WO2024001063A1 - 信号传输方法、装置及系统 - Google Patents

信号传输方法、装置及系统 Download PDF

Info

Publication number
WO2024001063A1
WO2024001063A1 PCT/CN2022/138745 CN2022138745W WO2024001063A1 WO 2024001063 A1 WO2024001063 A1 WO 2024001063A1 CN 2022138745 W CN2022138745 W CN 2022138745W WO 2024001063 A1 WO2024001063 A1 WO 2024001063A1
Authority
WO
WIPO (PCT)
Prior art keywords
cts
ultra
signal
field
wideband
Prior art date
Application number
PCT/CN2022/138745
Other languages
English (en)
French (fr)
Inventor
马超
于茜
胡世昌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024001063A1 publication Critical patent/WO2024001063A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/06Transport layer protocols, e.g. TCP [Transport Control Protocol] over wireless

Definitions

  • the present application relates to the field of communications, and in particular, to a signal transmission method, device and system.
  • Ultra-wideband (UWB) wireless technology is a wireless carrier communication technology that uses high frequency bandwidth. It uses narrow time domain signals to transmit data. The resolution of the signal is strong, so it has strong multipath resolution. Ability to ensure high ranging accuracy in complex multipath environments. When measuring distance through ultra-wideband signals, in order to achieve safe and high-precision ranging and positioning, it is necessary to ensure the security during the transmission of ultra-wideband signals.
  • High rate pulse repetition frequency (HPR) UWB protocol under the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4a/z standard is usually used for measurement. distance and positioning. A random sequence is added to the signal format defined by the HPR UWB protocol for security protection of ultra-wideband signals.
  • HPR High rate pulse repetition frequency
  • the random sequence has poor correlation and is easily interfered by external signals, resulting in poor security protection capabilities of ultra-wideband signals.
  • the receiving end performs ranging and positioning based on the received ultra-wideband signal, it may obtain incorrect time and distance information, thus affecting the ranging and positioning accuracy.
  • This application provides a signal transmission method, device and system, which can effectively improve the efficiency of ranging and positioning while achieving safe and high-precision ranging and positioning.
  • this application provides a signal transmission method.
  • the method includes: generating an ultra-wideband signal.
  • the ultra-wideband signal includes a Channel Impulse Response training sequence (CTS) field.
  • CTS Channel Impulse Response training sequence
  • the CTS field is generated by pseudo The random sequence is obtained by spreading spectrum of at least one first preamble symbol respectively; the ultra-wideband signal is sent, and the CTS field is used to determine the channel impulse response.
  • CTS Channel Impulse Response training sequence
  • the length of the pseudo-random sequence is related to the number of first preamble symbols.
  • the number of digits in the pseudo-random sequence is the same as the number of first preamble symbols.
  • At least one first preamble symbol may be multiplied by a pseudo-random sequence to obtain the CTS field.
  • the sending end can directly determine the first pseudo-random sequence of a fixed length, and then trim or trim part of the first pseudo-random sequence according to the number of first preamble symbols or Repeat to get a pseudo-random sequence.
  • the transmitting end may determine a pseudo-random sequence of corresponding length according to the number of first preamble symbols. This application does not limit the method of determining the pseudo-random sequence.
  • the first preamble symbol may include the first preamble code or be generated by spreading the first preamble code.
  • the first preamble is a sequence with good correlation characteristics, for example, it can be a binary sequence or a ternary sequence.
  • the embodiment of the present application does not limit the first preamble. Sequences with good correlation characteristics are not easily interfered by external signals, allowing the subsequent receiving end to maintain high accuracy of the channel impulse response when determining the channel impulse response based on the CTS field, thereby maintaining high-precision ranging of the ultra-wideband system.
  • the first preamble symbol is generated by spreading the first preamble code, the first preamble symbol can be made unpredictable, which improves the anti-interference capability and security of the ultra-wideband signal.
  • the pseudo-random sequence is equivalent to an encrypted spreading code.
  • At least one first preamble symbol is spread separately through the encrypted spreading code, which does not destroy the correlation of the first preamble symbol and makes the CTS field difficult to access. It is interfered by external signals and has unpredictability, ensuring the safety protection capability of ultra-wideband signals, thereby achieving safe and high-precision ranging and positioning.
  • Moreover, by combining encryption with at least one first preamble symbol there is no need to add a new sequence for encryption, thereby eliminating the need to additionally increase the air transmission time of ultra-wideband signals, effectively improving ranging and positioning efficiency.
  • the pseudo-random sequence is determined through a symmetric encryption algorithm.
  • Symmetric encryption algorithms include but are not limited to Advanced Encryption Standard (Advanced Encryption Standard, AES) encryption algorithm.
  • the ultra-wideband signal further includes a synchronization SYNC field, the SYNC field includes at least one second preamble symbol, and the SYNC field is used to synchronize the ultra-wideband signal.
  • the second preamble symbol may include a second preamble code or be generated by spreading the second preamble code.
  • the second preamble may be a sequence with good correlation characteristics, for example, it may be a binary sequence or a ternary sequence.
  • the embodiment of the present application does not limit the form of the second preamble.
  • the number of the first preamble symbols is multiple, and multiple first preamble symbols are spread to obtain multiple CTS symbols.
  • the multiple CTS symbols constitute multiple CTS segments. Any two There is a null signal interval between CTS segments.
  • the duty cycle of the pulse signals can be reduced, which not only satisfies the ultra-wideband frequency band usage regulations, but also increases the transmission power of the ultra-wideband signals and reduces the risk of ultra-wideband signals during transmission. The degree of attenuation thus expands the coverage of ultra-wideband signals.
  • the method further includes: sending a narrowband signal, where the narrowband signal is used to synchronize the ultra-wideband signal.
  • the present application provides a signal transmission method.
  • the method includes: receiving an ultra-wideband signal.
  • the ultra-wideband signal includes a channel impulse response training sequence CTS field.
  • the CTS field is a pair of at least one first preamble through a pseudo-random sequence.
  • the symbols are respectively obtained by spreading spectrum; the CTS field is despread by the pseudo-random sequence to obtain the at least one first preamble symbol; and the channel impulse response is determined based on the at least one first preamble symbol.
  • the pseudo-random sequence is determined through a symmetric encryption algorithm.
  • the pseudo-random sequence determined by the receiving end is the same as the pseudo-random sequence determined by the sending end.
  • the pseudo-random sequence is determined by the receiving end through a symmetric encryption algorithm, that is, the receiving end and the sending end use the same key to determine the pseudo-random sequence.
  • the ultra-wideband signal further includes a synchronization SYNC field, and the SYNC field includes at least one second preamble symbol.
  • the method further includes: determining first time-frequency synchronization information based on the SYNC field; according to The first time-frequency synchronization information performs synchronization processing on the ultra-wideband signal.
  • the first time-frequency synchronization information or the second time-frequency synchronization information may include sampling clock offset (sample clock offset, SCO) and/or carrier frequency offset (Carrier Frequency Offset, CFO).
  • sampling clock offset sample clock offset, SCO
  • carrier frequency offset Carrier Frequency Offset, CFO
  • the receiving end can implement high-precision synchronization processing of the CTS field of the ultra-wideband signal based on the first time-frequency synchronization information.
  • the ultra-wideband system determines the channel impulse response based on the CTS field
  • the accuracy of the channel impulse response is closely related to the synchronization accuracy of the CTS field.
  • the receiving end can achieve high-precision synchronization of the CTS field based on the SYNC field, ensuring the accuracy of the subsequently determined channel impulse response, thereby ensuring good ranging performance when using the channel impulse response for ranging.
  • the CTS field includes multiple CTS segments, the CTS segment includes at least one CTS symbol, and the first preamble symbol is obtained after despreading the CTS symbol. Any two CTS segments There is an empty signal interval between them.
  • the method further includes: determining second time-frequency synchronization information based on the received narrowband signal; and performing synchronization processing on the ultra-wideband signal according to the second time-frequency synchronization information.
  • the ultra-wideband system has Chip area, operating power consumption and operating costs are all higher.
  • the second time-frequency synchronization information is determined by the narrowband system at the receiving end.
  • the narrowband system can perform part of the synchronization process through the narrowband signal, effectively reducing the air transmission time of the ultra-wideband signal and the delay of the ultra-wideband system. complexity, thereby reducing the chip area, operating power consumption and operating cost of the ultra-wideband system, and improving ranging efficiency.
  • the present application provides a signal transmission device.
  • the device includes: a processing module for generating an ultra-wideband signal.
  • the ultra-wideband signal includes a channel impulse response training sequence CTS field.
  • the CTS field is generated by a pseudo-random sequence. At least one first preamble symbol is obtained by spreading spectrum respectively; a transceiver module is used to send the ultra-wideband signal, and the CTS field is used to determine the channel impulse response.
  • the pseudo-random sequence is determined through a symmetric encryption algorithm.
  • the ultra-wideband signal further includes a synchronization SYNC field, the SYNC field includes at least one second preamble symbol, and the SYNC field is used to synchronize the ultra-wideband signal.
  • the number of the first preamble symbols is multiple, and multiple first preamble symbols are spread to obtain multiple CTS symbols.
  • the multiple CTS symbols constitute multiple CTS segments. Any two There is a null signal interval between CTS segments.
  • the transceiver module is also used to send narrowband signals, and the narrowband signals are used to synchronize the ultra-wideband signals.
  • the present application provides a signal transmission device.
  • the device includes: a transceiver module for receiving an ultra-wideband signal.
  • the ultra-wideband signal includes a channel impulse response training sequence CTS field.
  • the CTS field is a pseudo-random sequence pair.
  • At least one first preamble symbol is obtained by respectively spreading spectrum;
  • a processing module is configured to despread the CTS field through a pseudo-random sequence to obtain at least one first preamble symbol; the processing module is also configured to perform despread spectrum on the CTS field based on the The at least one first preamble symbol determines the channel impulse response.
  • the pseudo-random sequence is determined through a symmetric encryption algorithm.
  • the ultra-wideband signal further includes a synchronization SYNC field, and the SYNC field includes at least one second preamble symbol.
  • the processing module is also configured to determine first time-frequency synchronization information based on the SYNC field. ; Perform synchronization processing on the ultra-wideband signal according to the first time-frequency synchronization information.
  • the CTS field includes multiple CTS segments, the CTS segment includes at least one CTS symbol, and the first preamble symbol is obtained after despreading the CTS symbol. Any two CTS segments There is an empty signal interval between them.
  • the processing module is further configured to determine second time-frequency synchronization information based on the received narrowband signal; and perform synchronization processing on the ultra-wideband signal based on the second time-frequency synchronization information.
  • the present application provides a signal transmission device, which includes: one or more processors; a memory for storing one or more computer programs or instructions; when the one or more computer programs or instructions Executed by the one or more processors, so that the one or more processors implement the method as described in any one of the first aspects.
  • the present application provides a signal transmission device, which includes: one or more processors; a memory for storing one or more computer programs or instructions; when the one or more computer programs or instructions Executed by the one or more processors, so that the one or more processors implement the method as described in any one of the second aspects.
  • the present application provides a signal transmission device, including a processor for executing the method according to any one of the first aspects.
  • the present application provides a signal transmission device, including a processor for executing the method according to any one of the second aspects.
  • the present application provides a signal transmission system.
  • the system includes: a transmitting end and a receiving end; the transmitting end includes a signal transmission device as described in any one of the third aspect, or a signal transmission device as described in any one of the fifth aspect.
  • the present application provides a computer-readable storage medium, including a computer program or instructions, which, when executed on a computer, cause the computer to execute any one of the first aspect and the second aspect. the method described.
  • Figure 1 is a schematic flow chart of a signal transmission method provided by an embodiment of the present application.
  • Figure 2 is a schematic flow chart of another signal transmission method provided by an embodiment of the present application.
  • Figure 3 is a schematic flow chart of yet another signal transmission method provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of the format of an ultra-wideband signal provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a SYNC field provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a CTS field provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a CTS segment provided by an embodiment of the present application.
  • Figure 8 is a block diagram of a signal transmission device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a signal transmission device provided by an embodiment of the present application.
  • At least one (item) refers to one or more, and “plurality” refers to two or more.
  • “And/or” is used to describe the relationship between associated objects, indicating that there can be three relationships. For example, “A and/or B” can mean: only A exists, only B exists, and A and B exist simultaneously. , where A and B can be singular or plural. The character “/” generally indicates that the related objects are in an "or” relationship. “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c” ”, where a, b, c can be single or multiple.
  • Ultra-wideband wireless technology uses narrow time domain signals to transmit data.
  • IR-UWB Impulse Radio UWB
  • nanosecond-level narrow pulse signals are used to transmit data.
  • the resolution of the signal is strong, so it has Strong multipath resolution capabilities ensure centimeter-level ranging accuracy in complex multipath environments (such as indoor environments).
  • the safety protection of ultra-wideband signals is the basis for safe ranging and positioning.
  • the HPR UWB protocol defines a variety of signal formats, and a random sequence is added to the multiple signal formats for security protection of ultra-wideband signals.
  • the random sequence may be, for example, a scrambled timestamp sequence (Scrambled timestamp sequence, STS).
  • STS scrambled timestamp sequence
  • the random sequence has poor correlation and is easily interfered by external signals, resulting in poor security protection capabilities of ultra-wideband signals.
  • Embodiments of the present application provide a signal transmission method to ensure the security protection capability of ultra-wideband signals, thereby maintaining high ranging and positioning accuracy of the ultra-wideband system.
  • This method can be applied to a signal transmission system, which includes a sending end and a receiving end.
  • the signal transmission system may include, but is not limited to, an ultra-wideband signal transmission system and a narrowband (NB) auxiliary ultra-wideband signal transmission system.
  • NB narrowband
  • both the transmitting end and the receiving end include an ultra-wideband system, or the transmitting end and the receiving end Both include ultra-wideband systems and narrowband systems.
  • the signal in the HPR UWB protocol currently used in ultra-wideband technology supports data transmission and ranging functions.
  • the data transmission efficiency of the ultra-wideband system is low, so the air transmission time of the signal is long;
  • the ultra-wideband system More functional modules are needed to realize data transmission and ranging, such as time-frequency synchronization, channel impulse response estimation, scrambled timestamp sequence (STS) detection, data monitoring and forward error correction (Forward Error). Correction, FEC) decoding and other functional modules.
  • STS scrambled timestamp sequence
  • FEC forward error correction
  • the operating power consumption and operating cost of the ultra-wideband system are high, which affects the ranging efficiency.
  • Narrowband systems use carrier signals with narrow bandwidth to transmit data, which have the advantages of low operating power consumption and low operating costs.
  • Narrowband-assisted ultra-wideband can reduce the operating power consumption and operating costs of ultra-wideband systems.
  • the narrowband system may include: wireless fidelity (WIFI) system, Bluetooth, Zig
  • the device used to send signals is called a sending end, and the device used to receive signals is called a receiving end.
  • the sending end can also receive signals, and the receiving end can also send signals.
  • This application The embodiments do not limit the functions of the device.
  • Figure 1 is a schematic flow chart of a signal transmission method provided by an embodiment of the present application. This method can be applied to the transmitting end in the signal transmission system.
  • the transmitting end includes an ultra-wideband system.
  • the method can include the following processes:
  • the ultra-wideband signal includes a CTS field.
  • the CTS field is obtained by separately spreading at least one first preamble symbol through a pseudo-random sequence.
  • the same first preamble symbol may or may not exist in the multiple first preamble symbols.
  • the ultra-wideband signal may also include a synchronization (Synchronization, SYNC) field.
  • the SYNC field includes at least one second preamble symbol.
  • the SYNC field is used to synchronize the ultra-wideband signal. There is a gap between the SYNC field and the start bit of the CTS field.
  • the time length of the empty signal interval can be customized and configured, and the embodiment of this application does not limit its specific value.
  • the ultra-wideband system at the transmitting end sends an ultra-wideband signal to the receiving end.
