WO2024001234A1 - 转子和电机 - Google Patents

转子和电机 Download PDF

Info

Publication number
WO2024001234A1
WO2024001234A1 PCT/CN2023/077678 CN2023077678W WO2024001234A1 WO 2024001234 A1 WO2024001234 A1 WO 2024001234A1 CN 2023077678 W CN2023077678 W CN 2023077678W WO 2024001234 A1 WO2024001234 A1 WO 2024001234A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotor
rotor core
length
width
Prior art date
Application number
PCT/CN2023/077678
Other languages
English (en)
French (fr)
Inventor
刘兴佳
王天陆
吴施汛
齐文明
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2024001234A1 publication Critical patent/WO2024001234A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets

Definitions

  • the present application relates to the field of motors, and in particular to a rotor and a motor.
  • Permanent magnet synchronous motors are widely used in electric vehicles.
  • the motor is one of the cores of the electrical drive system.
  • the comprehensive performance of the motor directly affects the performance of electric vehicles.
  • PMSM anti-demagnetization permanent magnet synchronous motors
  • the present application aims to solve, at least to a certain extent, one of the technical problems in the related art.
  • one object of the present application is to propose a rotor.
  • the number of The cogging torque generated by the rotor during rotation is beneficial to improving the stability of the rotor, and by setting the materials of multiple groups of permanent magnets to be different, the amount of rare earth materials used is reduced and the cost is reduced.
  • the rotor according to the embodiment of the present application includes: a rotor core, the rotor core is provided with a plurality of installation slots; and a plurality of permanent magnets, the plurality of permanent magnets are arranged in the plurality of installation slots in one-to-one correspondence. , the materials of the permanent magnets in at least two of the mounting slots are different; wherein, the plurality of mounting slots include a first mounting slot, and the permanent magnets located in the first mounting slot include segmented first magnet and second magnet.
  • a plurality of mounting slots are provided on the rotor.
  • Permanent magnets are respectively installed in the multiple mounting slots, and the permanent magnets located in the first mounting slot are arranged in segments, thereby reducing the number of rotors.
  • the cogging torque generated during the rotation process reduces the torque fluctuation caused by the cogging torque and reduces the jitter caused by the torque fluctuation.
  • the permanent magnets in the first mounting slot are made of a first material, and the first material is ferrite.
  • the first mounting groove is provided along the circumferential direction of the rotor core.
  • the plurality of mounting grooves further include second mounting grooves, and the second mounting grooves are provided radially outside the first mounting grooves.
  • the permanent magnets provided in the second mounting slot include third magnets and fourth magnets arranged in sections.
  • the permanent magnet disposed in the second installation groove is made of a second material different from the first material, and the second material is a rare earth material.
  • the width of the first magnet in the width direction of the first mounting slot, is W1, the width of the second magnet is W2, and the width of the second mounting slot is W2.
  • the width of the third magnet is W3, and the width of the fourth magnet is W4; wherein the rotor satisfies the following relationship: 0.1(W3+W4) ⁇ (W1+W2) ⁇ 3.3(W3+W4 ).
  • the rotor satisfies the following relationship: 0.3(W3+W4) ⁇ (W1+W2) ⁇ 1.95(W3+W4).
  • the plurality of mounting slots further include a third mounting slot extending along the radial direction of the rotor core, and the length direction of each first mounting slot
  • the third mounting grooves are correspondingly provided on both sides of the mounting groove, and the radial direction of the third mounting groove and the length direction of the first mounting groove have an included angle.
  • the permanent magnets in the third mounting slot include fifth magnets and sixth magnets arranged in sections.
  • the permanent magnet material in the third installation slot is a rare earth material.
  • the rotor in a cross section perpendicular to the rotation axis of the rotor core, the rotor satisfies the following requirements: The following relationship: Wherein, L1 is the distance from the outermost side of the second mounting slot to the outer edge of the rotor core, L2 is the distance from the outermost side of the third mounting slot to the outer edge of the rotor core, and L3 is the The distance from the outermost side of a mounting slot to the outer edge of the rotor core.
  • the rotor satisfies the following relationship:
  • the first connection line between the geometric center of the fourth magnet and the center of the rotor core is The length is L4; the length of the second connecting line between the geometric center of the third magnet and the center of the rotor core is L5;
  • the angle between the first connection line and the d-axis of the rotor core is ⁇ 1
  • the angle between the second connection line and the d-axis is ⁇ 2
  • the width of the fourth magnet is W4
  • the width of the first magnet is W1
  • the rotor satisfies the following relationship:
  • the third connection line between the geometric center of the fifth magnet and the center of the rotor core The length is L6; the length of the fourth connecting line between the geometric center of the sixth magnet and the center of the rotor core is L7; the angle between the third connecting line and the d-axis of the rotor is ⁇ 3, the angle between the fourth connecting line and the d-axis is ⁇ 4, the width of the third magnet is W3, the width of the second magnet is W2, and the rotor satisfies the following relationship:
  • the fifth connection line between the geometric center of the first magnet and the center of the rotor core The length is L8; the length of the sixth connecting line between the geometric center of the second magnet and the center of the rotor core is L9;
  • the angle between the fifth connection line and the d-axis of the rotor is ⁇ 5
  • the angle between the sixth connection line and the d-axis is ⁇ 6
  • the width of the fifth magnet is W5
  • the width of the second magnet is W2
  • the rotor satisfies the following relationship:
  • the rotor satisfies the following relationship:
  • the first connection line between the geometric center of the fourth magnet and the center of the rotor core is Length is L4;
  • the length of the second connecting line between the geometric center of the third magnet and the center of the rotor core is L5;
  • the length of the third connecting line between the geometric center of the fifth magnet and the center of the rotor core is L6;
  • the rotor satisfies the following relationship:
  • the rotor satisfies the following relationship:
  • the ratio of the length of the first magnet to the length of the second magnet is greater than or equal to 1/7 and less than or equal to 1/2, so The ratio of the length of the third magnet to the length of the fourth magnet is greater than or equal to 1/7 and less than or equal to 1/2; in the radial direction of the rotor core, the length of the fifth magnet and the length of the fourth magnet are greater than or equal to 1/7 and less than or equal to 1/2.
  • the ratio of the lengths of the sixth magnet is greater than or equal to 1/7 and less than or equal to 1/2.
  • the width of the first magnet and the second magnet ranges from 5mm to 12mm, and the width of the third magnet and the The width of the fourth magnet ranges from 2 mm to 7 mm; in the circumferential direction of the rotor core, the width of the fifth magnet and the sixth magnet ranges from 2 mm to 7 mm.
  • This application also proposes a motor.
  • a motor according to an embodiment of the present application includes the rotor according to any of the above embodiments.
  • the rotor includes a rotor core and a plurality of permanent magnets.
  • the rotor core is provided with a plurality of mounting slots; a plurality of permanent magnets are arranged in the plurality of mounting slots in one-to-one correspondence.
  • the materials of the permanent magnets in at least two mounting slots are different, the plurality of mounting slots include a first mounting slot, and the permanent magnets in the first mounting slots include a first magnet and a second magnet arranged in sections.
  • the cogging torque generated by the rotor during rotation is reduced, thereby reducing the torque fluctuation caused by the cogging torque, reducing the jitter caused by the torque fluctuation, and by
  • the material settings of the permanent magnets in at least two mounting slots on the rotor are different, which is beneficial to reducing the amount of rare earth materials, reducing costs, and improving the NVH performance of the motor.
  • Figure 1 is a schematic diagram of a rotor according to an embodiment of the present application.
  • Figure 2 is a partial schematic diagram of a rotor core according to an embodiment of the present application.
  • Figure 3 is a partial schematic diagram of a rotor core according to an embodiment of the present application.
  • Figure 4 is a partial schematic diagram of a rotor core according to an embodiment of the present application.
  • Figure 5 is a partial schematic diagram of a rotor core according to another embodiment of the present application.
  • Figure 6 is a schematic diagram of the cogging torque without segmentation using the same permanent magnet material in the prior art
  • Figure 7 is a schematic diagram of the torque fluctuation without segmentation using the same permanent magnet material in the prior art
  • Figure 8 is a schematic diagram of the cogging torque of a rotor segmented with different types of permanent magnet materials according to an embodiment of the present application
  • Figure 9 is a schematic diagram of torque fluctuations of a rotor segmented with different types of permanent magnet materials according to an embodiment of the present application.
  • Rotor 100 Rotor core 1, first mounting slot 11, second mounting slot 12, third mounting slot 13, Permanent magnet 2, first magnet 21, second magnet 22, third magnet 23, fourth magnet 24, fifth magnet 25, sixth magnet 26.
  • a rotor 100 includes: a rotor core 1 and a plurality of permanent magnets 2 .
  • the rotor core 1 is provided with a plurality of installation slots; a plurality of permanent magnets 2 are arranged in the plurality of installation slots in one-to-one correspondence, and the materials of the permanent magnets 2 in at least two installation slots are different; wherein, the plurality of installation slots include The first mounting slot 11.
  • the permanent magnet 2 provided in the first mounting slot 11 includes a first magnet 21 and a second magnet 22 arranged in sections.
  • the teeth generated during the rotation of the rotor 100 are reduced. Cogging torque, thereby reducing torque fluctuations caused by cogging torque and reducing jitter caused by torque fluctuations.
  • the segmentation arrangement of the first magnet can be set as uniform segmentation or uneven segmentation. When the first magnet is unevenly segmented, the effect of reducing cogging torque will be better.
  • the materials of the permanent magnets 2 in different installation slots differently, for example, the permanent magnets in some installation slots are rare earth permanent magnets, and the permanent magnets in some installation slots are ferrite permanent magnets. Such an arrangement reduces the number of elements in the rotor 100 The amount of rare earth permanent magnets reduces the cost of the rotor 100.
  • Figure 6 is a waveform diagram of unsegmented cogging torque using the same permanent magnet material in the prior art, and the value is 181.02Nm
  • Figure 7 is a waveform diagram of the unsegmented cogging torque in the prior art using the same permanent magnet material.
  • a schematic diagram of the torque fluctuation of a non-segmented permanent magnet material, the torque fluctuation value is 7.44%
  • Figure 8 is a schematic waveform diagram of the segmented rotor cogging torque of different permanent magnet materials according to the embodiment of the present application, the value is 32.94Nm
  • FIG. 9 is a schematic diagram of segmented rotor torque fluctuations of different permanent magnet materials according to an embodiment of the present application.
  • the torque fluctuation value is 2.62%.
  • the value of the cogging torque cannot be obtained intuitively in this figure. It is the relevant number recorded during the experiment. However, there is no doubt for those skilled in the art that the relevant cogging torque values can be obtained through this waveform.
  • the cogging torque decreases by 148.08Mnm compared with the non-segmented magnets, that is, the cogging torque decreases by 81.8%, and the torque ripple value decreases by 4.82%. Therefore, compared with the prior art, embodiments of the present application have significant effects in reducing cogging torque and torque ripple.
  • the rotor 100 is formed by stacking a plurality of rotor cores 1 in the axial direction.
  • Each rotor core 1 is configured as an annular structure.
  • the plurality of rotor cores 1 are formed along the circumference of the rotor 100 They are stacked in sequence in the axial direction to define the rotor 100 .
  • the rotor core 1 is provided with multiple mounting slot groups along the circumferential direction.
  • the multiple mounting slot groups are evenly spaced along the circumferential direction of the rotor core 1.
  • Each mounting slot group may include multiple mounting slots arranged at intervals, and each The permanent magnets 2 are installed in the installation slots, so that the rotor 100 is provided with multiple sets of spaced apart permanent magnets 2 .
  • the permanent magnets in the first mounting slot of the rotor core 1 are arranged in segments, which can reduce the cogging torque generated during the rotation of the rotor 100 .
  • the plurality of installation slots include the first installation slot 11.
  • the permanent magnet 2 installed in the first installation slot 11 includes a first magnet 21 and a second magnet 22.
  • the first magnet 21 and the second magnet 22 are arranged in sections.
  • a magnet 21 and a second magnet 22 are arranged sequentially along the length direction of the first installation slot 11.
  • the width size of the first magnet 21 and the width size of the second magnet 22 are equal, so that the end of the first magnet 21 along the length direction can be equal to
  • the ends of the second magnet 22 along the length direction are opposite to each other and can be connected by gluing or welding.
  • the length dimension of the first magnet 21 and the length dimension of the second magnet 22 are different, and the length ratio between the first magnet 21 and the second magnet 22 can usually be set between 1:2 and 1:7.
  • the length dimension of the second magnet 22 can be set to twice the length dimension of the first magnet 21. This application does not limit this.
  • the total cogging torque of each pole of the motor can be simplified to the superposition of the cogging torque generated by each section of permanent magnet 2, which satisfies:
  • Ns is the number of segments of the permanent magnet 2; Tn is the cogging torque amplitude of the nth harmonic; Np is the number of cogging torque cycles of one pitch; Z is the number of slots; ⁇ is the number of adjacent two The offset angle of segment permanent magnet 2.
  • the number of cogging torque cycles for one pitch: Np 2p/GCD(Z, 2p), where: GCD(Z, 2p) represents the greatest common divisor of Z and 2p.
  • the cogging torque can be reduced by arranging the permanent magnet 2 in sections and dividing the permanent magnet 2 provided in the first mounting slot 11 into two sections, including the first magnet 21 and the second magnet 22 , thereby reducing the torque fluctuation caused by cogging torque and reducing the jitter problem caused by unstable output caused by torque fluctuation.
  • the first installation slot may be the installation slot located in the inner layer of permanent magnets among the multiple installation slots in each installation slot group, or the installation slot of the outer layer of permanent magnets, or the installation slot of the permanent magnets extending in the radial direction. groove. Among them, the inner layer and the outer layer are respectively relative to the shaft hole of the rotor core.
  • the one closest to the shaft hole in the radial direction is the installation slot of the inner permanent magnet, and the outer layer is far away from the shaft hole in the radial direction.
  • Mounting slot for permanent magnets Therefore, the “first” of the first mounting slot in this embodiment does not have a limiting effect.
  • the segmented arrangement of the permanent magnets in any one of the mounting slot groups on the rotor core 1 is not limited to this application. within the scope of protection.
  • the materials of the permanent magnets 2 in at least two mounting slots can be set to be different.
  • the permanent magnets 2 in the first mounting slot 11 can be set as ferrite permanent magnets, and the ferrite permanent magnets can be made of different materials.
  • the magnets are arranged in sections, and the permanent magnets 2 in other installation slots are set as rare earth permanent magnets; or the permanent magnets 2 arranged in the first installation slot 11 are set as rare earth permanent magnets, and the permanent magnets in other installation slots are set as rare earth permanent magnets.
