WO2024045483A1 - 一种超宽带帧的发送方法和通信设备 - Google Patents

一种超宽带帧的发送方法和通信设备 Download PDF

Info

Publication number
WO2024045483A1
WO2024045483A1 PCT/CN2023/073140 CN2023073140W WO2024045483A1 WO 2024045483 A1 WO2024045483 A1 WO 2024045483A1 CN 2023073140 W CN2023073140 W CN 2023073140W WO 2024045483 A1 WO2024045483 A1 WO 2024045483A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
data segments
time interval
ultra
multiple data
Prior art date
Application number
PCT/CN2023/073140
Other languages
English (en)
French (fr)
Inventor
胡世昌
于茜
马超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024045483A1 publication Critical patent/WO2024045483A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • H04W12/033Protecting confidentiality, e.g. by encryption of the user plane, e.g. user's traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular, to a method and communication device for sending ultra-wideband frames.
  • Ultra-Wide Band (UWB) wireless technology is characterized by a very narrow pulse signal with good multipath resolution capabilities, which can ensure centimeter-level ranging accuracy in complex indoor multipath environments.
  • UWB wireless technology the area, power consumption and cost of ultra-wideband chips are relatively high.
  • a current solution is to use narrow-band (NB) signals for data transmission, and NB provides time synchronization information for UWB signals.
  • UWB only needs to send channel impulse response (Channel Impulse Response, CIR) training sequences for measurement. distance.
  • CIR Channel Impulse Response
  • This solution is to divide the UWB CIR training sequence into multiple segments for transmission, thereby increasing the link budget of UWB and improving the pulse transmission power in UWB. That is, the coverage distance of UWB signals can be increased while the power spectral density remains unchanged.
  • Embodiments of the present application provide an ultra-wideband frame sending method and communication device, which can improve the security protection capability during UWB sending and receiving processes.
  • a method for sending an ultra-wideband frame includes: a communication device obtains key information of an ultra-wideband frame, and the ultra-wideband frame includes multiple data segments.
  • the communication device sends multiple data fragments according to the time interval between the multiple data fragments, or the communication device receives multiple data fragments according to the time interval between the multiple data fragments. The time interval between the multiple data fragments is determined based on the key information. .
  • the communication device in this application can use key information to encrypt the time interval between data fragments in the ultra-wideband frame and then send it.
  • the communication device can use the key information to determine the time interval between data fragments, and then receive the ultra-wideband frame according to the time interval.
  • the embodiments of this application do not need to increase the physical layer implementation cost, and can provide security protection for ultra-wideband frames in the time dimension.
  • This combination of encryption is used to configure the time intervals between data fragments of ultra-wideband frames, which can ensure ultra-wideband Secure sending and receiving of frames.
  • multiple data segments are used for ranging.
  • the time intervals between multiple data fragments in the ultra-wideband frame are encrypted using key information, which can improve the security of the ultra-wideband frame for ranging. Protective ability.
  • the key information is a symmetric key between the communication device that sends the ultra-wideband frame and the communication device that receives the ultra-wideband frame;
  • the method further includes: the communication device generates a random number according to the symmetric key, And determine the time interval between multiple data fragments based on random numbers.
  • the symmetric keys of the sending side and the receiving side of the ultra-wideband frame are used to encrypt the time intervals of multiple data fragments of the ultra-wideband frame, so that the sending side and the receiving side can control the ultra-wideband frame according to consistent time intervals. of sending and receiving.
  • a random number is determined based on the symmetric key, and the time intervals between multiple data fragments determined based on the random number are the same.
  • the time intervals between multiple data segments are the same.
  • the value of the time interval between multiple data segments is a random number; or the value of the time interval between multiple data segments is calculated based on the random number.
  • a symmetric key is used to determine a random number, and the value of the time interval determined based on the random number is one.
  • the time interval between multiple data fragments can be determined based on the value of this time interval.
  • the time intervals between multiple data segments are not exactly the same;
  • the communication device generates random numbers based on the key information, and determines the time intervals between multiple data segments based on the random numbers.
  • the communication device generates multiple random numbers based on the symmetric key, and configures the multiple random numbers as time intervals between the multiple data segments. time interval; or, the communication device generates multiple random numbers based on the symmetric key, and performs calculations based on the multiple random numbers to obtain the time intervals between multiple data fragments.
