WO2024001389A1 - 一种基于空化效应的往复式磨料流抛光装置及方法 - Google Patents

一种基于空化效应的往复式磨料流抛光装置及方法 Download PDF

Info

Publication number
WO2024001389A1
WO2024001389A1 PCT/CN2023/086396 CN2023086396W WO2024001389A1 WO 2024001389 A1 WO2024001389 A1 WO 2024001389A1 CN 2023086396 W CN2023086396 W CN 2023086396W WO 2024001389 A1 WO2024001389 A1 WO 2024001389A1
Authority
WO
WIPO (PCT)
Prior art keywords
box
liquid
sealing plate
abrasive
workpiece
Prior art date
Application number
PCT/CN2023/086396
Other languages
English (en)
French (fr)
Inventor
李富柱
申坤伦
王匀
郭玉琴
张博
朱聪
陈世建
张昆
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB2316519.4A priority Critical patent/GB2621042A/en
Publication of WO2024001389A1 publication Critical patent/WO2024001389A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B31/00Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor
    • B24B31/10Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving other means for tumbling of work
    • B24B31/116Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving other means for tumbling of work using plastically deformable grinding compound, moved relatively to the workpiece under the influence of pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B31/00Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor
    • B24B31/12Accessories; Protective equipment or safety devices; Installations for exhaustion of dust or for sound absorption specially adapted for machines covered by group B24B31/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/16Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention belongs to the field of metal surface treatment, and specifically relates to an abrasive flow polishing device based on the cavitation effect.
  • the device can post-process complex metal micropores with apertures of less than 2 mm.
  • Cavitation abrasive flow polishing technology is a non-traditional finishing process, mainly used for deburring, polishing, rounding, etc. on the surface of parts and irregular holes.
  • Cavitation abrasive flow polishing technology uses GPa-level radiation pressure, shock waves and micro-jet generated when cavitation bubbles collapse. These physical phenomena can not only directly erode materials, but also mix abrasives and give the abrasives greater kinetic energy, thereby strengthening the workpiece. Cutting effect on the inner surface.
  • cavitation abrasive flow polishing technology has demonstrated significant advantages in processing special-shaped holes and complex cavities.
  • existing cavitation abrasive flow polishing technology still suffers from low material removal rate, low processing efficiency, and uneven surface roughness. question.
  • polishing and deburring of special-shaped holes, complex curved surfaces, and complex cavities can be completed through abrasive flow, it has become a key technology for post-processing of microporous surfaces.
  • Abrasive polishing technologies mainly include abrasive jet machining, liquid jet machining, liquid power grinding, etc.
  • these polishing technologies cannot well solve the problems of low material removal rate, low processing efficiency and uneven surface roughness, and cannot meet the needs of the workpiece. need.
  • Chinese patent publication number CN111843853B discloses an internal surface finishing strengthening system based on water conservancy cavitation jet. It uses the shock wave generated by cavitation collapse to mix abrasives and give the abrasives greater kinetic energy, thereby strengthening the workpiece.
  • the cutting effect on the inner surface improves the material removal rate on the workpiece surface, but its working fluid flows in one direction. When the working fluid flows through the elongated hole, the kinetic energy carried by the liquid will be lost to varying degrees, which gives the abrasive The inconsistent kinetic energy results in uneven surface roughness at both ends of the micropores.
  • Chinese Patent Publication No. CN109719631B discloses a method and device for surface finishing by fluid cavitation abrasion.
  • This method uses cavitation bubbles to excite abrasives and interacts with the abrasives and workpiece surface through cavitation bubbles. To improve the surface material removal rate of the workpiece, however, this method only involves the processing of the outer surface of the workpiece and does not involve the processing of the inner surface of the workpiece.
  • the purpose of the present invention is to solve the problems of low surface material removal rate, low processing efficiency and uneven surface roughness after existing metal microhole processing, and proposes a reciprocating abrasive flow polishing device and polishing method based on the cavitation effect.
  • the present invention adopts the following technical solution for a reciprocating abrasive flow polishing device based on the cavitation effect: it includes an upper box and a lower box, the upper end of the lower box is an opening, and the opening at the upper end of the lower box is sealed and connected.
  • the lower sealing plate can move up and down along the inner wall of the lower box; the lower end of the upper box is an opening, and the opening at the lower end of the upper box is sealed and connected with the upper sealing plate; between the upper sealing plate and the lower sealing plate is the workpiece to be processed , the inner hole of the workpiece to be processed runs through the upper box and the lower box, and a rapid heater is set at the bottom of the inner cavity of the box; a piston is provided in the inner cavity of the upper box that matches the inner wall of the upper box and can move up and down.
  • the piston passes through the spring Fixedly connected to the top of the upper box; a drain port is opened at the bottom of the lower box, and the drain port is connected to the solution storage tank through a pipeline through the second filter and the second valve; the solution storage tank is connected to the cooling box through the second liquid pump , the cooling box is connected to the liquid nitrogen tank through the first valve; there is an infusion port and a feeding port on the side wall of the upper box below the piston, and the infusion port passes through the reversing valve, the first liquid pump and the first filter in sequence.
  • the feeding port is connected to the abrasive barrel through the abrasive control switch, and the abrasive barrel inputs liquid abrasive into the upper box; the rapid heater heats the liquid, the spring compresses and rebounds, and the liquid flows through the waiting box. Machining the inner hole surface of the workpiece.
  • first valve the rapid heater
  • first liquid pump the rapid heater
  • a lift is provided between the upper sealing plate and the upper end surface of the lower box to adjust the vertical distance from the workpiece to be processed to the rapid heater.
  • a position transmitter is provided on the inner wall of the lower box above and below the lower sealing plate.
  • the sensor detects when the lower sealing plate reaches the uppermost and lowermost positions.
  • a pressure sensor is provided between the piston and the top of the upper box to detect when the piston reaches the uppermost position.
  • Step 1) The first liquid pump works, the reversing valve opens, the liquid in the cooling box is transported to the upper box through the liquid injection port, the liquid flows into the lower box through the inner hole of the workpiece to be processed, and contacts the piston at the liquid surface.
  • the reversing valve opens, the liquid in the cooling box is transported to the upper box through the liquid injection port, the liquid flows into the lower box through the inner hole of the workpiece to be processed, and contacts the piston at the liquid surface.
  • Step 2) Turn on the abrasive control switch, the abrasive flows from the abrasive barrel 1 into the upper box, and the abrasive flows into the lower box through the inner hole of the workpiece to be processed, and close the abrasive control switch;
  • Step 3) The rapid heater works to heat the liquid.
  • the liquid carrying the abrasive continuously expands and flows upward through the surface of the inner hole of the workpiece to be processed, pushing the piston upward and compressing the spring;
  • Step 4) The rapid heater stops heating, the spring rebounds, the piston moves downward, and the liquid carrying abrasive flows downward through the surface of the inner hole of the workpiece to be processed and returns to the lower box.
  • step 4) the second valve, the first valve and the second liquid pump are opened, the liquid flows into the solution storage tank and is pumped to the cooling box, and the liquid nitrogen in the liquid nitrogen tank evaporates into the cooling box. .
  • an elevator is provided between the upper sealing plate and the upper end surface of the lower box.