  • 2 is set as a ferrite permanent magnet, which is not limited in this application. This is beneficial to reducing the amount of rare earth permanent magnets and reducing the cost of the permanent magnets 2 .
  • the first mounting groove 11 is an inner permanent magnet mounting groove
  • the second mounting groove 12 is located radially outside the first mounting groove 11
  • the first mounting groove 11 extends along the circumferential direction of the rotor core 1
  • the second mounting groove 12 extends along the circumferential direction of the rotor core 1.
  • the two mounting grooves 12 extend along the circumferential direction of the rotor core 1 .
  • the permanent magnets in the first installation slot 11 are made of a first material, which is ferrite material, and is arranged in sections.
  • the ferrite material includes a first magnet 21 and a second magnet 22 .
  • the permanent magnet materials in other installation slots are different from the ferrite permanent magnet materials in the first installation slot, for example, the other permanent magnet materials are rare earth permanent magnet materials.
  • the ferrite permanent magnets 2 provided in the first mounting groove 11 are arranged in sections, which reduces the cogging torque generated during the rotation of the rotor 100, thereby reducing the torque fluctuation caused by the cogging torque and reducing the torque. fluctuation causing jitter.
  • the permanent magnet 2 corresponding to the second mounting slot 12 includes a third magnet 23 and a fourth magnet 24 arranged in segments.
  • the second mounting slot 12 is located radially outside the first mounting slot 11 , that is, the second mounting slot 12 It is the mounting slot for the outer permanent magnet.
  • the rotor 1 can be provided with multiple mounting slot groups, each mounting slot group includes a plurality of mounting slots, each mounting slot group includes a second mounting slot 12 , and the second mounting slot 12 is different from the first mounting slot. 11 are spaced apart, and the second mounting groove 12 is located radially outside the first mounting groove 11 .
  • a permanent magnet 2 is provided in the second installation groove 12.
  • the permanent magnet 2 provided in the second installation groove 12 includes a third magnet 23 and a fourth magnet 24 arranged in sections. The third magnet 23 and the fourth magnet 24 are arranged along the second installation groove 12.
  • the length direction of the mounting grooves 12 is arranged sequentially, and the width dimension of the third magnet 23 and the width dimension of the fourth magnet 24 are equal, so that the end of the third magnet 23 along the length direction can be aligned with the end of the fourth magnet 24 along the length direction. Yes, and can be connected by gluing or welding.
  • the permanent magnet in the material of the permanent magnet 2 in the second installation groove 12 adopts a second material different from the first material, and the second material is a rare earth material, that is, the third magnet 23 and the fourth magnet 24 are Rare earth permanent magnet materials.
  • the width of the first magnet 21 in the width direction of the first mounting slot 11, the width of the first magnet 21 is W1, the width of the second magnet 22 is W2, and in the width direction of the second mounting slot 12, the width of the first magnet 21 is W1, and the width of the second magnet 22 is W2.
  • the width of the third magnet 23 is W3, and the width of the fourth magnet 24 is W4, which satisfies the following relationship: 0.1(W3+W4) ⁇ (W1+W2) ⁇ 3.3(W3+W4).
  • the first mounting groove 11 and the second mounting groove 12 may be arranged to extend along the circumferential direction of the rotor core 1 , and the radial direction of the rotor core 1 is set to the width direction of the first mounting groove 11 and the width direction of the second mounting groove 12 .
  • a first magnet 21 and a second magnet 22 are disposed in the first mounting slot 11.
  • the width dimension of the first magnet 21 along the width direction of the first mounting slot 11 is set to W1
  • the width of the second magnet 22 along the width direction of the first mounting slot 11 is set to W1.
  • the width dimension of the direction is set to W2.
  • a third magnet 23 and a fourth magnet 24 are disposed in the second mounting slot 12 .
  • the width dimension of the third magnet 23 along the width direction of the second mounting slot 12 is set to W3
  • the fourth magnet 24 is arranged along the width direction of the second mounting slot 12 .
  • the width dimension in the width direction is set to W4.
  • the following relationship is satisfied: 0.1(W3+W4) ⁇ (W1+W2) ⁇ 3.3(W3+W4). That is to say, the sum of the width dimension W1 of the first magnet 21 and the width dimension W2 of the second magnet 22 is greater than or equal to 0.1 times the sum of the width dimension W3 of the third magnet 23 and the width dimension W4 of the fourth magnet 24 . value, and is less than or equal to 3.3 times the sum of the width dimension W3 of the third magnet 23 and the width dimension W4 of the fourth magnet 24. Therefore, changing the width of the magnet will change the magnetic properties of the magnet, thereby adjusting the operating point of the permanent magnet. Generally speaking, under the same conditions, the width of the magnet becomes larger and the performance of the magnet becomes larger.
  • the above-mentioned first magnet, second magnet, third magnet and fourth magnet are The width relationship between them is limited to the above range, which improves the rationality of the layout of the magnet 2 and helps improve the anti-demagnetization performance of the rotor 100. More preferably, the following relationship is satisfied: 0.3(W3+W4) ⁇ (W1+W2) ⁇ 1.95(W3+W4), which is more obvious in terms of anti-demagnetization and other effects.
  • the width of the first magnet 21 and the width of the second magnet 22 both range from 5 mm to 12 mm.
  • the width of the first magnet 21 and the width of the second magnet 22 can be set to 6mm; or, the width of the first magnet 21 and the width of the second magnet 22 can be set to 8.5mm; or, the width of the first magnet can be set to 8.5mm.
  • the width of 21 and the width of the second magnet 22 are set to 11 mm; alternatively, the width of the first magnet 21 and the width of the second magnet 22 can be set to any value that meets the conditions, and this application does not limit this.
  • the plurality of mounting slots also include third mounting slots 13 .
  • the third mounting slots 13 extend along the radial direction of the rotor core 1 . Both sides of each first mounting slot 13 in the length direction are A third mounting slot 13 is provided correspondingly.
  • the length direction of the third mounting slot 13 has an included angle with the length direction of the first mounting slot 11 or the second mounting slot 12.
  • the permanent magnet 2 corresponding to the third mounting slot 13 includes a split arrangement.
  • the rotor core 1 can be provided with multiple mounting slot groups.
  • Each mounting slot group has multiple mounting slots.
  • Each group of multiple mounting slots includes a third mounting slot 13 .
  • the third mounting slot 13 Disposed apart from the first mounting groove 11 , the length direction of the third mounting groove 13 is different from the length direction of the second mounting groove 12 to form an included angle.
  • a group of permanent magnets 2 provided in the first installation groove 11 and a group of permanent magnets 2 provided in the third installation groove 13 can be arranged at different positions of the rotor core 1 .
  • the permanent magnet 2 provided in the third installation slot 13 includes a fifth magnet 25 and a sixth magnet 26.
  • the fifth magnet 25 and the sixth magnet 26 are arranged in sections.
  • the end of the fifth magnet 25 can be connected with the sixth magnet 26.
  • the ends are facing each other and connected by gluing or welding. Therefore, by dividing the permanent magnet 2 provided in the third mounting groove 13 into two sections, the cogging torque generated during the rotation of the rotor 100 is reduced, thereby reducing the torque ripple caused by the cogging torque and reducing the torque ripple. jitter caused.
  • the permanent magnet material in the third installation slot 13 can be made of rare earth material, that is, the fifth magnet 25 and the sixth magnet 26 can be made of rare earth permanent magnet material.
  • the length of the fifth magnet 25 and the length of the sixth magnet 26 are different in the length direction of the third mounting slot 13 .
  • the fifth magnet 25 and the sixth magnet 26 can be arranged sequentially along the length direction of the third mounting slot 13 , and the width dimension of the fifth magnet 25 and the width dimension of the sixth magnet 26 are equal, so that the fifth magnet 25 and the sixth magnet 26 are equal in width.
  • the end along the length direction of 25 can be directly connected to the end along the length direction of the sixth magnet 26 .
  • the length dimension of the fifth magnet 25 and the length dimension of the sixth magnet 26 are set to be different, and the length ratio between the fifth magnet 25 and the sixth magnet 26 can usually be set between 1:2 and 1:7.
  • the length dimension of the sixth magnet 26 can be set to be twice the length dimension of the fifth magnet 25; or the length dimension of the sixth magnet 26 can be set to be three times the length dimension of the fifth magnet 25. This application does not cover this issue. Make restrictions.
  • the permanent magnets 2 by arranging the permanent magnets 2 into multiple groups and dividing the permanent magnets 2 provided in the third mounting groove 13 into two uneven sections, it is beneficial to reduce the cogging torque and reduce the torque caused by the cogging torque. Fluctuation reduces the jitter caused by torque fluctuation and improves the stability of the rotor 100 when rotating.
  • the first mounting groove 11 extends along the circumferential direction of the rotor core 1
  • the third mounting groove 13 extends along the radial direction of the rotor core 1
  • Third mounting slots 13 are provided on both sides.
  • a first mounting groove 11 may be provided on the radially inner side of the rotor core 1 .
  • the first mounting groove 11 extends along the circumferential direction of the rotor 1 and is configured in a straight line.
  • 11 is provided with a first magnet 21 and a second magnet 22.
  • the first magnet 21 and the second magnet 22 are arranged sequentially along the circumferential direction of the rotor core 1.
  • the first magnet 21 and the second magnet 22 have different lengths and sizes, so that the first magnet 21 and the second magnet 22 have different lengths and sizes.
  • the connection position of the magnet 21 and the second magnet 22 is offset from the middle position of the first mounting groove 11 along the length direction.
  • two third mounting slots 13 are provided corresponding to the first mounting slot 11.
  • the two third mounting slots 13 are respectively provided on both sides of the first mounting slot 11 along the circumferential direction of the rotor core 1.
  • the slots 13 are arranged along the radial direction of the rotor core 1.
  • a set of fifth magnets 25 and sixth magnets 26 are respectively provided in the two third installation slots 13.
  • the fifth magnets 25 and the sixth magnets 26 are arranged along the diameter of the rotor 1. Arranged in sequence, the length dimensions of the fifth magnet 25 and the sixth magnet 26 are different, so that the connection position of the fifth magnet 25 and the sixth magnet 26 deviates from the middle position of the third mounting groove 12 along the length direction.
  • a second mounting groove 12 may be provided on the radially outer side of the rotor 1 .
  • the second mounting groove 12 extends along the circumferential direction of the rotor core 1 , and has both ends of the second mounting groove 12 along the length direction.
  • the second mounting groove 12 extends obliquely toward the outer peripheral wall of the rotor 1 to form an arc-shaped structure.
  • a third magnet 23 and a fourth magnet 24 are disposed in the second mounting slot 12 .
  • the third magnet 23 and the fourth magnet 24 are correspondingly configured in an arc-shaped structure.
  • the third magnet 23 and the fourth magnet 24 are along the length of the second mounting slot 12 .
  • the directions are arranged in sequence, and the length dimensions of the third magnet 23 and the fourth magnet 24 are set to be equal, so that the ends of the third magnet 23 and the fourth magnet 24 facing each other can be connected in the middle area of the first mounting groove 11 along the length direction.
  • first mounting groove 11 extending in the circumferential direction of the rotor core 1
  • third mounting grooves extending in the radial direction of the rotor core 1 on both sides of the first mounting groove 11 in the circumferential direction.
  • the slots 13 make the permanent magnets 2 on the rotor core 1 reasonably distributed, which is beneficial to reducing the cogging torque when the rotor 100 rotates, so as to reduce the torque fluctuation caused by the cogging torque, reduce the jitter caused by the torque fluctuation, and improve This ensures the stability of the rotor 100 when rotating.
  • the plurality of installation slots also include second installation slots 12.
  • the permanent magnets 2 corresponding to the second installation slots 12 include third magnets 23 and fourth magnets 24 that are separately arranged.
  • the groove 12 is located radially outside the first mounting groove 11 .
  • the rotor 1 can be provided with multiple mounting slot groups, each mounting slot group has multiple mounting slots, and the multiple mounting slots of each mounting slot group include second mounting slots 12 .
  • the groove 12 is spaced apart from the first mounting groove 11 and the third mounting groove 13 , and the second mounting groove 12 is located radially outside the first mounting groove 11 .
  • Segmented permanent magnets 2 are provided in the second mounting slot 11.
  • a group of permanent magnets 2 located in the second mounting slot 12 includes a third magnet 23 and a fourth magnet 24. The third magnet 23 and the fourth magnet 24 are arranged in segments.
  • the third magnet 23 and the fourth magnet 24 are arranged sequentially along the length direction of the first installation groove 11 , the width size of the third magnet 23 and the width size of the fourth magnet 24 are equal, so that the end of the third magnet 23 along the length direction It can be opposite to the end of the fourth magnet 24 along the length direction, and can be connected by gluing or welding.
  • the length size of the third magnet 23 and the length size of the fourth magnet 24 are different, and the length ratio between the third magnet 23 and the fourth magnet 24 can usually be set between 1:2 to 1:7, such as
  • the fourth magnet 24 has a length dimension equal to that of the third magnet 23 This application does not impose a limit on twice the length dimension.
  • the length ratio between the first magnet 21 and the second magnet 22 is the same as above, so the description will not be repeated.
  • a second mounting groove 12 may be provided in the radially outer area of the rotor 1 .
  • the second mounting groove 12 extends along the circumferential direction of the rotor 1 .
  • the second mounting groove 12 has a plurality of mounting grooves 12 arranged sequentially along the length direction.
  • the third magnet 23 and the fourth magnet 24 are provided with a second mounting groove 12 on the radial outer side of the first mounting groove 11.
  • the second mounting groove 12 extends along the circumferential direction of the rotor 1.
  • the third magnet 23 and the fourth magnet 24 are sequentially distributed along the length direction.
  • the permanent magnets 2 are respectively installed in the multiple mounting slots, and the permanent magnets 2 located in the second mounting slot 12 are divided into two uneven parts. section, which reduces the cogging torque generated by the rotor 100 during the rotation process, thereby reducing the torque fluctuation caused by the cogging torque, reducing the jitter caused by the torque fluctuation, and improving the stability of the rotor 100 during the rotation process.
  • the width of the third magnet 23 and the width of the fourth magnet 24 both range from 2 mm to 7 mm, and the width of the fifth magnet 25 and the width of the sixth magnet 26 range from 2 mm to 7 mm. 2mm-7mm.
  • the width of the third magnet 23 and the fourth magnet 24 may be set to 3 mm; or the width of the third magnet 23 and the fourth magnet 24 may be set to 4.5 mm; or the width of the third magnet 23 and the fourth magnet 24 may be set to 4.5 mm.
  • the width of the magnet 24 is set to 6 mm; alternatively, the width of the third magnet 23 and the fourth magnet 24 can be set to any value that meets the conditions, and this application does not limit this.
  • the fifth magnet 25 and the sixth magnet 26 are the same as above, and the description will not be repeated here.
  • the requirement for high magnetic density of a high-speed motor is achieved, the weight of the third magnet 23 and the fourth magnet 24 is reduced, the centrifugal force experienced by the rotor 100 during rotation is reduced, and the stability of the rotor 100 is improved.
  • the radial distance between the outermost edge of the second mounting groove 12 and the outer peripheral wall of the rotor 1 is L1
  • the radial distance between the outermost edge of the third mounting groove 13 and the outer peripheral wall of the rotor 1 is L2
