WO2022151738A1 - 微纳米气泡增强等离子体抛光的方法 - Google Patents

微纳米气泡增强等离子体抛光的方法 Download PDF

Info

Publication number
WO2022151738A1
WO2022151738A1 PCT/CN2021/114617 CN2021114617W WO2022151738A1 WO 2022151738 A1 WO2022151738 A1 WO 2022151738A1 CN 2021114617 W CN2021114617 W CN 2021114617W WO 2022151738 A1 WO2022151738 A1 WO 2022151738A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
workpiece
nano
anode
polishing
Prior art date
Application number
PCT/CN2021/114617
Other languages
English (en)
French (fr)
Inventor
张晓静
屠学波
常辉
李永华
唐明亮
Original Assignee
南京尚吉增材制造研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京尚吉增材制造研究院有限公司 filed Critical 南京尚吉增材制造研究院有限公司
Publication of WO2022151738A1 publication Critical patent/WO2022151738A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to the technical field of surface precision treatment, in particular to a method for enhancing plasma polishing by micro-nano bubbles.
  • Plasma polishing is a surface treatment technology that uses plasma discharge energy to bombard the surface of the workpiece to achieve bump removal.
  • a tightly packed gas layer can be formed on the surface of the workpiece and a plasma discharge can be stimulated through electric field regulation, thereby achieving surface smoothing of the workpiece.
  • the electrolyte used in this method for polishing the surface of the workpiece is a low-concentration water-soluble salt, which avoids the use of toxic and harmful substances in traditional electrochemical polishing. It reduces the discharge of waste water and exhaust gas, making it safer and more environmentally friendly.
  • FIG. 1 A block diagram illustrating an atmospheric pressure plasma polishing device.
  • the device includes a sealed working chamber, a plasma torch, a first linkage system, a second linkage system, a first flow controller, a second flow controller, a reaction gas bottle, a plasma gas bottle and a gas recovery processing device, and the plasma torch Installed on the first linkage system.
  • the device is used to solve the shortcomings of conventional mechanical grinding and polishing methods, and the problems of low efficiency, easy generation of surface and sub-surface damage, and difficulty in surface cleaning in ultra-smooth surface processing of hard and brittle hard-to-machine materials such as silicon carbide.
  • the polishing products on the lower end face of the plasma polished workpiece are easier to peel off and take away in time. Therefore, the polishing effect of the lower end face of the workpiece is often better than that of the upper end face, and the overall processing uniformity of the workpiece cannot be guaranteed.
  • This problem lies in the surface It is especially prominent when processing large-sized workpieces.
  • the conventional practice is to carry out the processing in sections, and after a section of processing is completed, the workpiece is manually turned over and processed one or more times, which complicates the plasma processing process, increases the labor time and intensity, and also significantly The processing efficiency is reduced, and the one-time integrated and efficient polishing of the workpiece cannot be achieved.
  • micro-nano bubbles The principle of micro-nano bubbles is to mix liquid and gas, and after high-pressure compression, micro- and nano-sized bubbles are produced through expansion tubes, and then discharged through the micro-nano bubble nozzle.
  • the micro-bubble refers to the bubbles existing in the liquid and the diameter of the bubbles is less than 100 microns.
  • Nanobubbles are bubbles that exist in liquids and whose diameters are less than a few hundred nanometers.
  • the mixed state of bubbles between the two forms micro-nano bubbles.
  • the device for preparing micro-nano bubbles refers to a device for producing the above-mentioned micro-nano bubbles.
  • Micro-nano bubbles have a series of characteristics different from conventional bubbles, such as large specific surface area, slow rising speed in water, high gas dissolution rate, high mass transfer efficiency, and high negative charge.
  • the micro-nano bubbles collapse, they can generate shock waves and micro-jets with a pressure greater than 50MPa and a velocity greater than 400KM/H directed to the surface of the workpiece. more and more attention.
  • Chinese patent document CN109483335A discloses a polishing device for metal processing through micro-bubble.
  • the device includes a main box, an auxiliary box and a bracket.
  • the top of the auxiliary tank is welded with a water pump, and one side of the water pump is provided with an air pump.
  • One side of the air pump is welded with an air duct.
  • the micro-pores on the micro-nano-scale membrane tube enter into the inner side of the micro-nano-scale membrane tube, thereby forming micro-bubbles on the inner wall of the micro-nano-scale membrane tube.
  • the polishing liquid makes the polishing head move on the hardware product while polishing, which is convenient for polishing.
  • the micro-bubble can reduce the flow resistance of the polishing liquid, improve the flow rate of the polishing liquid, and the micro-bubble can effectively remove the polishing liquid into the polishing liquid.
  • the impurities are separated from the polishing liquid to improve the quality of polishing.
  • the micro-bubbles of this device act on the surface of the workpiece while the tool is processing the surface of the workpiece, and it is difficult to polish hard and brittle materials.
  • the purpose of the present invention is to provide a more efficient and environmentally friendly precision polishing method for the technical field of plasma polishing.
  • the present invention adopts the following scheme: a method for enhancing plasma polishing with micro-nano bubbles is proposed, comprising:
  • Step 1 using the micro-nano bubble generating device to transport the electrolyte containing the micro-nano bubbles into the working tank;
  • Step 2 In the working tank of the electrolyte containing micro-nano bubbles, the cathode tool is connected to the cathode of the power supply system, the anode workpiece is connected to the anode of the power supply system, the power supply system is started, the electrolyte is electrolytically decomposed into gas, and the gas is in the anode workpiece. A gas film layer is formed on the surface;
  • Step 3 a part of the gas film layer is broken down and ionized by the electric field energy provided by the power supply system to form a plasma layer, and the micro-nano bubbles and the plasma layer jointly perform surface treatment on the anode workpiece;
  • the surface treatment of the workpiece specifically includes: flattening the surface of the anode workpiece by plasma layer discharge, and the micro-nano bubbles collapse near the surface of the anode workpiece to form a micro-jet impacting the surface of the anode workpiece.
  • step one further comprise the following steps:
  • step one further comprise the following steps:
  • Adjust the flow rate and pressure of the electrolyte output by the micro-nano bubble generating device and adjust the content and size of the micro-nano bubbles in the electrolyte, so as to control the energy generated when the micro-nano bubbles collapse, thereby adjusting the surface polishing effect of the anode workpiece.
  • the process control range of the plasma polishing method is improved, and the controllability of the polishing effect is improved.
  • step 2 further comprise the following steps:
  • a workpiece motion mechanism is installed between the anode of the power supply system and the anode workpiece, and the workpiece motion mechanism is driven by the control system to drive the movement of the anode workpiece.
  • the local selective enhanced processing of the specified position of the anode workpiece can be realized, and the anode workpiece moves together with the moving mechanism, which improves the overall processing uniformity and processing accuracy of the workpiece.
  • the homogenization and integrated processing of workpieces with complex structures such as these are of great significance, solving the problem that the traditional mechanical, chemical and electrochemical polishing methods have unsatisfactory effects on the uneven polishing of workpieces with complex structures such as channels, slits, and lattices.
  • the electrolyte is recycled between the working tank and the micro-nano bubble generating device.
  • the temperature at which the electrolyte is preheated is 50°C-90°C.
  • the flow rate of the output electrolyte from the micro-nano bubble generating device is 0.2m 3 /h-4m 3 /h.
  • the present invention enhances the polishing effect on the surface of the anode workpiece by combining the comprehensive effects of the plasma layer and the micro-nano bubbles on the surface of the anode workpiece.
  • a shock wave and microjet with a pressure greater than 50MPa and a velocity greater than 400KM/H will be generated towards the surface of the workpiece, which have obvious effects on the surface of the workpiece. leveling effect.
  • the violent energy fluctuation caused by the discharge of the plasma layer can also promote the collapse of the micro-nano bubbles and improve the effective utilization of the micro-nano bubbles.
  • the collapse of micro-nano bubbles and the discharge of the plasma layer promote each other and benefit each other. Under the dual action of the plasma layer and the micro-nano bubbles, the polishing efficiency is greatly improved and the polishing effect is improved.
  • micro-nano bubble-enhanced plasma polishing method provided by the present invention has the following outstanding substantive features and remarkable progress:
  • the strong shock waves and micro-jets generated during the collapse of the micro-nano bubbles greatly promote the movement of the internal flow field of the working tank, and the fluidity of the electrolyte on the surface of the anode workpiece is improved, which is beneficial to The timely peeling and transportation of the polishing products on the surface of the workpiece is conducive to the continuous progress of the plasma reaction and effectively improves the polishing efficiency;
  • the local high energy generated by the collapse of the micro-nano bubbles will be quickly transferred to the gas film layer and captured by the gas film layer.
  • Plasma is the ionization and fission of atoms after the gas obtains sufficient energy.