  • a position sensor is provided on the inner wall of the lower box 1 above and below the lower sealing plate. When the elevator rises, the lower sealing plate contacts the upper side. When the position sensor is connected, the elevator stops rising; when the elevator descends and touches the position sensor below, the elevator stops descending.
  • the present invention places the workpiece to be processed between the upper and lower sealing plates, and utilizes the thermal expansion of the liquid and the compression of the liquid by the piston to realize the reciprocating flow of the liquid inside the workpiece, breaking the one-way restriction of the traditional liquid flow and realizing the liquid flow.
  • the reciprocating liquid carries the abrasive through the workpiece surface, and frequent collision and shearing occurs with the workpiece surface to achieve the removal of surface materials. It greatly reduces the kinetic energy loss when the liquid flows through the elongated holes, and improves the uneven roughness of the inner surfaces at both ends of the micropores.
  • the present invention does not use traditional cavitation generators such as nozzles and venturi tubes to generate cavitation. Instead, it uses the Bernoulli equation theorem to generate cavitation to complete the processing of the inner surface of the workpiece. This not only simplifies the device but also reduces the cost. Cost of use of the device.
  • the present invention can control the severity of cavitation in the inner hole of the workpiece, thereby affecting the cutting effect of the abrasive.
  • the present invention has strong adaptability to the processing method, can realize the processing of various complex cavities, and can achieve precise polishing of micropores of different shapes, different diameters and different materials, especially for Processing of the inner surface of complex micropores with a diameter less than 2mm.
  • the present invention can process multiple workpieces at the same time and has high processing efficiency.
  • Figure 1 is a schematic structural diagram of a reciprocating abrasive flow polishing device based on the cavitation effect of the present invention
  • Figure 2 is an enlarged view of the assembly structure of the mixer and motor in Figure 1;
  • Figure 3 is a schematic structural diagram of a reciprocating abrasive flow polishing device based on the cavitation effect of the present invention that realizes multi-station simultaneous polishing;
  • a reciprocating abrasive flow polishing device based on the cavitation effect of the present invention includes a working system, a circulation system, an abrasive conveying system and a controller 29.
  • the working system includes a rapid heater 2, a lower box 1, an upper sealing plate 8, a lower sealing plate 3, a three-jaw chuck 6, an upper box 11 and a spring 17.
  • the workpiece 5 to be processed is connected between the upper box 11 and the lower box 1, and the inner hole of the workpiece 5 connects the upper box 11 and the lower box 1.
  • a rapid heater 2 is installed at the bottom of the inner cavity of the lower box 1, and the rapid heater 2 is connected to the controller 29 via a control line.
  • the upper end of the lower box 1 is an opening, and the upper opening of the lower box 1 is sealed with a lower sealing plate 3.
  • a first sealing ring 4 is used to seal and connect the inner wall of the lower box 1 and the outer wall of the lower sealing plate 3.
  • the lower sealing plate 3 is matched with the inner wall of the lower box 1, sealed and slidably connected.
  • the lower sealing plate 3 can move up and down along the inner wall of the lower box 1, similar to a sealed piston.
  • the lower end of the upper box 11 is an opening.
  • the lower opening of the upper box 11 is sealed with an upper sealing plate 8 , and a second sealing ring 10 is used to seal the upper sealing plate 8 and the opening of the upper box 11 .
  • Support posts 7 are used to connect the upper sealing plate 8 and the lower sealing plate 3, and screws are used to securely connect them together. At least two support columns 7 are provided, and the two support columns 7 are symmetrically arranged on both sides relative to the workpiece 5 to be processed.
  • the workpiece 5 to be processed is fixed with a three-claw chuck 6 , and the workpiece 5 to be processed is at the center between the upper sealing plate 8 and the lower sealing plate 3 .
  • the three-claw chuck 6 is fixed in the middle of the upper surface of the lower sealing plate 3.
  • the upper end of the workpiece 5 to be processed passes through the center through hole on the upper sealing plate 8 and is sealed with the upper sealing plate 8; the lower end of the workpiece 5 to be processed passes through the center through hole on the lower sealing plate 3 and is sealingly connected with the lower sealing plate 3.
  • the upper box 11 and the lower box 1 are connected through the inner hole of the workpiece 5 to be processed.
  • a flange structure is provided on the outer edge of the bottom of the upper box 11, and a number of corresponding bolt holes are provided on the flange and the upper sealing plate 8.
  • the flange and the upper sealing plate 8 are fixedly connected through bolts and nuts.
  • a piston 18 that can move up and down is provided in the inner cavity of the upper box 11 .
  • the piston 18 matches the inner wall of the upper box 11 and is sealingly connected through a third sealing ring 13 .
  • the piston 18 is fixedly connected to the upper The top of the box 11.
  • the upper box 11 below the piston 18, the inner hole of the workpiece 5 to be processed, and the lower box 1 together form a solution chamber.
  • An elevator 9 is provided between the upper sealing plate 8 and the upper end surface of the lower box 1 . At least two elevators 9 are provided. The two elevators 9 are arranged symmetrically with respect to the center of the workpiece 5 to be processed.
  • the elevator 9 is connected to the controller 29 via a control line. Within a certain lifting range, the elevator 9 can adjust the vertical distance from the inner surface of the workpiece 5 to be processed to the rapid heater 2 below. When the elevator 9 rises, it drives the upper sealing plate 8, the workpiece 5 to be processed, and the lower sealing plate 3 to rise together. , the distance between the workpiece 5 to be processed and the rapid heater 2 becomes larger, and conversely, the distance becomes smaller.
  • the circulation system is composed of three subsystems: drainage system, cooling system and water injection system, and is used to cool down the liquid in the solution chamber.
  • the drainage system includes a drain port 32 , a second filter 33 , a second valve 34 and a solution storage tank 35 .
  • a drain port 32 is opened at the bottom of the lower box 1, and the drain port 32 is connected to the solution storage tank 35 through a pipeline through a second filter 33 and a second valve 34.
  • the second valve 34 is connected to the controller 29 via a control line. When the second valve 34 is opened, the liquid in the solution chamber will automatically flow into the solution storage tank 35 due to the action of gravity. When all the liquid in the solution chamber flows into the solution storage tank 35 Finally, the controller 29 closes the second valve 34.
  • the cooling system is connected to the drainage system.
  • the cooling system includes a second liquid pump 28, a cooling box 26, a liquid nitrogen tank 23, a first valve 24, a stirrer 27 and a motor 36.
  • the second liquid pump 28, the first valve 24 and the motor 36 are connected to the controller 29 via control lines respectively.
  • the solution storage tank 35 is connected to the cooling tank 26 via the second liquid pump 28
  • the second liquid pump 28 is connected between the solution storage tank 35 and the cooling tank 26 .
  • a stirrer 27 is provided in the cooling box 26.
  • the stirrer 27 is coaxially connected to the motor 36.
  • the motor 36 drives the stirrer 27 to work.
  • the motor 36 is fixed on the outside of the cooling box 26.
  • the cooling box 26 is connected to the first valve 24 and the liquid nitrogen tank 23 through pipelines.
  • the controller 29 When the second liquid pump 28 is turned on, the liquid in the solution storage tank 35 can be pumped to the cooling tank 26. When all the liquid in the solution storage tank 35 flows into the cooling tank 26, the controller 29 turns off the second liquid pump 28. Pump 28. When the controller 29 opens the first valve 24 and the motor 36, the liquid nitrogen in the liquid nitrogen tank 23 will naturally evaporate into the cooling box 26, and the motor 36 drives the stirrer 27 for stirring. When the first valve 24 is opened and the agitator 27 is operated for a period of time, usually about ten minutes, the liquid in the cooling box 26 can be evenly cooled. At this time, the controller 29 closes the first valve 24 and stops the motor 36.