  • the sending device can set non-identical time intervals between multiple data fragments in the ultra-wideband frame according to the symmetric key, so as to send multiple data fragments according to the time interval to ensure that the sending device sends ultra-wideband Frame time security.
  • the receiving device can also determine the time intervals between multiple data segments in the ultra-wideband frame that are not exactly the same based on the symmetric key, so as to receive multiple data segments according to the time intervals to ensure that the receiving side correctly receives the ultra-wideband frame. Multiple data fragments of a wideband frame.
  • the time intervals between multiple data segments are not exactly the same;
  • the communication device generates a random number based on the symmetric key, and determines the time intervals between multiple data segments based on the random number.
  • the communication device generates a first random number based on the symmetric key, and the first random number is one of the multiple random numbers, Multiple random numbers correspond to multiple time interval patterns; the communication device obtains the first time interval pattern corresponding to the first random number, and the first time interval pattern is used to indicate the time interval between multiple data segments.
  • each time interval mode is used for the time intervals between multiple data segments. If the communication device determines the first random number generated based on the symmetric key, the first time interval pattern corresponding to the first random number is determined. The determined first time interval pattern is also the same for the sending side and the receiving side. This ensures security during the sending and receiving of UWB frames.
  • the ultra-wideband frame includes a synchronization field and a channel impulse response training sequence CTS field
  • the CTS field includes multiple data segments.
  • the synchronization field is used for time-frequency synchronization between the ranging equipment that sends ultra-wideband frames and the ranging equipment that receives ultra-wideband frames
  • the CTS field is used to obtain the ranging results.
  • multiple data segments are obtained by dividing multiple leading symbols
  • the multiple preamble symbols are generated based on the synchronization sequence and the spreading sequence.
  • the synchronization sequence includes multiple synchronization codes
  • the spreading sequence includes multiple spreading codes
  • the multiple spreading codes correspond to the multiple preamble symbols one-to-one.
  • a single preamble symbol among multiple preamble symbols is generated by a synchronization sequence and a spreading code corresponding to a single preamble symbol.
  • a communication device in a second aspect, includes: an acquisition unit for acquiring key information of an ultra-wideband frame, where the ultra-wideband frame includes multiple data segments; and a transceiver unit for obtaining the key information between the multiple data segments. Send multiple data fragments at time intervals, or receive multiple data fragments according to the time interval between multiple data fragments. The time interval between multiple data fragments is determined based on the key information.
  • multiple data segments are used for ranging.
  • the key information is a symmetric key between the communication device that sends the ultra-wideband frame and the communication device that receives the ultra-wideband frame.
  • the acquisition unit is also used to: generate random numbers based on the symmetric key, and determine the time intervals between multiple data fragments based on the random numbers.
  • the time intervals between multiple data segments are the same.
  • the value of the time interval between multiple data segments is a random number; or the value of the time interval between multiple data segments is calculated based on the random number.
  • the time intervals between multiple data segments are not exactly the same;
  • the acquisition unit is used to: generate multiple random numbers based on the symmetric key, and configure the multiple random numbers as time intervals between multiple data fragments; or, generate multiple random numbers based on the symmetric key, and configure the multiple random numbers based on the multiple random numbers. Calculate and obtain the time interval between multiple data fragments.
  • the time intervals between multiple data segments are not exactly the same;
  • the acquisition unit is configured to: generate a first random number according to the symmetric key, where the first random number is one of multiple random numbers, and the multiple random numbers correspond to multiple time interval patterns; the communication device acquires the first random number corresponding to the first random number.
  • Time interval mode the first time interval mode is used to indicate the time interval between multiple data fragments.
  • a communication device including at least one processor.
  • the at least one processor is connected to a memory.
  • the at least one processor is used to read and execute a program stored in the memory, so that the device executes as follows: The method described in the above first aspect or any one of the first aspects.
  • a fourth aspect provides a chip, which is coupled to a memory and used to read and execute program instructions stored in the memory to implement the method described in the above first aspect or any one of the first aspects. .
  • a ranging device including: a memory and a processor.
  • the above-mentioned memory is coupled to the processor.