  • the ultra-wideband signal is transmitted to the receiving end in a narrow time domain signal form (such as a narrow pulse form).
  • the ultra-wideband signal can include a physical layer protocol data unit (Physical protocol data unit) ,PPDU).
  • Physical protocol data unit Physical protocol data unit
  • the signal transmission system may be a narrowband (NB)-assisted ultra-wideband signal transmission system.
  • the transmitting end may also include a narrowband system.
  • the transmitting end can also send a narrowband signal to the receiving end, and the narrowband signal is used to synchronize the ultra-wideband signal.
  • the signal transmission method generates an ultra-wideband signal.
  • the ultra-wideband signal includes a CTS field.
  • the CTS field is obtained by separately spreading at least one first preamble symbol through a pseudo-random sequence, and then sends Ultra-wideband signal.
  • the CTS field in the ultra-wideband signal is used to determine the channel impulse response to achieve ranging.
  • the pseudo-random sequence is equivalent to an encrypted spreading code.
  • At least one first preamble symbol is spread separately through the encrypted spreading code, which does not destroy the correlation of the first preamble symbol and makes the CTS field less susceptible to external interference.
  • Signal interference and unpredictability ensure the safety protection capabilities of ultra-wideband signals, thereby achieving safe and high-precision ranging and positioning.
  • by combining encryption with at least one first preamble symbol there is no need to add a new sequence for encryption, thereby eliminating the need to additionally increase the air transmission time of ultra-wideband signals, effectively improving ranging and positioning efficiency.
  • Figure 2 is a schematic flow chart of another signal transmission method provided by an embodiment of the present application. This method is applied to the receiving end in the signal transmission system.
  • the receiving end includes an ultra-wideband system.
  • the method may include the following processes:
  • the 201 Receive an ultra-wideband signal.
  • the ultra-wideband signal includes a CTS field.
  • the CTS field is obtained by separately spreading at least one first preamble symbol through a pseudo-random sequence.
  • the receiving end can first perform synchronization processing on the CTS field of the ultra-wideband signal based on the SYNC field, and then despread the CTS field.
  • the receiving end When the receiving end also receives the narrowband signal before process 201, the receiving end can first synchronize the CTS field of the ultra-wideband signal according to the narrowband signal, and then despread the CTS field.
  • the receiving end determines the first time-frequency synchronization information based on the SYNC field, and then performs synchronization processing on the CTS field based on the first time-frequency synchronization information. If the receiving end receives the narrowband signal and the ultra-wideband signal does not include the SYNC field, the receiving end determines the first time-frequency synchronization information based on the narrowband signal, and then performs synchronization processing on the CTS field based on the first time-frequency synchronization information.
  • the receiving end determines the first time-frequency synchronization information based on the narrowband signal, determines the second time-frequency synchronization information based on the first time-frequency synchronization information and the SYNC field, and then determines the second time-frequency synchronization information based on the first time-frequency synchronization information and the SYNC field.
  • the two time-frequency synchronization information synchronizes the CTS field. If the receiving end does not receive a narrowband signal and the ultra-wideband signal does not include the SYNC field, the receiving end directly despreads the CTS field through a pseudo-random sequence.
  • the first time-frequency synchronization information or the second time-frequency synchronization information may include SCO and/or CFO.
  • the receiving end can determine the channel impulse response based on the CTS field to perform first path monitoring to achieve ranging.
  • the signal transmission method receives an ultra-wideband signal.
  • the ultra-wideband signal includes a CTS field.
  • the CTS field is obtained by separately spreading at least one first preamble symbol through a pseudo-random sequence.
  • the receiving end The CTS field is despread through a pseudo-random sequence to obtain at least one first preamble symbol, and then the channel impulse response is determined based on the at least one first preamble symbol, thereby achieving ranging.
  • the CTS field is obtained by spreading at least one first preamble symbol through a pseudo-random sequence.
  • the pseudo-random sequence is equivalent to an encrypted spreading code.
  • the pseudo-random sequence When the CTS field is despread through a pseudo-random sequence, the pseudo-random sequence The sequence is equivalent to an encrypted despreading code. At least one first preamble symbol is separately spread through the encrypted spreading code. The CTS field is despread through the encrypted despreading code without destroying the first preamble symbol. At the same time, the correlation makes the CTS field less likely to be interfered by external signals and unpredictable, ensuring the security protection capability of ultra-wideband signals, thereby achieving safe and high-precision ranging and positioning. Moreover, by combining encryption with at least one first preamble symbol, there is no need to add a new sequence for encryption, thereby eliminating the need to additionally increase the air transmission time of ultra-wideband signals, effectively improving ranging and positioning efficiency.
  • Figure 3 is a schematic flow chart of yet another signal transmission method provided by an embodiment of the present application.
  • Figure 3 takes an ultra-wideband signal including a CTS field and a SYNC field as an example to illustrate. This method is applied to a signal transmission system.
  • the signal The transmission system includes a transmitting end and a receiving end, and both the transmitting end and the receiving end include an ultra-wideband system.
  • the method may include the following processes:
  • the transmitting end generates an ultra-wideband signal.
  • the ultra-wideband signal includes a CTS field and a SYNC field.
  • the CTS field is obtained by separately spreading at least one first preamble symbol through a pseudo-random sequence.
  • the SYNC field includes at least one second preamble symbol.
  • the length of the pseudo-random sequence is related to the number of first preamble symbols.
  • the number of digits in the pseudo-random sequence is the same as the number of first preamble symbols.
  • At least one first preamble symbol may be multiplied by a pseudo-random sequence to obtain the CTS field.
  • the pseudo-random sequence includes 1 value, and each value in one first preamble symbol is multiplied by 1 value in the pseudo-random sequence.
  • the pseudo-random sequence includes multiple values corresponding to the multiple first preamble symbols, and each value in any first preamble symbol is consistent with any one of the pseudo-random sequences. Multiply the 1 value corresponding to the first leading symbol.
  • the sending end can directly determine the first pseudo-random sequence of a fixed length, and then trim or trim part of the first pseudo-random sequence according to the number of first preamble symbols or Repeat to get a pseudo-random sequence.
  • the transmitting end may determine a pseudo-random sequence of corresponding length according to the number of first preamble symbols. This application does not limit the method of determining the pseudo-random sequence.
  • the pseudo-random sequence is determined by the sending end through a symmetric encryption algorithm.
  • Symmetric encryption algorithms include but are not limited to AES encryption algorithms.
  • the sending end can directly obtain the first pseudo-random sequence or pseudo-random sequence through a symmetric encryption algorithm.
  • the sending end may use a symmetric encryption algorithm to generate the first pseudo-random sequence or pseudo-random sequence.
  • a symmetric encryption algorithm can be used to encrypt the original sequence to obtain the first pseudo-random sequence or pseudo-random sequence.
  • the original sequence can be fixed or randomly generated.
  • the original sequence is encrypted to obtain a pseudo-random sequence. If the number of bits in the original sequence is different from the number of first leading symbols, the original sequence is encrypted to obtain the first pseudo-random sequence.
  • the original sequence is randomly generated, in one example, an original sequence of corresponding length can be generated according to the number of first leading symbols. At this time, the original sequence is encrypted to obtain a pseudo-random sequence.
  • a fixed-length original sequence can be generated. In this case, if the number of bits in the fixed-length original sequence is the same as the number of first preamble symbols, the original sequence is encrypted to obtain a pseudo-random sequence. If the number of bits of the fixed-length original sequence is different from the number of first leading symbols, the original sequence is encrypted to obtain the first pseudo-random sequence.
  • the sending end can directly obtain the second pseudo-random sequence through a symmetric encryption algorithm, and then encode the second pseudo-random sequence to obtain the first pseudo-random sequence or pseudo-random sequence.
  • the way in which the sending end obtains the second pseudo-random sequence can refer to the aforementioned process of directly obtaining the first pseudo-random sequence or pseudo-random sequence through a symmetric encryption algorithm, which will not be described in detail here in the embodiment of the present application.
  • a pseudo-random sequence is obtained by encoding the second pseudo-random sequence.
  • the first pseudo-random sequence is obtained by encoding the second pseudo-random sequence.
  • the method of encoding the second pseudo-random sequence may include: inverting each value of the second initial pseudo-random sequence, setting the value of a fixed position in the second pseudo-random sequence to 0, and setting the second pseudo-random sequence to The value of the fixed position in is set to 1, etc.
  • the embodiment of the present application does not limit the encoding method. Encoding the second pseudo-random sequence can further enhance the unpredictability of the final pseudo-random sequence, thereby enhancing the anti-interference ability of the spread CTS field, thereby improving the accuracy of determining CIR and improving ranging and positioning performance.
  • the first preamble symbol may include the first preamble code or be generated by spreading the first preamble code.
  • the first preamble is a sequence with good correlation characteristics, for example, it may be a binary sequence or a ternary sequence.
  • the embodiment of the present application does not limit the first preamble. Sequences with good correlation characteristics are not easily interfered by external signals, allowing the subsequent receiving end to maintain high accuracy of the channel impulse response when determining the channel impulse response based on the CTS field, thereby maintaining high-precision ranging of the ultra-wideband system.
  • the first preamble symbol is generated by spreading the first preamble code, the first preamble symbol can be made less likely to be interfered by external signals and unpredictable, thereby improving the anti-interference capability and security of ultra-wideband signals.
  • the first preamble code can be multiplied by the spreading code to obtain the first preamble symbol.
  • the length of the spreading code is related to the length of the first preamble symbol.
  • the number of digits of the spreading code is the same as the number of digits of the first preamble
  • each value of the spreading code is the same as each value of the first preamble.
  • each value in the first preamble is multiplied by the corresponding value in the spreading code.
  • the spreading code can be randomly generated by the sending end; or it can be selected from multiple pre-stored spreading codes.
  • the sending end has pre-generated a codebook (codebook) including multiple spreading codes, and the sending end directly selects from the codebook.
  • codebook codebook
  • the form, length, acquisition method, etc. of the spreading code can be customized and configured, and this is not limited in the embodiments of this application.
  • the sequence obtained after spreading a first preamble symbol is called a CTS symbol.
  • multiple first preamble symbols are spread to obtain multiple CTS symbols.
  • Multiple CTS symbols form multiple CTS segments (segments, Seg).
  • Each CTS segment includes at least one CTS. symbol.
  • the time length of the empty signal interval can be customized and configured, and the embodiment of this application does not limit its specific value.
  • the number of CTS segments is greater than 2
  • the number of empty signal intervals is multiple. There may or may not be empty signal intervals of the same length in the multiple empty signal intervals.
  • the duty cycle of the pulse signals can be reduced, which not only satisfies the ultra-wideband frequency band usage regulations, but also increases the transmission power of the ultra-wideband signals and reduces the risk of ultra-wideband signals during transmission.
  • the degree of attenuation thus expands the coverage of ultra-wideband signals.
  • the length of the CTS field is determined by the length and number of CTS symbols and the length of the null signal interval.
  • the number of CTS symbols, the length of each CTS symbol, and the length of the null signal interval can all be customized.
  • the embodiments of this application are specific. The value is not limited.
  • the length of the SYNC field is determined by the number of second preamble symbols and the length of each second preamble symbol.
  • the number of second preamble symbols and the length of each second preamble symbol can be customized.
  • the embodiments of this application have specific values. No restrictions.
  • the same leading symbol may or may not exist in the SYNC field and the CTS field.
  • the same second preamble symbol may or may not exist among the plurality of second preamble symbols.
  • the second preamble symbol may include a second preamble code or be generated by spreading the second preamble code.
  • the second preamble may be a sequence with good correlation characteristics, for example, it may be a binary sequence or a ternary sequence.
  • the embodiment of the present application does not limit the form of the second preamble.
  • the spreading method of the second preamble symbol may refer to the first preamble code, which will not be described in detail here in the embodiment of the present application.
  • the length of the entire ultra-wideband signal is determined by the length of the SYNC field, the length of the null signal interval between the SYNC field and the CTS field, and the length of the CTS field.
  • the ultra-wideband signal is used for subsequent ranging, and its length is related to the coverage of subsequent ranging and the ranging frequency.
  • the length of the SYNC field and the length of the empty signal interval between the SYNC field and the CTS field can be customized. This enables ultra-wideband signals to support the requirements for ranging coverage and ranging frequency in different ranging scenarios. For example, when it is necessary to increase the coverage of ranging, the length of the ultra-wideband signal can be increased.
  • Figure 4 is a schematic diagram of the format of an ultra-wideband signal provided by an embodiment of the present application.
  • Figure 4 takes the CTS field including M CTS segments CTS Seg1 to CTS SegM as an example for illustration.
  • T sync represents the time length of the SYNC field in the ultra-wideband signal, and the SYNC field is transmitted within the time period of T sync .
  • T CTS SegX indicates the time length of CTS SegX.
  • CTS SegX is transmitted within the time period of T CTS SegX , 1 ⁇ X ⁇ M.
  • Tgap0 indicates the length of the null signal interval between the SYNC field and the first CTS symbol (or CTS Seg1) of the CTS field. There is a null signal interval between every two CTS segments in the CTS field. There are M-1 null signal intervals in the CTS field. T gapY represents the length of the null signal interval between CTS SegY and CTS SegY+1, 1 ⁇ Y ⁇ M-1. There is no signal transmission within the time periods of T interval , T gap0 and T gapY .
  • Figure 5 is a schematic structural diagram of a SYNC field provided by an embodiment of the present application. As shown in Figure 5, the SYNC field includes N SYNC second preamble symbols symbol (0) ⁇ symbol (N SYNC -1) , N SYNC is a positive integer greater than 2.
  • FIG. 6 is a schematic structural diagram of a CTS field provided by an embodiment of the present application.
  • the CTS field includes N CTS CTS symbols CTS (0) ⁇ CTS (N CTS -1), N CTS is a positive integer greater than 2.
  • N CTS CTS symbols form M Seg CTS segments CTS Seg(0) ⁇ CTS Seg(M Seg -1). Each CTS segment includes N Seg CTS symbols.
  • M Seg is a positive integer greater than 3, and N Seg is positive. integer.
  • CTS Seg(0) includes N Seg CTS symbols CTS(0) ⁇ CTS(N Seg -1)
  • CTS Seg(1) includes N Seg CTS symbols CTS(N Seg ) ⁇ CTS(2*N Seg -1 )
  • CTS Seg (M Seg -1) includes N Seg CTS symbols CTS ((M Seg -1)*N Seg ) ⁇ CTS (N CTS -1).
  • FIG. 7 is a schematic structural diagram of a CTS segment provided by an embodiment of the present application.
  • CTS Seg(0) takes CTS Seg(0) in FIG. 6 as an example for explanation.
  • CTS Seg(0) includes N Seg CTS symbols CTS(0) ⁇ CTS(N Seg -1).
  • the N Seg CTS symbols are generated by using the first N Seg values in the pseudo-random sequence and It is obtained by multiplying the corresponding first leading symbols.
  • Figure 7 shows the specific structure of CTS(i) in N Seg CTS symbols.
  • CTS(i) is obtained by spreading the first preamble symbol through a pseudo-random sequence.
  • Each value in the first preamble symbol P ( 0) ⁇ P(N-1) are all multiplied by the i-th value S(i) in the pseudo-random sequence to obtain CTS(i).
  • the transmitting end may also send a narrowband signal to the receiving end, and the narrowband signal is used to synchronize the ultra-wideband signal.
  • Narrowband signals may include PPDUs.
  • the length of the null signal interval can be customized.
  • the embodiment of the present application does not limit its specific value.
  • the sending end sends an ultra-wideband signal to the receiving end.
  • the receiving end determines the first time-frequency synchronization information based on the SYNC field of the received ultra-wideband signal.
  • the receiving end When the receiving end does not receive the narrowband signal, the receiving end directly determines the first time-frequency synchronization information based on the SYNC field.
  • the receiving end determines the second time-frequency synchronization information based on the narrowband signal, and then determines the first time-frequency synchronization information based on the second time-frequency synchronization information and the SYNC field.
  • the ultra-wideband system has Chip area, operating power consumption and operating costs are all higher.
  • the second time-frequency synchronization information is determined by the narrowband system at the receiving end.
  • the narrowband system can perform part of the synchronization process through the narrowband signal, effectively reducing the air transmission time of the ultra-wideband signal and the delay of the ultra-wideband system. complexity, thereby reducing the chip area, operating power consumption and operating cost of the ultra-wideband system, and improving ranging efficiency.
  • the receiving end synchronizes the ultra-wideband signal according to the first time-frequency synchronization information.
  • the receiving end can implement high-precision synchronization processing of the CTS field of the ultra-wideband signal based on the first time-frequency synchronization information.
  • the ultra-wideband system determines the channel impulse response based on the CTS field
  • the accuracy of the channel impulse response is closely related to the synchronization accuracy of the CTS field.
