WO2020221377A2 - 磁力驱动式锥孔内表面强化设备 - Google Patents

磁力驱动式锥孔内表面强化设备 Download PDF

Info

Publication number
WO2020221377A2
WO2020221377A2 PCT/CN2020/098513 CN2020098513W WO2020221377A2 WO 2020221377 A2 WO2020221377 A2 WO 2020221377A2 CN 2020098513 W CN2020098513 W CN 2020098513W WO 2020221377 A2 WO2020221377 A2 WO 2020221377A2
Authority
WO
WIPO (PCT)
Prior art keywords
top cover
hole
fixedly connected
workpiece
cylinder
Prior art date
Application number
PCT/CN2020/098513
Other languages
English (en)
French (fr)
Other versions
WO2020221377A3 (zh
Inventor
李富柱
孙圣男
郭玉琴
朱义清
於伟杰
陈维国
王匀
蒋鹏赟
李瑞涛
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB2019820.6A priority Critical patent/GB2589023B/en
Publication of WO2020221377A2 publication Critical patent/WO2020221377A2/zh
Publication of WO2020221377A3 publication Critical patent/WO2020221377A3/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like

Definitions

  • the invention belongs to the field of surface treatment of parts, in particular to equipment for strengthening the inner surface of a tapered hole.
  • tapered holes are widely used in various mechanical parts.
  • the processing of tapered holes is relatively difficult due to the fatigue performance of the inner surface of the tapered hole. It has a greater impact on the performance of mechanical parts, so the quality of the inner surface of the tapered hole is higher.
  • the inner surface of the tapered hole can be strengthened to improve the mechanical properties of the inner surface of the hole, thereby increasing the fatigue life of the parts.
  • the method of mechanical shot peening is to make the projectile collide with the inner surface of the hole to generate residual stress on the inner surface of the hole, thereby strengthening the inner surface of the hole and increasing the life of the hole.
  • mechanical shot peening cannot process holes with smaller diameters, and the shot peening effect is uneven.
  • the principle of cold extrusion strengthening is to use a mandrel that is slightly larger than the hole to be strengthened to forcibly squeeze through the hole, and the residual stress is generated on the inner surface of the hole through the extrusion force.
  • the cold extrusion strengthening process also has uneven residual stress distribution and cannot The processing of micro-holes is even more difficult for tapered holes.
  • the Chinese Patent Publication No. CN103589854A discloses an electromagnetic strengthening method.
  • a strengthening coil By placing a strengthening coil and placing the workpiece in a magnetic field, a rapidly changing pulse current is passed through the strengthening coil to generate an induced eddy current on the workpiece. Under the combined action of eddy current and magnetic field, pulse electromagnetic force is generated to strengthen the residual stress on the inner surface of the hole.
  • this strengthening method cannot strengthen the hole with small diameter, and the accuracy is not high.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a magnetically driven tapered hole inner surface strengthening device, which solves the problems of uneven residual stress distribution in traditional strengthening, and inability to process tapered holes and micro holes.
  • the technical solution adopted by the present invention is as follows: the present invention has a cylinder, the bottom of the cylinder is vertically placed on the workpiece, the workpiece is opened with a taper hole with a large end facing directly above, and the workpiece is directly above Top cover, the center of the top cover has a top cover through hole communicating with the cone hole, the top cover through hole is provided with a piston, and the bottom surface of the top cover is equipped with a sealing ring.
  • the through hole of the top cover under the piston and the cone hole form a closed chamber, and the closed chamber is filled with liquid;
  • the piston is fixed and connected to the lower end of the connecting rod coaxially, and the upper end of the connecting rod extends upwards out of the top cover and is fixedly connected to the slide Block, the sliding block is slidably connected with the up and down vertical guide rails.
  • the sliding block is fixedly connected to one end of the transmission rod at the same time, and the other end of the transmission rod is fixedly connected to the edge of the horizontally arranged disc on the central axis; the disc is fixedly connected to the commutator plate on the same axis
  • One end of the commutator and the other end of the commutator are fixedly connected to the coil.
  • the coil is placed horizontally between a pair of magnets.