  • the water injection system is connected to the cooling system, and includes an infusion port 20 , a reversing valve 21 , a first liquid pump 22 and a first filter 25 .
  • the reversing valve 21 and the first liquid pump 22 are respectively connected to the controller 29 via control lines.
  • An infusion port 20 is opened on the side wall of the upper box 11 below the piston 18.
  • the infusion port 20 is connected to the reversing valve 21, the first liquid pump 22 and the first filter 25 through pipelines.
  • the first filter 25 is connected to the cooling box 26. .
  • the controller 29 controls the first liquid pump 22 and the reversing valve 21 to work, the cooled liquid is extracted from the cooling box 26 and flows into the solution chamber of the upper box 11 through the infusion port 20; when the cooling box 26 When all the liquid flows into the solution chamber of the upper tank 11, the controller 29 closes the first liquid pump 22 and the reversing valve 21.
  • the abrasive conveying system includes an abrasive barrel 15, an abrasive 16, and an abrasive control switch 14.
  • the abrasive 16 is placed in the abrasive barrel 15.
  • a feed port 12 is opened on the side wall of the upper box 11 below the piston 18.
  • the feed port 12 is connected to the abrasive bucket 15 through a feed pipe through an abrasive control switch 14.
  • the abrasive control switch 14 is connected to the controller 29 through a control line.
  • the abrasive control switch 14 When the piston 18 moves downward and compresses the liquid in the solution chamber, the abrasive control switch 14 is opened to allow the abrasive 16 in the abrasive barrel 15 to flow into the solution chamber; when the time for the abrasive 16 to flow from the abrasive barrel 15 into the solution chamber reaches the set time , the abrasive inflow time in the present invention is set to 20 seconds, the concentration of abrasive 16 in the solution chamber reaches 4%, and at this time, the abrasive control switch 14 is turned off.
  • a pressure sensor 19 is provided between the piston 18 and the top of the upper box 11 .
  • the pressure sensor 19 can be fixedly installed on the inner wall of the upper box 11 .
  • the pressure sensor 19 is connected to the controller 29 through a signal line.
  • the pressure sensor 19 transmits the pressure signal to the controller 29, which can detect the movement of the piston 18 to the uppermost position, thereby detecting the compression amount of the spring 17, that is, the amount of force accumulated by the spring 17. size, thereby controlling the polishing rate of the cavitation abrasive flow.
  • a position sensor is provided above and below the lower sealing plate 3, which is the first position sensor above.
  • the position sensor 30 and the second position sensor 31 below are fixed on the inner wall of the lower box 1, and are connected to the controller 29 through signal lines to detect the arrival of the lower sealing plate 3. the top and bottom positions.
  • the lift 9 rises, it drives the upper sealing plate 8, the workpiece 5 to be processed, and the lower sealing plate 3 to rise together.
  • the lower sealing plate 3 contacts the first position sensor 30, the lower sealing plate 3 moves to the uppermost position, and the lift 9 stops rising. work; when the lift 9 descends and contacts the second position sensor 31, the lower sealing plate 3 moves to the lowest position, and the lift 9 stops descending. Therefore, the lift 9 can adjust the workpiece 5 to be processed to the rapid heater within a certain range axial distance of 2.
  • the axial distance from the workpiece 5 to be processed to the rapid heater 2 is adjusted to achieve the best effect of polishing the inner surface of the workpiece 5 to be processed.
  • the controller 29 controls the operation of the first liquid pump 22, opens the reversing valve 21, and transports the liquid in the cooling box 26 to the upper box 11 through the liquid injection port 20.
  • the liquid passes through the upper box 11 and the inner hole of the workpiece 5 to be processed. It flows into the entire lower box 1, and when the liquid level just touches the lower surface of the piston 18, the first liquid pump 22 and the reversing valve 21 are closed. At this time, the spring 17 is in the initial state without pre-pressure.
  • the controller 29 controls the abrasive control switch 14 to open, and the abrasive 16 in the abrasive barrel 15 flows into the solution chamber.
  • the abrasive 16 flows into the lower box 1 through the upper box 11 and the inner hole of the workpiece 5 to be processed, and fills the entire solution chamber. Control the time when the abrasive 16 flows in. When the time for the abrasive 16 to flow into the solution chamber from the abrasive barrel 15 is 20 seconds, close the abrasive control switch 14.
  • the controller 29 turns on the rapid heater 2, and the rapid heater 2 generates heat to heat the liquid in the solution chamber.
  • the liquid carrying the abrasive 16 at the bottom of the solution chamber continues to expand and flows upward through the inner hole surface of the workpiece 5 to be processed.
  • the expanding liquid will continuously push the piston 18 upward, thereby compressing the spring 17.
  • the pressure sensor 19 sends a signal to the controller 29, and the controller 29 controls the rapid heater 2 to stop heating.
  • the accumulated spring 17 rebounds and drives the piston 18 downward quickly. Compress the liquid, and the liquid carrying the abrasive 16 continuously flows downward through the inner hole surface of the workpiece 5 to be processed, and then flows back into the lower box 1 until the spring 17 no longer compresses the liquid and returns to the initial state.
  • the controller 29 controls the second valve 34 to open, and the liquid in the solution chamber flows into the solution storage tank 35 .
  • the controller 29 turns on the second liquid pump 28, the motor 36, and the first valve 24.
  • the liquid in the solution storage tank 35 is pumped to the cooling tank 26.
  • the agitator 27 in the cooling tank 26 works, and the liquid nitrogen tank 23 is filled with water. The liquid nitrogen volatilizes into the cooling box 26, and the liquid in the cooling box 26 is evenly cooled to complete a polishing process.
  • the liquid in the cooling box 26 After the liquid in the cooling box 26 is cooled down, it is re-injected into the solution chamber.
  • the controller 29 turns on the rapid heater 2 again to generate heat, and the spring 17 compresses and recovers, and so on. By heating, the liquid in the solution chamber is reciprocated up and down.
  • cavitation When the liquid carrying the abrasive 16 passes through the inner hole of the workpiece 5 to be processed, cavitation will occur.
  • the shock wave generated when the cavitation bubbles collapse is used to impart the abrasive 16 greater kinetic energy, thereby strengthening the cutting effect of the inner surface of the workpiece 5 to be processed, and improving the material removal rate and processing efficiency of the inner surface of the workpiece 5 to be processed.
  • the controller 29 opens the second valve 34 until all the liquid in the solution chamber flows into the solution storage tank 35, closes the second valve 34, unscrews the nut, and moves the upper tank 11 Remove from the upper sealing plate 8, and then take out the workpiece 5 to be processed.
  • FIG. 1 When the polishing device shown in Figure 1 is working, one station is used to polish a workpiece 5 to be processed. When the polishing device of the present invention is implemented, multiple workstations can be used to polish multiple workpieces to be processed at the same time, which can improve processing efficiency and reduce energy consumption accordingly.
  • Figure 3 it is a structure that uses two processing stations. When two or more processing stations are used, it can be shown in the figure The structure shown in 3 is obtained by adding corresponding components. Taking two-station processing as an example: two processing stations are set up between the upper sealing plate 8 and the lower sealing plate 3, and the first workpiece 5 to be processed and the second workpiece 37 to be processed are placed in the processing positions respectively.
  • the first workpiece to be processed 5 and the second workpiece to be processed 37 are arranged side by side without contact, and are fixed using the first three-claw chuck 6 and the second three-claw chuck 38 respectively.
  • the rest of the structure of the polishing device using two stations is the same as that of the polishing device using one station, and the processing method is also the same as the processing method using one station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