  • the receiving end can achieve high-precision synchronization of the CTS field based on the SYNC field, ensuring the accuracy of the subsequently determined channel impulse response, thereby ensuring good ranging performance when using the channel impulse response for ranging.
  • the ultra-wideband system achieves further synchronization based on the synchronization of the narrowband system based on the SYNC field, making the ultra-wideband system flexible Adapting to the synchronization accuracy of different narrowband systems improves the feasibility and wide application of the method in the embodiment of the present application.
  • the narrowband system has low synchronization accuracy due to its own bandwidth and clock frequency limitations.
  • the receiving end can further achieve high-precision synchronization of the CTS field based on the SYNC field, ensuring the accuracy of the subsequently determined channel impulse response.
  • the receiving end despreads the CTS field through a pseudo-random sequence to obtain at least one first preamble symbol.
  • the pseudo-random sequence determined by the receiving end is the same as the pseudo-random sequence determined by the sending end.
  • the pseudo-random sequence is determined by the receiving end through a symmetric encryption algorithm, that is, the receiving end and the sending end use the same key to determine the pseudo-random sequence.
  • the way in which the receiving end determines the pseudo-random sequence can refer to the process in which the sending end determines the pseudo-random sequence in the aforementioned process 301, which will not be described in detail here in the embodiment of the present application. It should be noted that if both the receiving end and the sending end use a symmetric encryption algorithm to encrypt the original sequence to obtain the first pseudo-random sequence or pseudo-random sequence, then the original sequence used by the receiving end and the sending end is also the same.
  • the receiving end determines the channel impulse response based on at least one first preamble symbol.
  • the transmitting end generates an ultra-wideband signal.
  • the ultra-wideband signal includes a CTS field.
  • the CTS field is obtained by separately spreading at least one first preamble symbol through a pseudo-random sequence.
  • the transmitting end sends an ultra-wideband signal to the receiving end.
  • the receiving end determines the first time-frequency synchronization information based on the SYNC field of the received ultra-wideband signal, and performs synchronization processing on the ultra-wideband signal based on the first time-frequency synchronization information.
  • the CTS field is despread through a pseudo-random sequence to obtain at least one first preamble symbol, and the channel impulse response is determined based on the at least one first preamble symbol, thereby achieving ranging.
  • the CTS field is obtained by spreading at least one first preamble symbol through a pseudo-random sequence.
  • the first preamble is a sequence with good correlation characteristics.
  • the pseudo-random sequence is equivalent to an encrypted spreading code.
  • the pseudo-random sequence is used, the When the sequence despreads the CTS field, the pseudo-random sequence is equivalent to an encrypted despreading code. At least one first preamble symbol is spread separately through the encrypted spreading code, and the CTS field is despreaded through the encrypted despreading code.
  • the receiving end can achieve high-precision synchronization of the CTS field of the ultra-wideband signal based on the SYNC field. Since the accuracy of the channel impulse response is closely related to the synchronization accuracy of the CTS field, high-precision synchronization can be achieved through the SYNC field to improve the accuracy of the channel impulse response, thereby ensuring good measurement accuracy when using the channel impulse response for ranging. distance performance.
  • the length of the entire ultra-wideband signal is determined by the length of the SYNC field, the length of the null signal interval between the SYNC field and the CTS field, and the length of the CTS field.
  • the length of the ultra-wideband signal is related to the ranging coverage and ranging frequency.
  • the length of the SYNC field and the length of the empty signal interval between the SYNC field and the CTS field can be customized, so that the ultra-wideband signal can support different measurements. Requirements for ranging coverage and ranging frequency in distance scenarios.
  • the signal transmission method provided by the embodiments of the present application can be applied to a narrowband-assisted ultra-wideband signal transmission system.
  • the transmitting end can first send a narrowband signal before sending an ultra-wideband signal to the receiving end, and the receiving end performs synchronization processing on the ultra-wideband signal based on the narrowband signal.
  • the narrowband system can perform part of the synchronization processing process through the narrowband signal, effectively reducing the air transmission time of the ultra-wideband signal and the complexity of the ultra-wideband system. Therefore, while maintaining high-precision ranging by applying the ultra-wideband system, the chip area, operating power consumption and operating cost of the ultra-wideband system are reduced, and the ranging efficiency is improved.
  • the ultra-wideband system achieves further synchronization based on the synchronization of the narrowband system based on the SYNC field, so that the ultra-wideband system can flexibly adapt to the synchronization accuracy of different narrowband systems, improving the quality of the system.
  • each device includes a corresponding hardware structure and/or software module to perform each function.
  • the algorithm steps of each example described in conjunction with the embodiments disclosed herein the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • Embodiments of the present application can divide each device into functional modules according to the above method examples.
  • each functional module can be divided into corresponding functional modules, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • FIG. 8 is a block diagram of a signal transmission device provided by an embodiment of the present application.
  • the signal transmission device 400 may include a transceiver module 401 and a processing module 402.
  • the signal transmission device may be a transmitting end or a receiving end, or may be a chip or other combined device, component, etc. having the function of the above signal transmission device.
  • the transceiver module 401 can be a transceiver, and the transceiver can include an antenna and a radio frequency circuit, etc.
  • the processing module 402 can be a processor (or, processing circuit), such as a baseband processor.
  • the baseband processor may include one or more central processing units (CPUs).
  • CPUs central processing units
  • the transceiver module 401 can be a radio frequency unit; the processing module 402 can be a processor (or, processing circuit), such as a baseband processor.
  • the transceiver module 401 can be the input and output interface of the chip (such as a baseband chip); the processing module 402 can be the processor (or processing circuit) of the chip system, and can include one or more central processing unit.
  • transceiver module 401 in the embodiment of the present application can be implemented by a transceiver or a transceiver-related circuit component;
  • processing module 402 can be implemented by a processor or a processor-related circuit component (or, referred to as a processing circuit).
  • the transceiver module 401 can be used to perform all transceiver operations performed by the transmitter in the embodiment shown in Figure 1 or Figure 3, and/or for Support other processes of the technology described herein; the processing module 402 may be used to perform all operations performed by the sending end in the embodiment shown in Figure 1 or Figure 3 except for the transceiver operation, and/or to support this article Other processes for the described technology.
  • the transceiver module 401 may include a sending module and/or a receiving module, respectively configured to perform the sending and receiving operations performed by the sending end in the embodiment shown in Figure 1 or Figure 3.
  • the signal transmission device includes:
  • a processing module configured to generate an ultra-wideband signal.
  • the ultra-wideband signal includes a channel impulse response training sequence CTS field.
  • the CTS field is obtained by separately spreading at least one first preamble symbol through a pseudo-random sequence;
  • a transceiver module is used to send the ultra-wideband signal, and the CTS field is used to determine the channel impulse response.
  • the pseudo-random sequence is determined through a symmetric encryption algorithm.
  • the ultra-wideband signal further includes a synchronization SYNC field, the SYNC field includes at least one second preamble symbol, and the SYNC field is used to synchronize the ultra-wideband signal.
  • the number of the first preamble symbols is multiple. Multiple first preamble symbols are spread to obtain multiple CTS symbols.
  • the multiple CTS symbols constitute multiple CTS segments. Between any two CTS segments A null signal interval exists.
  • the transceiver module is also used to send narrowband signals, and the narrowband signals are used to synchronize the ultra-wideband signals.
  • the transceiving module 401 can be used to perform all transceiving operations performed by the receiving end in the embodiment shown in Figure 2 or Figure 3, and/or for Support other processes of the technology described herein; the processing module 402 can be used to perform all operations performed by the receiving end in the embodiment shown in Figure 2 or Figure 3 except for the transceiver operation, and/or to support this article Other processes for the described technology.
  • the transceiver module 401 may include a sending module and/or a receiving module, respectively configured to perform the sending and receiving operations performed by the receiving end in the embodiment shown in Figure 2 or Figure 3.
  • the signal transmission device includes:
  • a transceiver module configured to receive an ultra-wideband signal.
  • the ultra-wideband signal includes a channel impulse response training sequence CTS field.
  • the CTS field is obtained by separately spreading at least one first preamble symbol through a pseudo-random sequence;
  • a processing module configured to despread the CTS field through a pseudo-random sequence to obtain at least one first preamble symbol
  • the processing module is further configured to determine a channel impulse response based on the at least one first preamble symbol.
  • the pseudo-random sequence is determined through a symmetric encryption algorithm.
  • the ultra-wideband signal further includes a synchronization SYNC field, and the SYNC field includes at least one second preamble symbol.
  • the processing module is also configured to determine first time-frequency synchronization information based on the SYNC field; according to the first A time-frequency synchronization information performs synchronization processing on the ultra-wideband signal.
  • the CTS field includes multiple CTS segments, the CTS segment includes at least one CTS symbol, the CTS symbol is despread to obtain the first preamble symbol, and there is a null signal between any two CTS segments. interval.
  • the processing module is further configured to determine second time-frequency synchronization information based on the received narrowband signal; and perform synchronization processing on the ultra-wideband signal based on the second time-frequency synchronization information.
  • FIG. 9 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 600 may be a transmitter or a chip or a functional module in the transmitter; it may also be a receiver or a chip or a functional module in the receiver.
  • the electronic device 500 includes a processor 501 , a transceiver 502 and a communication line 503 .
  • the processor 501 is used to perform any step in the method embodiments shown in Figures 1 to 3, and when performing a process such as sending an ultra-wideband signal, it can choose to call the transceiver 502 and the communication line 503 to complete. Act accordingly.
  • the electronic device 500 may also include a memory 504.
  • the processor 501, the memory 504 and the transceiver 502 may be connected through a communication line 503.
  • the processor 501 is a processor, a general-purpose processor network processor (NP), a digital signal processor (DSP), a microprocessor, a microcontroller, a programmable logic device (programmable logic device) , PLD) or any combination thereof.
  • the processor 501 can also be other devices with processing functions, such as circuits, devices or software modules, without limitation.
  • the transceiver 502 is used to communicate with other devices or other communication networks.
  • Other communication networks can be Ethernet, wireless access network (radio access network, RAN), wireless local area networks (wireless local area networks, WLAN), etc.
  • Transceiver 502 may be a module, a circuit, a transceiver, or any device capable of communicating.
  • the transceiver 502 is mainly used for sending and receiving signals, and may include a transmitter and a receiver for sending and receiving signals respectively; operations other than signal sending and receiving are implemented by the processor, such as information processing, calculation, etc.
  • the communication line 503 is used to transmit information between various components included in the electronic device 500 .
  • the processor can be thought of as the logic circuit and the transceiver as the interface circuit.
  • Memory 504 is used to store instructions. Wherein, the instructions may be computer programs.
  • memory 504 may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the memory 504 can also be a compact disc (compact disc read-only memory, CD-ROM) or other optical disc storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media, or Other magnetic storage devices, etc. It should be noted that the memory of the systems and methods described herein is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 504 may exist independently of the processor 501 or may be integrated with the processor 501 .
  • the memory 504 can be used to store instructions or program codes or some data.
  • the memory 504 may be located within the electronic device 500 or may be located outside the electronic device 500 without limitation.
  • the processor 501 is configured to execute instructions stored in the memory 504 to implement the method provided by the above embodiments of the application.
  • the processor 501 may include one or more processors, such as CPU0 and CPU1 in FIG. 9 .
  • the electronic device 500 includes multiple processors.
  • the processor 501 in FIG. 9 it may also include a processor 507 .
  • the electronic device 500 also includes an output device 505 and an input device 506.
  • the input device 506 is a device such as a keyboard, a mouse, a microphone, or a joystick
  • the output device 505 is a device such as a display screen, a speaker, or the like.
  • the electronic device 500 may be a chip system or a device with a similar structure as shown in FIG. 9 .
  • the chip system can be composed of chips, or can also include chips and other discrete devices.
  • the actions, terms, etc. involved in the various embodiments of this application can be referred to each other and are not limited.
  • the name of the message exchanged between the various devices or the name of the parameters in the message is just an example, and other names may also be used in the specific implementation without limitation.
  • the composition structure shown in FIG. 9 does not constitute a limitation of the electronic device 500.
  • the electronic device 500 may include more or fewer components than those shown in FIG. 9, or Combining certain parts, or different arrangements of parts.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits, mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards (printed circuit boards) circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gall
  • the transceiver module 401 in Figure 8 can be replaced by the transceiver 502 in Figure 9, which can integrate the functions of the transceiver module 401; the processing module 402 can be replaced by the processor 507, which processes The processor 507 may integrate the functionality of the processing module 402.
  • the signal transmission device 400 shown in FIG. 8 may also include a memory (not shown in the figure).
  • the signal transmission device 400 involved in the embodiment of the present application may be the electronic device 500 shown in FIG. 9 .
  • FIG. 10 is a schematic structural diagram of a signal transmission device provided by an embodiment of the present application.
  • the signal transmission device may be applicable to the scenarios shown in the above method embodiments.
  • FIG. 10 only shows the main components of the signal transmission device, including a processor, a memory, a control circuit, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, execute software programs, and process data of software programs.
  • Memory is mainly used to store software programs and data.
  • the control circuit is mainly used for power supply and transmission of various electrical signals.
  • Input and output devices are mainly used to receive data input by users and output data to users.
  • the control circuit can be a mainboard.
  • the memory can include a hard disk, RAM, ROM and other media with storage functions.
  • the processor can include a baseband processor and a central processor.
  • the baseband processor mainly Used to process communication protocols and communication data.
  • the central processor is mainly used to control the entire signal transmission device, execute software programs, and process data of software programs.
  • Input and output devices include display screens, keyboards, mice, etc.; the control circuit can It further includes or is connected to a transceiver circuit or transceiver, such as a network cable interface, etc., for sending or receiving data or signals, such as data transmission and communication with other devices.
  • an antenna may be included for sending and receiving wireless signals and for data/signal transmission with other devices.
  • the present application also provides a computer program product.
  • the computer program product includes a computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute any of the methods described in the embodiments of the present application. method.
  • An embodiment of the present application also provides a computer-readable storage medium. All or part of the processes in the above method embodiments can be completed by a computer or a device with information processing capabilities executing a computer program or instructions to control the relevant hardware.
  • the computer program or the set of instructions can be stored in the above computer-readable storage medium. , when the computer program or the set of instructions is executed, it may include the processes of the above method embodiments.
  • the computer-readable storage medium may be an internal storage unit of the sending end or receiving end in any of the aforementioned embodiments, such as a hard disk or memory of the sending end or receiving end.
  • the above-mentioned computer-readable storage medium can also be an external storage device of the above-mentioned sender or receiver, such as a plug-in hard disk, smart media card (SMC), secure digital, etc. equipped with the above-mentioned sender or receiver. SD) card, flash card, etc.
  • the above computer-readable storage medium may also include both the internal storage unit of the above-mentioned sending end or the receiving end and an external storage device.
  • the above-mentioned computer-readable storage medium is used to store the above-mentioned computer program or instruction and other programs and data required by the above-mentioned sending end or receiving end.
  • the above-mentioned computer-readable storage media can also be used to temporarily store data that has been output or is to be output.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (personal computer, server, or network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信号传输方法、装置及系统,该方法包括:生成超宽带信号,超宽带信号包括信道脉冲响应训练序列CTS 字段,CTS 字段是通过伪随机序列对至少一个第一前导符号分别进行扩频得到的;发送超宽带信号,CTS 字段用于确定信道脉冲响应。本申请能够在实现安全的高精度测距和定位的同时,有效提高测距和定位效率。