  • the radial distance between the outermost edge of the first mounting groove 11 and the outer peripheral wall of the rotor 1 is L3, where the following is satisfied: Relationship:
  • the second mounting groove 12 may be provided to extend along the circumferential direction of the rotor core 1 , and the outermost edge of the second mounting groove 12 is spaced apart from the outer peripheral wall of the rotor core 1 , and the second mounting groove 12 is spaced apart from the outer peripheral wall of the rotor core 1 .
  • the radial distance between the outermost edge of the mounting groove 12 and the outer peripheral wall of the rotor core 1 is set to L1;
  • the third mounting groove 13 can be set to extend along the radial direction of the rotor 1, and the outermost edge of the third mounting groove 13 is
  • the outer peripheral walls of the rotor core 1 are spaced apart, and the radial distance between the outermost edge of the third mounting groove 13 and the outer peripheral wall of the rotor core 1 is set to L2;
  • the first mounting groove 11 can be installed on the second Inside the mounting groove 12, a first mounting groove 11 is provided extending along the circumferential direction of the rotor 1.
  • the outermost edge of the first mounting groove 11 is spaced apart from the outer peripheral wall of the rotor 1, and the outermost edge of the first mounting groove 11 is The radial distance from the outer peripheral wall of the rotor 1 is set to L3.
  • L1, L2 and L3 satisfy the following relationship: That is to say, the radial distance L3 between the outermost edge of the first mounting groove 11 and the outer peripheral wall of the rotor core 1 and the radial distance L3 between the outermost edge of the second mounting groove 12 and the outer peripheral wall of the rotor 1
  • the ratio of L1 is greater than or equal to 2.5 times the radial distance L2 between the outermost edge of the third mounting groove 13 and the outer peripheral wall of the rotor core 1 and the outermost edge of the second mounting groove 12 and the outer periphery of the rotor core 1
  • the radial distance between the walls is set to the ratio of L1; the radial distance L3 between the outermost edge of the first mounting groove 11 and the outer peripheral wall of the rotor core 1 and the outermost edge of the second mounting groove 12 and the rotor 1
  • the ratio of the radial distance L1 between the outer peripheral walls is less than or equal to 3.1 times the radial distance L3 between the outermost edge of the first
  • the position of the permanent magnet 2 determines the position of the installation slot.
  • the distance between the mounting groove and the outer surface of the rotor 100 changes, the distance between the permanent magnet 2 and the outer surface of the rotor 100 also changes.
  • the change in the distance between the permanent magnet 2 and the outer surface of the rotor 100 will cause a change in the polar arc coefficient.
  • the polar arc coefficient is determined by the ratio of the average magnetic density of the air gap and the maximum magnetic density of the air gap.
  • the pole arc coefficient is affected by the arc length of the outer surface of the rotor 100 corresponding to the permanent magnet 2 and the length of the magnetic steel magnetic isolation bridge.
  • the length of the first connection line between the geometric center of the fourth magnet 24 and the center of the rotor core 1 is L4 ;
  • the length of the second connecting line between the geometric center of the third magnet 23 and the center of the rotor 1 is L5;
  • the angle between the first connecting line and the d-axis of the rotor 1 is ⁇ 1, and the angle between the second connecting line and the d-axis The angle between them is ⁇ 2,
  • the width of the fourth magnet 24 is W4, the width of the first magnet 21 is W1, and the rotor 100 satisfies the following relationship:
  • the rotor 1 is provided with a d-axis, which extends from the center of the rotor 1 and radially passes through the center of the first mounting groove 11 along the length direction.
  • the third magnet 23 and the fourth magnet 24 are installed in the second mounting slot 12 .
  • the fourth magnet 24 extends along the length direction of the second mounting slot 12 and is located on the right side of the second mounting slot 12 .
  • the third magnet 23 extends along the second mounting slot 12 .
  • the length direction of the mounting groove 12 extends and is located on the left side of the second mounting groove 12 .
  • the geometric center of the second magnet 22 is located on the right side of the d-axis, and the geometric center of the first magnet 21 is located on the left side of the d-axis.
  • the geometric center of the second magnet 22 and the center of the rotor core 1 can be connected through a first connecting line.
  • the length of the first connecting line is set to L4, and the angle between the first connecting line and the d-axis is set to ⁇ 1;
  • the geometric center of the second magnet 22 and the center of the rotor 1 can be connected through the second connecting line, and the The length of the second connecting line is set to L5, and the angle between the second connecting line and the d-axis is set to ⁇ 2.
  • the width of the fourth magnet 24 may be set to W4, and the width of the first magnet 25 may be set to W1.
  • the rotor 100 satisfies the following relationship: That is to say, the ratio between the width of the first magnet 21 and the width of the fourth magnet 24 is greater than or equal to 0.1 times the length L4 of the first connection. And less than or equal to 0.12 times the length of the second connection L5 times
  • the angle between the line connecting the magnet center and the rotor center and the d-axis it is equivalent to changing the polar arc coefficient of the rotor 100, and there is an optimal range for the polar arc coefficient. Within this range, the air gap magnetic density waveform is closest to the sine wave, and the torque The small fluctuation also makes the cogging torque have a smaller range.
  • the rationality of the layout of the permanent magnet 2 is improved, which is beneficial to reducing the torque fluctuation of the rotor 100 and improving the NVH performance , and can also improve the anti-demagnetization performance of permanent magnets.
  • the rotor 100 satisfies the following relationship: The effect is more obvious than the above content.
  • the length of the third connecting line between the geometric center of the fifth magnet 25 and the center of the rotor 1 is L6; the geometric center of the sixth magnet 26 is The length of the fourth connecting line between the centers of rotor 1 is L7; the angle between the third connecting line and the d-axis of rotor 1 is ⁇ 3, the angle between the fourth connecting line and the d-axis is ⁇ 4, and the angle between the fourth connecting line and the d-axis of rotor 1 is ⁇ 4.
  • the width of the third magnet 23 is W3, the width of the second magnet 22 is W2, and the rotor 100 satisfies the following relationship:
  • third mounting slots 13 can be respectively provided on the left and right sides of the second mounting slot 12 . Both third mounting slots 13 extend along the radial direction of the rotor 1 , and the two third mounting slots 13 extend in the radial direction of the rotor 1 .
  • the mounting groove 13 is symmetrically arranged along the d-axis of the rotor 1 .
  • a fifth magnet 25 and a sixth magnet 26 are disposed in the third mounting slot 13 .
  • the fifth magnet 25 extends along the length direction of the third mounting slot 13 and is located outside the third mounting slot 13 .
  • the sixth magnet 26 extends along the length direction of the third mounting slot 13 .
  • the length direction of the mounting groove 13 extends and is located inside the third mounting groove 13 .
  • the geometric center of the fifth magnet 25 and the center of the rotor core 1 are connected through a third connecting line, the length of the third connecting line is set to L6, and the angle between the third connecting line and the d-axis of the rotor 1 is set is ⁇ 3; the geometric center of the sixth magnet 26 and the center of the rotor core 1
  • the centers are connected by a fourth connecting line, the length of the fourth connecting line is set to L7, and the angle between the fourth connecting line and the d-axis of the rotor 1 is set to ⁇ 4.
  • the length L7 of the fourth connection line is less than the length L6 of the third connection line, and the angle ⁇ 4 between the fourth connection line and the d-axis of the rotor 1 is smaller than the angle ⁇ 3 between the third connection line and the d-axis of the rotor 1 .
  • the width of the third magnet 23 may be set to W3, and the width of the second magnet 22 may be set to W2.
  • the rotor 100 satisfies the following relationship: That is to say, the ratio between the width of the second magnet 22 and the width of the third magnet 23 is greater than or equal to 0.13 times the length L7 of the fourth connection. And less than or equal to 0.13 times the length of the third connection L6 multiplied by
  • the angle between the line connecting the center of the magnet and the center of the rotor and the d-axis it is equivalent to changing the polar arc coefficient of the rotor 100, and there is an optimal range for the polar arc coefficient. Within this range, the air gap magnetic density waveform is closest to the sine wave, and the torque The small fluctuation also makes the cogging torque have a smaller range.
  • the rationality of the layout of the permanent magnet 2 is improved, which is beneficial to reducing the torque fluctuation of the rotor 100 and improving the NVH performance , and can also improve the anti-demagnetization performance of permanent magnets.
  • the rotor 100 satisfies the following relationship: The effect is more obvious than the above content.
  • the length of the fifth connecting line between the geometric center of the first magnet 21 and the center of the rotor 1 is L8;
  • the length of the sixth connecting line between the geometric center of the two magnets 22 and the center of the rotor 1 is L9;
  • the angle between the fifth connecting line and the d-axis of the rotor 1 is ⁇ 5, and the angle between the sixth connecting line and the d-axis of the rotor 1 is ⁇ 5.
  • the angle between is ⁇ 6, the width of the fifth magnet 25 is W5, the width of the second magnet 22 is W2, and the rotor 100 satisfies the following relationship:
  • the rotor 1 is provided with a d-axis, which extends from the center of the rotor core 1 and radially passes through the center of the third mounting groove 13 along the length direction.
  • the first magnet 21 and the second magnet 22 are installed in the first mounting slot 11 .
  • the first magnet 21 extends along the length direction of the first mounting slot 11 and is located on the left side of the first mounting slot 11 .
  • the second magnet 22 extends along the first mounting slot 11 .
  • the length direction of the mounting groove 11 extends and is located on the right side of the first mounting groove 11 .
  • the geometric center of the first magnet 21 is located on the left side of the d-axis, and the geometric center of the second magnet 22 is located on the right side of the d-axis.
  • the geometric center of the first magnet 21 and the center of the rotor core 1 can be connected through a fifth connecting line.
  • the length of the fifth connecting line is set to L8, and the angle between the fifth connecting line and the d-axis is set to ⁇ 5;
  • the geometric center of the second magnet 22 and the center of the rotor core 1 can be connected through the sixth connecting line,
  • the length of the sixth connecting line is set to L9, and the angle between the sixth connecting line and the d-axis is set to ⁇ 6.
  • the width of the fifth magnet 25 may be set to W5
  • the width of the second magnet 22 may be set to W2.
  • the rotor 100 satisfies the following relationship: That is to say, the ratio between the width of the second magnet 22 and the width of the fifth magnet 25 is greater than or equal to 0.14 times the length L8 of the fifth connecting line. And less than or equal to 0.18 times the length of the sixth connection L9 multiplied by
  • the angle between the line connecting the magnet center and the rotor center and the d-axis it is equivalent to changing the polar arc coefficient of the rotor 100, and there is an optimal range for the polar arc coefficient. Within this range, the air gap magnetic density waveform is closest to the sine wave, and the torque The small fluctuation also makes the cogging torque have a smaller range.
  • the rationality of the layout of the permanent magnet 2 is improved, which is beneficial to reducing the torque fluctuation of the rotor 100 and improving the NVH performance , and can also improve the anti-demagnetization performance of permanent magnets.
  • the rotor 100 satisfies the following relationship: The effect is more obvious than the above content.
  • the fourth magnet 24 The length of the first connection line between the geometric center and the center of the rotor core 1 is L4; the length of the second connection line between the geometric center of the first magnet 21 and the center of the rotor core 1 is L5; the fifth magnet The length of the third connecting line between the geometric center of 25 and the center of rotor core 1 is L6; which satisfies the following relationship:
  • the second mounting groove 12 extends along the circumferential direction of the rotor 1.
  • the third magnet 23 and the fourth magnet 24 are disposed in the second mounting groove 12.
  • the third magnet 23 and the fourth magnet 24 are arranged along the circumferential direction of the rotor 1.
  • the length direction of the first mounting grooves 11 is arranged in sequence.
  • the geometric center of the fourth magnet 24 and the center of the rotor core 1 can be connected through a first connection line, and the length of the first connection line is set to L4, and the geometric center of the third magnet 23 can be connected with the rotor core 1
  • the centers of are connected through a second connection, and the length of the second connection is set to L5.
  • the third mounting slot 123 extends along the radial direction of the rotor 1.
  • the fifth magnet 25 is disposed in the third mounting slot 13.
  • the geometric center of the fifth magnet 25 and the center of the rotor core 1 can be connected through a third connection line. And set the length of the third connection to L6.
  • L4, L5 and L6 satisfy the following relationship: That is to say, the length L4 of the first connection is less than or equal to 1.1 times the length L5 of the second connection; the length L5 of the second connection is greater than or equal to 1.01 times the length L6 of the third connection. Therefore, changing the distance between the magnet and the outermost side of the rotor will change the arc length of the outer surface of the rotor or the air gap magnetic density faced by the magnet.
  • there is an optimal range for the polar arc coefficient Within this range, the air gap The magnetic density waveform is closest to a sine wave, the cogging torque has a smaller range, and the torque fluctuation also has a smaller range.
  • the layout of the permanent magnets 2 is reasonable, which is beneficial to improving the anti-demagnetization performance of the rotor 1.
  • the rotor 100 satisfies the following relationship: The effect is more obvious than the above content.
  • the change in width affects the polar arc coefficient of the motor, thereby affecting the load torque and NVH performance of the motor.
  • This application also proposes a motor.
  • a motor includes the rotor 100 of any of the above embodiments.
  • a plurality of mounting slots are provided on the rotor core 1, and the permanent magnets 2 are respectively installed in the plurality of mounting slots, and the permanent magnets 2 arranged in the first mounting slot 11 are divided into two uneven sections.
  • the cogging torque generated during the rotation of the rotor core 1 is reduced, thereby reducing the torque fluctuation caused by the cogging torque and reducing the jitter caused by the torque fluctuation, and by arranging at least two sets of permanent magnets located in different installation slots.
  • the material settings of 2 are different, which is beneficial to reducing the amount of rare earth materials, reducing costs, and improving the NVH performance of the motor.
  • This application also proposes a vehicle.
  • a vehicle includes the motor of any of the above embodiments.
  • a plurality of mounting slots are provided on the rotor core 1, and the permanent magnets 2 are respectively installed in the plurality of mounting slots, and the permanent magnets 2 arranged in the first mounting slot 11 are divided into two uneven sections.
  • the cogging torque generated during the rotation of the rotor 1 is reduced, thereby reducing the torque fluctuation caused by the cogging torque and reducing the jitter caused by the torque fluctuation, and by arranging at least two sets of permanent magnets 2 located in different installation slots.
  • the material settings are different, which is beneficial to reducing the amount of rare earth materials, reducing costs, and improving the NVH performance of the motor, thus improving the overall NVH performance of the vehicle.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this application, “plurality” means two or more, unless otherwise explicitly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • connection connection
  • fixing and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the present application. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