  • a series of highly active particle clusters are formed, that is, in addition to the electric field energy, the gas film layer on the surface of the anode workpiece also obtains a new ionization energy source.
  • the introduction of micro-nano bubbles helps the ionization of the gas film layer on the workpiece surface
  • the plasma layer helps to reduce the electric field energy required for the ionization of the gas film layer and reduces the voltage/current threshold requirements for the power supply system;
  • FIG. 1 is a schematic diagram of a micro-nano bubble enhanced plasma polishing device in an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of the method for micro-nano bubble-enhanced plasma polishing of the present invention.
  • working tank 1 working tank 1 , power supply system 2 , cathode tool 3 , anode workpiece 4 , electrolyte 5 , control system 6 , micro-nano bubble generating device 7 , bubble supply device 8 , workpiece moving mechanism 9 , filtration system 10 .
  • a micro-nano-bubble-enhanced plasma polishing method combines the combined effect of the plasma layer and the micro-nano bubbles on the surface of the anode workpiece to enhance the polishing effect on the surface of the anode workpiece.
  • a shock wave and microjet with a pressure greater than 50MPa and a velocity greater than 400KM/H will be generated towards the surface of the workpiece, which have obvious effects on the surface of the workpiece. leveling effect.
  • the violent energy fluctuation caused by the discharge of the plasma layer can also promote the collapse of the micro-nano bubbles and improve the effective utilization of the micro-nano bubbles.
  • the collapse of micro-nano bubbles and the discharge of the plasma layer promote each other and benefit each other.
  • the polishing efficiency is greatly improved and the polishing effect is improved.
  • a micro-nano bubble enhanced plasma polishing device includes: a working tank 1, a power supply system 2, a cathode tool 3, an anode workpiece 4, an electrolyte 5, a control system 6, a micro-nano bubble generating device 7, a bubble Supply device 8 , workpiece movement mechanism 9 and filter system 10 .
  • the working tank 1 has an inner cavity, which defines a working area for polishing the workpiece. Electrolyte 5 is arranged in the work area. The bottom of the working tank 1 is provided with a drain port which communicates with the inner cavity. A micro-bubble supply device is provided at an appropriate position in the inner cavity of the working tank 1.
  • the micro-nano bubble generating device 7 is connected to the liquid discharge port, and is configured to transport the electrolyte and generate a structure of micro-nano bubbles therein.
  • a filter system 10 is arranged between the micro-nano bubble generating device 7 and the liquid discharge port.
  • the micro-nano bubble generating device 7 transports the generated electrolyte solution containing micro-nano bubbles to the appropriate position of the anode workpiece 4 through the bubble supply device 8 .
  • the cathode and anode of the power supply system 2 are connected to the cathode tool 3 and the anode workpiece 4, respectively.
  • the cathode tool 3 and the anode workpiece 4 are located in the working tank 1 in place.
  • a workpiece motion mechanism 9 is arranged between the power supply system 2 and the anode workpiece 4, which can realize multi-pose motion of the workpiece.
  • the control system 6 can realize the control of the power supply system, the control of the micro-bubble generating device, the control of the micro-bubble supply device, the motion control of the workpiece and the temperature control during the processing, so as to realize the comprehensive adjustment of the polishing effect.
  • micro-nano bubble generating device 7 extracts the electrolyte from the drain port at the bottom of the working tank 1 and injects micro-nano bubbles, and then transports it to an appropriate position on the surface of the anode workpiece 4 through the bubble supply device 8 to participate in processing, and then returns to the working tank 1. , realize the recycling of electrolyte.
  • a filter system 10 is provided at the front end of the micro-nano bubble generating device 7 to reduce the concentration of polishing reactants transported to the surface of the workpiece and improve the polishing effect.
  • the flow rate and pressure of the extracted electrolyte and the size and proportion of the generated micro-nano bubbles can be adjusted by the micro-nano bubble generating device 7 .
  • the position of the air bubble supply device 8 is simple and adjustable, and the micro air bubble supply mode can be selected according to the characteristics of the workpiece. According to the shape and structure of the workpiece and polishing requirements, different types of bubble supply devices 8 are selected to realize the local micro-bubble supply of the workpiece 4, which can realize the local selective polishing enhancement of the whole workpiece, and the machining accuracy is high. Homogenization and integrated processing of workpieces with complex structures.
  • Power supply system 2 can be selected as DC or pulse power supply, constant voltage or constant current mode can be selected, the power supply voltage in constant voltage mode is 150-500V, the current density in constant current mode is 10A/dm 2 -150A/dm 2 , and the pulse width is 10 -4 -400s, frequency 0.1-1000KHz.
  • a method for enhancing plasma polishing with micro-nano bubbles proposed by the present invention includes:
  • Step 1 using the micro-nano bubble generating device to transport the electrolyte containing the micro-nano bubbles into the working tank;
  • Step 2 In the working tank of the electrolyte containing micro-nano bubbles, the cathode tool is connected to the cathode of the power supply system, the anode workpiece is connected to the anode of the power supply system, the power supply system is started, the electrolyte is electrolytically decomposed into gas, and the gas is in the anode workpiece. A gas film layer is formed on the surface;
  • Step 3 a part of the gas film layer is broken down and ionized by the electric field energy provided by the power supply system to form a plasma layer, and the micro-nano bubbles and the plasma layer jointly perform surface treatment on the anode workpiece;
  • the surface treatment of the workpiece specifically includes: flattening the surface of the anode workpiece by plasma layer discharge, and the micro-nano bubbles collapse near the surface of the anode workpiece to form a micro-jet impacting the surface of the anode workpiece.
  • step one further comprise the following steps:
  • step one further comprise the following steps:
  • Adjust the flow rate and pressure of the electrolyte output by the micro-nano bubble generating device and adjust the content and size of the micro-nano bubbles in the electrolyte, so as to control the energy generated when the micro-nano bubbles collapse, thereby adjusting the surface polishing effect of the anode workpiece.
  • the process control range of the plasma polishing method is improved, and the controllability of the polishing effect is improved.
  • step 2 further comprise the following steps:
  • a workpiece motion mechanism is installed between the anode of the power supply system and the anode workpiece, and the workpiece motion mechanism is driven by the control system to drive the movement of the anode workpiece.
  • the local selective enhanced processing of the specified position of the anode workpiece can be realized, and the anode workpiece moves together with the moving mechanism, which improves the overall processing uniformity and processing accuracy of the workpiece.
  • the homogenization and integrated processing of workpieces with complex structures such as these are of great significance, solving the problem that the traditional mechanical, chemical and electrochemical polishing methods have unsatisfactory effects on the uneven polishing of workpieces with complex structures such as channels, slits, and lattices.
  • the electrolyte is recycled between the working tank and the micro-nano bubble generating device.
  • the temperature at which the electrolyte is preheated is 50°C-90°C.
  • the flow rate of the output electrolyte solution from the micro-nano bubble generating device is 0.2m 3 /h-4m 3 /h, and the dissolved gas content is 3%-15%.
  • Step 1 Configure an appropriate amount of electrolyte 5 in the working tank 1, start the control system 6, set the electrolyte preheating temperature to 70 ⁇ 20°C, and start processing after confirming that the preheating temperature is reached.
  • the electrolyte can be selected from a low-concentration water-soluble solution with a mass percentage of 1%-10%.
  • Step 2 Connect the cathode tool 3 and the anode workpiece 4 to the cathode and anode of the power supply system 2 respectively to ensure that the anode workpiece 4 is in close contact with the power supply system 2 and the workpiece movement mechanism 9 and has good electrical conductivity. And fix the anode workpiece 4 in a proper position in the working tank 1, and set the workpiece motion conditions, such as lifting speed, translation speed, rotation speed, etc.;
  • Step 3 Start the micro-nano bubble generating device 7, so that the generated electrolyte containing micro-nano bubbles is transported to an appropriate position on the surface of the anode workpiece 4 through the bubble supply device 8 inside the working tank 1; the electrolyte is then automatically returned to the working tank. 1, realize the recycling of the electrolyte; the flow rate of the micro-bubble generator is 0.2m 3 /h-4m 3 /h, and the gas dissolved amount is adjustable from 3% to 15%.
  • the size of the bubble supply device 8 is used to adjust the flow pattern of the electrolyte reaching the surface of the anode workpiece 4, so as to realize the processing strengthening of the workpiece 4 in a local area.
  • the air bubble supply device 8 may be provided in a plurality of combinations.
  • Step 4 Start the power system 2, set the power mode and power parameters, and start processing.
  • Power supply system 2 is DC/pulse power supply, constant voltage/constant current mode can be selected, the power supply voltage in constant voltage mode is 150-500V, the current density in constant current mode is 10A/dm 2 -150A/dm 2 , and the pulse width is 10 -4 -400s, frequency 0.1-1000KHz.