  • the memory is used to store computer program code, which includes computer instructions.
  • This transceiver is used to receive data and send data.
  • the processor executes the computer instructions, the ranging device is caused to execute any scene-based ultra-wideband frame sending method as provided by the first aspect or its corresponding possible design.
  • embodiments of the present application provide a ranging device, which is included in an electronic device and has the function of realizing the behavior of the communication device in any of the above aspects and any possible implementation manner.
  • This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • Hardware or software includes one or more modules or units corresponding to the above functions. For example, acquisition module or unit, transceiver module or unit, etc.
  • embodiments of the present application provide an electronic device, including an antenna, one or more processors, and one or more memories.
  • the one or more memories are coupled to one or more processors, and the one or more memories are used to store computer program code.
  • the computer program code includes computer instructions.
  • embodiments of the present application provide a computer-readable storage medium that includes computer instructions.
  • the computer instructions When the computer instructions are run on an electronic device, the electronic device causes the electronic device to execute the above-mentioned first aspect and any possible implementation manner.
  • Method of sending ultra-wideband frames Method of sending ultra-wideband frames.
  • embodiments of the present application provide a computer program product.
  • the computer program product When the computer program product is run on a computer or processor, it causes the computer or processor to execute the supercomputer in the above first aspect and any possible implementation manner. Broadband frame transmission method.
  • embodiments of the present application provide a communication system, which may include a communication device for sending ultra-wideband frames and a communication device for receiving ultra-wideband frames in any possible implementation of any of the above aspects. equipment.
  • the communication device can perform the ultra-wideband frame sending method in the above first aspect and any possible implementation manner.
  • any communication device, communication equipment, ranging equipment, chip, computer-readable storage medium or computer program product provided above can be applied to the corresponding method provided above. Therefore, the for the beneficial effects that can be achieved, please refer to the beneficial effects in the corresponding method, which will not be described again here.
  • Figure 1 is a schematic diagram of a data structure for security protection in the STS field added to a UWB data packet provided by an embodiment of the present application;
  • Figure 2 is a schematic diagram of a data transmission structure of ranging data provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of the network framework of an ultra-wideband frame sending method provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of an ultra-wideband frame sending method provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of an ultra-wideband frame provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of an ultra-wideband frame sending method provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of an ultra-wideband frame provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of an ultra-wideband frame provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of an ultra-wideband frame provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of the composition of multiple preamble symbols provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of dividing Ncts preamble symbols provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a distance measuring device provided by an embodiment of the present application.
  • UWB Also known as ultra-wideband, it can communicate using pulses with extremely short time intervals (for example, less than 1ns).
  • UWB can be Impulse Radio (IR)-UWB, which can transmit data using nanosecond-level narrow pulse signals and can be used in scenarios such as high-precision positioning.
  • IR Impulse Radio
  • NB Also known as narrowband, it has the advantages of strong connection, high coverage, low power consumption and low cost. This application does not limit the type of NB. For example, it can be narrowband technology in short-distance wireless technology, such as Bluetooth technology, WiFi technology. technology or Zigbee etc.
  • CIR Channel impulse response, which can be used to extract physical channel information.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this embodiment, unless otherwise specified, “plurality” means two or more.
  • UWB IR-UWB
  • UWB wireless technology Compared with the narrowband system NB, one of the disadvantages of UWB wireless technology is higher power consumption and cost.
  • UWB realizes data transmission and ranging at the same time, but UWB's performance in data transmission and communication is low.
  • the large bandwidth of UWB requires hardware to work at a very high signal sampling rate, such as the GHz level, that is, the clock of the UWB chip needs to work at a very high frequency. This will make the area, power consumption and cost of UWB chips relatively high. In order to make UWB wireless technology more attractive, it is necessary to reduce the area, power consumption and cost of UWB chips.
  • the more commonly used UWB ranging protocol is Institute of Electrical and Electronics Engineers (IEEE) 802.15a/z high rate pulse repetition frequency (HPR) UWB Protocol
  • IEEE Institute of Electrical and Electronics Engineers
  • HPR high rate pulse repetition frequency
  • STS Security Token Services
  • Figure 1 shows a schematic diagram of a data structure for adding an STS field to a UWB data packet for security protection.