一种转子(100)和电机,转子(100)包括:转子铁芯(1)和多个永磁体(2),转子铁芯(1)上设有多个安装槽;多个永磁体(2)一一对应地设置在多个安装槽内,至少两个安装槽内的永磁体(2)的材料不同;其中,多个安装槽包括第一安装槽(11),设于第一安装槽(11)内的永磁体(2)包括分段设置的第一磁体(21)和第二磁体(22)。

Description

转子和电机
相关申请的交叉引用
本申请基于申请号为202210784919.9、申请日为2022年06月29日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电机领域,尤其是涉及一种转子和电机。
背景技术
永磁同步电机广泛应用于电动汽车,电机是电气驱动系统的核心之一,电机的综合性能直接影响电动汽车的性能。目前在电动汽车用高过载能力、防去磁永磁同步电机(PMSM)开发方面,还存在着技术瓶颈,存在齿槽转矩大、成本高、负载扭矩差等一系列问题,存在改进的空间。
申请内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的一个目的在于提出一种转子,通过在转子的多个安装槽内分别安装有永磁体,并将设于第一安装槽的永磁体分为不均匀的两段,减少了转子在转动过程中产生的齿槽转矩,利于提高转子的稳定性,且通过将多组永磁体的材料设置为不同,减少了稀土材料的用量,降低了成本。
根据本申请实施例的转子,包括:转子铁芯,所述转子铁芯设有多个安装槽;以及多个永磁体,所述多个永磁体一一对应地设置在所述多个安装槽内,至少两个所述安装槽内的所述永磁体的材料不同;其中,所述多个安装槽包括第一安装槽,设于所述第一安装槽内的永磁体包括分段设置的第一磁体和第二磁体。
根据本申请实施例的转子,在转子上设有多个安装槽,通过在多个安装槽内分别安装有永磁体,并将设于第一安装槽内的永磁体分段设置,减少了转子在转动过程中产生的齿槽转矩,从而减少了齿槽转矩引起的扭矩波动,降低了扭矩波动导致的抖动,且通过将至少两个安装槽内的所述永磁体的材料不同,利于减少稀土材料的用量,降低成本。
根据本申请一些实施例的转子,所述第一安装槽内的永磁体采用第一种材料,所述第一种材料为铁氧体。
根据本申请一些实施例的转子,所述第一安装槽沿所述转子铁芯的圆周方向设置。
根据本申请一些实施例的转子,所述多个安装槽还包括第二安装槽,所述第二安装槽设于所述第一安装槽的径向外侧。
根据本申请一些实施例的转子,设于所述第二安装槽内的永磁体包括分段设置的第三磁体和第四磁体。
根据本申请一些实施例的转子,设于所述第二安装槽内的永磁体采用不同于所述第一种材料的第二种材料,所述第二种材料为稀土材料。
根据本申请一些实施例的转子,在所述第一安装槽的宽度方向上,所述第一磁体的宽度为W1,所述第二磁体的宽度为W2,在所述第二安装槽的宽度方向上,所述第三磁体的宽度为W3,所述第四磁体的宽度为W4;其中所述转子满足如下关系式:0.1(W3+W4)≤(W1+W2)≤3.3(W3+W4)。
根据本申请一些实施例的转子,所述转子满足如下关系式:0.3(W3+W4)≤(W1+W2)≤1.95(W3+W4)。
根据本申请一些实施例的转子,所述多个安装槽还包括第三安装槽,所述第三安装槽沿所述转子铁芯的径向延伸,每个所述第一安装槽的长度方向的两侧均对应设置所述第三安装槽,所述第三安装槽的径向方向和所述第一安装槽的长度方向具有夹角。
根据本申请一些实施例的转子,所述第三安装槽内的永磁体包括分段设置的第五磁体和第六磁体。
根据本申请一些实施例的转子,所述第三安装槽内的永磁体材料为稀土材料。
根据本申请一些实施例的转子,在垂直于所述转子铁芯的旋转轴线的一横截面上,所述转子满足如 下关系:其中,L1为所述第二安装槽的最外侧至所述转子铁芯外边缘的距离,L2为所述第三安装槽的最外侧至所述转子铁芯外边缘的距离,L3为所述一安装槽的最外侧至所述转子铁芯外边缘的距离。
根据本申请一些实施例的转子,所述转子满足如下关系式:
根据本申请一些实施例的转子,在垂直于所述转子铁芯的旋转轴线的一横截面上,所述第四磁体的几何中心与所述转子铁芯的中心之间的第一连线的长度为L4;所述第三磁体的几何中心与所述转子铁芯的中心之间的第二连线的长度为L5;
所述第一连线与所述转子铁芯的d轴之间的夹角为α1,所述第二连线与所述d轴之间的夹角为α2,所述第四磁体的宽度为W4,所述第一磁体的宽度为W1,所述转子满足如下关系式:
根据本申请一些实施例的转子,在垂直于所述转子铁芯的旋转轴线的一横截面上,所述第五磁体的几何中心与所述转子铁芯的中心之间的第三连线的长度为L6;所述第六磁体的几何中心与所述转子铁芯的中心之间的第四连线的长度为L7;所述第三连线与所述转子的d轴之间的夹角为α3,所述第四连线与所述d轴之间的夹角为α4,所述第三磁体的宽度为W3,所述第二磁体的宽度为W2,所述转子满足如下关系式:
根据本申请一些实施例的转子,在垂直于所述转子铁芯的旋转轴线的一横截面上,所述第一磁体的几何中心与所述转子铁芯的中心之间的第五连线的长度为L8;所述第二磁体的几何中心与所述转子铁芯的中心之间的第六连线的长度为L9;
所述第五连线与所述转子的d轴之间的夹角为α5,所述第六连线与所述d轴之间的夹角为α6,所述第五磁体的宽度为W5,所述第二磁体的宽度为W2,所述转子满足如下关系式:
根据本申请一些实施例的转子,所述转子满足如下关系:
根据本申请一些实施例的转子,在垂直于所述转子铁芯的旋转轴线的一横截面上,所述第四磁体的几何中心与所述转子铁芯的中心之间的第一连线的长度为L4;
所述第三磁体的几何中心与所述转子铁芯的中心之间的第二连线的长度为L5;
所述第五磁体的几何中心与所述转子铁芯的中心之间的第三连线的长度为L6;
其中所述转子满足如下关系式:
根据本申请一些实施例的转子,所述转子满足如下关系:
根据本申请一些实施例的转子,在所述转子铁芯的圆周方向上,所述第一磁体的长度和所述第二磁体的长度的比值大于等于1/7且小于等于1/2,所述第三磁体的长度和所述第四磁体的长度的比值大于等于1/7且小于等于1/2;在所述转子铁芯的径向方向上,所述第五磁体的长度和所述第六磁体的长度的比值大于等于1/7且小于等于1/2。
根据本申请一些实施例的转子,在所述转子铁芯的径向方向上,所述第一磁体和所述第二磁体的宽度的取值范围为5mm-12mm,所述第三磁体和所述第四磁体的宽度的取值范围为2mm-7mm;在所述转子铁芯的圆周方向上,所述第五磁体和所述第六磁体的取值范围为2mm-7mm。
本申请还提出了一种电机。
根据本申请实施例的电机,包括根据上述任一实施例所述的转子。
根据本申请实施例的电机,转子包括转子铁芯和多个永磁体,转子铁芯上设有多个安装槽;多个永磁体,多个永磁体一一对应地设置在多个安装槽内,至少两个安装槽内的永磁体的材料不同,多个安装槽包括第一安装槽,第一安装槽内的永磁体包括分段设置的第一磁体和第二磁体。通过将第一安装槽槽内的永磁体分段设置减少了转子在转动过程中产生的齿槽转矩,从而减少齿槽转矩引起的扭矩波动,降低了扭矩波动导致的抖动,且通过将转子上的至少两个安装槽内的永磁体的材料设置不同,利于减少稀土材料的用量,降低成本,提高了电机的NVH性能。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是根据本申请实施例的转子的示意图;
图2是根据本申请实施例的转子铁芯的局部示意图;
图3是根据本申请实施例的转子铁芯的局部示意图;
图4是根据本申请实施例的转子铁芯的局部示意图;
图5是根据本申请另一实施例的转子铁芯的局部示意图;
图6是现有技术中采用了同种永磁材料不分段的齿槽转矩的示意图;
图7是现有技术中采用了同种永磁材料不分段的扭矩波动的示意图;
图8是根据本申请实施例的不同种永磁材料分段的转子的齿槽转矩的示意图;
图9根据本申请实施例的不同种永磁材料分段的转子的扭矩波动的示意图。
附图标记:
转子100,
转子铁芯1,第一安装槽11,第二安装槽12,第三安装槽13,
永磁体2,第一磁体21,第二磁体22,第三磁体23,第四磁体24,第五磁体25,第六磁体26。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面,参考附图,描述根据本申请实施例的转子100。
如图1-图9所示,根据本申请实施例的转子100,包括:转子铁芯1和多个永磁体2。转子铁芯上1设有多个安装槽;多个永磁体2一一对应地设置在多个安装槽内,至少两个安装槽内的永磁体2的材料不同;其中,多个安装槽包括第一安装槽11,设于第一安装槽11内的永磁体2包括分段设置的第一磁体21和第二磁体22。
由此,通过在转子铁芯1的多个安装槽内分别安装有永磁体2,并将设于第一安装槽11的永磁体2分段设置,减少了转子100在转动过程中产生的齿槽转矩,从而减少因为齿槽转矩引起的扭矩波动,降低了扭矩波动导致的抖动。其中第一磁体的分段设置,既可以设置为均匀分段,也可以设置为不均匀分段,将第一磁体不均匀分段时,在减少齿槽转矩方面效果会更好。并且通过将不同安装槽内的永磁体2的材料设置不同,比如部分安装槽内的永磁体为稀土永磁体,部分安装槽内的永磁体为铁氧体永磁体,如此设置减少了转子100中的稀土永磁体的用量,降低了转子100的成本。
如图6至图9所示,图6是现有技术中采用了同种永磁材料不分段的齿槽转矩的波形示意图,数值为181.02Nm;图7是现有技术中采用了同种永磁材料不分段的扭矩波动的示意图,扭矩波动数值为7.44%;图8是根据本申请实施例不同永磁体材料的分段的转子齿槽转矩的波形示意图,数值为32.94Nm;图9是根据本申请实施例不同永磁体材料的分段的转子扭矩波动的示意图,扭矩波动数值为2.62%。其中齿槽转矩的数值无法在本图中可以直观得到,是在实验过程中记录的相关数 据,但是对于本领域技术人员来说通过该波形并得到相关的齿槽转矩的数值是毫无疑问的。
根据仿真结果,磁钢不均匀分段后相比磁钢不分段齿槽转矩下降148.08Mnm,即齿槽转矩下降81.8%,扭矩波动数值下降4.82%。因此与现有技术相比,根据本申请的实施例,在降低齿槽转矩和扭矩波动方面效果显著。
例如,参照图1至和图5,转子100由多个转子铁芯1在在轴向方向上叠加形成,每个转子铁芯1构造为环状结构,多个转子铁芯1沿转子100的轴向方向依次堆叠设置以限定出转子100。转子铁芯1沿圆周方向设有多个安装槽组,多个安装槽组沿转子铁芯1的周向均匀间隔设置,每个安装槽组可以包括间隔设置的多个安装槽,且每个安装槽内均安装有永磁体2,使得转子100设有多组间隔开设置的永磁体2。在转子铁芯1的第一安装槽中的永磁体进行分段设置,可以减少转子100在转动过程中产生的齿槽转矩。
其中,多个安装槽包括第一安装槽11,安装于第一安装槽11内的永磁体2包括第一磁体21和第二磁体22,第一磁体21和第二磁体22分段设置,第一磁体21和第二磁体22沿第一安装槽11的长度方向依次布置,第一磁体21的宽度尺寸和第二磁体22的宽度尺寸相等,使得第一磁体21沿长度方向的端部可以和第二磁体22沿长度方向的端部正对,且可以通过胶粘或是焊接的形式进行连接。同时,第一磁体21的长度尺寸和第二磁体22的长度尺寸不同,第一磁体21和第二磁体22之间的长度比例通常可以设置在1:2到1:7之间。如可以设置第二磁体22的长度尺寸为第一磁体21的长度尺寸的两倍本申请对此不做限制。
需要说明的是,根据叠加法的原理,电机每极的总齿槽转矩可简化为每段永磁体2产生的齿槽转矩的叠加,满足:
式中:Ns为永磁体2的分段数;Tn为n次谐波的齿槽转矩幅值;Np为一个齿距的齿槽转矩周期数;Z为槽数;Δβ为相邻两段永磁体2的偏移角度。一个齿距的齿槽转矩周期数:Np=2p/GCD(Z,2p),其中:GCD(Z,2p)代表Z和2p的最大公约数。由上式可以看出,通过改变永磁体2的分段数Ns,可以有效地削弱每极的总齿槽转矩。
由此,可以通过将永磁体2进行分段设置,并将设于第一安装槽11的永磁体2分为两段结构,包括第一磁体21和第二磁体22,以减少齿槽转矩,从而减少齿槽转矩引起的扭矩波动,减少了扭矩波动造成的出力不稳导致的抖动问题。其中第一安装槽可以是每个安装槽组中的多个安装槽中的位于内层永磁体的安装槽、或者是外层永磁体的安装槽、或者是延径向方向延伸的永磁体安装槽。其中,内层和外层分别是相对于转子铁芯的轴孔来说,在径向方向上靠近轴孔的是内层永磁体的安装槽,在径向方向上远离轴孔的是外层永磁体的安装槽。因此,本实施例中的第一安装槽的“第一”并不具有限定作用,在转子铁芯1上的安装槽组中的任意一个安装槽中的永磁体进行分段设置均在本申请的保护范围之内。
同时,可以将至少两个安装槽内的永磁体2的材料设置为不同,如可以将设于第一安装槽11内的永磁体2设置为铁氧体永磁体,并且将该铁氧体永磁体分段设置,并将其它安装槽内的永磁体2设置为稀土永磁体;或者将设于第一安装槽11内的永磁体2设置为稀土永磁体,并将其它安装槽内的永磁体2设置为铁氧体永磁体,本申请对此不作限制。由此,利于减少稀土永磁体的用量,降低永磁体2的成本。