  • the electrolyte 5 in the working tank 1 precipitates gas, such as O2 , on the surface of the anode workpiece 4 under the action of the electric field, thereby forming an extremely thin gas film layer that tightly wraps the anode workpiece,
  • gas such as O2
  • the resistance between the cathode tool 3 and the anode workpiece 4 is significantly increased.
  • the weaker part of the gas film layer is broken down and ionized by the electric field energy to form a plasma discharge, thereby realizing the surface leveling of the workpiece in the discharge micro-area.
  • the micro-nano bubbles will collapse when they reach the vicinity of the anode workpiece, resulting in a shock wave and a micro-jet with a pressure greater than 50MPa and a velocity greater than 400KM/H directed to the surface of the workpiece, accompanied by a series of complex physical and chemical reactions.
  • the strong shock waves and micro-jets generated during the collapse of micro-nano bubbles will, on the one hand, form continuous collision and extrusion on the surface of the workpiece to achieve mechanical leveling on the surface of the workpiece;
  • the flow field movement of the anode workpiece improves the fluidity of the electrolyte on the surface of the anode workpiece, which is conducive to the timely peeling and transportation of the polishing products on the workpiece surface, that is, it is conducive to the continuous progress of the plasma reaction, which can effectively improve the polishing efficiency.
  • the local high energy generated by the collapse of the micro-nano bubbles around the gas film layer on the surface of the workpiece will be rapidly transferred to the gas film layer and captured by the gas film layer.
  • This will obviously help the ionization of the gas film layer on the surface of the workpiece to generate plasma layer discharge.
  • the micro-nano bubbles help to reduce the electric field energy required for the ionization of the gas film, and reduce the power supply voltage/current threshold requirements.
  • the violent energy fluctuation caused by the plasma discharge of the gas film layer can also promote the collapse of the micro-nano bubbles, improve the effective utilization rate of the micro-nano bubbles, and improve the polishing efficiency. That is, the collapse of micro-nano bubbles and the plasma discharge are mutually beneficial and complementary.
  • the method can adjust the micro-bubble collapse energy by adjusting the flow rate and pressure of the micro-nano bubble fluid and the size and proportion of the micro-nano bubble, thereby adjusting the polishing effect. That is, the introduction of micro-nano bubbles also expands the process controllable range of the plasma polishing system, and the workpiece processing effect is more controllable.
  • the micro-nano-bubble supply device used in this method is a flexible structure. According to the characteristics of the workpiece and polishing requirements, various micro-bubble supply modes can be selected, such as point shape, line shape, fan shape, cylindrical shape, etc. Through the selection of the micro-bubble supply device and the selection of the movement posture of the workpiece, the introduction and adjustment of the micro-nano bubbles at the specified position can be realized, and the local selective processing of the workpiece can be realized, so that the overall processing uniformity of the workpiece is guaranteed, and the shape accuracy is high. The homogenization and integration of workpieces and workpieces with complex structures such as tunnels, slits, and lattices are especially important.
  • micro-nano bubbles can realize efficient and uniform processing of workpieces of different sizes and structures at one time.
  • a series of problems caused by segmented processing are avoided, the manual operation time and intensity are greatly reduced, the plasma polishing process is simplified, the production efficiency is obviously improved, and the processing cost is reduced.
  • the workpiece to be processed is a SUS316L stainless steel cylinder with a length of 50 mm and a diameter of 50 mm and an original roughness of 12 ⁇ m.
  • Step 1 Arrange an appropriate amount of electrolyte 5 in the working tank 1, start the control system 6, set the electrolyte preheating temperature to 55°C, and start processing after confirming that the preheating temperature is reached.
  • Step 2 Connect the cathode tool 3 and the anode workpiece 4 to the cathode and anode of the power supply system 2 respectively to ensure that the anode workpiece 4 is in close contact with the power supply system 2 and the workpiece movement mechanism 9 and has good electrical conductivity.
  • the anode workpiece 4 is fixed in a proper position in the working tank 1, and is rotated around the axis of the workpiece at a rotational speed of 50 rpm.
  • Step 3 Start the micro-nano bubble generating device 7, so that the generated electrolyte containing micro-nano bubbles is transported to an appropriate position on the surface of the anode workpiece 4 through the bubble supply device 8 inside the working tank 1;
  • the flow rate of the micro-bubble generating device is 0.6m 3 /h, the amount of dissolved gas is 10%
  • the bubble supply device 8 is set as a cylindrical nozzle with a diameter of 20mm, the nozzle is installed perpendicular to the diameter of the workpiece, and the distance between the fan-shaped nozzle and the center of the workpiece is adjusted to be 40mm.
  • Step 4 Start the power supply system 2, set the power supply mode to constant voltage mode, the working voltage is 280V, the power supply frequency is 500HZ, the pulse width is 100s, the processing time is 10min, and the processing is started.
  • Step 5 After processing, turn off the power system, remove the workpiece, clean and dry the workpiece.
  • the workpiece to be processed is an In718 plate with a length of 200 mm, a width of 20 mm, and a thickness of 2 mm with an original roughness of 2 ⁇ m.
  • Step 1 Arrange an appropriate amount of electrolyte 5 in the working tank 1, start the control system 6, set the electrolyte preheating temperature to 70°C, and start processing after confirming that the preheating temperature is reached.
  • Step 2 Connect the cathode tool 3 and the anode workpiece 4 to the cathode and anode of the power supply system 2 respectively to ensure that the anode workpiece 4 is in close contact with the power supply system 2 and the workpiece movement mechanism 9 and has good electrical conductivity.
  • the anode workpiece 4 is vertically fixed in the proper position in the working tank 1, and the rotation speed of the workpiece is set at 5 rpm.
  • Step 3 Start the micro-nano bubble generating device 7, so that the generated electrolyte containing micro-nano bubbles is transported to an appropriate position on the surface of the anode workpiece 4 through the bubble supply device 8 inside the working tank 1;
  • the flow rate of the micro-bubble generating device is 1m 3 / h, the amount of dissolved gas is 7%
  • the bubble supply device 8 is set as a fan-shaped nozzle with a length of 50mm and a width of 3mm, the length of the nozzle is installed parallel to the length of the workpiece, the centerline of the nozzle is 75mm from the top of the workpiece, and the distance between the fan-shaped nozzle and the center of the workpiece is adjusted to 60mm .
  • Step 4 Start the power supply system 2, set the power supply mode to constant current mode, the stable working current is 15A, the power supply frequency is 200KHZ, the pulse width is 50 ⁇ s, the processing time is 5min, and the processing is started.
  • Step 5 After processing, turn off the power system, remove the workpiece, clean and dry the workpiece.
  • the workpiece is a TC4 cylinder with a length of 30mm and a diameter of 60mm. There is an annular groove with a depth of 20mm and a width of 10mm in the center of the length of the cylinder. The original roughness of the entire workpiece surface is 3 ⁇ m.
  • Step 1 Arrange an appropriate amount of electrolyte 5 in the working tank 1, start the control system 6, set the electrolyte preheating temperature to 55°C, and start processing after confirming that the preheating temperature is reached.
  • Step 2 Connect the cathode tool 3 and the anode workpiece 4 to the cathode and anode of the power supply system 2 respectively to ensure that the anode workpiece 4 is in close contact with the power supply system 2 and the workpiece movement mechanism 9 and has good electrical conductivity.
  • the anode workpiece 4 is vertically fixed in a proper position in the working tank 1, and is rotated around the axis of the workpiece at a rotational speed of 20 rpm.
  • Step 3 Start the micro-nano bubble generating device 7, so that the generated electrolyte containing micro-nano bubbles is transported to an appropriate position on the surface of the anode workpiece 4 through the bubble supply device 8 inside the working tank 1; the flow rate of the micro-bubble generating device is 1.5m 3 /h, the amount of dissolved gas is 12%, the bubble supply device 8 is set as a cylindrical nozzle with a diameter of 5mm, and for the centerline installation of the annular groove, the distance between the nozzle and the center of the workpiece is adjusted to 30mm, and the annular groove is locally enhanced. processing.
  • Step 4 Start the power supply system 2, set the power supply mode to constant voltage mode, the working voltage is 320V, the power supply frequency is 10KHZ, the pulse width is 0.01s, the processing time is 5min, and the processing is started.
  • Step 5 After processing, turn off the power system, remove the workpiece, clean and dry the workpiece.
  • the polishing uniformity is obviously improved, and the polishing efficiency can be increased by 20%-70% or even higher, depending on the structural characteristics of the workpiece and the enhancement of micro-nano bubbles.
  • the microbubble collapse and the plasma discharge in the present invention are mutually beneficial and complementary, which not only retains the advantages of the plasma polishing itself, but also promotes the development of the plasma, and at the same time realizes the targeted enhancement of the local area polishing, with high polishing efficiency and uniformity.
  • Good, integrated one-time processing, simple processing procedure, less manual intervention, low cost especially suitable for efficient and uniform integrated processing of large-sized workpieces and workpieces with complex structures such as tunnels, narrow slits, and lattices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