一种基于空化效应的往复式磨料流抛光装置,下箱体(1)上端开口处密封连接下密封板(3),下密封板(3)能沿下箱体(1)的内壁上下运动;上箱体(11)下端开口处用上密封板(8)密封连接;上密封板(8)与下密封板(3)之间是待加工工件(5),箱体(1)内腔的底部设置快速发热器(2);上箱体(11)内腔中设有与上箱体(11)的内壁相配合且能上下移动的活塞(18),活塞(18)通过弹簧(17)固定连接于上箱体(11)的顶部;快速发热器(2)对液体加热,弹簧(17)压缩和回弹,液体流过待加工工件(5)内孔表面。还包括一种基于空化效应的往复式磨料流抛光装置的抛光方法。往复式磨料流抛光装置及其抛光方法实现了液体在内孔中的双向流动,减少液体流经细长孔时的动能损失,改善孔两端内表面粗糙度不均匀的现象。

Description

一种基于空化效应的往复式磨料流抛光装置及方法 技术领域
本发明属于金属表面处理领域,具体涉及的是一种基于空化效应的磨料流抛光装置,该装置可对孔径为2mm以下的复杂金属微孔进行后处理。
背景技术
空化磨料流抛光技术是一种非传统的精加工工艺,主要用于零件表面及不规则孔道内的去除毛刺、抛光、倒圆角等。空化磨料流抛光技术是利用空泡溃灭时会产生GPa级的辐射压力、冲击波以及微射流,这些物理现象不仅可以直接侵蚀材料,还可以混合磨料、赋予磨料更大的动能,从而强化工件内表面的切削效果。目前,空化磨料流抛光技术在加工异形孔、复杂孔腔等方面展示了显著的优势,但是现有空化磨料流抛光技术仍然存在材料去除率低、加工效率低以及表面粗糙度不均匀等问题。
由于通过磨料流可完成异形孔、复杂曲面、复杂孔腔的抛光去毛刺,已成为微孔表面后处理的重点技术。磨料抛光技术主要有磨料喷射加工、液体喷射加工、液体动力研磨等,但这些抛光技术都不能很好地解决材料去除率低、加工效率低以及表面粗糙度不均匀等问题,无法满足工件的使用需求。
中国专利公开号为CN111843853B的文献中公开了一种基于水利空化射流的内表面精加工强化系统,其利用空泡溃灭产生的冲击波对磨料进行混合、赋予磨料更大的动能,从而强化工件内表面的切削效果,提高了工件表面的材料去除率,但是它的工作流体是单向流动,当工作流体流过细长孔时,其液体携带的动能会有不同程度的损失,其赋予磨料的动能不一致,就造成了微孔两端的表面粗糙度不均匀。中国专利公开号为CN109719631B的文献中公开了一种用于流体空化磨蚀表面精加工的方法和装置,该方法利用空化气泡激发磨料,通过空化气泡与磨料和工件表面之间的相互作用来提高工件表面材料去除率, 但是该方法仅仅涉及工件外表面的加工,不涉及工件内表面的加工。
发明内容
本发明的目的为解决现有金属微孔加工后表面材料去除率低、加工效率低以及表面粗糙度不均匀等问题,提出了一种基于空化效应的往复式磨料流抛光装置及抛光方法。
为解决上述问题,本发明一种基于空化效应的往复式磨料流抛光装置采用以下技术方案:其包括上箱体和下箱体,下箱体上端是开口,下箱体上端开口处密封连接下密封板,下密封板能沿下箱体的内壁上下运动;上箱体下端是开口,上箱体下端开口处用上密封板密封连接;上密封板与下密封板之间是待加工工件,待加工工件内孔贯通上箱体和下箱体,箱体内腔的底部设置快速发热器;上箱体内腔中设有与上箱体的内壁相配合且能上下移动的活塞,活塞通过弹簧固定连接于上箱体的顶部;下箱体的底部开有排液口,排液口通过管道经第二过滤器、第二阀门连接溶液储存箱;溶液储存箱经第二液泵连接冷却箱,冷却箱经第一阀门连接液氮罐;活塞下方的上箱体侧壁上开有输液口和输料口,所述的输液口依次经换向阀、第一液泵和第一过滤器连接冷却箱,向上箱体内输入液体;所述的输料口经磨料控制开关连接磨料桶,磨料桶向上箱体内输入液磨料;快速发热器对液体加热,弹簧压缩和回弹,液体流过待加工工件内孔表面。
进一步地,上密封板与下密封板之间的待加工工件有两个或两个以上,两个或两个以上的待加工工件并列布置且不接触。
进一步地,所述的快速发热器、第一阀门、第二阀门、磨料控制开关、换向阀、第一液泵和第二液泵均由控制器控制。
进一步地,上密封板和下箱体上端面之间设置升降机,调节待加工工件到快速发热器的垂直距离。
进一步地,下密封板的上方和下方的下箱体的内侧壁上各设置一个位置传 感器,检测下密封板到达最上方和最下方的位置。
进一步地,在活塞和上箱体的顶部之间设置压力传感器,检测活塞到达最上方的位置。
本发明所述的一种基于空化效应的往复式磨料流抛光装置的抛光采用以下技术方案:
步骤1):第一液泵工作,换向阀打开,冷却箱中的液体通过注液口输送到上箱体中,液体经待加工工件内孔流入下箱体中,在液面接触到活塞的下表面时,关闭第一液泵和换向阀;
步骤2):磨料控制开关打开,磨料从磨料桶1流入上箱体,磨料经待加工工件内孔流入下箱体中,关闭磨料控制开关;
步骤3):快速发热器工作,对液体加热,携带磨料的液体不断膨胀,向上流过待加工工件内孔表面,推动活塞向上运动,压缩弹簧;
步骤4):快速发热器停止加热,弹簧回弹,活塞向下运动,携带磨料的液体向下流过待加工工件内孔表面,流回到下箱体中。
进一步地,步骤4)结束后,打开第二阀门、第一阀门和第二液泵,液体流进溶液储存箱中后被抽送到冷却箱中,液氮罐里的液氮挥发到冷却箱中。
进一步地,上密封板和下箱体上端面之间设置升降机,下密封板的上方和下方的下箱体1的内侧壁上各设置一个位置传感器,当升降机上升,下密封板接触到上方的位置传感器时,升降机停止上升;当升降机下降,接触到下方的位置传感器时,升降机停止下降。
本发明采用上述技术方案后的有益效果是:
1.本发明将待加工工件放置在上、下密封板之间,利用液体发热膨胀和活塞压缩液体,可以实现液体在工件内部的往复流动,打破了传统液体流动的单向限制,实现了液体在内孔中的双向流动,通过往复流动的液体携带磨料通过工件表面,与工件表面发生频繁的撞击和剪切作用,实现表面材料的去除,最 大程度减少了液体流经细长孔时的动能损失,改善了微孔两端内表面粗糙度不均匀的现象。
2.本发明不使用喷嘴、文丘里管等传统的空化发生器产生空化,而是利用伯努利方程定理产生空化来完成工件内表面的加工,这样不仅简化了装置,也降低了装置的使用成本。
3.本发明通过改变工件内孔到快速发热器的轴向距离,可以控制工件内孔中的空化剧烈程度,进而影响磨料的切削效果。
4.本发明通过控制工件内孔的空化剧烈程度,加工方法适应性强,能实现各种复杂孔腔的加工,可以实现不同形状、不同直径与不同材料的微孔精准抛光,尤其可对直径小于2mm的复杂微孔内表面进行加工。
5.本发明可同时对多个工件进行加工,加工效率高。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明:
图1是本发明一种基于空化效应的往复式磨料流抛光装置的结构示意图;
图2是图1中搅拌器和电机装配结构放大图;
图3是本发明一种基于空化效应的往复式磨料流抛光装置实现多工位同时抛光的结构示意图;
图中:1.下箱体、2.快速发热器、3.下密封板、4.第一密封圈、5.待加工工件、6.三爪卡盘、7.支撑柱、8.上密封板、9.升降机、10.第二密封圈、11.上箱体、12.输料口、13.第三密封圈、14.磨料控制开关、15.磨料桶、16.磨料、17.弹簧、18.活塞、19.压力传感器、20.输液口、21.换向阀,22.第一液泵、23.液氮罐、24.第一阀门、25.第一过滤器、26.冷却箱、27.搅拌器、28.第二液泵、29.控制器、30.第一位置传感器、31.第二位置传感器、32.排液口、33.第二过滤器、34.第二阀门、35.溶液储存箱、36.电机、37.第二个待加工工件、38.第二个三爪卡盘。
具体实施方式
参见图1,本发明一种基于空化效应的往复式磨料流抛光装置,包括工作系统、循环系统、磨料输送系统和控制器29。
所述的工作系统包括快速发热器2、下箱体1、上密封板8、下密封板3、三爪卡盘6、上箱体11及弹簧17。上箱体11和下箱体1之间连接着待加工工件5,待加工工件5内孔将上箱体11和下箱体1作贯通。下箱体1内腔的底部安装快速发热器2,快速发热器2经控制线连接控制器29。下箱体1的上端是开口,在下箱体1的上端开口用下密封板3封住,在下箱体1的内壁和下密封板3外侧壁之间用第一密封圈4密封连接。下密封板3与下箱体1的内壁相配合,密封且滑动连接,下密封板3能沿下箱体1的内壁上下运动,类似密封的活塞。
上箱体11的下端是开口,在上箱体11的下端开口处用上密封板8封住,并用第二密封圈10将上密封板8和上箱体11的开口作密封连接。
在上密封板8与下密封板3之间使用支撑柱7连接,并使用螺钉将其固定连接在一起。至少设置两个支撑柱7,两个支撑柱7相对于待加工工件5在两侧对称布置。
待加工工件5用三爪卡盘6固定,待加工工件5在上密封板8与下密封板3之间的中心位置。三爪卡盘6固定在下密封板3上表面中间。待加工工件5的上端贯通上密封板8上的中心通孔,与上密封板8密封连接;待加工工件5的下端贯通下密封板3上的中心通孔,与下密封板3密封连接,使上箱体11和下箱体1通过待加工工件5的内孔相贯通。
上箱体11底部外缘设置有法兰结构,法兰上和上密封板8上均设有若干相对应的螺栓孔,通过螺栓和螺母实现法兰和上密封板8的固定连接。
在上箱体11内腔中设置可上下移动的活塞18,活塞18与上箱体11的内壁相配合,通过第三密封圈13密封连接。活塞18通过弹簧17固定连接于上 箱体11的顶部。
活塞18下方的上箱体11、待加工工件5的内孔、下箱体1三者共同形成溶液腔。
在上密封板8和下箱体1上端面之间设置升降机9,至少设置两个升降机9,两个升降机9相对于待加工工件5的中心对称布置。升降机9经控制线连接控制器29。在一定的升降范围内,升降机9可以调节待加工工件5内表面到下方的快速发热器2的垂直距离,当升降机9上升,带动上密封板8、待加工工件5和下密封板3连带上升,待加工工件5和快速发热器2之间的距离变大,反之,距离变小。
所述的循环系统由排水系统、降温系统和注水系统三个子系统组成,用于给溶液腔中的液体降温。
所述的排水系统包括排液口32、第二过滤器33、第二阀门34及溶液储存箱35。下箱体1的底部开有排液口32,排液口32通过管道经第二过滤器33、第二阀门34连接溶液储存箱35。第二阀门34经控制线连接控制器29,打开第二阀门34时,溶液腔中的液体由于受到重力作用,会自动流入溶液储存箱35中,当溶液腔中的液体都流入溶液储存箱35后,控制器29关闭第二阀门34。
所述的降温系统和排水系统相连接,降温系统包括第二液泵28、冷却箱26,液氮罐23、第一阀门24、搅拌器27和电机36,第二液泵28、第一阀门24和电机36分别经控制线连接控制器29。溶液储存箱35经第二液泵28连接冷却箱26,第二液泵28连接于溶液储存箱35和冷却箱26之间。冷却箱26中设置搅拌器27,搅拌器27同轴连接电机36,由电机36带动搅拌器27工作,电机36固定在冷却箱26的箱体外部。冷却箱26经管道连接第一阀门24和液氮罐23。当打开第二液泵28,可以将溶液储存箱35中的液体抽送到冷却箱26中,当溶液储存箱35中的液体都流进冷却箱26时,控制器29关闭第二液 泵28。当控制器29打开第一阀门24和电机36,液氮罐23里的液氮会自然挥发到冷却箱26中,通过电机36驱动搅拌器27进行搅拌。当打开第一阀门24和搅拌器27工作一段时间后,一般为十分钟左右,可以使冷却箱26中液体均匀降温,此时控制器29关闭第一阀门24和停止电机36工作。