  • the commutator is in contact with the brush, and the brush is connected to the power supply through a wire.
  • a clamping device is arranged between the top cover and the cylinder body to compress the top cover and the workpiece.
  • the clamping device is composed of a telescopic hydraulic cylinder, a pressure plate, an oil tank, an oil pump and a two-position four-way electromagnetic reversing valve.
  • the lower end of the telescopic hydraulic cylinder is vertically fixed to the upper end of the cylinder block and the upper end is connected to a horizontal pressure plate.
  • the pressure plate is on the top cover.
  • the telescopic hydraulic cylinder is connected to the oil tank through a pipeline.
  • the pipeline between the fuel tank and the telescopic hydraulic cylinder is provided with an oil pump and a two-position four-way electromagnetic reversing valve.
  • the present invention has the following beneficial effects:
  • the present invention uses magnetic force to drive the volume alternation.
  • the piston is driven by the magnetic force, and the liquid pressure in the volume changes due to the closed volume alternation for cavitation enhancement.
  • Cavitation bubbles are generated inside the liquid.
  • the cavitation bubbles are squeezed and collapsed.
  • the shock wave generated by the collapse of the bubbles is used to generate residual stress on the inner surface of the cone hole to strengthen and increase the service life of the workpiece.
  • the device is simple and easy to operate. .
  • the present invention can also process holes of other shapes, especially micro-holes, without limiting the size and shape of the holes.
  • the present invention processes the inner surface of the tapered hole through cavitation, the hole wall has no mechanical contact, the residual stress is evenly distributed, and the tapered hole with a small diameter can be processed, with good strengthening effect, high processing efficiency and no pollution source.
  • FIG. 1 is a schematic diagram of the structure of the magnetically driven cone hole inner surface strengthening device according to the present invention
  • Figure 1 1: Cylinder block; 2: Workpiece; 3: Seal ring; 4: Top cover; 5: Piston; 6: Telescopic hydraulic cylinder; 7: Pressure plate; 8: Connecting rod; 9: Slider; 10: Guide rail 11: Transmission rod; 12: Magnet; 13: Coil; 14: Brush; 15: Power supply; 16: Commutator piece; 17: Disc; 18: Vent hole; 19: Top cover through hole; 20: Water inlet 21: Two-position four-way solenoid valve; 22: Cone hole; 23: Oil pump; 24: Water pump; 25: Oil tank; 26: Water outlet; 27: Reservoir.
  • the present invention has a cylinder 1, and a workpiece 2 is vertically placed on the bottom of the cylinder 1.
  • a groove is opened at the bottom of the cylinder body 1, and the lower end of the workpiece 2 is placed in the groove to facilitate the positioning of the workpiece 2.
  • the workpiece 2 is provided with a taper hole 22, and the large end of the taper hole 22 faces directly upward, and the taper hole 22 is filled with liquid during operation.
  • the center of the top cover 4 is provided with a top cover through hole 19, the top cover through hole 19 communicates with the tapered hole 22, and the center axes of the two are collinear.
  • the inner diameter of the top cover through hole 19 is larger than the inner diameter of the large end of the tapered hole 22.
  • a piston 5 is installed in the top cover through hole 19, and the piston 5 is in a sealed connection with the inner side wall of the top cover through hole 19 and can move up and down along the inner side wall of the top cover through hole 19.
  • a sealing ring 3 is installed on the lower surface of the top cover 4.
  • the through hole 19 and the taper hole 22 of the top cover under the piston 5 form a closed chamber, and the top cover 4
  • the airtight chamber is sealed.
  • the closed chamber is filled with liquid.
  • the volume of the closed chamber will change, causing the pressure of the liquid in the volume to change, resulting in cavitation, and surface strengthening of the tapered hole 22 of the workpiece 2.
  • the piston 5 is coaxially fixedly connected to the lower end of the connecting rod 8, the upper end of the connecting rod 8 extends upwardly out of the top cover 4, and the upper end of the connecting rod 8 is fixedly connected to a slider 9.
  • the sliding block 9 is simultaneously slidably connected to a rail 10 that is up and down, and the rail 10 is fixed. When the slider 9 moves up and down on the guide rail 10, it drives the connecting rod 8 and the piston 5 to reciprocate up and down together.