  • Figure 1 shows the structure of 4 UWB data packets.
  • Each data includes a synchronization (Sync) field, a start-of-frame delimiter (SFD) field, and some data packets also include a physical information header (PHY header, PHR) field and physical layer payload (PHY payload) field.
  • 3 of the packets include the STS field.
  • mean PRF can be understood as the frequency of pulse emission, that is, the average number of pulses sent per unit time.
  • PRF is pulse repetition frequency (Pulse repetition frequency).
  • NB can be used for data transmission, and time synchronization information is provided for UWB through NB.
  • UWB can only be used to send CIR training sequences for ranging.
  • FIG. 2 shows a data transmission structure of ranging data.
  • the ranging device first transmits the NB data packet, and then transmits the CIR training sequence.
  • the CIR training sequence includes N UWB fragments.
  • this technology increases the system's link budget and coverage distance by dividing the UWB CIR training sequence into multiple segments for transmission.
  • this technology does not involve security protection measures for CIR training sequences.
  • the embodiment of the present application provides a method for sending ultra-wideband frames, which is mainly aimed at how to use the architecture of training sequence fragments to provide security protection for ultra-wideband frames in the time dimension during the sending and receiving process of ultra-wideband frames, so as to achieve ultra-wideband frames.
  • Broadband frame security is mainly aimed at how to use the architecture of training sequence fragments to provide security protection for ultra-wideband frames in the time dimension during the sending and receiving process of ultra-wideband frames, so as to achieve ultra-wideband frames.
  • FIG. 3 shows a schematic diagram of the network framework of the ultra-wideband frame sending method of the present application.
  • the ultra-wideband frame sending method provided by this application can be applied to communication equipment.
  • the communication equipment can be a sending device or a receiving device.
  • the sending device may send a ranging request to the receiving device.
  • the receiving device returns a ranging response to the sending device.
  • the ranging request may be an ultra-wideband frame (ultra-wideband ranging frame) in this application.
  • the ultra-wideband frame includes multiple data segments, and the multiple data segments are used for ranging. Among multiple data segments, the time interval between adjacent data segments is determined based on the key information between the sending device and the receiving device. Thus, it is possible to provide security protection for ultra-wideband frames or ultra-wideband ranging frames in the time dimension based on the structure of data segments.
  • the ultra-wideband frame sending method in the embodiment of the present application can support one-to-one, one-to-many and many-to-many ranging, and can be flexibly determined according to the networking.
  • one-to-one can be understood as one sending device corresponding to one receiving device
  • one-to-many can be understood as one sending device corresponding to multiple receiving devices
  • many-to-many can be understood as multiple sending devices corresponding to multiple receiving devices.
  • the ultra-wideband frame transmission method in the embodiments of the present application can be applied to the technology of locating people or materials in indoor spaces.
  • the characteristic of this ranging/fixed positioning technology is that the positioning accuracy can be within one meter. .
  • UWB ranging/positioning technology can accurately locate people in real time, and integrates risk management and control, video linkage, historical trajectory playback, personnel management, electronic fences, various behavior monitoring, emergency rescue and other functions.
  • the positioning end when the sending device is the positioning end and the receiving device is the located end, the positioning end can generally be an access point (Access Point, AP), and the located end can generally be for Tag.
  • AP access point
  • Tag can be understood as the signal source of the wireless positioning system produced by the manufacturer. It is usually placed or pasted on the object that needs ranging/positioning. It is the source device that needs to be positioned and will regularly send radio frequency signals to the surroundings.
  • This application provides a method for sending ultra-wideband frames, as shown in Figure 4.
  • the method flow includes the following steps.
  • the communication device obtains the key information of the ultra-wideband frame.
  • the ultra-wideband frame includes multiple data fragments.
  • the communication device may be a sending device, for example, it may be a device that sends ultra-wideband frames for ranging.
  • the ranging device may also be a receiving device, for example, it may be a device that receives ultra-wideband frames for ranging. In this ranging scenario, the receiving device can obtain the ranging results between the sending device and the receiving device based on the ultra-wideband frame.
  • the ultra-wideband frame in the embodiment of this application is a UWB frame.