其中更优选地,第一安装槽11为内层永磁体安装槽,第二安装槽12位于第一安装槽11的径向外侧,第一安装槽11沿转子铁芯1的圆周方向延伸,第二安装槽12沿转子铁芯1的圆周方向延伸。第一安装槽11中的永磁体采用第一种材料,第一种材料为铁氧体材料,并且分段设置,该铁氧体材料包括第一磁体21和第二磁体22。其他安装槽中的永磁体材料不同于第一安装槽中的铁氧体永磁材料,如其他永磁材料为稀土永磁材料。通过将不同安装槽中的永磁体2的材料设置不同,利于减少稀土材料的用量,降低成本。并将设于第一安装槽11的铁氧体永磁体2分段设置,减少了转子100在转动过程中产生的齿槽转矩,从而减少了齿槽转矩引起的扭矩波动,降低了扭矩波动 导致的抖动。
其中,第二安装槽12对应设置的永磁体2包括分段设置的第三磁体23和第四磁体24,第二安装槽12位于第一安装槽11的径向外侧,即第二安装槽12为外层永磁体的安装槽。
例如,参照图1,可以设置转子1具有多个安装槽组,每个安装槽组包括多个安装槽,每个安装槽组包括第二安装槽12,第二安装槽12与第一安装槽11间隔开设置,且第二安装槽12位于第一安装槽11的径向外侧。第二安装槽12内设有永磁体2,设于第二安装槽12的永磁体2包括分段设置的第三磁体23和第四磁体24,第三磁体23和第四磁体24沿第二安装槽12的长度方向依次布置,第三磁体23的宽度尺寸和第四磁体24的宽度尺寸相等,使得第三磁体23沿长度方向的端部可以和第四磁体24沿长度方向的端部正对,且可以通过胶粘或是焊接的形式进行连接。
其中,第二安装槽12中的永磁体2的材料内的永磁体采用不同于第一种材料的第二种材料,第二种材料为稀土材料,即第三磁体23和第四磁体24为稀土永磁材料。
在本申请的一些实施例中,在第一安装槽11的宽度方向上,第一磁体21的宽度为W1,第二磁体22的宽度为W2,在第二安装槽12的宽度方向上,第三磁体23的宽度为W3,第四磁体24的宽度为W4,其中满足如下关系式:0.1(W3+W4)≤(W1+W2)≤3.3(W3+W4)。
例如,参照图1至图5,可以设置第一安装槽11和第二安装槽12沿转子铁芯1的周向延伸布置,转子铁芯1的径向设为第一安装槽11的宽度方向和第二安装槽12的宽度方向。第一安装槽11内设有第一磁体21和第二磁体22,第一磁体21沿第一安装槽11的宽度方向的宽度尺寸设为W1,且第二磁体22第一安装槽11的宽度方向的宽度尺寸设为W2。第二安装槽12内设有第三磁体23和第四磁体24,第三磁体23沿第二安装槽12的宽度方向的宽度尺寸设为W3,且第四磁体24沿第二安装槽12的宽度方向的宽度尺寸设为W4。
其中,满足如下关系式:0.1(W3+W4)≤(W1+W2)≤3.3(W3+W4)。也就是说,第一磁体21的宽度尺寸W1和第二磁体22的宽度尺寸W2相加的值大于等于0.1倍的第三磁体23的宽度尺寸W3和第四磁体24的宽度尺寸W4相加的值,且小于等于3.3倍的第三磁体23的宽度尺寸W3和第四磁体24的宽度尺寸W4相加的值。由此,通过改变磁体的宽度会改变磁体的磁性能,以此来调整永磁体的工作点。一般来说在同样条件下,磁体的宽度变大,磁体的性能变大。当使用外加磁场时,要使得磁体在去掉外加磁场后,磁体的磁滞曲线不能实现回复到添加外加磁场前那一点,必需施加比没有增加磁体宽度前更大的外界退磁场或者其它使磁钢退磁的影响。但是磁体的宽度又不能无限扩大,过大的磁体使得安装槽的变大,安装槽变大会导致转子铁芯的强度,因此将上述第一磁体、第二磁体、第三磁体和第四磁体之间的的宽度关系限制在上述范围内,提高了磁体2布局的合理性,利于提高转子100的抗退磁性能。更优地,满足如下关系:0.3(W3+W4)≤(W1+W2)≤1.95(W3+W4),在抗退磁等效果方面更加明显。
在本申请的一些实施例中,第一磁体21的宽度和第二磁体22的宽度的取值范围均为5mm-12mm。例如,可以将第一磁体21的宽度和第二磁体22的宽度设置为6mm;或者,可以将第一磁体21的宽度和第二磁体22的宽度设置为8.5mm;或者,可以将第一磁体21的宽度和第二磁体22的宽度设置为11mm;又或者,可以将第一磁体21的宽度和第二磁体22的宽度设置为任意满足条件的数值,本申请对此不作限制。
在本申请的一些实施例中,多个安装槽还包括第三安装槽13,第三安装槽13沿转子铁芯1的径向延伸,每个第一安装槽13的长度方向的两侧均对应设置第三安装槽13,第三安装槽13的长度方向和第一安装槽11或第二安装槽12的长度方向具有夹角,第三安装槽13对应设置的永磁体2包括分体设置的第五磁体25和第六磁体26。
例如,参照图2,可以设置转子铁芯1具有多个安装槽组,每个安装槽组均具有多个安装槽,每组的多个安装槽包括第三安装槽13,第三安装槽13与第一安装槽11间隔开设置,第三安装槽13的长度方向与第二安装槽12的长度方向不同以形成有夹角。这样,可以将设于第一安装槽11内的一组永磁体2和设于第三安装槽13内的一组永磁体2布置在转子铁芯1的不同位置处。其中,设于第三安装槽13的永磁体2包括第五磁体25和第六磁体26,第五磁体25和第六磁体26分段设置,第五磁体25的端部可以和第六磁体26的端部正对,且通过胶粘或是焊接的形式进行连接。 由此,通过将设于第三安装槽13的永磁体2分为两段,减少了转子100在转动过程中产生的齿槽转矩,从而减少齿槽转矩引起的扭矩波动,减少扭矩波动造成的抖动。
进一步地,可以将第三安装槽13内的永磁体材料为稀土材料,即设置第五磁体25和第六磁体26为稀土永磁材料。
在本申请的一些实施例中,在第三安装槽13的长度方向上,第五磁体25的长度和第六磁体26的长度不同。例如,参照图3,可以设置第五磁体25和第六磁体26沿第三安装槽13的长度方向依次布置,第五磁体25的宽度尺寸和第六磁体26的宽度尺寸相等,使得第五磁体25沿长度方向的端部可以和第六磁体26沿长度方向的端部正对相连。其中,第五磁体25的长度尺寸和第六磁体26的长度尺寸设置为不同,第五磁体25和第六磁体26之间的长度比例通常可以设置在1:2到1:7之间。如可以设置第六磁体26的长度尺寸为第五磁体25的长度尺寸的两倍;又或者可以设置第六磁体26的长度尺寸为第五磁体25的长度尺寸的三倍,本申请对此不做限制。
由此,通过将永磁体2设为多组,并将设于第三安装槽13的永磁体2分为不均匀的两段,利于减少齿槽转矩,以减少齿槽转矩引起的扭矩波动,降低了扭矩波动而导致的抖动,提高了转子100转动时的稳定性。
在本申请的一些实施例中,第一安装槽11沿转子铁芯1的周向延伸,第三安装槽13沿转子铁芯1的径向延伸,每个第一安装槽11的长度方向的两侧均对应设置第三安装槽13。
例如,参照图1-图5,可以在转子铁芯1的径向内侧设有第一安装槽11,第一安装槽11沿转子1的周向延伸布置且构造为直线状,第一安装槽11设有第一磁体21和第二磁体22,第一磁体21和第二磁体22沿转子铁芯1的周向依次布置,第一磁体21和第二磁体22的长度尺寸不同,使得第一磁体21和第二磁体22的连接位置偏离第一安装槽11沿长度方向的中间位置。其中,对应第一安装槽11设有两个第三安装槽13,两个第三安装槽13分别设置在第一安装槽11沿转子铁芯1的周向的两侧,两个第三安装槽13均沿转子铁芯1的径向延伸布置,两个第三安装槽13内分别设有一组第五磁体25和第六磁体26,第五磁体25和第六磁体26沿转子1的径向依次布置,第五磁体25和第六磁体26的长度尺寸不同,使得第五磁体25和第六磁体26的连接位置偏离第三安装槽12沿长度方向的中间位置。
例如,参照图5,可以在转子1的径向外侧设有第二安装槽12,第二安装槽12沿转子铁芯1的周向延伸布置,且第二安装槽12沿长度方向的两端朝向转子1的外周壁倾斜延伸,以将第二安装槽12构造弧状结构。第二安装槽12内设有第三磁体23和第四磁体24,第三磁体23和第四磁体24对应构造为弧状结构,第三磁体23和第四磁体24沿第二安装槽12的长度方向依次布置,第三磁体23和第四磁体24的长度尺寸设置相等,使得第三磁体23和第四磁体24朝向彼此的一端可以在第一安装槽11沿长度方向的中间区域相连。
可以理解的是,通过设置第一安装槽11沿转子铁芯1的周向延伸,且在第一安装槽11的周向两侧分别设有沿转子铁芯1的径向延伸的第三安装槽13,使得转子铁芯1上的永磁体2分布合理,利于减小转子100转动时的齿槽转矩,以减少齿槽转矩引起的扭矩波动,降低了扭矩波动而导致的抖动,提高了转子100转动时的稳定性。
在本申请的一些实施例中,多个安装槽还包括第二安装槽12,第二安装槽12对应设置的永磁体2包括分体设置的第三磁体23和第四磁体24,第二安装槽12位于第一安装槽11的径向外侧。
例如,参照图4,可以设置转子1具有多个安装槽组,每个安装槽组均具有多个安装槽,每个安装槽组的多个安装槽中包括第二安装槽12,第二安装槽12与第一安装槽11、第三安装槽13间隔开设置,且第二安装槽12位于第一安装槽11的径向外侧。第二安装槽11内设有分段永磁体2,设于第二安装槽12的一组永磁体2包括第三磁体23和第四磁体24,第三磁体23和第四磁体24分段设置,第三磁体23和第四磁体24沿第一安装槽11的长度方向依次布置,第三磁体23的宽度尺寸和第四磁体24的宽度尺寸相等,使得第三磁体23沿长度方向的端部可以和第四磁体24沿长度方向的端部正对,且可以通过胶粘或是焊接的形式进行连接。
同时,第三磁体23的长度尺寸和第四磁体24的长度尺寸不同,第三磁体23和第四磁体24之间的长度比例通常可以设置在1:2到1:7之间,如可以设置第四磁体24的长度尺寸为第三磁体23 的长度尺寸的两倍本申请对此不做限制。第一磁体21和第二磁体22之间的长度比例同上述内容,因此不再进行重复说明。
例如,参照图4,可以在转子1的径向外侧区域设有第二安装槽12,第二安装槽12沿转子1的周向延伸布置,第二安装槽12内设有沿长度方向依次分布的第三磁体23和第四磁体24,第一安装槽11的径向外侧设有第二安装槽12,第二安装槽12沿转子1的周向延伸布置,第二安装槽12内设有沿长度方向依次分布的第三磁体23和第四磁体24。
可以理解的是,通过在转子铁芯1上设有多个安装槽,多个安装槽内分别安装有永磁体2,并将设于第二安装槽12的永磁体2分为不均匀的两段,减少了转子100在转动过程中产生的齿槽转矩,从而减少齿槽转矩引起的扭矩波动,降低了扭矩波动导致的抖动,提高了转子100在转动过程的稳定性。
在本申请的一些实施例中,第三磁体23的宽度和第四磁体24的宽度的取值范围均为2mm-7mm,第五磁体25的宽度和第六磁体26的宽度的取值范围均为2mm-7mm。例如,可以将第三磁体23和第四磁体24的宽度设置为3mm;或者,可以将第三磁体23和第四磁体24的宽度设置为4.5mm;或者,可以将第三磁体23和第四磁体24的宽度设置为6mm;又或者,可以将第三磁体23和第四磁体24的宽度设置为任意满足条件的数值,本申请对此不作限制。同样的,第五磁体25和第六磁体26同上述一样,此处不再重复说明。由此,实现了高速电机对高磁密的要求,降低了第三磁体23和第四磁体24的重量,减小了转子100在旋转过程中受到的离心力,提高了转子100的稳定性。
通过上述设置,当电机高速运行时,若设于第一安装槽11的永磁体2在一定温度范围内出现散热不充分的情况,可以保证第二安装槽12的永磁体2不退磁,提高了转子100的可靠性。
在本申请的一些实施例中,在垂直于转子铁芯1的旋转轴线的同一横截面上,第二安装槽12的最外侧边缘与转子1的外周壁之间的径向距离为L1,第三安装槽13的最外侧边缘与转子1的外周壁之间的径向距离为L2,第一安装槽11的最外侧边缘与转子1的外周壁之间的径向距离为L3,其中满足如下关系式:
例如,参照图2-图4,可以设置第二安装槽12沿转子铁芯1的周向延伸,第二安装槽12的最外侧边缘与转子铁芯1的外周壁间隔开设置,且第二安装槽12的最外侧边缘与转子铁芯1的外周壁之间的径向距离设置为L1;可以设置第三安装槽13沿转子1的径向延伸,第三安装槽13的最外侧边缘与转子铁芯1的外周壁间隔开设置,且第三安装槽13的最外侧边缘与转子铁芯1的外周壁之间的径向距离设置为L2;可以将第一安装槽11安装在第二安装槽12的内侧,且设置第一安装槽11沿转子1的周向延伸,第一安装槽11的最外侧边缘与转子1的外周壁间隔开设置,且第一安装槽11的最外侧边缘与转子1的外周壁之间的径向距离设置为L3。