  • the sliding block 9 is simultaneously fixedly connected to one end of the transmission rod 11, and the other end of the transmission rod 11 is fixedly connected to the edge of the disc 17.
  • the central axis of the disc 17 is arranged horizontally, one of its disc faces faces the other end of the transmission rod 11, and the other end of the transmission rod 11 is fixedly connected to the edge of the disc surface by screws.
  • a washer is placed at the connection between the transmission rod 11 and the disc 17 to reduce the friction between the disc 17 and the transmission rod 11.
  • the central axis of the commutator segment 16 is collinear with the central axis of the disc 17.
  • the commutator piece 16 is in contact with the brush 14, and the brush 14 is connected to the power source 15 through a wire.
  • the disc 17 is made of insulating material
  • the commutating plate 16 and the brush 14 are made of conductive material.
  • the other end of the commutator segment 16 is fixedly connected to the coil 13, and the central axis of the coil 13 is collinear with the central axis of the commutator segment 16.
  • the coil 13 is placed horizontally between a pair of N-pole and S-pole magnets 12.
  • the coil 13 When the power supply 15 is turned on, the coil 13 is energized through the brush 14 and the commutator piece 16, and starts to rotate in the magnetic field generated by the magnet 12.
  • the commutator piece 16 can make the coil 13 rotate continuously in one direction.
  • the disk 17 is driven to rotate, so that the other end of the transmission rod 11 moves in a circular motion with the disk 17.
  • one end of the transmission rod 11 drives the slider 9 to reciprocate up and down along the guide rail 10, forming a crank slider drive mechanism.
  • the sliding block 9 drives the connecting rod 8 to move up and down, resulting in a change in the volume in the closed chamber, causing a change in the pressure of the liquid inside the closed chamber to cause cavitation, and surface strengthening of the tapered hole 22 on the workpiece 2.
  • a vent hole 18 is provided at the upper end of the top cover 4.
  • the vent hole 18 communicates with the top cover through hole 19 located above the piston 5.
  • the top cover through hole 19 is connected to the outside atmosphere, and the air in the top cover through hole 19 discharge.
  • a clamping device is arranged between the top cover 4 and the cylinder 1 for pressing the top cover 4 against the workpiece 2 so that the top cover 4 is tightly attached to the top of the workpiece 2 and fixed.
  • the clamping device is composed of a telescopic hydraulic cylinder 6, a pressure plate 7, an oil tank 25, an oil pump 23, and a two-position four-way electromagnetic reversing valve 21.
  • the lower end of the telescopic hydraulic cylinder 6 is vertically and fixedly connected to the upper end of the cylinder body 1, and the upper end of the telescopic hydraulic cylinder 6 is connected with a horizontal pressure plate 7 which is above the top cover 4.
  • the telescopic hydraulic cylinder 6 is connected to the oil tank 25 through a pipeline, and an oil pump 23 and a two-position four-way electromagnetic reversing valve 21 are installed on the pipeline between the oil tank 25 and the telescopic hydraulic cylinder 6. There are four telescopic hydraulic cylinders 6 evenly distributed along the cylinder body 1.
  • a water inlet 20 is provided on the upper side of the cylinder 1 and a water outlet 26 is provided on the lower end.
  • the water outlet 26 is connected to a reservoir 27 through a pipe, and the reservoir 27 is connected to the water inlet 20 through a pipe and a water pump 24.
  • the workpiece 2 is first placed in the cylinder 1, the water outlet 26 is closed, the water pump 24 and the water inlet 20 are turned on, and the water in the reservoir 27 is transferred to the cylinder 1 until the water in the cylinder 1
  • the water immerses the workpiece 2 and approaches the position of the water inlet 20, so that the closed chamber is filled with liquid, and the water pump 24 and the water inlet 20 are closed.
  • the power supply 15 is turned on, and the piston 5 reciprocates up and down to change the volume in the closed chamber, and the surface of the workpiece 2 is strengthened.
  • the power supply 15 is turned off, the electromagnetic reversing valve 21 is adjusted, the telescopic hydraulic cylinder 6 moves upward to remove the pressure plate 7 and the top cover 4 is removed.
  • the water outlet 26 is opened, the water in the cylinder 1 is discharged, and the workpiece 2 is taken out.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Actuator (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