本发明公开一种微纳米气泡增强等离子体抛光的方法。该方法利用微纳米气泡发生装置向工作槽内输送含有微纳米气泡的电解液; 在含有微纳米气泡的电解液的工作槽内,阴极工具与电源系统的阴极相连,阳极工件与电源系统的阳极相连,电解液被电解析出气体,气体在阳极工件表面形成气膜层; 气膜层中的一部分被电源系统提供的电场能量击穿电离化形成等离子体层,微纳米气泡与等离子体层共同对阳极工件进行表面处理。结合等离子体层和微纳米气泡对阳极工件的表面综合效应,增强对阳极工件表面的抛光效果。微纳米气泡溃灭和等离子体层放电相互促进,互生互利,提升抛光效率和抛光效果。

Description

微纳米气泡增强等离子体抛光的方法 技术领域
本发明涉及表面精密处理技术领域,具体涉及一种微纳米气泡增强等离子体抛光的方法。
背景技术
等离子体抛光是一种利用等离子体放电能量轰击工件表面来实现凸点去除的表面处理技术。在特定电解液中,通过电场调控可以在工件表面形成紧密包裹的气体层并激发等离子体放电,从而实现工件表面光整。这种对工件表面抛光的方法所用电解液为低浓度水溶性盐,规避了传统电化学抛光中有毒有害物质的使用。降低了废水废气的排放,更加安全环保。同时,与传统电化学加工相比,它无需复杂前处理工艺,流程简单,在加工精度、适用材料范围上也具有明显优势,尤其适用于传统人工和机械抛光难以处理的异形结构工件的精密抛光。
目前,等离子体抛光技术中常用常压等离子体抛光。例如,中国专利文献CN100406197C中公开了一种常压等离子体抛光装置。该装置包括密封工作舱、等离子体炬、第一联动系统、第二联动系统、第一流量控制器、第二流量控制器、反应气体瓶、等离子体气体瓶和气体回收处理装置,等离子体炬安装在第一联动系统上。该装置用于解决常规的机械式研磨抛光方法存在的不足,以及在碳化硅等硬脆性难加工材料的超光滑表面加工中存在效率低、易产生表层以及亚表层损伤、表面清洗困难等问题。
但是受到气体上浮特性的影响,等离子体抛光工件下端面的抛光产物更容易及时剥离和带走,故工件下端面抛光效果往往优于上端面,工件的整体加工均匀性无法保证,这个问题在面对大尺寸工件加工时尤为突出。为了避免上述问题,常规做法是将加工过程分段进行,一段加工结束后人工翻转工件再加工一次或多次,这就使得等离子体加工工序变得复杂,增加了人工劳动时间和强度,也明显降低了加工效率,无法实现工件的一次性一体化高效抛光。
微纳米气泡原理是混合液体和气体,在高压压缩后经过扩张管生产微纳米大小的气泡,再通过微纳米气泡喷头排出。其中,微米气泡是指存在于液体中,气泡直径的大小在100微米以下的气泡。纳米气泡是指存在液体中,气泡直径的大小在数百纳米以下的气泡。两者之间的气泡混合状态形成微纳米气泡。微纳米气泡制备装置是指一种产生上述微纳米气泡的设备。
微纳米气泡具有比表面积大、水中上升速度慢、气体溶解率高、传质效率高、负电荷性高等一系列不同于常规气泡的特性。微纳米气泡溃灭时可产生指向工件表面的压力大于50MPa、速度大于400KM/H的冲击波和微射流,已广泛应用于废水废气处理、清洗、水产及美容等领域, 近年来也在抛光领域得到越来越多的关注。
经检索,中国专利文献CN109483335A中公开了一种通过微气泡进行五金加工的抛光装置。该装置包括主箱、副箱和支架。副箱的顶部焊接有水泵,水泵的一侧设置有空气泵。空气泵的一侧焊接有导气管。打开水泵将副箱内的抛光液抽到水管内,空气泵通电工作,将空气通过导气管送至套管的内侧,抛光液从水管进入微纳米级膜管的内侧,空气在压力的作用下从微纳米级膜管的外侧透过微纳米级膜管上的微孔进入到微纳米级膜管的内侧,从而在微纳米级膜管的内壁上形成微气泡。抛光液使得抛头在抛光的同时在五金产品上移动,便于抛光,在抛光的过程中微气泡能够降低抛光液的流动阻力,提高抛光液的流动速率,并且微气泡能够有效的将抛光液内的杂质与抛光液分离,提高抛光的质量。但是,该装置的微气泡是在刀具对工件表面加工的同时作用于工件表面,难以满足对硬脆性等材料实施抛光。
综上所述,在等离子体抛光技术领域,如何实现工件的一次性一体化高效精整抛光,进一步提高抛光效果和抛光效率,就成为本领域技术人员亟待解决的技术问题。
发明内容
本发明的目的在于,为等离子体抛光技术领域,提供一种更加高效、环保的精密抛光方式。
为实现上述目的,本发明采用如下方案:提出一种微纳米气泡增强等离子体抛光的方法,包括:
步骤一、利用微纳米气泡发生装置向工作槽内输送含有微纳米气泡的电解液;
步骤二、在含有微纳米气泡的电解液的工作槽内,阴极工具与电源系统的阴极相连,阳极工件与电源系统的阳极相连,启动电源系统,电解液被电解析出气体,气体在阳极工件表面形成气膜层;
步骤三、气膜层中的一部分被电源系统提供的电场能量击穿电离化形成等离子体层,微纳米气泡与等离子体层共同对阳极工件进行表面处理;
其中,对工件进行表面处理具体包括:等离子体层放电对阳极工件的表面实施平整,微纳米气泡在阳极工件的表面附近发生溃灭,形成微射流冲击阳极工件的表面。
作为优选,在步骤一中,进一步包括以下步骤:
预热含有微纳米气泡的电解液。
作为优选,在步骤一中,进一步包括以下步骤:
调节微纳米气泡发生装置输出电解液的流量和压力,同时调节电解液中微纳米气泡的含量和尺寸,进而实现对微纳米气泡溃灭时产生的能量控制,从而调节阳极工件的表面抛光效果, 提高了等离子体抛光方法的工艺调控范围,提升了抛光效果的可控性。
作为优选,在步骤二中,进一步包括以下步骤:
在电源系统的阳极和阳极工件之间安装工件运动机构,通过控制系统驱动工件运动机构带动阳极工件的运动。如此设置,可以实现对阳极工件的指定位置的局部选择性增强加工,同时阳极工件随运动机构一同运动,提高了工件整体加工均匀性和加工精度,对大尺寸工件及孔道、窄缝、点阵等复杂结构工件的均匀化和一体化加工尤其具有重要意义,解决了传统机械、化学及电化学抛光方法对孔道、窄缝、点阵等复杂结构工件抛光不均匀效果不理想的难题。
作为优选,在对阳极工件进行表面处理过程中,电解液在工作槽与微纳米气泡发生装置之间循环利用。
作为优选,电解液预热的温度为50℃-90℃。
作为优选,微纳米气泡发生装置输出电解液的流量0.2m 3/h-4m 3/h。