其中,L1、L2和L3满足如下关系式:也就是说,第一安装槽11的最外侧边缘与转子铁芯1的外周壁之间的径向距离L3与第二安装槽12的最外侧边缘与转子1的外周壁之间的径向距离为L1的比值大于等于2.5倍的第三安装槽13的最外侧边缘与转子铁芯1的外周壁之间的径向距离L2与第二安装槽12的最外侧边缘与转子铁芯1的外周壁之间的径向距离设置为L1的比值;第一安装槽11的最外侧边缘与转子铁芯1的外周壁之间的径向距离L3与第二安装槽12的最外侧边缘与转子1的外周壁之间的径向距离为L1的比值小于等于3.1倍的第一安装槽11的最外侧边缘与转子铁芯1的外周壁之间的径向距离L3与第三安装槽13的最外侧边缘与转子铁芯1的外周壁之间的径向距离设置为L2的比值。因为永磁体2的位置决定了安装槽的位置。当安装槽和转子100外表面的距离发生变化后,永磁体2和转子100外表面的距离也发生变化。而永磁体2距离转子100外表面的距离变化,会引起极弧系数的变化,极弧系数,是由气隙平均磁密和气隙最大磁密比值决定的。或者说,极弧系数由永磁体2所对应转子100外表面弧长和磁钢隔磁桥长度影响。改变永磁体2距离转子100最外侧距离,会改变永磁体2对转子10外表面弧长或者气隙磁密,在移动过程中,极弧系数存在一个最优范围,在这个范围内,气隙磁密波形最接近正弦波。因此,将上述L1、L2、L3三者距离之间的关系的限定在上述范围内,使得气隙磁密波形最接近正弦波,齿 槽转矩有较小的的范围,扭矩波动也有较小的范围。由此来减少扭矩波动和齿槽转矩,提升了NVH性能。
更优选地实施例中,当L1、L2、L3满足如下关系式时:转子100的减少扭矩波动相比也更加明显。
在本申请的一些实施例中,在垂直于转子铁芯1的旋转轴线的一横截面上,第四磁体24的几何中心与转子铁芯1的中心之间的第一连线的长度为L4;第三磁体23的几何中心与转子1的中心之间的第二连线的长度为L5;第一连线与转子1的d轴之间的夹角为α1,第二连线与d轴之间的夹角为α2,第四磁体24的宽度为W4,第一磁体21的宽度为W1,转子100满足如下关系式:
例如,参照图2-图4,转子1设有d轴,d轴从转子1的中心伸出且沿径向穿过第一安装槽11沿长度方向的中心。第二安装槽12内安装第三磁体23和第四磁体24,第四磁体24沿第二安装槽12的长度方向延伸且设于第二安装槽12的右侧,第三磁体23沿第二安装槽12的长度方向延伸且设于第二安装槽12的左侧。
第二磁体22的几何中心位于d轴的右侧,且第一磁体21的几何中心位于d轴的左侧,第二磁体22的几何中心与转子铁芯1的中心可以通过第一连线相连,第一连线的长度设置为L4,且第一连线与d轴之间的夹角设置为α1;第二磁体22的几何中心与转子1的中心可以通过第二连线相连,且第二连线的长度设置为L5,且第二连线与d轴之间的夹角设置为α2。同时,可以将第四磁体24的宽度设置为W4,并将第一磁体25的宽度设置为W1。
其中,转子100满足如下关系式:也就是说,第一磁体21的宽度和第四磁体24的宽度之间的比值大于等于0.1倍的第一连线的长度L4乘以且小于等于0.12倍的第二连线的长度L5乘以通过改变磁体中心和转子中心连线与d轴夹角,相当于改变转子100的极弧系数,而极弧系数存在一个最优范围,在这个范围内气隙磁密波形最接近正弦波,扭矩波动小,也使得齿槽转矩有较小的的范围。因此通过改变磁体和d轴之间的夹角,并结合磁体的宽度和磁体的中心线至转子边缘的距离,提高了永磁体2布局的合理性,利于减少转子100扭矩波动,提升了NVH性能,并且还能提升永磁体的抗退磁性能。
更优选地实施例中,转子100满足如下关系式:效果相比上述内容更加明显。
在本申请的一些实施例中,在转子1的同一横截面上,第五磁体25的几何中心与转子1的中心之间的第三连线的长度为L6;第六磁体26的几何中心与转子1的中心之间的第四连线的长度为L7;第三连线与转子1的d轴之间的夹角为α3,第四连线与d轴之间的夹角为α4,第三磁体23的宽度为W3,第二磁体22的宽度为W2,转子100满足如下关系式:
例如,参照图2-图4,可以在第二安装槽12的左右两侧分别设有第三安装槽13,两个第三安装槽13均沿转子1的径向延伸,且两个第三安装槽13沿转子1的d轴对称设置。第三安装槽13内设有第五磁体25和第六磁体26,第五磁体25沿第三安装槽13的长度方向延伸且设于第三安装槽13的外侧,第六磁体26沿第三安装槽13的长度方向延伸且设于第三安装槽13的内侧。
第五磁体25的几何中心与转子铁芯1的中心之间通过第三连线相连,第三连线的长度设置为L6,且第三连线与转子1的d轴之间的夹角设置为α3;第六磁体26的几何中心与转子铁芯1的中 心之间通过第四连线相连,第四连线的长度设置为L7,且第四连线与转子1的d轴之间的夹角设置为α4。第四连线的长度L7小于第三连线的长度L6,且第四连线与转子1的d轴之间的夹角α4小于第三连线与转子1的d轴之间的夹角α3。同时,可以将第三磁体23的宽度设置为W3,并将第二磁体22的宽度设置为W2。
其中,转子100满足如下关系式:也就是说,第二磁体22的宽度和第三磁体23的宽度之间的比值大于等于0.13倍的第四连线的长度L7乘以且小于等于0.13倍的第三连线的长度L6乘以通过改变磁体中心和转子中心连线与d轴夹角,相当于改变转子100的极弧系数,而极弧系数存在一个最优范围,在这个范围内气隙磁密波形最接近正弦波,扭矩波动小,也使得齿槽转矩有较小的的范围。因此通过改变磁体和d轴之间的夹角,并结合磁体的宽度和磁体的中心线至转子边缘的距离,提高了永磁体2布局的合理性,利于减少转子100扭矩波动,提升了NVH性能,并且还能提升永磁体的抗退磁性能。
更优选地实施例中,转子100满足如下关系式:其效果相比上述内容更加明显。
在本申请的一些实施例中,在垂直于转子铁芯1的旋转轴线的同一横截面上,第一磁体21的几何中心与转子1的中心之间的第五连线的长度为L8;第二磁体22的几何中心与转子1的中心之间的第六连线的长度为L9;第五连线与转子1的d轴之间的夹角为α5,第六连线与d轴之间的夹角为α6,第五磁体25的宽度为W5,第二磁体22的宽度为W2,转子100满足如下关系式:
例如,参照图2-图4,转子1设有d轴,d轴从转子铁芯1的中心伸出且沿径向穿过第三安装槽13沿长度方向的中心。第一安装槽11内安装第一磁体21和第二磁体22,第一磁体21沿第一安装槽11的长度方向延伸且设于第一安装槽11的左侧,第二磁体22沿第一安装槽11的长度方向延伸且设于第一安装槽11的右侧。
第一磁体21的几何中心位于d轴的左侧,且第二磁体22的几何中心位于d轴的右侧,第一磁体21的几何中心与转子铁芯1的中心可以通过第五连线相连,第五连线的长度设置为L8,且第五连线与d轴之间的夹角设置为α5;第二磁体22的几何中心与转子铁芯1的中心可以通过第六连线相连,且第六连线的长度设置为L9,且第六连线与d轴之间的夹角设置为α6。同时,可以将第五磁体25的宽度设置为W5,并将第二磁体22的宽度设置为W2。
其中,转子100满足如下关系式:也就是说,第二磁体22的宽度和第五磁体25的宽度之间的比值大于等于0.14倍的第五连线的长度L8乘以且小于等于0.18倍的第六连线的长度L9乘以通过改变磁体中心和转子中心连线与d轴夹角,相当于改变转子100的极弧系数,而极弧系数存在一个最优范围,在这个范围内气隙磁密波形最接近正弦波,扭矩波动小,也使得齿槽转矩有较小的的范围。因此通过改变磁体和d轴之间的夹角,并结合磁体的宽度和磁体的中心线至转子边缘的距离,提高了永磁体2布局的合理性,利于减少转子100扭矩波动,提升了NVH性能,并且还能提升永磁体的抗退磁性能。
更优选地实施例中,转子100满足如下关系式:其效果相比上述内容更加明显。
在本申请的一些实施例中,在垂直于转子铁芯1的旋转轴线的同一横截面上,第四磁体24的 几何中心与转子铁芯1的中心之间的第一连线的长度为L4;第一磁体21的几何中心与转子铁芯1的中心之间的第二连线的长度为L5;第五磁体25的几何中心与转子铁芯1的中心之间的第三连线的长度为L6;其中满足如下关系式:
例如,参照图2-图4,第二安装槽12沿转子1的周向延伸,第二安装槽12内设有第三磁体23和第四磁体24,第三磁体23和第四磁体24沿第一安装槽11的长度方向依次布置。可以将第四磁体24的几何中心与转子铁芯1的中心通过第一连线进行相连,且将第一连线的长度设置为L4,可以将第三磁体23的几何中心与转子铁芯1的中心通过第二连线进行相连,且将第二连线的长度设置为L5。第三安装槽123沿转子1的径向延伸,第三安装槽13内设有第五磁体25,可以将第五磁体25的几何中心与转子铁芯1的中心通过第三连线进行相连,且将第三连线的长度设置为L6。
其中,L4、L5和L6满足如下关系式:也就是说,第一连线的长度L4小于等于1.1倍的第二连线的长度L5;第二连线的长度L5大于等于1.01倍的第三连线的长度L6。由此,改变磁钢距离转子最外侧距离,会改变磁钢所对转子外表面弧长或者气隙磁密,在移动过程中,极弧系数存在一个最优范围,在这个范围内,气隙磁密波形最接近正弦波,齿槽转矩有较小的的范围,扭矩波动也有较小的范围。使得永磁体2的布局合理,利于提高转子1的抗退磁性能。
更优选地实施例中,转子100满足如下关系式:其效果相比上述内容更加明显。
需要说明的是,当转子铁芯1设有第一安装槽11、第二安装槽12和第三安装槽13,且在第一安装槽11内设有第一磁体21和第二磁体22,在第二安装槽12内设有第三磁体23和第四磁体24,且在第三安装槽13内设有第五磁体25和第六磁体26时,若同时满足以下条件:
(1)、
(2)、
(3)、
(4)、
(5)、0.1(W3+W4)≤(W1+W2)≤3.3(W3+W4);
(6)、
则从抗退磁,减少扭矩波动和提升NVH性能综合来考虑,电机整体性能最好。
具体地,参照图6-图9所示,当减少L1、L2、L3、L4、L5、L6、L7、L8、L9时,即将永磁体2向转子1内侧移动时,气隙磁密减小,没有能充分利用永磁体2性能,输出扭矩下降,电机输出功率下降,电机效率下降;当增加L1、L2、L3、L4、L5、L6、L7、L8、L9时,即将永磁体2向转子1外侧移动时,若在高速运行时,增大了可能发生扫膛现象的可能。当L1、L2、L3、L4、L5、L6、L7、L8、L9增加时,漏磁增大,永磁体2的利用率下降;当减少L1、L2、L3、L4、L5、L6、L7、L8、L9时,转子的机械强度下降,容易发生应力集中现象,电机的极限转速下降,影响电机弱磁。
当改变α1、α2、α3、α4、α5、α6时,即改变了电机的气隙磁场,负载扭矩和NVH性能会受到影响,上述角度从小变大时,永磁体2所跨弧长变化从而影响电机的气隙磁密,气隙磁密会有一个波动,电机的输出功率会有波动,电机的NVH性能会波动,上述角度存在一个最优系数范围,如上述参数表达式所示。当在上述参数范围内,电机的负载扭矩和NVH性能最好。
当增大W1、W2、W3、W4、W5、W6时,永磁体2成本变大,且影响了永磁体2的工作,但电机 的抗退磁能力增强。当减少W1、W2、W3、W4、W5、W6时,即减少了永磁体2的抗退磁能力,影响电机输出扭矩。
当改变L1、L2、L3、L4、L5、L6、L7、L8、L9时,α1、α2、α3、α4、α5、α6会发生改变,此时电机的极限速度、机械强度、抗漏磁能力会有一个波动范围。当满足上述参数关系式时,电机的极限速度、机械强度、抗漏磁能力可以理论上达到转子允许的最大值。而当W1、W2、W3、W4、W5、W6变化时,永磁体2的成本、抗退磁能力、负载扭矩、NVH性能会波动;α1、α2、α3、α4、α5、α6随之永磁体2的宽度变化,影响电机的极弧系数,从而影响电机的负载扭矩和NVH性能,而极弧系数存在一个最优范围,当满足上述参数关系式时,极弧系数即在最优范围内,电机的负载扭矩和NVH性能最好。
综上,应满足上述参数关系式中的限制范围,此时综合考虑起来电机性能最好。
本申请还提出了一种电机。
根据本申请实施例的电机,包括上述任一实施例的转子100。其中,在转子铁芯1上设有多个安装槽,通过在多个安装槽内分别安装有永磁体2,并将设于第一安装槽11的永磁体2分为不均匀的两段,减少了转子铁芯1在转动过程中产生的齿槽转矩,从而减少齿槽转矩引起的扭矩波动,降低了扭矩波动导致的抖动,且通过将设于不同安装槽的至少两组永磁体2的材料设置为不同,利于减少稀土材料的用量,降低成本,提高了电机的NVH性能。
本申请又提出了一种车辆。
根据本申请实施例的车辆,包括上述任一实施例的电机。其中,在转子铁芯1上设有多个安装槽,通过在多个安装槽内分别安装有永磁体2,并将设于第一安装槽11的永磁体2分为不均匀的两段,减少了转子1在转动过程中产生的齿槽转矩,从而减少因为齿槽转矩引起的扭矩波动,降低了扭矩波动导致的抖动,且通过将设于不同安装槽的至少两组永磁体2的材料设置为不同,利于减少稀土材料的用量,降低成本,提高了电机的NVH性能,从而提升了车辆整体的NVH性能。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为 对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (22)