本发明公开零件表面处理领域中的磁力驱动式锥孔内表面强化设备,缸体内的底部竖直置放工件,工件上开有大端朝向正上方的锥孔,工件的正上方是顶盖,顶盖的中心开有与锥孔相通的顶盖通孔,顶盖通孔中设有活塞,活塞同轴心地固定连接连接杆的下端,连接杆的上端向上伸出顶盖之外并固定连接滑块,滑块与上下竖直的导轨滑动连接,滑块同时固定连接传动杆的一端,传动杆的另一端固定连接中心轴水平布置的圆盘的边缘,圆盘同轴心固定连接换向片的一端,换向片的另一端与线圈固定连接,线圈水平放在一对磁铁之间,换向片与电刷相接触,电刷通过导线与电源连接;采用磁力驱动容积交变,造成容积内液体压力发生变化进行空化强化,强化效果好。

Description

磁力驱动式锥孔内表面强化设备 技术领域
本发明属于零件表面处理领域,具体是对锥孔内表面进行强化加工的设备。
背景技术
目前,机械装备和机械产品的精度要求越来越高,锥孔由于自身较高的定位精度,广泛应用于各种机械零部件中,但锥孔加工相对困难,由于锥孔内表面的疲劳性能对机械零部件的性能影响较大,因此对锥孔内表面质量要求较高,可以通过锥孔内表面强化工艺改善孔内表面的机械性能,进而提高零件疲劳寿命。
现有的孔内表面强化工艺大多采用的是机械喷丸和冷挤压强化。机械喷丸的方法是通过弹丸与孔内表面发生碰撞,使孔内表面产生残余应力,从而对孔内表面起到强化作用,增加孔的寿命。但机械喷丸无法加工孔径较小的孔,且喷丸强化效果不均匀。冷挤压强化的原理是用一个比待强化孔径略大的芯棒强行挤压经过孔径,通过挤压力使孔内表面产生残余应力,冷挤压强化工艺也存在残余应力分布不均匀、无法加工微型孔等问题,对于锥形孔更是无法加工。
中国专利公开号为CN103589854A的文献中公开了一种电磁强化方法,通过放置强化线圈,并将工件放置在磁场中,强化线圈中通入快速变化的脉冲电流,使工件上产生感应涡流,在感应涡流和磁场的共同作用下产生脉冲电磁力,使孔内表面产生残余应力进行强化,但这种强化方法无法对小孔径的孔进行强化,且精度不高。
发明内容
本发明的目的在于克服现有技术的不足,提供一种磁力驱动式的锥孔内表面强化设备,解决传统强化残余应力分布不均匀、无法加工锥形孔、微小孔等问题。
为实现上述发明目的,本发明采用的技术方案为:本发明具有一个缸体,缸体内的底部竖直置放工件,工件上开有大端朝向正上方的锥孔,工件的正上方是顶盖,顶盖的中心开有与锥孔相通的顶盖通孔,顶盖通孔中设有活塞,顶盖下表面上装有密封圈,当顶盖下表面与工件上表面紧密接触时,活塞下方的顶盖通孔与锥孔形成一个密闭腔室,密闭腔室中注满液体;活塞同轴心地固定连接连接杆的下端,连接杆的上端向上伸出顶盖之外并固定连接滑块,滑块与上下竖直的导轨滑动连接,滑块同时固定连接传动杆的一端,传动杆的另一端固定连接中心轴水平布置的圆盘的边缘;圆盘同轴心固定连接换向片的一端,换向片的另一端与线圈固定连接,线圈水平放在一对磁铁之间,换向片与电刷相接触,电刷通过导线与电源连接。