如此,本发明结合等离子体层和微纳米气泡对阳极工件的表面综合效应,增强了对阳极工件表面的抛光效果。除了等离子体层放电对阳极工件表面加工外,微纳米气泡在阳极工件的表面附近溃灭时,会产生指向工件表面的压力大于50MPa、速度大于400KM/H冲击波和微射流,对工件表面有明显整平作用。同时,等离子体层放电引起的剧烈的能量波动也能促进微纳米气泡溃灭,提高微纳米气泡的有效利用率。微纳米气泡溃灭和等离子体层放电相互促进,互生互利。在等离子体层和微纳米气泡的双重作用下,大大提高了抛光效率,提升了抛光效果。
本发明提供的微纳米气泡增强等离子体抛光的方法与现有技术相比,具有如下突出的实质性特点和显著进步:
1、该微纳米气泡增强等离子体抛光的方法中微纳米气泡溃灭过程产生的强力冲击波和微射流极大地促进了工作槽的内部流场运动,阳极工件表面电解液的流动性提高,有利于工件表面抛光产物的及时剥离和输运,即有利于等离子体反应持续进行,有效提高抛光效率;
2、该微纳米气泡增强等离子体抛光的方法中微纳米气泡溃灭所产生的局部高能将迅速传递至气膜层,并被气膜层捕获,等离子体是气体获得足够能量后原子发生电离裂变而成的一系列高度活跃粒子团,即除了电场能量外,阳极工件表面的气膜层还获得了新的电离化的能量源,微纳米气泡的引入有助于工件表面气膜层电离化形成等离子体层,有助于降低气膜层电离化所需要的电场能量,降低了对电源系统的电压/电流阈值要求;
3、该微纳米气泡增强等离子体抛光的方法中由于微纳米气泡的引入,实现了对不同尺寸和结构工件的高效、均匀加工,避免了分段加工式带来一系列问题,操作工序简单,大大减少 了人工作业时间和强度,降低了加工成本,提高了生产效率。
附图说明
图1是本发明实施例中微纳米气泡增强等离子体抛光装置的示意图;
图2是本发明的微纳米气泡增强等离子体抛光的方法的流程示意图。
附图标记:工作槽1、电源系统2、阴极工具3、阳极工件4、电解液5、控制系统6、微纳米气泡发生装置7、气泡供给装置8、工件运动机构9、过滤系统10。
具体实施方式
下面结合附图对本发明的具体实施方式进行详细描述。
如图1-2所示的一种微纳米气泡增强等离子体抛光的方法,结合等离子体层和微纳米气泡对阳极工件的表面综合效应,增强了对阳极工件表面的抛光效果。除了等离子体层放电对阳极工件表面加工外,微纳米气泡在阳极工件的表面附近溃灭时,会产生指向工件表面的压力大于50MPa、速度大于400KM/H冲击波和微射流,对工件表面有明显整平作用。同时,等离子体层放电引起的剧烈的能量波动也能促进微纳米气泡溃灭,提高微纳米气泡的有效利用率。微纳米气泡溃灭和等离子体层放电相互促进,互生互利。在等离子体层和微纳米气泡的双重作用下,大大提高了抛光效率,提升了抛光效果。
如图1所示,一种微纳米气泡增强等离子体抛光装置包括:工作槽1、电源系统2、阴极工具3、阳极工件4、电解液5、控制系统6、微纳米气泡发生装置7、气泡供给装置8、工件运动机构9及过滤系统10。
工作槽1具有内腔,定义了对工件进行抛光的工作区域。在工作区域配置有电解液5。工作槽1底部设置有一连通内腔的排液口。工作槽1内腔适当位置设置微气泡供给装置。
微纳米气泡发生装置7连接至排液口,被设置为输运电解液并在其中生成微纳米气泡的结构。微纳米气泡发生装置7与排液口之间设置过滤系统10。微纳米气泡发生装置7将其产生的含微纳米气泡的电解液通过气泡供给装置8输送至阳极工件4的适当位置。
电源系统2的阴极和阳极分别与阴极工具3和阳极工件4连接。阴极工具3和阳极工件4位于工作槽1内适当位置。电源系统2与阳极工件4之间设置有工件运动机构9,可以实现工件多姿态运动。
控制系统6可以实现电源系统控制、微气泡发生装置控制、微气泡供给装置控制、工件运动控制及加工过程中的温度控制,实现抛光效果综合性调节。
进一步地,微纳米气泡发生装置7从工作槽1底部排液口抽取电解液并注入微纳米气泡, 然后通过气泡供给装置8输送到阳极工件4表面适当位置参与加工,之后再返回到工作槽1中,实现电解液循环利用。
进一步地,微纳米气泡发生装置7前端设有过滤系统10,以减少输运至工件表面的抛光反应物浓度,提高抛光效果。
进一步地,通过微纳米气泡发生装置7可以调节抽取电解液的流量、压力及生成微纳米气泡的尺寸、比例。
进一步地,气泡供给装置8的位置简单可调节,微气泡供给方式根据工件特性可选。根据工件形状结构及抛光需求,选择不同类型的气泡供给装置8来实现工件4局部微气泡供给,可实现整体工件的局部选择性抛光加强,加工精度高,可实现包含孔道、窄缝、点阵等复杂结构的工件的均匀化和一体化加工。
电源系统2可选为直流或脉冲电源,可选恒压或恒流模式,恒压模式下电源电压150-500V,恒流模式下电流密度10A/dm 2-150A/dm 2,脉冲宽度为10 -4-400s,频率0.1-1000KHz。
本发明提出的一种微纳米气泡增强等离子体抛光的方法,包括:
步骤一、利用微纳米气泡发生装置向工作槽内输送含有微纳米气泡的电解液;
步骤二、在含有微纳米气泡的电解液的工作槽内,阴极工具与电源系统的阴极相连,阳极工件与电源系统的阳极相连,启动电源系统,电解液被电解析出气体,气体在阳极工件表面形成气膜层;
步骤三、气膜层中的一部分被电源系统提供的电场能量击穿电离化形成等离子体层,微纳米气泡与等离子体层共同对阳极工件进行表面处理;
其中,对工件进行表面处理具体包括:等离子体层放电对阳极工件的表面实施平整,微纳米气泡在阳极工件的表面附近发生溃灭,形成微射流冲击阳极工件的表面。
作为优选,在步骤一中,进一步包括以下步骤:
预热含有微纳米气泡的电解液。
作为优选,在步骤一中,进一步包括以下步骤:
调节微纳米气泡发生装置输出电解液的流量和压力,同时调节电解液中微纳米气泡的含量和尺寸,进而实现对微纳米气泡溃灭时产生的能量控制,从而调节阳极工件的表面抛光效果,提高了等离子体抛光方法的工艺调控范围,提升了抛光效果的可控性。
作为优选,在步骤二中,进一步包括以下步骤:
在电源系统的阳极和阳极工件之间安装工件运动机构,通过控制系统驱动工件运动机构带 动阳极工件的运动。如此设置,可以实现对阳极工件的指定位置的局部选择性增强加工,同时阳极工件随运动机构一同运动,提高了工件整体加工均匀性和加工精度,对大尺寸工件及孔道、窄缝、点阵等复杂结构工件的均匀化和一体化加工尤其具有重要意义,解决了传统机械、化学及电化学抛光方法对孔道、窄缝、点阵等复杂结构工件抛光不均匀效果不理想的难题。