  • Multiple data segments in the UWB frame are equivalent to the CIR training sequence (training sequence), which can be referred to as CTS for short.
  • CTS training sequence
  • a single data fragment among multiple data fragments can be processed
  • the solution is a sequence member in CTS.
  • the key information may be a symmetric key between the sending device and the receiving device.
  • the communication device sends multiple data fragments according to the time interval between the multiple data fragments, or the communication device receives multiple data fragments according to the time interval between the multiple data fragments.
  • the time interval between the multiple data fragments is based on the key information. definite.
  • both the sending device and the receiving device can obtain the time intervals between multiple data segments based on the symmetric key.
  • the sending device can send multiple data fragments to the receiving device according to the time intervals between the multiple data fragments, and the receiving device can also receive multiple data fragments from the sending device according to the time intervals between the multiple data fragments.
  • FIG. 5 shows a schematic structural diagram of an ultra-wideband frame. That is, when an ultra-wideband frame is sent, it includes multiple data fragments, and there is an encrypted time interval Gap between adjacent data fragments. Multiple time intervals in an UWB frame may or may not be identical. The details will be introduced later.
  • the embodiments of the present application do not need to increase the physical layer implementation cost, and can provide security protection for the ultra-wideband frame in the time dimension, which is equivalent to using key information to protect multiple components in the ultra-wideband frame.
  • the time interval between data fragments is encrypted, that is, the duration of the above Gap is configured in a combined encryption manner to ensure the security protection capabilities of ultra-wideband frames.
  • This application provides a method for sending ultra-wide frames, as shown in Figure 6.
  • the method flow includes the following steps.
  • the sending device in this application can be understood as a ranging device that sends ultra-wideband frames
  • the receiving device can be understood as a ranging device that receives ultra-wideband frames.
  • the sending device may be the positioning end, and the receiving device may be the located end.
  • the sending device can send a broadcast message to the receiving device.
  • the broadcast message carries the address information, clock information, encryption or not indication of the sending device and the receiving device, an indication of ranging or not, and the method used for ranging/positioning. Method instructions and other parameters.
  • the receiving device can send a connection completion message to the sending device, and the connection between the sending device and the receiving device is completed.
  • the sending device and receiving device can perform the key negotiation process and obtain the key information.
  • This key information is used to encrypt the ultra-wideband frame when the ultra-wideband frame is sent.
  • the key information may be a symmetric key.
  • Symmetric key can be understood as the two parties sending and receiving data use the same key to encrypt and decrypt the plain text.
  • the key used by the sending device to encrypt the ultra-wideband frame and the key used by the receiving device to decrypt the ultra-wideband frame are the same.
  • the key information in this application is the ranging device that sends the ultra-wideband frame and the key that receives the ultra-wideband frame. Symmetric key between ranging devices for frames.
  • the sending device and the receiving device generate random numbers based on the key information, and determine the time intervals between multiple data fragments based on the random numbers.
  • the key information is a symmetric key. This is taken into account that between the sending device and the receiving device.
  • the sending equipment uses the key information and the time interval generated by the same random number algorithm to control the sending of multiple data fragments
  • the receiving equipment uses the same key information and the same time interval.
  • the random number algorithm will produce consistent time intervals so that the receiving device can correctly control the reception and calculation of multiple data fragments. In this way, the receiving device can correctly control the relevant accumulators of multiple segments to calculate the effective CIR.
  • the correlation accumulator can be understood as an implementation algorithm for processing ultra-wideband frames by the receiving device.
  • the effective CIR can be understood as the effective CIR training sequence (that is, each data segment), that is, it will not be accumulated into the Gap segment (no signal, only noise from the receiving device).
  • the embodiments of the present application encrypt the ultra-wideband frame in the time dimension, and when the CIR training sequence itself is also encrypted, security protection in two dimensions of the ultra-wideband frame can be achieved.
  • the ultra-wideband frame includes M+1 data segments, the M+1 data segments are numbered CTS 0 to CTS M, and also includes M time intervals, M time intervals
  • the numbers are Tgap0 ⁇ Tgap(M-1).
  • the determination method of M time intervals can refer to the following method A, method B and method C.
  • this application does not limit the unit of the time interval.