顶盖和缸体之间设有将顶盖与工件压紧的夹紧装置。夹紧装置由伸缩式液压缸、压板、油箱、油泵和两位四通电磁换向阀组成,伸缩式液压缸下端竖直固定连接缸体的上端、上端连接水平的压板,压板在顶盖的上方,伸缩式液压缸通过管道连接油箱,在油箱和伸缩式液压缸之间的管道上设有油泵和两位四通电磁换向阀。
本发明采用上述技术方案后,具有以下有益效果:
1、本发明采用磁力驱动容积交变,通过磁力驱动活塞,利用密闭容积交变造成容积内液体压力发生变化进行空化强化,当容积变大,液体压力低于液体本身的饱和蒸气压时,液体内部产生空化气泡,当容积变小,空化气泡挤压溃灭,利用气泡溃灭产生的冲击波对锥孔内表面产生残余应力,进行强化,提高工件的使用寿命,装置简单,方便操作。
2、本发明也可以加工其他形状的孔,尤其是加工微孔,不限制孔的大小和形状。
3、本发明通过空化对锥孔内表面进行加工,孔壁无机械接触,残余应力分布均匀,可以加工直径较小的锥孔,强化效果好,加工效率高,无污染源。
附图说明
图1为本发明所述的磁力驱动式锥孔内表面强化设备的结构示意图;
图1:1:缸体;2:工件;3:密封圈;4:顶盖;5:活塞;6:伸缩式液压缸;7:压板;8:连接杆;9:滑块;10:导轨;11:传动杆;12:磁铁;13:线圈;14:电刷;15:电源;16:换向片;17:圆盘;18:通气孔;19:顶盖通孔;20:进水口;21:两位四通电磁换向阀;22:锥孔;23:油泵;24:水泵;25:油箱;26:出水口;27:蓄水池。
具体实施方式
图1所示,本发明具有一个缸体1,缸体1内的底部竖直置放工件2。在缸体1底部开有凹槽,工件2的下端置放在凹槽中,便于工件2的定位。
工件2上开有锥孔22,锥孔22的大端朝向正上方,工作时锥孔22内注满液体。工件2的正上方是顶盖4,顶盖4的中心开有顶盖通孔19,顶盖通孔19与锥孔22相通,并且两者的中心轴共线。顶盖通孔19的内径大于锥孔22大端的内径。在顶盖通孔19中安装活塞5,活塞5与顶盖通孔19的内侧壁密封连接且能沿顶盖通孔19的内侧壁上下移动。在顶盖4下表面上安装密封圈3,当顶盖4下表面与工件2上表面紧密接触时,在活塞5下方的顶盖通孔19与锥孔22形成一个密闭腔室,顶盖4对该密闭腔室起密封作用。密闭腔室中注满液体,在活塞5上下运动过程中,密闭腔室的容积会发生变化,造成容积内液体压力发生变化,产生空化,对工件2的锥孔22进行表面强化。
活塞5同轴心地固定连接连接杆8的下端,连接杆8的上端向上伸出顶盖4之外,连接杆8上端固定连接于一个滑块9。滑块9同时与上下竖直的一根导轨10滑动连接,导轨10固定不动。滑块9在导轨10上做上下运动时,带动连接杆8和活塞5一起做上下往复运动。