  1. 一种转子,其中,包括:
    转子铁芯,所述转子铁芯设有多个安装槽;以及
    多个永磁体,所述多个永磁体一一对应地设置在所述多个安装槽内,至少两个所述安装槽内的所述永磁体的材料不同;
    其中,所述多个安装槽包括第一安装槽,设于所述第一安装槽内的永磁体包括分段设置的第一磁体和第二磁体。
  2. 根据权利要求1所述的转子,其中,所述第一安装槽内的永磁体采用第一种材料,所述第一种材料为铁氧体。
  3. 根据权利要求2所述的转子,其中,所述第一安装槽沿所述转子铁芯的圆周方向设置。
  4. 根据权利要求2-3中任一项所述的转子,其中,所述多个安装槽还包括第二安装槽,所述第二安装槽设于所述第一安装槽的径向外侧。
  5. 根据权利要求4所述的转子,其中,设于所述第二安装槽内的永磁体包括分段设置的第三磁体和第四磁体。
  6. 根据权利要求5所述的转子,其中,设于所述第二安装槽内的永磁体采用不同于所述第一种材料的第二种材料,所述第二种材料为稀土材料。
  7. 根据权利要求5-6中任一项所述的转子,其中,在所述第一安装槽的宽度方向上,所述第一磁体的宽度为W1,所述第二磁体的宽度为W2,
    在所述第二安装槽的宽度方向上,所述第三磁体的宽度为W3,所述第四磁体的宽度为W4;
    其中所述转子满足如下关系式:0.1(W3+W4)≤(W1+W2)≤3.3(W3+W4)。
  8. 根据权利要求7所述的转子,其中,所述转子满足如下关系式:
    0.3(W3+W4)≤(W1+W2)≤1.95(W3+W4)。
  9. 根据权利要求5-7中任一项所述的转子,其中,所述多个安装槽还包括第三安装槽,所述第三安装槽沿所述转子铁芯的径向延伸,每个所述第一安装槽的长度方向的两侧均对应设置所述第三安装槽,所述第三安装槽的长度方向和所述第一安装槽的长度方向具有夹角。
  10. 根据权利要求9所述的转子,其中,所述第三安装槽内的永磁体包括分段设置的第五磁体和第六磁体。
  11. 根据权利要求10所述的转子,其中,所述第三安装槽内的永磁体材料为稀土材料。
  12. 根据权利要求10-11中任一项所述的转子,其中,在垂直于所述转子铁芯的旋转轴线的一横截面上,所述转子满足如下关系:
    其中,L1为所述第二安装槽的最外侧至所述转子铁芯外边缘的距离,L2为所述第三安装槽的最外侧至所述转子铁芯外边缘的距离,L3为所述一安装槽的最外侧至所述转子铁芯外边缘的距离。
  13. 根据权利要求12所述的转子,其中,所述转子满足如下关系式:
  14. 根据权利要求10-13中任一项所述的转子,其中,在垂直于所述转子铁芯的旋转轴线的一横截面上,所述第四磁体的几何中心与所述转子铁芯的中心之间的第一连线的长度为L4;所述第三磁体的几何中心与所述转子铁芯的中心之间的第二连线的长度为L5;
    所述第一连线与所述转子铁芯的d轴之间的夹角为α1,所述第二连线与所述d轴之间的夹角为α2,所述第四磁体的宽度为W4,所述第一磁体的宽度为W1,所述转子满足如下关系式:
  15. 根据权利要求10-14中任一项所述的转子,其中,在垂直于所述转子铁芯的旋转轴线的一横截面上,所述第五磁体的几何中心与所述转子铁芯的中心之间的第三连线的长度为L6;所述第六磁体的几 何中心与所述转子铁芯的中心之间的第四连线的长度为L7;
    所述第三连线与所述转子的d轴之间的夹角为α3,所述第四连线与所述d轴之间的夹角为α4,所述第三磁体的宽度为W3,所述第二磁体的宽度为W2,所述转子满足如下关系式:
  16. 根据权利要求10-15中任一项所述的转子,其中,在垂直于所述转子铁芯的旋转轴线的一横截面上,所述第一磁体的几何中心与所述转子铁芯的中心之间的第五连线的长度为L8;所述第二磁体的几何中心与所述转子铁芯的中心之间的第六连线的长度为L9;
    所述第五连线与所述转子的d轴之间的夹角为α5,所述第六连线与所述d轴之间的夹角为α6,所述第五磁体的宽度为W5,所述第二磁体的宽度为W2,所述转子满足如下关系式:
  17. 根据权利要求16所述的转子,其中,所述转子满足如下关系:
  18. 根据权利要求10-17中任一项所述的转子,其中,在垂直于所述转子铁芯的旋转轴线的一横截面上,所述第四磁体的几何中心与所述转子铁芯的中心之间的第一连线的长度为L4;
    所述第三磁体的几何中心与所述转子铁芯的中心之间的第二连线的长度为L5;
    所述第五磁体的几何中心与所述转子铁芯的中心之间的第三连线的长度为L6;
    其中所述转子满足如下关系式:
  19. 根据权利要求18所述的转子,其中,所述转子满足如下关系:
  20. 根据权利要求10-19中任一项所述的转子,其中,在所述转子铁芯的圆周方向上,所述第一磁体的长度和所述第二磁体的长度的比值大于等于1/7且小于等于1/2,所述第三磁体的长度和所述第四磁体的长度的比值大于等于1/7且小于等于1/2;在所述转子铁芯的径向方向上,所述第五磁体的长度和所述第六磁体的长度的比值大于等于1/7且小于等于1/2。
  21. 根据权利要求10-20中任一项所述的转子,其中,在所述转子铁芯的径向方向上,所述第一磁体和所述第二磁体的宽度的取值范围为5mm-12mm,所述第三磁体和所述第四磁体的宽度的取值范围为2mm-7mm;在所述转子铁芯的圆周方向上,所述第五磁体和所述第六磁体的取值范围为2mm-7mm。
  22. 一种电机,其中,包括根据权利要求1-21中任一项所述的转子。
PCT/CN2023/077678 2022-06-29 2023-02-22 转子和电机 WO2024001234A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210784919.9A CN117353484A (zh) 2022-06-29 2022-06-29 转子、电机和车辆
CN202210784919.9 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024001234A1 true WO2024001234A1 (zh) 2024-01-04