Description

信号传输方法、装置及系统
本申请要求于2022年7月1日提交中国专利局、申请号为202210768897.7、申请名称为“信号传输方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种信号传输方法、装置及系统。
背景技术
超宽带(Ultra-wideband,UWB)无线技术是一种使用高频率带宽的无线载波通信技术,其利用较窄的时域信号传输数据,信号的分辨率较强,因此具有较强的多径解析能力,在复杂的多径环境中能够保证较高的测距精度。在通过超宽带信号进行测距时,为了实现安全的高精度测距和定位,需要保证超宽带信号传输过程中的安全性。
目前在超宽带无线技术中,通常采用电气与电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.15.4a/z标准下的高速脉冲重复频率(High rate pulse repetition frequency,HPR)UWB协议进行测距和定位。HPR UWB协议定义的信号格式中添加有一段随机序列用于超宽带信号的安全防护。
但是该随机序列的相关性较差,容易被外界信号干扰,导致超宽带信号的安全防护能力较差。接收端在根据接收到的超宽带信号进行测距和定位时可能会得到错误的时间距离信息,从而影响测距和定位精度。
发明内容
本申请提供一种信号传输方法、装置及系统,能够在实现安全的高精度测距和定位的同时,有效提高测距和定位效率。
第一方面,本申请提供一种信号传输方法,所述方法包括:生成超宽带信号,所述超宽带信号包括信道脉冲响应训练序列(Channel Impulse Response training sequence,CTS)字段,CTS字段是通过伪随机序列对至少一个第一前导符号(preamble symbol)分别进行扩频得到的;发送所述超宽带信号,所述CTS字段用于确定信道脉冲响应。
伪随机序列的长度与第一前导符号的数量有关,本申请实施例中,伪随机序列的位数与第一前导符号的个数相同。至少一个第一前导符号可以与伪随机序列相乘,得到CTS字段。
发送端在确定伪随机序列时,在一种实现方式中,发送端可以直接确定固定长度的第一伪随机序列,之后按照第一前导符号的数量对第一伪随机序列的部分值进行裁剪或重复,得到伪随机序列。在另一种实现方式中,发送端可以按照第一前导符号的数量确定相应长度的伪随机序列。本申请对确定伪随机序列的方式不做限定。
第一前导符号可以包括第一前导码或者由第一前导码扩频生成。第一前导码为具有良 好相关特性的序列,例如可以是二进制(binary)序列或者三元(ternary)序列,本申请实施例对第一前导码不做限定。良好相关特性的序列不容易被外界信号干扰,可以使得后续接收端基于CTS字段确定信道脉冲响应时,保持信道脉冲响应的高精度,从而保持超宽带系统的高精度测距。并且当第一前导符号由第一前导码扩频生成时,可以使得第一前导符号具有不可预测性,提高了超宽带信号的抗干扰能力和安全性。
该方法中,伪随机序列相当于加密的扩频码,通过加密的扩频码对至少一个第一前导符号分别进行扩频,在不破坏第一前导符号的相关性的同时使得CTS字段不容易被外界信号干扰且具有不可预测性,保证了超宽带信号的安全防护能力,从而实现了安全的高精度测距和定位。并且将加密与至少一个第一前导符号结合,无需新增用于加密的序列,从而无需额外增加超宽带信号的空中传输时间,有效提高了测距和定位效率。
在一种可能的实现方式中,所述伪随机序列是通过对称加密算法确定的。对称加密算法包括但不限于高级加密标准(Advanced Encryption Standard,AES)加密算法。
在一种可能的实现方式中,所述超宽带信号还包括同步SYNC字段,SYNC字段包括至少一个第二前导符号,所述SYNC字段用于对所述超宽带信号进行同步处理。
其中,第二前导符号可以包括第二前导码或者由第二前导码扩频生成。第二前导码可以为具有良好相关特性的序列,例如可以为binary序列或者ternary序列,本申请实施例对第二前导码的形式不做限定。
在一种可能的实现方式中,所述第一前导符号的数量为多个,多个第一前导符号扩频后得到多个CTS符号,所述多个CTS符号组成多个CTS段,任意两个CTS段之间存在空信号间隔。这样在以脉冲信号发送超宽带信号时,可以降低脉冲信号的占空比,在满足了超宽带的频段使用规定的同时提高了超宽带信号的发射功率,减小了超宽带信号在传输过程中的衰减程度,从而扩大了超宽带信号的覆盖范围。
在一种可能的实现方式中,所述方法还包括:发送窄带信号,所述窄带信号用于对所述超宽带信号进行同步处理。
第二方面,本申请提供一种信号传输方法,所述方法包括:接收超宽带信号,所述超宽带信号包括信道脉冲响应训练序列CTS字段,CTS字段是通过伪随机序列对至少一个第一前导符号分别进行扩频得到的;通过所述伪随机序列对所述CTS字段进行解扩频,得到所述至少一个第一前导符号;基于所述至少一个第一前导符号确定信道脉冲响应。
在一种可能的实现方式中,所述伪随机序列是通过对称加密算法确定的。接收端确定的伪随机序列与发送端确定的伪随机序列相同。伪随机序列是接收端通过对称加密算法确定的,即接收端与发送端使用相同的密钥确定伪随机序列。
在一种可能的实现方式中,所述超宽带信号还包括同步SYNC字段,SYNC字段包括至少一个第二前导符号,所述方法还包括:基于所述SYNC字段确定第一时频同步信息;根据所述第一时频同步信息对所述超宽带信号进行同步处理。
其中,第一时频同步信息或第二时频同步信息可以包括采样时钟偏移(sample clock offset,SCO)和/或载波频率偏移(Carrier Frequency Offset,CFO)。
接收端根据第一时频同步信息可以实现对超宽带信号的CTS字段的高精度同步处理。超宽带系统在基于CTS字段确定信道脉冲响应时,信道脉冲响应的准确度与CTS字段的同步精度密切相关。接收端根据SYNC字段能够实现CTS字段的高精度同步,保证了后 续确定的信道脉冲响应的准确度,从而在使用信道脉冲响应进行测距时保证了良好的测距性能。
在一种可能的实现方式中,所述CTS字段包括多个CTS段,所述CTS段包括至少一个CTS符号,所述CTS符号解扩频后得到所述第一前导符号,任意两个CTS段之间存在空信号间隔。
在一种可能的实现方式中,所述方法还包括:基于接收到的窄带信号确定第二时频同步信息;根据所述第二时频同步信息对所述超宽带信号进行同步处理。
对于窄带辅助超宽带的接收端,由于超宽带系统的带宽高,需要设备工作在高的采样率下,即超宽带系统需要工作在较高的频率,因此相较于窄带系统,超宽带系统的芯片面积、运行功耗和运行成本均较高。在本申请实施例中,第二时频同步信息是接收端的窄带系统确定的,窄带系统可以通过窄带信号进行部分的同步处理过程,有效减小了超宽带信号的空中传输时间和超宽带系统的复杂度,从而降低了超宽带系统的芯片面积、运行功耗和运行成本,提高了测距效率。
第三方面,本申请提供一种信号传输装置,所述装置包括:处理模块,用于生成超宽带信号,所述超宽带信号包括信道脉冲响应训练序列CTS字段,CTS字段是通过伪随机序列对至少一个第一前导符号分别进行扩频得到的;收发模块,用于发送所述超宽带信号,所述CTS字段用于确定信道脉冲响应。
在一种可能的实现方式中,所述伪随机序列是通过对称加密算法确定的。
在一种可能的实现方式中,所述超宽带信号还包括同步SYNC字段,SYNC字段包括至少一个第二前导符号,所述SYNC字段用于对所述超宽带信号进行同步处理。
在一种可能的实现方式中,所述第一前导符号的数量为多个,多个第一前导符号扩频后得到多个CTS符号,所述多个CTS符号组成多个CTS段,任意两个CTS段之间存在空信号间隔。
在一种可能的实现方式中,所述收发模块,还用于发送窄带信号,所述窄带信号用于对所述超宽带信号进行同步处理。
第四方面,本申请提供一种信号传输装置,所述装置包括:收发模块,用于接收超宽带信号,所述超宽带信号包括信道脉冲响应训练序列CTS字段,CTS字段是通过伪随机序列对至少一个第一前导符号分别进行扩频得到的;处理模块,用于通过伪随机序列对所述CTS字段进行解扩频,得到至少一个第一前导符号;所述处理模块,还用于基于所述至少一个第一前导符号确定信道脉冲响应。
在一种可能的实现方式中,所述伪随机序列是通过对称加密算法确定的。
在一种可能的实现方式中,所述超宽带信号还包括同步SYNC字段,SYNC字段包括至少一个第二前导符号,所述处理模块,还用于基于所述SYNC字段确定第一时频同步信息;根据所述第一时频同步信息对所述超宽带信号进行同步处理。
在一种可能的实现方式中,所述CTS字段包括多个CTS段,所述CTS段包括至少一个CTS符号,所述CTS符号解扩频后得到所述第一前导符号,任意两个CTS段之间存在空信号间隔。
在一种可能的实现方式中,所述处理模块,还用于基于接收到的窄带信号确定第二时频同步信息;根据所述第二时频同步信息对所述超宽带信号进行同步处理。
第五方面,本申请提供一种信号传输装置,所述装置包括:一个或多个处理器;存储器,用于存储一个或多个计算机程序或指令;当所述一个或多个计算机程序或指令被所述一个或多个处理器执行,使得所述一个或多个处理器实现如第一方面中任一项所述的方法。
第六方面,本申请提供一种信号传输装置,所述装置包括:一个或多个处理器;存储器,用于存储一个或多个计算机程序或指令;当所述一个或多个计算机程序或指令被所述一个或多个处理器执行,使得所述一个或多个处理器实现如第二方面中任一项所述的方法。
第七方面,本申请提供一种信号传输装置,包括,处理器,用于执行如第一方面中任一项所述的方法。
第八方面,本申请提供一种信号传输装置,包括,处理器,用于执行如第二方面中任一项所述的方法。
第九方面,本申请提供一种信号传输系统,所述系统包括:发送端和接收端;所述发送端包括如第三方面中任一项所述的信号传输装置、如第五方面中任一项所述的信号传输装置或者如第七方面中任一项所述的信号传输装置,所述接收端包括如第四方面中任一项所述的信号传输装置、如第六方面中任一项所述的信号传输装置或者如第八方面中任一项所述的信号传输装置。
第十方面,本申请提供一种计算机可读存储介质,包括计算机程序或指令,所述计算机程序或指令在计算机上被执行时,使得所述计算机执行第一方面和第二方面中任一项所述的方法。
附图说明
图1为本申请实施例提供的一种信号传输方法的流程示意图;
图2为本申请实施例提供的另一种信号传输方法的流程示意图;
图3为本申请实施例提供的再一种信号传输方法的流程示意图;
图4为本申请实施例提供的一种超宽带信号的格式示意图;
图5为本申请实施例提供的一种SYNC字段的结构示意图;
图6为本申请实施例提供的一种CTS字段的结构示意图;
图7为本申请实施例提供的一种CTS段的结构示意图;
图8为本申请实施例提供的一种信号传输装置的框图;
图9为本申请实施例提供的一种电子设备的结构示意图;
图10为本申请实施例提供的一种信号传输装置的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书实施例和权利要求书及附图中的术语“第一”、“第二”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一 系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
超宽带无线技术利用较窄的时域信号传输数据,例如在脉冲无线电超宽带(Impulse Radio UWB,IR-UWB)中利用纳秒级别的窄脉冲信号传输数据,信号的分辨率较强,因此具有较强的多径解析能力,在复杂的多径环境(例如室内环境)中能够保证厘米级别的测距精度。在通过超宽带信号进行测距时,超宽带信号的安全防护是安全测距和定位的基础。
目前在超宽带技术中较常采用的测距协议为IEEE 802.15.4a/z标准下的HPR UWB协议。HPR UWB协议定义了多种信号格式,该多种信号格式中添加有一段随机序列用于超宽带信号的安全防护。随机序列例如可以为加扰时间戳序列(Scrambled timestamp sequence,STS)。但是该随机序列相关性比较差,容易被外界信号干扰,导致超宽带信号的安全防护能力较差。接收端在根据接收到的超宽带信号进行测距和定位时,得到的信道脉冲响应值中很大概率会存在一个错误峰值,进而计算得到错误的时间距离信息,从而影响测距和定位精度。从而导致测距和定位的安全性较低。