滑块9同时固定连接传动杆11的一端,传动杆11的另一端固定连接圆盘17的边缘。圆盘17的中心轴水平布置,其一盘面面对着传动杆11的另一端,在该盘面的边缘处通过螺钉固定连接传动杆11的另一端。在传动杆11与圆盘17的连接处放置一个垫片,以减少圆盘17和传动杆11之间的摩擦。
在圆盘17上设置四个沉头孔,通过螺栓将圆盘17与换向片16的一端固定连接,保证螺栓不会凸出圆盘表面而阻碍传动杆11与圆盘17的运动。换向片16的中心轴与圆盘17的中心轴共线。换向片16与电刷14相接触,电刷14通过导线与电源15连接。其中,圆盘17为绝缘材料,换向片16和电刷14为导电材料。换向片16的另一端与线圈13固定连接,线圈13的中心轴与换向片16的中心轴共线。线圈13水平放在一对N极、S极的磁铁12之间。
当打开电源15,经电刷14和换向片16,线圈13通电,在磁铁12产生的磁场中开始旋 转,换向片16可以使线圈13单向持续转动。通过线圈13、换向片16的传动,带动圆盘17旋转,使传动杆11的另一端随着圆盘17做圆周运动。在导轨10的约束下,传动杆11的一端带动滑块9沿着导轨10做上下往复运动,形成了曲柄滑块驱动机构。滑块9带动连接杆8上下运动,造成密闭腔室中容积变化,使密闭腔室内部的液体压力发生变化产生空化,对工件2上的锥孔22进行表面强化。
在顶盖4的上端设置有通气孔18,通气孔18与位于活塞5上方的顶盖通孔19相通,将顶盖通孔19与外部大气相连通,可以将顶盖通孔19中的空气排出。
在顶盖4和缸体1之间设置夹紧装置,用于将顶盖4与工件2压紧,使顶盖4紧密贴在工件2上方固定不动。夹紧装置由伸缩式液压缸6、压板7、油箱25、油泵23、两位四通电磁换向阀21组成。伸缩式液压缸6下端竖直固定连接在缸体1的上端,伸缩式液压缸6上端连接水平的压板7,压板7在顶盖4的上方。伸缩式液压缸6通过管道连接油箱25,在油箱25和伸缩式液压缸6之间的管道上安装油泵23和两位四通电磁换向阀21。伸缩式液压缸6共有四个,沿缸体1一圈均匀分布。
在缸体1上端一侧设置了进水口20,下端一侧设置了出水口26,出水口26通过管道连接蓄水池27,蓄水池27通过管道和水泵24连接进水口20。
本发明工作时,先将工件2放置在缸体1内,关闭出水口26,打开水泵24和进水口20,将蓄水池27中的水传输到缸体1内,直到缸体1内的水浸没工件2并接近进水口20的位置,使密闭腔室中注满液体,关闭水泵24和进水口20。然后将顶盖4放在工件2的正上方,打开油泵23,调整两位四通电磁换向阀21控制伸缩式液压缸6,伸缩式液压缸6向下运动,带动压板7往下压紧顶盖4。之后,打开电源15,活塞5上下往复运动,使密闭腔室中的容积发生变化,对工件2表面进行强化加工。当工件2加工完成,关闭电源15,调整电磁换向阀21,伸缩式液压缸6向上运动移开压板7,拿下顶盖4。最后打开出水口26,放出缸体1内的水,取出工件2。