作为优选,在对阳极工件进行表面处理过程中,电解液在工作槽与微纳米气泡发生装置之间循环利用。
作为优选,电解液预热的温度为50℃-90℃。
作为优选,微纳米气泡发生装置输出电解液的流量0.2m 3/h-4m 3/h,气体溶解量3%-15%。
下面结合图1所示的示例,对前述方法的原理进行示例性的说明:
步骤1:在工作槽1内配置好适量电解液5,启动控制系统6,设置电解液预热温度为70±20℃,需确认预热温度达到后方能开始加工。电解液可选质量百分比为1%-10%的低浓度水溶性溶液。
步骤2:将阴极工具3和阳极工件4分别与电源系统2的阴极和阳极连接,确保阳极工件4与电源系统2及工件运动机构9之间接触紧密,导电性良好。并将阳极工件4固定在工作槽1中适当位置,设置工件运动条件,如升降速度、平移速度、旋转速度等;
步骤3:启动微纳米气泡发生装置7,使其将产生的含微纳米气泡的电解液通过工作槽1内部的气泡供给装置8输送到阳极工件4表面适当位置;电解液随后自动返回到工作槽1中,实现电解液循环利用;微气泡发生装置的流量0.2m 3/h-4m 3/h,气体溶解量3%-15%可调,根据工件形状结构及具体抛光需求,选择不同类型和尺寸的气泡供给装置8来调节到达阳极工件4表面的电解液的流动形式,实现工件4局部区域加工强化。气泡供给装置8可以设置为多组组合。
步骤4:启动电源系统2,设置电源模式和电源参数,开始加工。电源系统2为直流/脉冲电源,可选恒压/恒流模式,恒压模式下电源电压150-500V,恒流模式下电流密度10A/dm 2-150A/dm 2,脉冲宽度为10 -4-400s,频率0.1-1000KHz。
现对微纳米气泡增强等离子体抛光的方法的工作原理详细描述如下:
启动电源系统2后,工作槽1中的电解液5在电场的作用下在阳极工件4表面析出气体,如O 2等,从而形成了一层紧紧包裹阳极工件的极薄的气膜层,使阴极工具3和阳极工件4之间的电阻明显增加。随着电场能量增加,气膜层中较薄弱的部分被电场能量击穿离化形成等离子体放电,进而实现放电微区的工件表面整平。本方法引入微纳米气泡以后,微纳米气泡到达 阳极工件附近时会发生溃灭,产生指向工件表面的压力大于50MPa、速度大于400KM/H冲击波和微射流,并伴随一系列复杂的物理化学反应。
其中,微纳米气泡溃灭过程产生的强力冲击波和微射流,一方面会对工件表面形成连续的碰撞、挤压,实现工件表面机械式整平;另一方面也会极大地促进了工作槽内部的流场运动,使阳极工件表面电解液的流动性提高,有利于工件表面抛光产物的及时剥离和输运,即有利于等离子体反应持续进行,可有效提高抛光效率。
等离子体层放电加工过程中,工件表面气膜层周围的微纳米气泡溃灭所产生的局部高能将迅速传递至气膜层,并被气膜层捕获。这将明显有助于工件表面气膜层电离化产生等离子体层放电。也即微纳米气泡有助于降低气膜层离化所需要的电场能量,降低了电源电压/电流阈值要求。同时,气膜层等离子体放电引起的剧烈的能量波动也能促进微纳米气泡溃灭,提高微纳米气泡的有效利用率,提高抛光效率。即微纳米气泡溃灭和等离子体放电互生互利,相辅相成。
此外,本方法通过微纳米气泡流体流量、压力及微纳米气泡的尺寸、比例调节,可调节微气泡溃灭能量,从而调节抛光效果。即微纳米气泡的引入也扩展了等离子体抛光系统的工艺可调控范围,工件加工效果可调控性更强。
本方法中使用的微纳米气泡供给装置是一种灵活型结构,根据工件特性和抛光需求,可以选择多种微气泡供给方式,如点状、线型、扇形、圆柱形等。通过微气泡供给装置选择,并搭配工件运动姿态选择,可以实现指定位置的微纳米气泡引入和调节,实现工件局部选择性加工,使工件整体加工均匀性得到保障,形状精度高,这对大尺寸工件及孔道、窄缝、点阵等复杂结构工件的均匀化和一体化加工尤其具有重要意义。
综上所述,可见微纳米气泡的引入,可一次性实现了不同尺寸和结构工件的高效、均匀加工。避免了分段加工式带来一系列问题,大大减少了人工作业时间和强度,使等离子体抛光工序简单化,明显提高了生产效率,并降低了加工成本。
【实施例一】
实施条件:加工工件为长度50mm、直径50mm原始粗糙度12μm的SUS316L不锈钢圆柱。
步骤1:在工作槽1内配置好适量电解液5,启动控制系统6,设置电解液预热温度为55℃,确认预热温度达到后方能开始加工。电解液为2wt%的水溶性溶液,PH=5-7。
步骤2:将阴极工具3和阳极工件4分别与电源系统2的阴极和阳极连接,确保阳极工件4与电源系统2及工件运动机构9之间接触紧密,导电性良好。并将阳极工件4固定在工作槽1中适当位置,并以工件轴心为中心旋转,旋转速度50rpm。
步骤3:启动微纳米气泡发生装置7,使其产生的含微纳米气泡的电解液通过工作槽1内部的气泡供给装置8输送到阳极工件4表面适当位置;微气泡发生装置的流量0.6m 3/h,气体溶解量10%,气泡供给装置8设置为直径20mm的圆柱型喷嘴,喷嘴垂直于工件直径方向安装,调解扇形喷嘴距离工件中心的距离为40mm。
步骤4:启动电源系统2,设置电源模式为恒压模式,工作电压为280V,电源频率500HZ,脉冲宽度为100s,加工时间10min,开始加工。
步骤5:加工结束后,关闭电源系统,取下工件,清洗并干燥工件。
同样的工艺参数设置下,不启动微气泡发生装置进行了对比测试,用TR210表面粗糙度仪量测工件表面粗糙度,游标卡尺量测工件直径变化。两组实验的测试结果如下表所示,可见启动微气泡发生装置引入微气泡增强后,工件抛光均匀性明显提高。工件下端、中部及上端的抛光速率分别提高了约12%、22%、25%。
Figure PCTCN2021114617-appb-000001
【实施例二】
实施条件:加工工件为长度200mm、宽度20mm、厚度2mm原始粗糙度2μm的In718板材。
步骤1:在工作槽1内配置好适量电解液5,启动控制系统6,设置电解液预热温度为70℃,确认预热温度达到后方能开始加工。电解液为4wt%的水溶性溶液,PH=6-8。
步骤2:将阴极工具3和阳极工件4分别与电源系统2的阴极和阳极连接,确保阳极工件4与电源系统2及工件运动机构9之间接触紧密,导电性良好。并将阳极工件4竖直固定在工作槽1中适当位置,设置工件旋转速度5rpm。