所述的注水系统和降温系统相连接,注水系统和包括输液口20、换向阀21、第一液泵22和第一过滤器25。换向阀21和第一液泵22分别经控制线连接控制器29。在活塞18下方的上箱体11侧壁上开输液口20,输液口20通过管道依次连接换向阀21、第一液泵22和第一过滤器25,第一过滤器25连接冷却箱26。当控制器29控制第一液泵22和换向阀21工作,将降温后的液体从冷却箱26冷却箱26中抽出,通过输液口20流入上箱体11溶液腔中;当冷却箱26中的液体都流入上箱体11溶液腔中时,控制器29关闭第一液泵22和换向阀21。
所述的磨料输送系统,包括磨料桶15、磨料16以及磨料控制开关14,磨料16放置于磨料桶15中。在活塞18下方的上箱体11侧壁上开输料口12,输料口12由输料管道经磨料控制开关14连接磨料桶15,磨料控制开关14经控制线连接控制器29。在活塞18向下运动,压缩溶液腔中液体时,打开磨料控制开关14,使磨料桶15中的磨料16流入溶液腔中;当磨料16从磨料桶15流入溶液腔的时间达到设定时间时,本发明中的磨料流入时间设为20s,溶液腔中的磨料16浓度达到4%,此时关闭磨料控制开关14。
在活塞18和上箱体11的顶部之间设置压力传感器19,压力传感器19可以固定安装在上箱体11的内侧壁上。压力传感器19通过信号线连接控制器29。当活塞18向上移动接触到压力传感器19时,压力传感器19将压力信号传送给控制器29,可以检测活塞18运动到达最上方的位置,从而检测到弹簧17的压缩量,即弹簧17蓄力的大小,从而能控制空化磨料流的抛光速率。
在下密封板3的上方和下方各设置一个位置传感器,分别是上方的第一位 置传感器30和下方的第二位置传感器31,第一位置传感器30和第二位置传感器31均固定在下箱体1的内侧壁上,均经信号线连接控制器29,以检测下密封板3到达的最上方和最下方的位置。当升降机9上升,带动上密封板8、待加工工件5和下密封板3连带上升,当下密封板3接触到第一位置传感器30时,下密封板3运动到最上方位置,升降机9停止上升工作;当升降机9下降,接触到第二位置传感器31时,下密封板3运动到最下方位置,升降机9停止下降工作,因此,升降机9可在一定范围内调节待加工工件5到快速发热器2的轴向距离。
本发明往复式磨料流抛光装置的具体工作过程如下:
根据待加工工件5内孔的不同形状、不同直径与不同材料,调节待加工工件5到快速发热器2的轴向距离,以待加工工件5内表面抛光的最佳效果。
控制器29控制第一液泵22工作,打开换向阀21,将冷却箱26中的液体通过注液口20输送到上箱体11中,液体经上箱体11、待加工工件5内孔流入整个下箱体1中,在液面刚刚接触到活塞18的下表面时,关闭第一液泵22和换向阀21,此时弹簧17处于初始状态,无预压力。
控制器29控制磨料控制开关14打开,磨料桶15的磨料16流入溶液腔中,磨料16经上箱体11、待加工工件5内孔也流入下箱体1中,布满整个溶液腔。控制磨料16流入的时间,当磨料16从磨料桶15流入溶液腔的时间为20s时,关闭磨料控制开关14。
控制器29打开快速发热器2,快速发热器2发热,对溶液腔中的液体进行加热,溶液腔底部的携带磨料16的液体不断膨胀、向上流过待加工工件5内孔表面。同时,膨胀的液体会不断推动活塞18向上运动,从而压缩弹簧17。当活塞18向上运动接触到压力传感器19时,压力传感器19发出信号给控制器29,控制器29控制快速发热器2停止加热。
在快速发热器2停止加热后,蓄力的弹簧17回弹,带动活塞18迅速向下 压缩液体,携带磨料16的液体不断向下流过待加工工件5内孔表面,然后流回到下箱体1中,直到弹簧17不再压缩液体,恢复到初始状态时。
控制器29控制第二阀门34打开,溶液腔中的液体流入溶液储存箱35中。同时,控制器29打开第二液泵28、电机36、第一阀门24工作,溶液储存箱35中的液体抽送到冷却箱26中,冷却箱26中的搅拌器27工作,液氮罐23里的液氮挥发到冷却箱26中,对冷却箱26中液体进行均匀降温,完成一次抛光过程。
冷却箱26中液体经过降温后,重新注入溶液腔中,控制器29再次打开快速发热器2进行发热,弹簧17压缩和恢复,如此反复。通过加热的方式,使溶液腔中的液体实现上下往复运动,当携带磨料16的液体通过待加工工件5内孔时,会发生空化现象,利用空化气泡溃灭时产生的冲击波,赋予磨料16更大的动能,从而强化待加工工件5内表面的切削效果,提高待加工工件5内表面的材料去除率和加工效率。
由伯努利方程,当液体从下箱体1或者上箱体11流入待加工工件5内孔时,液体运动速度会变快,其相对应的压力会降低,当压力降至饱和蒸气压以下时,气泡会从液体中析出,发生空化效应。所以该装置经过合理的设计,当液体向上运动,或者向下运动,在流经待加工工件5内孔表面时都会发生空化现象。
在待加工工件5内孔表面加工完之后,控制器29打开第二阀门34,直至溶液腔中的液体都流进溶液储存箱35中,关闭第二阀门34,拧开螺母,将上箱体11从上密封板8上移走,在取出待加工工件5。
图1所示的抛光装置在工作时,采用的是一个工位对一个待加工工件5的抛光处理。本发明所述的抛光装置在实施时,还可以采用多个工位同时对多个待加工工件进行抛光处理,能提高加工效率,相应地减少能源损耗。如图3所示,是采用两个加工工位的结构,当采用两个及以上的加工工位时,可由图 3所示的结构添加相应部件得到。以采用两个工位加工为例:在上密封板8和下密封板3之间设置两个加工工位,把第一个待加工工件5和第二个待加工工件37分别放置到加工位置,第一个待加工工件5和第二个待加工工件37并列布置且不接触,分别使用第一个三爪卡盘6和第二个三爪卡盘38将其固定。采用两个工位的抛光装置的其余结构与采用一个工位的结构相同,加工方法也与采用一个工位的加工方法相同。

