244165A (zh) * 2015-08-27 2016-01-13 广东风华高新科技股份有限公司 片式高压铝电解电容器用电解液及其制备方法与片式高压铝电解电容器
CN115172056A (zh) * 2022-06-27 2022-10-11 深圳新宙邦科技股份有限公司 一种高压铝电解电容器用电解液及高压铝电解电容器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1529892A (zh) * 2001-09-26 2004-09-15 如碧空株式会社 电解电容器驱动用电解液和电解电容器
JP2003031443A (ja) * 2002-07-08 2003-01-31 Rubycon Corp 電解コンデンサ駆動用電解液及びこれを使用した電解コンデンサ
CN1950970A (zh) * 2004-05-10 2007-04-18 株式会社日本触媒 用于电解液的材料、含离子材料的组合物及其用途
CN105244165A (zh) * 2015-08-27 2016-01-13 广东风华高新科技股份有限公司 片式高压铝电解电容器用电解液及其制备方法与片式高压铝电解电容器
CN115172056A (zh) * 2022-06-27 2022-10-11 深圳新宙邦科技股份有限公司 一种高压铝电解电容器用电解液及高压铝电解电容器

Also Published As

Publication number Publication date
CN115172056A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US9959977B2 (en) Electrolysis solution for electrolytic capacitor, and electrolytic capacitor
WO2024001461A1 (zh) 一种高压铝电解电容器用电解液及高压铝电解电容器
TWI575546B (zh) Aluminum Electrolytic Capacitors Electrolyte and Aluminum Electrolytic Capacitors
JP2000188240A (ja) アルミニウム電解コンデンサ
CN1707710A (zh) 铝电解电容器及电解液
CN109903994B (zh) 一种高压高电导铝电解电容器用电解液
CN112582180B (zh) 一种高抗水合性中高压铝电解电容器用电解液和制备方法
CN112837939B (zh) 一种耐高温的高压电解液和使用它的铝电解电容器
CN113674997A (zh) 一种长寿命液态电容器的电解液及制备方法
JP6967744B2 (ja) 電解コンデンサおよび電解コンデンサ用電解液
CN112582181B (zh) 一种高抗水合性低压铝电解电容器用电解液和制备方法
CN115116751A (zh) 铝电解电容器电解液及其制备方法及铝电解电容器
CN113539688B (zh) 一种工作电压300~500v铝电解电容器用电解液及铝电解电容器
JP3176611B2 (ja) 電解コンデンサ用電解液
CN109448994B (zh) 一种贴片式铝电解电容器
CN114068184B (zh) 一种铝电解电容器及其制备方法
JP2007184303A (ja) 電解コンデンサの駆動用電解液、および電解コンデンサ
WO2020262091A1 (ja) 電解コンデンサ
CN112133562A (zh) 一种耐高温使用寿命长的铝电解电容器电解液
CN110808169A (zh) 一种450-500v铝电解电容器用电解液及其制备方法
CN113517138B (zh) 一种采用储氢合金减小铝电解电容器工作内压的方法
CN114284071B (zh) 一种延长使用寿命的电容器用电解液及其制备方法
CN112420393B (zh) 一种耐高压的电解液及铝电解电容器
CN114005679B (zh) 一种氮化镓充电器用铝电解电容器及其制备方法
CN116721871A (zh) 一种高电导高水系宽温铝电解电容器用电解液及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829648

Country of ref document: EP

Kind code of ref document: A1