本申请实施例提供了一种信号传输方法,以保证超宽带信号的安全防护能力,从而保持超宽带系统的高测距和定位精度。该方法可以应用于信号传输系统,信号传输系统包括发送端和接收端。信号传输系统可以包括但不限于超宽带的信号传输系统和窄带(Narrow band,NB)辅助超宽带的信号传输系统,相应地,发送端和接收端均包括超宽带系统,或者发送端和接收端均包括超宽带系统和窄带系统。
目前超宽带技术所采用的HPR UWB协议中信号支持数据传输和测距功能,这样一方面由于超宽带系统进行数据传输的效能较低,因此信号的空中传输时间较长;另一方面超宽带系统需要较多的功能模块以实现数据传输和测距等,例如需要时频同步、信道脉冲响应估计、加扰时间戳序列(Scrambled timestamp sequence,STS)检测、数据监测和前向纠错(Forward Error Correction,FEC)解码等多个功能模块。从而导致超宽带系统的运行功耗和运行成本均较高,影响测距效率。窄带系统利用带宽较窄的载波信号传输数据,其具有运行功耗低和运行成本低等优点。窄带辅助超宽带能够减小超宽带系统的运行功耗和运行成本。示例地,窄带系统可以包括:无线保真(wireless fidelity,WIFI)系统、蓝牙以及紫蜂(ZigBee)系统等。
需要说明的是,本申请实施例中将用于发送信号的设备称为发送端,将用于接收信号的设备称为接收端,发送端也可以接收信号,接收端也可以发送信号,本申请实施例并不对设备的功能进行限定。
请参考图1,图1为本申请实施例提供的一种信号传输方法的流程示意图,该方法可 以应用于信号传输系统中的发送端,发送端包括超宽带系统,该方法可以包括以下流程:
101、生成超宽带信号,超宽带信号包括CTS字段,CTS字段是通过伪随机序列对至少一个第一前导符号分别进行扩频得到的。
当第一前导符号(preamble symbol)的数量为多个时,多个第一前导符号中可以存在相同的第一前导符号,也可以不存在相同的第一前导符号。
可选地,超宽带信号还可以包括同步(Synchronization,SYNC)字段,SYNC字段包括至少一个第二前导符号,SYNC字段用于对超宽带信号进行同步处理。SYNC字段和CTS字段的起始位之间存在空信号间隔(gap)。空信号间隔的时间长度可以自定义配置,本申请实施例对其具体值不做限定。
102、发送超宽带信号,CTS字段用于确定信道脉冲响应。
发送端的超宽带系统向接收端发送超宽带信号,超宽带信号通过较窄的时域信号形式(例如窄脉冲形式)传输至接收端,超宽带信号可以包括物理层协议数据单元(Physical protocol data unit,PPDU)。
可选地,该信号传输系统可以为窄带(Narrow band,NB)辅助超宽带的信号传输系统,相应地,发送端还可以包括窄带系统。此时在执行该过程101和102之前,发送端还可以向接收端发送窄带信号,该窄带信号用于对超宽带信号进行同步处理。
综上所述,本申请实施例提供的信号传输方法,生成超宽带信号,超宽带信号包括CTS字段,CTS字段是通过伪随机序列对至少一个第一前导符号分别进行扩频得到的,之后发送超宽带信号,超宽带信号中的CTS字段用于确定信道脉冲响应,进而实现测距。其中,伪随机序列相当于加密的扩频码,通过加密的扩频码对至少一个第一前导符号分别进行扩频,在不破坏第一前导符号的相关性的同时使得CTS字段不容易被外界信号干扰且具有不可预测性,保证了超宽带信号的安全防护能力,从而实现了安全的高精度测距和定位。并且将加密与至少一个第一前导符号结合,无需新增用于加密的序列,从而无需额外增加超宽带信号的空中传输时间,有效提高了测距和定位效率。
请参考图2,图2为本申请实施例提供的另一种信号传输方法的流程示意图,该方法应用于信号传输系统中的接收端,接收端包括超宽带系统,该方法可以包括以下流程:
201、接收超宽带信号,超宽带信号包括CTS字段,CTS字段是通过伪随机序列对至少一个第一前导符号分别进行扩频得到的。
202、通过伪随机序列对CTS字段进行解扩频,得到至少一个第一前导符号。
当超宽带信号还包括SYNC字段时,接收端可以先根据SYNC字段对超宽带信号的CTS字段进行同步处理,之后再对CTS字段进行解扩频。
当接收端在过程201之前还接收到了窄带信号时,接收端可以先根据窄带信号对超宽带信号的CTS字段进行同步处理,之后再对CTS字段进行解扩频。
示例地,若接收端未接收到窄带信号且超宽带信号包括SYNC字段,则接收端根据SYNC字段确定第一时频同步信息,之后根据第一时频同步信息对CTS字段进行同步处理。若接收端接收到窄带信号且超宽带信号不包括SYNC字段,则接收端根据窄带信号确定第一时频同步信息,之后根据第一时频同步信息对CTS字段进行同步处理。若接收端接收到窄带信号且超宽带信号包括SYNC字段,则接收端根据窄带信号确定第一时频同步信息,根据第一时频同步信息和SYNC字段确定第二时频同步信息,之后根据第二时频同 步信息对CTS字段进行同步处理。若接收端未接收到窄带信号且超宽带信号不包括SYNC字段,则接收端直接通过伪随机序列对CTS字段进行解扩频。
其中,第一时频同步信息或第二时频同步信息可以包括SCO和/或CFO。
203、基于至少一个第一前导符号确定信道脉冲响应。
接收端可以基于CTS字段确定信道脉冲响应,以进行首径监测,从而实现测距。
综上所述,本申请实施例提供的信号传输方法,接收超宽带信号,超宽带信号包括CTS字段,CTS字段是通过伪随机序列对至少一个第一前导符号分别进行扩频得到的,接收端通过伪随机序列对CTS字段进行解扩频,得到至少一个第一前导符号,之后基于至少一个第一前导符号确定信道脉冲响应,进而实现测距。其中,CTS字段是通过伪随机序列对至少一个第一前导符号分别进行扩频得到的,伪随机序列相当于加密的扩频码,在通过伪随机序列对CTS字段进行解扩频时,伪随机序列相当于加密的解扩频码,通过加密的扩频码对至少一个第一前导符号分别进行扩频,通过加密的解扩频码对CTS字段进行解扩频,在不破坏第一前导符号的相关性的同时使得CTS字段不容易被外界信号干扰且具有不可预测性,保证了超宽带信号的安全防护能力,从而实现了安全的高精度测距和定位。并且将加密与至少一个第一前导符号结合,无需新增用于加密的序列,从而无需额外增加超宽带信号的空中传输时间,有效提高了测距和定位效率。
请参考图3,图3为本申请实施例提供的再一种信号传输方法的流程示意图,图3以超宽带信号包括CTS字段和SYNC字段为例进行说明,该方法应用于信号传输系统,信号传输系统包括发送端和接收端,发送端和接收端均包括超宽带系统,该方法可以包括以下流程:
301、发送端生成超宽带信号,超宽带信号包括CTS字段和SYNC字段,CTS字段是通过伪随机序列对至少一个第一前导符号分别进行扩频得到的,SYNC字段包括至少一个第二前导符号。
伪随机序列的长度与第一前导符号的数量有关,本申请实施例中,伪随机序列的位数与第一前导符号的个数相同。至少一个第一前导符号可以与伪随机序列相乘,得到CTS字段。当第一前导符号数量为1时,伪随机序列包括1个值,一个第一前导符号中的每个值均与伪随机序列中的1个值相乘。当第一前导符号数量为多个时,伪随机序列包括与多个第一前导符号一一对应的多个值,任一第一前导符号中的每个值均与伪随机序列中该任一第一前导符号所对应的1个值相乘。
发送端在确定伪随机序列时,在一种实现方式中,发送端可以直接确定固定长度的第一伪随机序列,之后按照第一前导符号的数量对第一伪随机序列的部分值进行裁剪或重复,得到伪随机序列。在另一种实现方式中,发送端可以按照第一前导符号的数量确定相应长度的伪随机序列。本申请对确定伪随机序列的方式不做限定。
伪随机序列是发送端通过对称加密算法确定的。对称加密算法包括但不限于AES加密算法。
参考前述描述,可选地,发送端可以通过对称加密算法直接得到第一伪随机序列或伪随机序列。示例地,发送端可以采用对称加密算法生成第一伪随机序列或伪随机序列。或者可以采用对称加密算法对原始序列进行加密得到第一伪随机序列或伪随机序列,原始序列可以固定不变也可以随机生成。
当原始序列固定不变时,若原始序列的位数与第一前导符号的数量相同,则对原始序列进行加密得到的是伪随机序列。若原始序列的位数与第一前导符号的数量不同,则对原始序列进行加密得到的是第一伪随机序列。当原始序列是随机生成时,在一种示例中,可以按照第一前导符号的数量生成相应长度的原始序列,此时对原始序列进行加密得到的是伪随机序列。在另一种示例中,可以生成固定长度的原始序列,此时若固定长度的原始序列的位数与第一前导符号的数量相同,则对原始序列进行加密得到的是伪随机序列。若固定长度的原始序列的位数与第一前导符号的数量不同,则对原始序列进行加密得到的是第一伪随机序列。
又一可选地,发送端可以通过对称加密算法直接得到第二伪随机序列,之后对第二伪随机序列进行编码,得到第一伪随机序列或伪随机序列。发送端得到第二伪随机序列的方式可以参考前述通过对称加密算法直接得到第一伪随机序列或伪随机序列的过程,本申请实施例在此不做赘述。当得到的第二伪随机序列的位数与第一前导符号的数量相同时,对第二伪随机序列进行编码得到的是伪随机序列。当得到的第二伪随机序列的位数与第一前导符号的数量不同时,对第二伪随机序列进行编码得到的是第一伪随机序列。
对第二伪随机序列进行编码的方式可以包括:将第二始伪随机序列的每个值取反、将第二伪随机序列中的固定位置的值置为0、以及将第二伪随机序列中的固定位置的值置为1等,本申请实施例对编码方式不做限定。对第二伪随机序列进行编码可以进一步增强最终得到的伪随机序列的不可预测性,进而增强扩频后的CTS字段的抗干扰能力,从而提高确定CIR的准确度,提升测距和定位性能。
第一前导符号可以包括第一前导码或者由第一前导码扩频生成。第一前导码为具有良好相关特性的序列,例如可以是binary序列或者ternary序列,本申请实施例对第一前导码不做限定。良好相关特性的序列不容易被外界信号干扰,可以使得后续接收端基于CTS字段确定信道脉冲响应时,保持信道脉冲响应的高精度,从而保持超宽带系统的高精度测距。并且当第一前导符号由第一前导码扩频生成时,可以使得第一前导符号不容易被外界信号干扰且具有不可预测性,提高了超宽带信号的抗干扰能力和安全性。
当第一前导符号由第一前导码扩频生成时,第一前导码可以与扩频码相乘,得到第一前导符号。扩频码的长度与第一前导符号的长度有关,本申请实施例中,扩频码的位数与第一前导码的位数相同,扩频码的各个值与第一前导码的各个值一一对应,第一前导码中每个值与扩频码中对应的值相乘。扩频码可以是发送端随机生成的;或者是从预先存储的多个扩频码中选择的,例如发送端预先生成有包括多个扩频码的码书(codebook),发送端直接从码书中选择扩频码。扩频码的形式、长度以及获取方式等均可以自定义配置,本申请实施例对此不做限定。
本申请实施例中,将一个第一前导符号扩频后得到的序列称为一个CTS符号。当第一前导符号的数量为多个时,多个第一前导符号扩频后得到多个CTS符号,多个CTS符号组成多个CTS段(segment,Seg),每个CTS段包括至少一个CTS符号。任意两个CTS段之间存在空信号间隔,空信号间隔对应的时间段内不存在信号传输。空信号间隔的时间长度可以自定义配置,本申请实施例对其具体值不做限定。当CTS段的数量大于2时,空信号间隔的数量为多个,多个空信号间隔中可以存在相同时间长度的空信号间隔,也可以不存在相同时间长度的空信号间隔。这样在以脉冲信号发送超宽带信号时,可以降低脉 冲信号的占空比,在满足了超宽带的频段使用规定的同时提高了超宽带信号的发射功率,减小了超宽带信号在传输过程中的衰减程度,从而扩大了超宽带信号的覆盖范围。
CTS字段的长度由CTS符号的长度和数量以及空信号间隔的时间长度决定,CTS符号数量、每个CTS符号的长度以及空信号间隔的时间长度均可以自定义设置,本申请实施例对其具体值不做限定。
SYNC字段的长度由第二前导符号的数量和每个第二前导符号的长度决定,第二前导符号的数量和每个第二前导符号的长度可以自定义设置,本申请实施例对其具体值不做限定。SYNC字段和CTS字段中可以存在相同的前导符号,也可以不存在相同的前导符号。当第二前导符号的数量为多个时,多个第二前导符号中可以存在相同的第二前导符号,也可以不存在相同的第二前导符号。
其中,第二前导符号可以包括第二前导码或者由第二前导码扩频生成。第二前导码可以为具有良好相关特性的序列,例如可以为binary序列或者ternary序列,本申请实施例对第二前导码的形式不做限定。第二前导符号的扩频方式可以参考第一前导码,本申请实施例在此不做赘述。