Claims (10)

  1. 一种基于空化效应的往复式磨料流抛光装置,其特征是:包括上箱体(11)和下箱体(1),下箱体(1)上端是开口,下箱体(1)上端开口处密封连接下密封板(3),下密封板(3)能沿下箱体(1)的内壁上下运动;上箱体(11)下端是开口,上箱体(11)下端开口处用上密封板(8)密封连接;上密封板(8)与下密封板(3)之间是待加工工件(5),待加工工件(5)内孔贯通上箱体(11)和下箱体(1),箱体(1)内腔的底部设置快速发热器(2);上箱体(11)内腔中设有与上箱体(11)的内壁相配合且能上下移动的活塞(18),活塞(18)通过弹簧(17)固定连接于上箱体(11)的顶部;下箱体(1)的底部开有排液口(32),排液口(32)通过管道经第二过滤器(33)、第二阀门(34)连接溶液储存箱(35);溶液储存箱(35)经第二液泵(28)连接冷却箱(26),冷却箱(26)经第一阀门(24)连接液氮罐(23);活塞(18)下方的上箱体(11)侧壁上开有输液口(20)和输料口(12),所述的输液口(20)依次经换向阀(21)、第一液泵(22)和第一过滤器(2)连接冷却箱(26),向上箱体(11)内输入液体;所述的输料口(12)经磨料控制开关(14)连接磨料桶(15),磨料桶(15)向上箱体(11)内输入液磨料;快速发热器(2)对液体加热,弹簧(17)压缩和回弹,液体流过待加工工件(5)内孔表面。
  2. 根据权利要求1所述的一种基于空化效应的往复式磨料流抛光装置,其特征是:上密封板(8)与下密封板(3)之间的待加工工件(5)有两个或两个以上,两个或两个以上的待加工工件(5)并列布置且不接触。
  3. 根据权利要求1所述的一种基于空化效应的往复式磨料流抛光装置,其特征是:所述的快速发热器(2)、第一阀门(24)、第二阀门(34)、磨料控制开关(14)、换向阀(21)、第一液泵(22)和第二液泵(28)均由控制器(29)控制。
  4. 根据权利要求1所述的一种基于空化效应的往复式磨料流抛光装置,其特征是:上密封板(8)和下箱体(1)上端面之间设置升降机(9),调节待加工工件(5)到快速发热器(2)的垂直距离。
  5. 根据权利要求4所述的一种基于空化效应的往复式磨料流抛光装置,其特征是:下密封板(3)的上方和下方的下箱体(1)的内侧壁上各设置一个位置传感器,检测下密封板(3)到达最上方和最下方的位置。
  6. 根据权利要求1所述的一种基于空化效应的往复式磨料流抛光装置,其特征是:在活塞(18)和上箱体(11)的顶部之间设置压力传感器(19),检测活塞18到达最上方的位置。
  7. 根据权利要求1所述的一种基于空化效应的往复式磨料流抛光装置,其特征是:上密封板(8)与下密封板(3)之间固定连接支撑柱(7)。
  8. 一种如权利要求1所述的基于空化效应的往复式磨料流抛光装置的抛光方法,其特征是包括以下步骤:
    步骤1):第一液泵(22)工作,换向阀(21)打开,冷却箱(26)中的液体通过注液口(20)输送到上箱体(11)中,液体经待加工工件(5)内孔流入下箱体(1)中,在液面接触到活塞(18)的下表面时,关闭第一液泵(22)和换向阀(21);
    步骤2):磨料控制开关(14)打开,磨料从磨料桶(15)流入上箱体(11),磨料经待加工工件(5)内孔流入下箱体(1)中,关闭磨料控制开关(14);
    步骤3):快速发热器(2)工作,对液体加热,携带磨料的液体不断膨胀,向上流过待加工工件(5)内孔表面,推动活塞(18)向上运动,压缩弹簧(17);
    步骤4):快速发热器(2)停止加热,弹簧(17)回弹,活塞(18)向下运动,携带磨料的液体向下流过待加工工件(5)内孔表面,流回到下箱体(1)中。
  9. 根据权利要求8所述的抛光方法,其特征是:步骤4)结束后,打开第二阀门(34)、第一阀门(24)和第二液泵(28),液体流进溶液储存箱(35)中后被抽送到冷却箱(26)中,液氮罐(23)里的液氮挥发到冷却箱(26)中。
  10. 根据权利要求8所述的抛光方法,其特征是:上密封板(8)和下箱体(1)上端面之间设置升降机(9),下密封板(3)的上方和下方的下箱体(1) 的内侧壁上各设置一个位置传感器,当升降机(9)上升,下密封板(3)接触到上方的位置传感器时停止上升;当升降机(9)下降,接触到下方的位置传感器时停止下降。
PCT/CN2023/086396 2022-06-30 2023-04-06 一种基于空化效应的往复式磨料流抛光装置及方法 WO2024001389A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2316519.4A GB2621042A (en) 2022-06-30 2023-04-06 Reciprocating abrasive flow polishing apparatus and method based on cavitation effect