步骤3:启动微纳米气泡发生装置7,使其产生的含微纳米气泡的电解液通过工作槽1内部的气泡供给装置8输送到阳极工件4表面适当位置;微气泡发生装置的流量1m 3/h,气体溶解量7%,气泡供给装置8设置为长度50mm、宽3mm的扇形喷嘴,喷嘴长度方向平行于工件长度方向安装,喷嘴中线距离工件顶部75mm,调解扇形喷嘴距离工件中心的距离为60mm。
步骤4:启动电源系统2,设置电源模式为恒流模式,稳定工作电流15A,电源频率200KHZ,脉冲宽度为50μs,加工时间5min,开始加工。
步骤5:加工结束后,关闭电源系统,取下工件,清洗并干燥工件。
同样的工艺参数设置下,不启动微气泡发生装置进行了对比测试,用TR210表面粗糙度仪量测工件表面粗糙度,游标卡尺量测工件厚度变化。两组实验的测试结果如下表所示,可见启动微气泡发生装置引入微气泡增强后,工件抛光均匀性明显提高。工件下端、中部及上端的抛光速率分别提高了约12%、27%、42%。
Figure PCTCN2021114617-appb-000002
【实施例三】
实施条件:加工工件为长度30mm、直径60mm的TC4圆柱,圆柱长度中心有一条深20mm、宽10mm的环形凹槽,整个工件表面原始粗糙度均为3μm。
步骤1:在工作槽1内配置好适量电解液5,启动控制系统6,设置电解液预热温度为55℃,确认预热温度达到后方能开始加工。电解液为5wt%的水溶性溶液,PH=6-7。
步骤2:将阴极工具3和阳极工件4分别与电源系统2的阴极和阳极连接,确保阳极工件4与电源系统2及工件运动机构9之间接触紧密,导电性良好。并将阳极工件4竖直固定在工作槽1中适当位置,并以工件轴心为中心旋转,旋转速度20rpm。
步骤3:启动微纳米气泡发生装置7,使其产生的含微纳米气泡的电解液通过工作槽1内部的气泡供给装置8输送到阳极工件4表面适当位置;微气泡发生装置的流量1.5m 3/h,气体溶解量12%,气泡供给装置8设置为直径5mm的圆柱型喷嘴,且针对环形凹槽的中线安装,调节喷嘴距离工件中心的距离为30mm,对环形凹槽进行针对性局部增强加工。
步骤4:启动电源系统2,设置电源模式为恒压模式,工作电压为320V,电源频率10KHZ,脉冲宽度为0.01s,加工时间5min,开始加工。
步骤5:加工结束后,关闭电源系统,取下工件,清洗并干燥工件。
同样的工艺参数设置下,不启动微气泡发生装置进行了对比测试,用TR210表面粗糙度仪量测工件表面粗糙度,游标卡尺量测工件直径变化。两组实验的测试结果如下表所示,可见启动微气泡发生装置引入微气泡增强后,工件抛光均匀性明显提高,下端和上端抛光速率分别提高了10%和12%,而进行针对性局部微气泡增强的环形凹槽区域抛光速率提高了约69%。
Figure PCTCN2021114617-appb-000003
由此可见,通过本发明微纳米气泡增强等离子体抛光装置和方法进行抛光时,抛光均匀性明显改善,抛光效率可以提高20%-70%甚至更高,取决于工件结构特性及微纳米气泡增强等离子体抛光工艺的选择。本发明中微气泡溃灭与等离子体放电互生互利相辅相成,既保留了等离子体抛光本身的优点,又促进等离子体的发展,同时还实现了局部区域的针对性增强抛光,抛光效率高,均匀性好,一体化一次性加工,加工工序简单,人工干预少,成本低,尤其适用于大尺寸工件及孔道、窄缝、点阵等复杂结构工件的高效、均匀一体化加工。
本发明不局限于上述实施例所述的具体技术方案,除上述实施例外,本发明还可以有其他实施方式。对于本领域的技术人员来说,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等形成的技术方案,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种微纳米气泡增强等离子体抛光的方法,其特征在于,包括:
    步骤一、利用微纳米气泡发生装置向工作槽内输送含有微纳米气泡的电解液;
    步骤二、在含有微纳米气泡的电解液的工作槽内,阴极工具与电源系统的阴极相连,阳极工件与电源系统的阳极相连,启动电源系统,电解液被电解析出气体,气体在阳极工件表面形成气膜层;
    步骤三、气膜层中的一部分被电源系统提供的电场能量击穿电离化形成等离子体层,微纳米气泡与等离子体层共同对阳极工件进行表面处理;
    其中,对工件进行表面处理具体包括:等离子体层放电对阳极工件的表面实施平整,微纳米气泡在阳极工件的表面附近发生溃灭,形成微射流冲击阳极工件的表面。
  2. 根据权利要求1所述的微纳米气泡增强等离子体抛光的方法,其特征在于,所述步骤一中,进一步包括以下步骤:
    预热含有微纳米气泡的电解液。
  3. 根据权利要求1所述的微纳米气泡增强等离子体抛光的方法,其特征在于,所述步骤一中,进一步包括以下步骤:
    调节微纳米气泡发生装置输出电解液的流量和压力,同时调节电解液中微纳米气泡的含量和尺寸。
  4. 根据权利要求1所述的微纳米气泡增强等离子体抛光的方法,其特征在于,所述步骤二中,进一步包括以下步骤:
    在电源系统的阳极和阳极工件之间安装工件运动机构,通过控制系统驱动工件运动机构带动阳极工件的运动。
  5. 根据权利要求1所述的微纳米气泡增强等离子体抛光的方法,其特征在于,在对阳极工件进行表面处理过程中,电解液在工作槽与微纳米气泡发生装置之间循环利用。
  6. 根据权利要求2所述的微纳米气泡增强等离子体抛光的方法,其特征在于,所述电解液预热的温度为50℃-90℃。
  7. 根据权利要求1所述的微纳米气泡增强等离子体抛光的方法,其特征在于,所述微纳米气泡发生装置输出电解液的流量0.2m 3/h-4m 3/h。
PCT/CN2021/114617 2021-01-13 2021-08-25 微纳米气泡增强等离子体抛光的方法 WO2022151738A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110039072.7A CN112809456B (zh) 2021-01-13 2021-01-13 微纳米气泡增强等离子体抛光的方法
CN202110039072.7 2021-01-13