Family

ID=89363798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077678 WO2024001234A1 (zh) 2022-06-29 2023-02-22 转子和电机

Country Status (2)

Country Link
CN (1) CN117353484A (zh)
WO (1) WO2024001234A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203219035U (zh) * 2012-12-10 2013-09-25 艾默生环境优化技术(苏州)有限公司 转子组件和包括该转子组件的永磁体电机
CN103580322A (zh) * 2012-07-24 2014-02-12 广东美芝精密制造有限公司 一种压缩机用永磁电机转子结构
CN108429374A (zh) * 2018-05-08 2018-08-21 珠海格力电器股份有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN114285200A (zh) * 2021-12-31 2022-04-05 淮安威灵电机制造有限公司 电机的转子和电机
CN217789421U (zh) * 2022-06-29 2022-11-11 比亚迪股份有限公司 转子总成、电机和车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580322A (zh) * 2012-07-24 2014-02-12 广东美芝精密制造有限公司 一种压缩机用永磁电机转子结构
CN203219035U (zh) * 2012-12-10 2013-09-25 艾默生环境优化技术(苏州)有限公司 转子组件和包括该转子组件的永磁体电机
CN108429374A (zh) * 2018-05-08 2018-08-21 珠海格力电器股份有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN114285200A (zh) * 2021-12-31 2022-04-05 淮安威灵电机制造有限公司 电机的转子和电机
CN217789421U (zh) * 2022-06-29 2022-11-11 比亚迪股份有限公司 转子总成、电机和车辆

Also Published As

Publication number Publication date
CN117353484A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
WO2019174328A1 (zh) 转子结构及具有其的电机
US20230119389A1 (en) Rotor, Interior Permanent Magnet Motor, and Compressor
WO2024078117A1 (zh) 具有磁障的电机转子、电机及压缩机
CN103715852A (zh) Ipm型旋转电动机
JP2022165997A (ja) モータロータ装置およびモータ
CN215817696U (zh) 一种转子六极的永磁辅助同步磁阻电机
WO2022110865A1 (zh) 电机转子、永磁电机和电动汽车
WO2022022426A1 (zh) 转子冲片、转子铁芯、转子、电机和车辆
WO2024001234A1 (zh) 转子和电机
WO2024078113A1 (zh) 永磁辅助同步磁阻电机及压缩机
WO2024078131A1 (zh) 具有磁障的转子、电机及压缩机
CN210350986U (zh) 一种双转子永磁同步磁阻电机
CN218633493U (zh) 一种电机转子、电机和压缩机
WO2023077966A1 (zh) 电机和车辆
CN103715799A (zh) Ipm型旋转电动机
CN214255912U (zh) 电机转子、永磁电机和电动汽车
CN211296356U (zh) 电机转子、磁阻电机和电动汽车
CN103715798A (zh) Ipm型旋转电动机
TWI676335B (zh) 轉子裝置及具有該轉子裝置的磁阻馬達
CN218997797U (zh) 转子总成、电机以及车辆
JP5679695B2 (ja) 永久磁石式回転電機
CN217282408U (zh) 一种抑制力矩波动铁芯及永磁同步电机
CN110971038A (zh) 电机转子、磁阻电机和电动汽车
CN117856487A (zh) 转子、电机和车辆
WO2018076486A1 (zh) 电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829427

Country of ref document: EP

Kind code of ref document: A1