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210758178.7 2022-06-30
CN202210758178.7A CN115284160B (zh) 2022-06-30 2022-06-30 一种基于空化效应的往复式磨料流抛光装置及方法

Publications (1)

Publication Number Publication Date
WO2024001389A1 true WO2024001389A1 (zh) 2024-01-04

Family

ID=83821705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086396 WO2024001389A1 (zh) 2022-06-30 2023-04-06 一种基于空化效应的往复式磨料流抛光装置及方法

Country Status (2)

Country Link
CN (1) CN115284160B (zh)
WO (1) WO2024001389A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117680779A (zh) * 2024-02-04 2024-03-12 成都鼎易精密模具有限公司 一种复杂型腔的特种加工方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115284160B (zh) * 2022-06-30 2024-05-10 江苏大学 一种基于空化效应的往复式磨料流抛光装置及方法
GB2621042A (en) * 2022-06-30 2024-01-31 Univ Jiangsu Reciprocating abrasive flow polishing apparatus and method based on cavitation effect

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1332995A (en) * 1971-01-13 1973-10-10 Gibbs Plumbing Co Inc Hydraulic flushing apparatus for discharging fluid from a coantainer and automatically refilling same
CN106392863A (zh) * 2016-10-20 2017-02-15 浙江工业大学 一种基于结构空化效应的高效流体光整加工方法及装置
CN109719631A (zh) * 2017-08-31 2019-05-07 波音公司 用于流体空化磨蚀表面精加工的方法和装置
CN111843853A (zh) * 2020-07-31 2020-10-30 山东大学 基于水力空化射流的内表面精加工强化系统
CN114025915A (zh) * 2019-04-12 2022-02-08 劳斯莱斯有限公司 用于抛光部件的表面的方法和设备
CN115284160A (zh) * 2022-06-30 2022-11-04 江苏大学 一种基于空化效应的往复式磨料流抛光装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3265628B2 (ja) * 1992-07-20 2002-03-11 トヨタ自動車株式会社 砥粒流動体を用いた加工装置及び加工方法
US6905395B2 (en) * 2001-09-21 2005-06-14 Extrude Hone Corporation Abrasive flow machining apparatus and method
ATE357309T1 (de) * 2001-09-21 2007-04-15 Extrude Hone Corp Schleifmittelstrombearbeitungsvorrichtung und - verfahren
DE10309456A1 (de) * 2003-03-05 2004-09-16 Mtu Aero Engines Gmbh Vorrichtung und Verfahren zur Oberflächenbearbeitung eines Werkstückes
DE102019120753B4 (de) * 2019-07-31 2022-06-02 Extrude Hone Gmbh Fließläppmaschine, Verfahren zum Ermitteln eines Materialabtrags an einem Werkstück und Verfahren zum Bestimmen der Schneidleistung eines Schleifmediums

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1332995A (en) * 1971-01-13 1973-10-10 Gibbs Plumbing Co Inc Hydraulic flushing apparatus for discharging fluid from a coantainer and automatically refilling same
CN106392863A (zh) * 2016-10-20 2017-02-15 浙江工业大学 一种基于结构空化效应的高效流体光整加工方法及装置
CN109719631A (zh) * 2017-08-31 2019-05-07 波音公司 用于流体空化磨蚀表面精加工的方法和装置
CN114025915A (zh) * 2019-04-12 2022-02-08 劳斯莱斯有限公司 用于抛光部件的表面的方法和设备
CN111843853A (zh) * 2020-07-31 2020-10-30 山东大学 基于水力空化射流的内表面精加工强化系统
CN115284160A (zh) * 2022-06-30 2022-11-04 江苏大学 一种基于空化效应的往复式磨料流抛光装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117680779A (zh) * 2024-02-04 2024-03-12 成都鼎易精密模具有限公司 一种复杂型腔的特种加工方法
CN117680779B (zh) * 2024-02-04 2024-04-16 成都鼎易精密模具有限公司 一种复杂型腔的特种加工方法

Also Published As

Publication number Publication date
CN115284160B (zh) 2024-05-10
CN115284160A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2024001389A1 (zh) 一种基于空化效应的往复式磨料流抛光装置及方法
EP3342884B1 (en) High-pressure liquid-state or supercritical-state quenching apparatus
CN111843853B (zh) 基于水力空化射流的内表面精加工强化系统
CN203540812U (zh) 一种用于百叶片涂胶的胶水供应装置
CN107671746B (zh) 一种复合式前混合电磁磨料射流发生装置
WO2020221377A2 (zh) 磁力驱动式锥孔内表面强化设备
CN104175230A (zh) 悬浮磨料水射流切割装备
CN108393717A (zh) 一种铝合金门窗加工用精确切割机
CN103540715A (zh) 匀速连续硅油约束装置及方法
CN104708502B (zh) 一种超声波研磨微小凹模加工方法
KR20230038319A (ko) 고온 화학물 및 초음파 장치를 이용한 기판 세정 방법 및 장치
CN113681426B (zh) 一种化工废桶快速清洁设备
CN105108632A (zh) 一种内圆柱面气流辅助磨粒流抛光加工装置
WO2022151738A1 (zh) 微纳米气泡增强等离子体抛光的方法
CN110144453B (zh) 一种液压驱动式微型锥孔内表面空化喷丸系统及方法
CN205057754U (zh) 一种内圆柱面气流辅助磨粒流抛光加工装置
CN104979236A (zh) 一种化学液供给装置及其供给方法
GB2621042A (en) Reciprocating abrasive flow polishing apparatus and method based on cavitation effect
CN117124485A (zh) 一种石英板材表面加工设备
CN202825561U (zh) 循环水冷过滤装置
CN206652771U (zh) 一种葛根叶洗涤杀青装置
CN114918837B (zh) 一种基于温度交变的空化水喷丸装置及方法
CN108311231A (zh) 一种破渣机驱动方法
CN211387856U (zh) 一种便于夹紧的cnc五金件精密加工装置
CN102229096B (zh) 自动光饰机加工中心水循环系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202316519

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20230406

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829579

Country of ref document: EP

Kind code of ref document: A1