整个超宽带信号的长度由SYNC字段的长度、SYNC字段和CTS字段之间的空信号间隔的时间长度以及CTS字段的长度决定。超宽带信号用于后续的测距,其长度与后续测距的覆盖范围以及测距频率相关,SYNC字段的长度、SYNC字段和CTS字段之间的空信号间隔的时间长度均可以自定义配置,使得超宽带信号可以支持不同测距场景下对测距覆盖范围和测距频率的要求。例如当需要增加测距的覆盖范围时,可以增加超宽带信号的长度。
示例地,请参考图4,图4为本申请实施例提供的一种超宽带信号的格式示意图,图4以CTS字段包括CTS Seg1至CTS SegM这M个CTS段为例进行说明。如图4所示,T sync表示超宽带信号中SYNC字段的时间长度,在T sync的时间段内传输SYNC字段。T CTS  SegX表示CTS SegX的时间长度,在T CTS SegX的时间段内传输CTS SegX,1≤X≤M。
T gap0表示SYNC字段和CTS字段的首个CTS符号(或者CTS Seg1)之间的空信号间隔的时间长度。CTS字段中每两个CTS段之间存在空信号间隔,CTS字段共存在M-1个空信号间隔,T gapY表示CTS SegY与CTS SegY+1之间的空信号间隔的时间长度,1≤Y≤M-1。在T interval、T gap0和T gapY的时间段内均不存在信号发送。
以下以图5至图7为例对超宽带信号中字段的具体结构进行说明。请参考图5,图5为本申请实施例提供的一种SYNC字段的结构示意图,如图5所示,SYNC字段包括N SYNC个第二前导符号symbol(0)~symbol(N SYNC-1),N SYNC为大于2的正整数。
请参考图6,图6为本申请实施例提供的一种CTS字段的结构示意图,如图6所示,CTS字段包括N CTS个CTS符号CTS(0)~CTS(N CTS-1),N CTS为大于2的正整数。N CTS个CTS符号组成M Seg个CTS段CTS Seg(0)~CTS Seg(M Seg-1),每个CTS段包括N Seg个CTS符号,M Seg为大于3的正整数,N Seg为正整数。例如CTS Seg(0)包括N Seg个CTS符号CTS(0)~CTS(N Seg-1),CTS Seg(1)包括N Seg个CTS符号CTS(N Seg)~CTS(2*N Seg-1),CTS Seg(M Seg-1)包括N Seg个CTS符号CTS((M Seg-1)*N Seg)~CTS(N CTS-1)。任意两个CTS段之间存在空信号间隔,例如CTS Seg(0)和CTS Seg(1)之间存在Gap(1),CTS Seg(1)和CTS Seg(2)之间存在Gap(2),CTS Seg(M Seg-2)和CTS  Seg(M Seg-1)之间存在Gap(M Seg-1)。
请参考图7,图7为本申请实施例提供的一种CTS段的结构示意图,图7以图6中的CTS Seg(0)为例进行说明。如图7所示,CTS Seg(0)包括N Seg个CTS符号CTS(0)~CTS(N Seg-1),该N Seg个CTS符号是通过伪随机序列中的前N Seg个值分别与对应的第一前导符号相乘得到的。图7示出了N Seg个CTS符号中的CTS(i)的具体结构,CTS(i)是通过伪随机序列对第一前导符号扩频得到的,第一前导符号中的每个值P(0)~P(N-1)均与伪随机序列中的第i个值S(i)相乘得到CTS(i)。
可选地,在执行该过程301之前,发送端还可以向接收端发送窄带信号,该窄带信号用于对超宽带信号进行同步处理。窄带信号可以包括PPDU。超宽带信号和窄带信号之间存在空信号间隔,该空信号间隔的时间长度可以自定义设置,本申请实施例对其具体值不做限定。空信号间隔对应的时间段内不存在信号传输。本申请实施例中对窄带信号的格式(包括长度和字段等)、工作频段以及信号带宽等均不做限定。
302、发送端向接收端发送超宽带信号。
303、接收端基于接收到的超宽带信号的SYNC字段确定第一时频同步信息。
当接收端未接收到窄带信号时,接收端直接基于SYNC字段确定第一时频同步信息。当接收端接收到了窄带信号时,接收端基于窄带信号确定第二时频同步信息,之后基于第二时频同步信息和SYNC字段确定第一时频同步信息。
对于窄带辅助超宽带的接收端,由于超宽带系统的带宽高,需要设备工作在高的采样率下,即超宽带系统需要工作在较高的频率,因此相较于窄带系统,超宽带系统的芯片面积、运行功耗和运行成本均较高。在本申请实施例中,第二时频同步信息是接收端的窄带系统确定的,窄带系统可以通过窄带信号进行部分的同步处理过程,有效减小了超宽带信号的空中传输时间和超宽带系统的复杂度,从而降低了超宽带系统的芯片面积、运行功耗和运行成本,提高了测距效率。
304、接收端根据第一时频同步信息对超宽带信号进行同步处理。
接收端根据第一时频同步信息可以实现对超宽带信号的CTS字段的高精度同步处理。
超宽带系统在基于CTS字段确定信道脉冲响应时,信道脉冲响应的准确度与CTS字段的同步精度密切相关。接收端根据SYNC字段能够实现CTS字段的高精度同步,保证了后续确定的信道脉冲响应的准确度,从而在使用信道脉冲响应进行测距时保证了良好的测距性能。
对于接收端基于窄带信号和SYNC字段确定第一时频同步的情况,由于不同窄带系统的同步精度不同,超宽带系统根据SYNC字段在窄带系统的同步基础上实现进一步同步,使得超宽带系统能够灵活适应不同窄带系统的同步精度,提高了本申请实施例的方法的可行性和应用广泛性。并且窄带系统由于本身的带宽和时钟频率的限制,其同步精度较低,接收端根据SYNC字段能够进一步实现CTS字段的高精度同步,保证了后续确定的信道脉冲响应的准确度。
305、接收端通过伪随机序列对CTS字段进行解扩频,得到至少一个第一前导符号。
接收端确定的伪随机序列与发送端确定的伪随机序列相同。伪随机序列是接收端通过对称加密算法确定的,即接收端与发送端使用相同的密钥确定伪随机序列。接收端确定伪随机序列的方式可以参考前述过程301中发送端确定伪随机序列的过程,本申请实施例在 此不做赘述。需要说明的是,若接收端和发送端均采用对称加密算法对原始序列进行加密得到第一伪随机序列或伪随机序列,则接收端和发送端所使用的原始序列也是相同的。
306、接收端基于至少一个第一前导符号确定信道脉冲响应。
综上所述,本申请实施例提供的信号传输方法,发送端生成超宽带信号,超宽带信号包括CTS字段,CTS字段是通过伪随机序列对至少一个第一前导符号分别进行扩频得到的,之后发送端向接收端发送超宽带信号,接收端基于接收到的超宽带信号的SYNC字段确定第一时频同步信息,并根据第一时频同步信息对超宽带信号进行同步处理,之后接收端通过伪随机序列对CTS字段进行解扩频,得到至少一个第一前导符号,基于至少一个第一前导符号确定信道脉冲响应,进而实现测距。其中,CTS字段是通过伪随机序列对至少一个第一前导符号分别进行扩频得到的,第一前导码为具有良好相关特性的序列,伪随机序列相当于加密的扩频码,在通过伪随机序列对CTS字段进行解扩频时,伪随机序列相当于加密的解扩频码,通过加密的扩频码对至少一个第一前导符号分别进行扩频,通过加密的解扩频码对CTS字段进行解扩频,在不破坏第一前导符号的相关性的同时使得CTS字段不容易被外界信号干扰且具有不可预测性,保证了超宽带信号的安全防护能力,从而实现了安全的高精度测距和定位。并且将加密与至少一个第一前导符号结合,无需新增用于加密的序列,从而无需额外增加超宽带信号的空中传输时间,有效提高了测距和定位效率。
并且,接收端根据SYNC字段可以实现超宽带信号的CTS字段的高精度同步。由于信道脉冲响应的准确度与CTS字段的同步精度密切相关,因此通过SYNC字段可以实现高精度同步,以提高信道脉冲响应的准确度,从而在使用信道脉冲响应进行测距时保证了良好的测距性能。
整个超宽带信号的长度由SYNC字段的长度、SYNC字段和CTS字段之间的空信号间隔的时间长度以及CTS字段的长度决定。超宽带信号的长度与测距的覆盖范围以及测距频率相关,SYNC字段的长度、SYNC字段和CTS字段之间的空信号间隔的时间长度均可以自定义配置,使得超宽带信号可以支持不同测距场景下对测距覆盖范围和测距频率的要求。
此外,本申请实施例提供的信号传输方法可以应用于窄带辅助超宽带的信号传输系统。发送端在向接收端发送超宽带信号之前可以先发送窄带信号,接收端根据窄带信号对超宽带信号进行同步处理。这样窄带系统可以通过窄带信号进行部分的同步处理过程,有效减小了超宽带信号的空中传输时间和超宽带系统的复杂度。从而在应用超宽带系统保持了高精度测距的同时,降低了超宽带系统的芯片面积、运行功耗和运行成本,提高了测距效率。在该信号传输系统中,由于不同窄带系统的同步精度不同,超宽带系统根据SYNC字段在窄带系统的同步基础上实现进一步同步,使得超宽带系统能够灵活适应不同窄带系统的同步精度,提高了本申请实施例的方法的可行性和应用广泛性。
本申请实施例提供的方法的先后顺序可以进行适当调整,过程也可以根据情况进行相应增减。任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,本申请实施例对此不做限定。
上述主要从设备之间交互的角度对本申请实施例提供的信号传输方法进行了介绍。可以理解的是,各个设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软 件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对各个设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图8为本申请实施例提供的一种信号传输装置的框图,在采用对应各个功能划分各个功能模块的情况下,信号传输装置400可以包括收发模块401和处理模块402。示例性地,该信号传输装置可以是发送端或接收端,也可以是其中的芯片或者其他具有上述信号传输装置功能的组合器件、部件等。当该信号传输装置400是发送端或接收端时,收发模块401可以是收发器,收发器可以包括天线和射频电路等;处理模块402可以是处理器(或者,处理电路),例如基带处理器,基带处理器中可以包括一个或多个中央处理器(central processing unit,CPU)。当该信号传输装置400是具有上述功能的器件或部件时,收发模块401可以是射频单元;处理模块402可以是处理器(或者,处理电路),例如基带处理器。当该信号传输装置400是芯片系统时,收发模块401可以是芯片(例如基带芯片)的输入输出接口;处理模块402可以是芯片系统的处理器(或者,处理电路),可以包括一个或多个中央处理单元。应理解,本申请实施例中的收发模块401可以由收发器或收发器相关电路组件实现;处理模块402可以由处理器或处理器相关电路组件(或者,称为处理电路)实现。
例如,当该信号传输装置400为发送端的芯片或功能单元时,收发模块401可以用于执行图1或图3所示的实施例中由发送端所执行的全部收发操作,和/或用于支持本文所描述的技术的其它过程;处理模块402可以用于执行图1或图3所示的实施例中由发送端所执行的除了收发操作之外的全部操作,和/或用于支持本文所描述的技术的其它过程。
收发模块401可以包括发送模块和/或接收模块,分别用于执行图1或图3所示的实施例中由发送端所执行的发送和接收的操作,所述信号传输装置包括:
处理模块,用于生成超宽带信号,所述超宽带信号包括信道脉冲响应训练序列CTS字段,CTS字段是通过伪随机序列对至少一个第一前导符号分别进行扩频得到的;
收发模块,用于发送所述超宽带信号,所述CTS字段用于确定信道脉冲响应。
结合上述方案,所述伪随机序列是通过对称加密算法确定的。
结合上述方案,所述超宽带信号还包括同步SYNC字段,SYNC字段包括至少一个第二前导符号,所述SYNC字段用于对所述超宽带信号进行同步处理。
结合上述方案,所述第一前导符号的数量为多个,多个第一前导符号扩频后得到多个CTS符号,所述多个CTS符号组成多个CTS段,任意两个CTS段之间存在空信号间隔。
结合上述方案,所述收发模块,还用于发送窄带信号,所述窄带信号用于对所述超宽带信号进行同步处理。
例如,当该信号传输装置400为接收端的芯片或功能单元时,收发模块401可以用于执行图2或图3所示的实施例中由接收端所执行的全部收发操作,和/或用于支持本文所描述的技术的其它过程;处理模块402可以用于执行图2或图3所示的实施例中由接收端所执行的除了收发操作之外的全部操作,和/或用于支持本文所描述的技术的其它过程。