Claims (6)

  1. 一种磁力驱动式锥孔内表面强化设备,具有一个缸体(1),缸体(1)内的底部竖直置放工件(2),工件(2)上开有大端朝向正上方的锥孔(22),其特征是:工件(2)的正上方是顶盖(4),顶盖(4)的中心开有与锥孔(22)相通的顶盖通孔(19),顶盖通孔(19)中设有活塞(5),顶盖(4)下表面上装有密封圈(3),当顶盖(4)下表面与工件(2)上表面紧密接触时,活塞(5)下方的顶盖通孔(19)与锥孔(22)形成一个密闭腔室,密闭腔室中注满液体;活塞(5)同轴心地固定连接连接杆(8)的下端,连接杆(8)的上端向上伸出顶盖(4)之外并固定连接滑块(9),滑块(9)与上下竖直的导轨(10)滑动连接,滑块(9)同时固定连接传动杆(11)的一端,传动杆(11)的另一端固定连接中心轴水平布置的圆盘(17)的边缘;圆盘(17)同轴心固定连接换向片(16)的一端,换向片(16)的另一端与线圈(13)固定连接,线圈(13)水平放在一对磁铁(12)之间,换向片(16)与电刷(14)相接触,电刷(14)通过导线与电源(15)连接。
  2. 根据权利要求1所述的磁力驱动式锥孔内表面强化设备,其特征是:顶盖(4)和缸体(1)之间设有将顶盖(4)与工件(2)压紧的夹紧装置,夹紧装置由伸缩式液压缸(6)、压板(7)、油箱(25)、油泵(23)和两位四通电磁换向阀(21)组成,伸缩式液压缸(6)下端竖直固定连接缸体(1)的上端、上端连接水平的压板(7),压板(7)在顶盖(4)的上方,伸缩式液压缸(6)通过管道连接油箱(25),在油箱(25)和伸缩式液压缸(6)之间的管道上设有油泵(23)和两位四通电磁换向阀(21)。
  3. 根据权利要求2所述的磁力驱动式锥孔内表面强化设备,其特征是:伸缩式液压缸(6)共有四个,沿缸体(1)一圈均匀分布。
  4. 根据权利要求1所述的磁力驱动式锥孔内表面强化设备,其特征是:在缸体(1)上端一侧开有进水口(20)、下端一侧开有出水口(26),出水口(26)通过管道连接蓄水池(27),蓄水池(27)经水泵(24)连接进水口(20)。
  5. 根据权利要求1所述的磁力驱动式锥孔内表面强化设备,其特征是:在顶盖(4)的上端开有通气孔(18),通气孔(18)与位于活塞(5)上方的顶盖通孔(19)以及大气相通。
  6. 根据权利要求1所述的磁力驱动式锥孔内表面强化设备,其特征是:顶盖通孔(19)的内径大于锥孔(22)大端的内径。
PCT/CN2020/098513 2019-04-28 2020-06-28 磁力驱动式锥孔内表面强化设备 WO2020221377A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2019820.6A GB2589023B (en) 2019-04-28 2020-06-28 Magnetic drive-type apparatus for strengthening inner surface of tapered hole

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910347540.X 2019-04-28
CN201910347540.XA CN110055397B (zh) 2019-04-28 2019-04-28 磁力驱动式锥孔内表面强化设备

Publications (2)

Publication Number Publication Date
WO2020221377A2 true WO2020221377A2 (zh) 2020-11-05
WO2020221377A3 WO2020221377A3 (zh) 2020-12-17

Family

ID=67321295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098513 WO2020221377A2 (zh) 2019-04-28 2020-06-28 磁力驱动式锥孔内表面强化设备

Country Status (3)