  • ns nanoseconds
  • us microseconds
  • ms milliseconds
  • tens of ns can be used as a unit (time unit), etc.
  • Method A The time intervals between multiple data segments are the same, that is, the values of Tgap0 ⁇ TgapM-1 are equal.
  • the value of the time interval between multiple data segments is a random number.
  • the value of the time interval between multiple data fragments is calculated based on random numbers.
  • the sending device and the receiving device can use a symmetric key to generate a random number within a certain range. This random number can be directly used to configure the length of the time interval between data fragments. Alternatively, the sending device and the receiving device may further configure the length of the time interval between data segments based on the calculated value of the random number.
  • Method B The time intervals between multiple data segments are not exactly the same, that is, the values of Tgap0 ⁇ TgapM-1 are not exactly the same.
  • the ranging device In method B, the ranging device generates multiple random numbers based on the symmetric key, and configures the multiple random numbers as the time intervals between multiple data segments.
  • the number of the plurality of random numbers is M, and the values of the M random numbers are different.
  • the values of the M random numbers can be directly used to configure the M time intervals of Tgap0 to TgapM-1 respectively.
  • the ranging device generates multiple random numbers based on the symmetric key, and performs calculations based on the multiple random numbers to obtain the time intervals between multiple data segments.
  • the number of the plurality of random numbers is M, and the values of the M random numbers are not exactly the same.
  • the sending device and the receiving device can further perform calculations based on the M random numbers to obtain further calculated M values.
  • the M values after further calculation are used to configure the M time intervals Tgap0 ⁇ TgapM-1 respectively.
  • Method C The time intervals between multiple data segments are not exactly the same, that is, the values of Tgap0 ⁇ TgapM-1 are not exactly the same.
  • the M time intervals from Tgap0 to TgapM-1 are optional according to multiple pre-configured support modes, and the multiple support modes correspond to multiple serial numbers one by one.
  • the sending device and the receiving device have the same algorithm for generating random numbers based on the symmetric key
  • the first random number generated by the sending device and the receiving device based on the symmetric key is the same, and the first random number can be understood as a sequence number.
  • the support mode can be selected based on the determined serial number, which determines The M time intervals corresponding to Tgap0 ⁇ TgapM-1 in this support mode are obtained.
  • the sending device and the receiving device can generate a first random number according to the symmetric key, where the first random number is one of a plurality of random numbers, and the plurality of random numbers correspond to multiple time interval patterns.
  • the sending device and the receiving device can obtain the first time interval pattern (support mode) corresponding to the first random number, and the first time interval pattern is used to indicate the time interval between multiple data segments.
  • 16 support modes of Tgap0 to TgapM-1 are pre-configured in the sending device and the receiving device.
  • the 16 support modes of Tgap0 ⁇ TgapM-1 correspond to serial numbers 0 ⁇ 15 respectively.
  • the optional sequence number is the support mode corresponding to 7.
  • the value obtained after adding 1 to the value of the optional first random number is the optional serial number, that is, the supported mode corresponding to the serial number 8.
  • this application does not limit how to generate random numbers based on the symmetric key.
  • this application can use Advanced Encryption Standard (AES) to generate random numbers based on symmetric keys.
  • AES Advanced Encryption Standard
  • 128 random bit numbers can be generated based on the symmetric key. These 128 random bit numbers correspond to the random number range from 0 to 2 128 -1.
  • the sending device and the receiving device can determine the random number required for this application to determine the time interval from the random number range of 0 to 2 128 -1 according to certain random number extraction rules.
  • the random number range of 0 to 2 128 -1 corresponds to the time interval range of (0 to 2 128 -1)us.
  • the AES-128 method when the time intervals between multiple data segments are not exactly the same, considering that the AES-128 method is used to obtain a larger range of random numbers from 0 to 2 128 -1, it can be After generating 128 random bit numbers based on the symmetric key, the 128 random bit numbers are divided into 16 random bit groups according to every 8 bits. Each random bit group can correspond to 0 to 2 8 , that is, the random number range from 0 to 255. Each random number range from 0 to 255 corresponds to a time interval range of (0 to 255) us.