Publications (1)

Publication Number Publication Date
WO2022151738A1 true WO2022151738A1 (zh) 2022-07-21

Family

ID=75869000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114617 WO2022151738A1 (zh) 2021-01-13 2021-08-25 微纳米气泡增强等离子体抛光的方法

Country Status (2)

Country Link
CN (1) CN112809456B (zh)
WO (1) WO2022151738A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112809456B (zh) * 2021-01-13 2023-02-24 南京尚吉增材制造研究院有限公司 微纳米气泡增强等离子体抛光的方法
CN113600824A (zh) * 2021-08-25 2021-11-05 和超高装(中山)科技有限公司 一种金属铌纳米粉末的制备方法及制备装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100200424A1 (en) * 2009-02-09 2010-08-12 Alexander Mayorov Plasma-electrolytic polishing of metals products
CN103484928A (zh) * 2013-10-09 2014-01-01 电子科技大学 一种基于等离子体的钢铁制品除锈抛光方法
CN105220218A (zh) * 2015-09-17 2016-01-06 北京实验工厂 一种不锈钢材料精密结构件电解质-等离子抛光工艺方法
CN106002500A (zh) * 2016-04-28 2016-10-12 浙江工业大学 一种增压超声空化三相磨粒流旋流抛光加工装置
CN109483335A (zh) * 2018-12-30 2019-03-19 漳浦县圆周率工业设计有限公司 一种通过微气泡进行五金加工的抛光装置
CN110877294A (zh) * 2019-12-06 2020-03-13 南京尚吉增材制造研究院有限公司 高负压微纳米气泡增强磨粒流空化抛光装置和方法
CN112809456A (zh) * 2021-01-13 2021-05-18 南京尚吉增材制造研究院有限公司 微纳米气泡增强等离子体抛光的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200501258A (en) * 2003-06-17 2005-01-01 Chung Shan Inst Of Science Method of polishing semiconductor copper interconnect integrated with extremely low dielectric constant material
US8181941B2 (en) * 2006-03-04 2012-05-22 Hce, Llc Gas bubble storage
CN101856753B (zh) * 2010-04-27 2012-08-15 江苏大学 激光空泡空化的光电化学三维加工方法及装置
CN104308670B (zh) * 2014-08-29 2016-09-14 浙江工业大学 基于非牛顿流体剪切增稠与电解复合效应的超精密加工方法
CN106735866B (zh) * 2016-12-27 2019-04-30 江苏大学 背向多焦点激光和电化学复合加工半导体材料的装置和方法
CN109680325A (zh) * 2018-11-16 2019-04-26 中国航发西安动力控制科技有限公司 用于表面处理槽液的压缩空气微孔搅拌装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100200424A1 (en) * 2009-02-09 2010-08-12 Alexander Mayorov Plasma-electrolytic polishing of metals products
CN103484928A (zh) * 2013-10-09 2014-01-01 电子科技大学 一种基于等离子体的钢铁制品除锈抛光方法
CN105220218A (zh) * 2015-09-17 2016-01-06 北京实验工厂 一种不锈钢材料精密结构件电解质-等离子抛光工艺方法
CN106002500A (zh) * 2016-04-28 2016-10-12 浙江工业大学 一种增压超声空化三相磨粒流旋流抛光加工装置
CN109483335A (zh) * 2018-12-30 2019-03-19 漳浦县圆周率工业设计有限公司 一种通过微气泡进行五金加工的抛光装置
CN110877294A (zh) * 2019-12-06 2020-03-13 南京尚吉增材制造研究院有限公司 高负压微纳米气泡增强磨粒流空化抛光装置和方法
CN112809456A (zh) * 2021-01-13 2021-05-18 南京尚吉增材制造研究院有限公司 微纳米气泡增强等离子体抛光的方法

Also Published As

Publication number Publication date
CN112809456A (zh) 2021-05-18
CN112809456B (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
WO2022151738A1 (zh) 微纳米气泡增强等离子体抛光的方法
KR100871332B1 (ko) 금속 및 합금에 세라믹 코팅을 형성하는 방법과 장치, 및이 방법으로 제조되는 코팅
JP4774177B2 (ja) エレクトロプラズマ技術を用いて金属表面を洗浄及び/又は被覆する改良された方法及び装置
WO2018028000A1 (zh) 一种多电位吸液电沉积3d打印的装置和方法
CN105803493B (zh) 复杂薄壁型面制造的微幅运动镂空阳极电铸系统及方法
CN110465711B (zh) 一种超声波增强电化学磨削装置
US6315885B1 (en) Method and apparatus for electropolishing aided by ultrasonic energy means
CN108817582B (zh) 一种用于电解加工中阴极绝缘的装置
CN107381723A (zh) 一种采用多针板气液水中放电等离子体的污水处理装置
CN105034180A (zh) SiC单晶片的微弧放电微细切割装置及切割方法
JPH01234145A (ja) 超音波加工方法
CN115582589A (zh) 一种可控气膜多孔质电极电解电火花加工系统及加工方法
CN110526237B (zh) 一种制备贵金属/石墨烯复合纳米材料的装置及方法
CN104108053A (zh) 大型复杂金属表面等离子体与脉冲放电复合抛光加工方法
CN109531435A (zh) 基于电荷尖端聚集效应的静电可控磨粒流加工系统
CN107398608B (zh) 一种工件圆周表面电解蚀刻装置
CN114850596B (zh) 一种激光-射流电解复合加工双管工具电极及铣削加工方法
CN106392217A (zh) 一种微小孔加工方法及设备
CN106757263A (zh) 一种金属表面纳秒脉冲等离子体制备纳米颗粒的溶液及制备方法
CN101503812B (zh) 微弧氧化方法
CN116100097A (zh) 一种多孔电极内充液电解电火花加工系统与方法
CN105645531A (zh) 一种旋转圆锥型电絮凝装置
CN114717641A (zh) 一种激光粉末床熔融成形件内流道表面后处理装置
CN1249012A (zh) 多功能表面处理的方法及实施该方法的设备
CN110106544B (zh) 一种SiC单晶纳米尺度的抛光方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918929

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21918929

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/01/2024)