收发模块401可以包括发送模块和/或接收模块,分别用于执行图2或图3所示的实施例中由接收端所执行的发送和接收的操作,所述信号传输装置包括:
收发模块,用于接收超宽带信号,所述超宽带信号包括信道脉冲响应训练序列CTS字段,CTS字段是通过伪随机序列对至少一个第一前导符号分别进行扩频得到的;
处理模块,用于通过伪随机序列对所述CTS字段进行解扩频,得到至少一个第一前导符号;
所述处理模块,还用于基于所述至少一个第一前导符号确定信道脉冲响应。
结合上述方案,所述伪随机序列是通过对称加密算法确定的。
结合上述方案,所述超宽带信号还包括同步SYNC字段,SYNC字段包括至少一个第二前导符号,所述处理模块,还用于基于所述SYNC字段确定第一时频同步信息;根据所述第一时频同步信息对所述超宽带信号进行同步处理。
结合上述方案,所述CTS字段包括多个CTS段,所述CTS段包括至少一个CTS符号,所述CTS符号解扩频后得到所述第一前导符号,任意两个CTS段之间存在空信号间隔。
结合上述方案,所述处理模块,还用于基于接收到的窄带信号确定第二时频同步信息;根据所述第二时频同步信息对所述超宽带信号进行同步处理。
图9为本申请实施例提供的一种电子设备的结构示意图,该电子设备600可以为发送端或者发送端中的芯片或者功能模块;也可以为接收端或者接收端中的芯片或者功能模块。如图9所示,该电子设备500包括处理器501,收发器502以及通信线路503。
其中,处理器501用于执行如图1至图3所示的方法实施例中的任一步骤,且在执行诸如发送超宽带信号等过程时,可选择调用收发器502以及通信线路503来完成相应操作。
进一步的,该电子设备500还可以包括存储器504。其中,处理器501,存储器504以及收发器502之间可以通过通信线路503连接。
其中,处理器501是处理器、通用处理器网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器501还可以是其它具有处理功能的装置,例如电路、器件或软件模块,不予限制。
收发器502,用于与其他设备或其它通信网络进行通信,其它通信网络可以为以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。收发器502可以是模块、电路、收发器或者任何能够实现通信的装置。
收发器502主要用于信号的收发,可以包括发射器和接收器,分别进行信号的发送和接收;除信号收发之外的操作由处理器实现,如信息处理,计算等。
通信线路503,用于在电子设备500所包括的各部件之间传送信息。
在一种设计中,可以将处理器看做逻辑电路,收发器看做接口电路。
存储器504,用于存储指令。其中,指令可以是计算机程序。
其中,存储器504可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。存储器504还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或其他磁存储设备等。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
需要指出的是,存储器504可以独立于处理器501存在,也可以和处理器501集成在一起。存储器504可以用于存储指令或者程序代码或者一些数据等。存储器504可以位于电子设备500内,也可以位于电子设备500外,不予限制。处理器501,用于执行存储器504中存储的指令,以实现本申请上述实施例提供的方法。
在一种示例中,处理器501可以包括一个或多个处理器,例如图9中的CPU0和CPU1。
作为一种可选的实现方式,电子设备500包括多个处理器,例如,除图9中的处理器501之外,还可以包括处理器507。
作为一种可选的实现方式,电子设备500还包括输出设备505和输入设备506。示例性地,输入设备506是键盘、鼠标、麦克风或操作杆等设备,输出设备505是显示屏、扬声器(speaker)等设备。
需要指出的是,电子设备500可以是芯片系统或有图9中类似结构的设备。其中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请的各实施例之间涉及的动作、术语等均可以相互参考,不予限制。本申请的实施例中各个设备之间交互的消息名称或消息中的参数名称等只是一个示例,具体实现中也可以采用其他的名称,不予限制。此外,图9中示出的组成结构并不构成对该电子设备500的限定,除图9所示部件之外,该电子设备500可以包括比图9所示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓 (GaAs)等。
作为又一种可实现方式,图8中的收发模块401可以由图9中的收发器502代替,该收发器502可以集成收发模块401的功能;处理模块402可以由处理器507代替,该处理器507可以集成处理模块402的功能。进一步的,图8所示信号传输装置400还可以包括存储器(图中未示出)。当收发模块401由收发器502代替,处理模块402由处理器507代替时,本申请实施例所涉及的信号传输装置400可以为图9所示的电子设备500。
图10为本申请实施例提供的一种信号传输装置的结构示意图。该信号传输装置可适用于上述方法实施例所示出的场景中。为了便于说明,图10仅示出了信号传输装置的主要部件,包括处理器、存储器、控制电路、以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。控制电路主要用于供电及各种电信号的传递。输入输出装置主要用于接收用户输入的数据以及对用户输出数据。
当该信号传输装置为发送端或接收端时,该控制电路可以为主板,存储器包括硬盘,RAM,ROM等具有存储功能的介质,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个信号传输装置进行控制,执行软件程序,处理软件程序的数据,输入输出装置包括显示屏、键盘和鼠标等;控制电路可以进一步包括或连接收发电路或收发器,例如:网线接口等,用于发送或接收数据或信号,例如与其他设备进行数据传输及通信。进一步的,还可以包括天线,用于无线信号的收发,用于与其他设备进行数据/信号传输。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行本申请实施例任一所述的方法。
本申请实施例还提供了一种计算机可读存储介质。上述方法实施例中的全部或者部分流程可以由计算机或者具有信息处理能力的装置执行计算机程序或指令,以控制相关的硬件完成,该计算机程序或该组指令可存储于上述计算机可读存储介质中,该计算机程序或该组指令在执行时,可包括如上述各方法实施例的流程。计算机可读存储介质可以是前述任一实施例的发送端或接收端的内部存储单元,例如发送端或接收端的硬盘或内存。上述计算机可读存储介质也可以是上述发送端或接收端的外部存储设备,例如上述发送端或接收端配备的插接式硬盘,智能存储卡(smart media card,SMC),安全数字(secure digital,SD)卡,闪存卡(flash card)等。进一步地,上述计算机可读存储介质还可以既包括上述发送端或接收端的内部存储单元也包括外部存储设备。上述计算机可读存储介质用于存储上述计算机程序或指令以及上述发送端或接收端所需的其他程序和数据。上述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装 置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种信号传输方法,其特征在于,所述方法包括:
    生成超宽带信号,所述超宽带信号包括信道脉冲响应训练序列CTS字段,CTS字段是通过伪随机序列对至少一个第一前导符号分别进行扩频得到的;
    发送所述超宽带信号,所述CTS字段用于确定信道脉冲响应。
  2. 根据权利要求1所述的方法,其特征在于,所述伪随机序列是通过对称加密算法确定的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述超宽带信号还包括同步SYNC字段,SYNC字段包括至少一个第二前导符号,所述SYNC字段用于对所述超宽带信号进行同步处理。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述第一前导符号的数量为多个,多个第一前导符号扩频后得到多个CTS符号,所述多个CTS符号组成多个CTS段,任意两个CTS段之间存在空信号间隔。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    发送窄带信号,所述窄带信号用于对所述超宽带信号进行同步处理。
  6. 一种信号传输方法,其特征在于,所述方法包括:
    接收超宽带信号,所述超宽带信号包括信道脉冲响应训练序列CTS字段,CTS字段是通过伪随机序列对至少一个第一前导符号分别进行扩频得到的;
    通过所述伪随机序列对所述CTS字段进行解扩频,得到所述至少一个第一前导符号;
    基于所述至少一个第一前导符号确定信道脉冲响应。
  7. 根据权利要求6所述的方法,其特征在于,所述伪随机序列是通过对称加密算法确定的。
  8. 根据权利要求6或7所述的方法,其特征在于,所述超宽带信号还包括同步SYNC字段,SYNC字段包括至少一个第二前导符号,所述方法还包括:
    基于所述SYNC字段确定第一时频同步信息;
    根据所述第一时频同步信息对所述超宽带信号进行同步处理。
  9. 根据权利要求6至8任一项所述的方法,其特征在于,所述CTS字段包括多个CTS段,所述CTS段包括至少一个CTS符号,所述CTS符号解扩频后得到所述第一前导符号,任意两个CTS段之间存在空信号间隔。
  10. 根据权利要求6至9任一项所述的方法,其特征在于,所述方法还包括:
    基于接收到的窄带信号确定第二时频同步信息;
    根据所述第二时频同步信息对所述超宽带信号进行同步处理。
  11. 一种信号传输装置,其特征在于,所述装置包括:
    处理模块,用于生成超宽带信号,所述超宽带信号包括信道脉冲响应训练序列CTS字段,CTS字段是通过伪随机序列对至少一个第一前导符号分别进行扩频得到的;
    收发模块,用于发送所述超宽带信号,所述CTS字段用于确定信道脉冲响应。
  12. 一种信号传输装置,其特征在于,所述装置包括:
    收发模块,用于接收超宽带信号,所述超宽带信号包括信道脉冲响应训练序列CTS字 段,CTS字段是通过伪随机序列对至少一个第一前导符号分别进行扩频得到的;
    处理模块,用于通过伪随机序列对所述CTS字段进行解扩频,得到至少一个第一前导符号;
    所述处理模块,还用于基于所述至少一个第一前导符号确定信道脉冲响应。
  13. 一种信号传输装置,其特征在于,所述装置包括:
    一个或多个处理器;
    存储器,用于存储一个或多个计算机程序或指令;
    当所述一个或多个计算机程序或指令被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1至5中任一项所述的方法。
  14. 一种信号传输装置,其特征在于,所述装置包括:
    一个或多个处理器;
    存储器,用于存储一个或多个计算机程序或指令;
    当所述一个或多个计算机程序或指令被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求6至10中任一项所述的方法。
  15. 一种信号传输系统,其特征在于,所述系统包括:发送端和接收端;
    所述发送端包括如权利要求11所述的信号传输装置或者如权利要求13所述的信号传输装置,所述接收端包括如权利要求12所述的信号传输装置或者权利要求14所述的信号传输装置。
PCT/CN2022/138745 2022-07-01 2022-12-13 信号传输方法、装置及系统 WO2024001063A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210768897.7A CN117376812A (zh) 2022-07-01 2022-07-01 信号传输方法、装置及系统
CN202210768897.7 2022-07-01