Country Link
CN (1) CN110055397B (zh)
GB (1) GB2589023B (zh)
WO (1) WO2020221377A2 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110055397B (zh) * 2019-04-28 2020-08-28 江苏大学 磁力驱动式锥孔内表面强化设备
CN110354706B (zh) * 2019-08-26 2024-04-12 迈安德集团有限公司 一种可在线调整的组合型空化器
CN110538626B (zh) * 2019-08-28 2023-10-13 迈安德集团有限公司 一种可变可控的空化器
CN111843858B (zh) * 2020-06-05 2022-03-18 江苏大学 一种异形通孔内表面强化装置
CN115074518B (zh) * 2022-06-28 2023-09-22 江苏大学 一种空化螺旋射流盲孔内表面后处理装置及方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297414A (ja) * 1986-06-18 1987-12-24 Mitsubishi Heavy Ind Ltd 高圧配管の強化法
JPH07205099A (ja) * 1994-01-25 1995-08-08 Babcock Hitachi Kk ウォータージェット加工法
JP3322772B2 (ja) * 1995-05-22 2002-09-09 日本エム・ケー・エス株式会社 制御弁
CN103286642B (zh) * 2013-05-14 2015-09-23 太原理工大学 一种液体磁性磨具孔光整加工装置
CN104673972B (zh) * 2015-03-24 2016-08-24 江苏科技大学 一种射流喷丸装置
CN104946880B (zh) * 2015-05-29 2017-09-19 北京交通大学长三角研究院 稀土超磁致伸缩超声强化装置
CN105779756B (zh) * 2016-05-05 2019-01-11 中国人民解放军装甲兵工程学院 孔角强化处理方法
CN205734490U (zh) * 2016-07-01 2016-11-30 刘苗粉 一种新型磨料流加工装置
CN107058718B (zh) * 2017-03-11 2018-08-21 江苏大学 一种用于轴类零件空化射流强化的装置及方法
US20190112959A1 (en) * 2017-10-12 2019-04-18 Zhejiang Fai Electronics Co., Ltd. Pulse-coupled pump
CN208395224U (zh) * 2018-06-11 2019-01-18 新乡航空工业(集团)有限公司 一种电火花表面强化机用振动器
CN110055397B (zh) * 2019-04-28 2020-08-28 江苏大学 磁力驱动式锥孔内表面强化设备
CN110004279B (zh) * 2019-04-28 2020-11-20 江苏大学 一种容积交变式微孔内表面空化强化装置及加工方法
CN110157877B (zh) * 2019-04-28 2020-12-18 江苏大学 双驱式孔壁加工系统及方法
CN110144453B (zh) * 2019-04-28 2020-11-20 江苏大学 一种液压驱动式微型锥孔内表面空化喷丸系统及方法
CN110157879B (zh) * 2019-04-28 2020-11-03 江苏大学 增材制造成形内孔表面抛光及强化一体化加工系统及方法
CN110106332B (zh) * 2019-04-28 2020-09-25 江苏大学 一种摆动容积交变微孔内表面强化装置
CN110129537B (zh) * 2019-04-28 2020-09-25 江苏大学 一种压力交变式微孔内表面空化喷丸设备及工作方法
CN110116363B (zh) * 2019-04-30 2021-09-28 江苏师范大学 一种微孔表面强化抛光装置及方法
CN110170927B (zh) * 2019-05-05 2020-11-20 江苏大学 一种盲孔内表面喷丸设备

Also Published As

Publication number Publication date
CN110055397A (zh) 2019-07-26
GB2589023B (en) 2021-11-17
GB202019820D0 (en) 2021-01-27
WO2020221377A3 (zh) 2020-12-17
GB2589023A (en) 2021-05-19
CN110055397B (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
WO2020221377A2 (zh) 磁力驱动式锥孔内表面强化设备
CN110157879B (zh) 增材制造成形内孔表面抛光及强化一体化加工系统及方法
CN115284160B (zh) 一种基于空化效应的往复式磨料流抛光装置及方法
CN110116363B (zh) 一种微孔表面强化抛光装置及方法
CN110004279B (zh) 一种容积交变式微孔内表面空化强化装置及加工方法
CN110144453B (zh) 一种液压驱动式微型锥孔内表面空化喷丸系统及方法
CN106000997A (zh) 一种电液式大功率超声波自动化清洗装置
CN110129537B (zh) 一种压力交变式微孔内表面空化喷丸设备及工作方法
CN201279930Y (zh) 高效节能液压机
CN105618657A (zh) 一种用于汽车大梁生产线的全液压铆接机
CN110170927B (zh) 一种盲孔内表面喷丸设备
CN110055390A (zh) 一种压力交变浸没式内孔表面强化装置及方法
CN114939631B (zh) 一种带有便脱模结构设计的砂芯模具
CN207333130U (zh) 一种电磁柱塞泵
CN110157877B (zh) 双驱式孔壁加工系统及方法
CN113042439B (zh) 一种脉压式加压泵水系统
CN204672514U (zh) 一种基本盖自动注胶装置
CN110106332B (zh) 一种摆动容积交变微孔内表面强化装置
CN110153636B (zh) 机械往复驱动式微孔内表面强化设备
CN203463242U (zh) 液压无气泵
CN114713967B (zh) 一种用于电磁脉冲焊接的真空装置
CN103133297A (zh) 电磁真空泵
CN219317126U (zh) 气动节能泵
CN110560539A (zh) 一种冲床防粘模装置及其使用方法
CN220015410U (zh) 一种高低压切换泵头

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202019820

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200628

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20797991

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20797991

Country of ref document: EP

Kind code of ref document: A2