Publications (1)

Publication Number Publication Date
WO2024001063A1 true WO2024001063A1 (zh) 2024-01-04

Family

ID=89383929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138745 WO2024001063A1 (zh) 2022-07-01 2022-12-13 信号传输方法、装置及系统

Country Status (2)

Country Link
CN (1) CN117376812A (zh)
WO (1) WO2024001063A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101692615A (zh) * 2009-09-25 2010-04-07 北京邮电大学 载波同步脉冲超宽带射频调制装置
RU2731369C1 (ru) * 2019-12-02 2020-09-02 Акционерное общество "Концерн "Созвездие" Устройство обработки короткоимпульсных сверхширокополосных сигналов на приёмной стороне
CN113315542A (zh) * 2021-06-10 2021-08-27 恒盟海外科技有限公司 一种伪随机相位序列扩频通讯系统物理层
CN113613344A (zh) * 2015-07-27 2021-11-05 苹果公司 针对5g ciot(蜂窝物联网)的增强rach(随机接入信道)设计

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101692615A (zh) * 2009-09-25 2010-04-07 北京邮电大学 载波同步脉冲超宽带射频调制装置
CN113613344A (zh) * 2015-07-27 2021-11-05 苹果公司 针对5g ciot(蜂窝物联网)的增强rach(随机接入信道)设计
RU2731369C1 (ru) * 2019-12-02 2020-09-02 Акционерное общество "Концерн "Созвездие" Устройство обработки короткоимпульсных сверхширокополосных сигналов на приёмной стороне
CN113315542A (zh) * 2021-06-10 2021-08-27 恒盟海外科技有限公司 一种伪随机相位序列扩频通讯系统物理层

Also Published As

Publication number Publication date
CN117376812A (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
CN110691356B (zh) 超宽带安全测距
SE518132C2 (sv) Metod och anordning för synkronisering av kombinerade mottagare och sändare i ett cellulärt system
Amin et al. Digital modulator and demodulator IC for RFID tag employing DSSS and barker code
KR101234134B1 (ko) 초-광대역 무선 통신 네트워크에서 동시 직교 채널들을 구현하기 위한 시스템 및 방법
EP4095553A1 (en) Method for transceiving a message for uwb distance measurement, method and system for distance measurement and transceiver for uwb distance measurement
KR20090008370A (ko) 낮은 레이턴시 멀티-홉 통신의 장치 및 방법
US20100158087A1 (en) Method and System for Detecting a First Symbol Sequence in a Data Signal, Method and System for Generating a Sub-Sequence of a Transmission Symbol Sequence, and Computer Program Products
WO2024001063A1 (zh) 信号传输方法、装置及系统
WO2024000593A1 (zh) 信号传输方法、装置及系统
WO2023024940A1 (zh) Uwb通信方法、通信装置及系统
Harada et al. Modulation and hopping using modified Hermite pulses for UWB communications
US20010005155A1 (en) Method and an electrical device for efficient multi-rate pseudo random noise (PN) sequence generation
KR100667785B1 (ko) 카오스 기반 통신 시스템에서 동기화 방법 및 장치, 위치인식 방법 및 장치
WO2023185855A1 (zh) 一种通信方法及装置
Nguyen An oversampling-based correlator-type receiver for DCSK communication systems over generalized flat rayleigh fading channels
WO2023236805A1 (zh) 信息交互方法及相关装置
WO2024050789A1 (zh) 通信方法及相关装置
WO2023201890A1 (zh) 信号传输方法和装置
WO2024083179A1 (zh) 基于感知的通信方法及装置
Guo et al. Performance evaluation of time-hopping sequence for rapid on-off-division duplex
WO2024065196A1 (zh) 数据传输方法及装置
WO2024045483A1 (zh) 一种超宽带帧的发送方法和通信设备
JP3228255B2 (ja) プリアンブル信号発生器、及びユニークワード検出回路
Zhang et al. Time-Hopping Spread-Spectrum Based on Balance Gold Sequences in Ultra-Wide Band Communications
CN106817707A (zh) 在基站中用于检测以及辅助检测信号来源的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949139

Country of ref document: EP

Kind code of ref document: A1