  • the sending device and the receiving device can extract a random number as a time interval from the random number range of 0 to 255 in each random bit group according to certain random number extraction rules, and 16 random numbers can be obtained as 16 different numbers. time interval. Assuming that the above multiple data fragments require 16 time intervals, these 16 random numbers can be used as 16 time intervals.
  • the sending device sends multiple data fragments to the receiving device according to the time intervals between the multiple data fragments.
  • the sending device may send an ultra-wideband frame to the receiving device, where the ultra-wideband frame includes multiple data segments.
  • the ultra-wideband frame in this application may include a synchronization (Sync) field and a CTS field for time-frequency synchronization.
  • the CTS field includes a CIR training sequence, that is, multiple data segments in this application, which are used to calculate CIR and complete ranging.
  • the ultra-wideband system can complete time-frequency synchronization and ranging. The structure of the ultra-wideband frame in this case will be introduced later.
  • a narrowband-assisted ultra-wideband ranging system can be used for ranging.
  • the narrowband system is used for time-frequency synchronization between the sending device and the receiving device, and the ultra-wideband system is used to send ultra-wideband frames.
  • the ultra-wideband frames include CIR training sequences, that is, multiple data fragments in this application. A data segment is used to calculate CIR and complete ranging.
  • the receiving device receives multiple data segments according to the time intervals between the multiple data segments.
  • the receiving device performs ranging based on the ultra-wideband frame and obtains the ranging result.
  • a time of flight (TOF) method may be used for ranging.
  • the ultra-wideband frame sent by the sending device includes the sending time Ta1 of the ultra-wideband frame.
  • the receiving device receives the ultra-wideband frame, it can record the reception time Tb1 of the ultra-wideband frame.
  • the time information in the above formula for calculating the ranging result S can be understood as the time information of the line of sight (LOS).
  • the CIR training sequence in this application can be understood as multipath information. It is necessary to further analyze and process the CIR training sequence to obtain the location information of the LOS, and then further calculate the time information of the LOS based on the location information of the LOS.
  • the receiving device sends the ranging result to the sending device.
  • the embodiment of the application can use key information to perform multiple data fragments in the ultra-wideband frame, that is, the time intervals in the CIR training sequence.
  • Encryption that is, configuring the duration of the above-mentioned Gap in combination with encryption, can achieve a certain degree of randomness in the security solution and ensure the final safe ranging of ultra-wideband.
  • the ultra-wideband frame multiple data segments are sent at the same time, and there is no signal transmission in the Gap time, which can reduce the signal duty cycle of the entire ultra-wideband frame (the duration of signal transmission accounts for 1/2 of the entire transmission cycle). Ratio), under the requirement of ensuring the power spectrum density, when reducing the frequency of sending pulse signals, the pulse transmission power of a single segment can be increased.
  • the present application can be applied to various communication and ranging systems of UWB/IR-UWB, as well as narrowband-assisted UWB/IR-UWB ranging systems.
  • the ultra-wideband frame of the present application includes a synchronization field and a CTS field.
  • the following describes the structure of the ultra-wideband frame including the synchronization field and the CTS field.
  • the CTS field includes the multiple data segments, or multiple CTS segments, and the multiple CTS segments constitute sequence members in the CIR training sequence. There are gaps between multiple CTS segments.
  • the synchronization field is used for time-frequency synchronization between the ranging device that sends the ultra-wideband frame and the ranging device that receives the ultra-wideband frame, and the CTS field is used to obtain the ranging result.
  • this application can combine the secure encryption of the time interval Gap and the generation of the CIR training sequence.
  • the CTS field is generated by a preamble symbol with good correlation, or in other words, multiple data segments are obtained by dividing multiple preamble symbols.
  • multiple preamble symbols are generated based on a synchronization sequence and a spreading sequence.
  • the synchronization sequence includes multiple synchronization codes.
  • the spreading sequence includes multiple spreading codes.
  • the multiple spreading codes correspond to the multiple preamble symbols in a one-to-one manner. .
  • FIG 10 shows a schematic diagram of the composition of multiple leading symbols.
  • Cts(0), Cts(1), ..., Cts(i), ..., Cts(N cts -1) are N cts leading symbols.
  • Each leading symbol includes N pieces of data, that is, a leading symbol Cts(i) shown in Figure 10 includes N pieces of data: P(0)*Sp(i), P(1)*Sp(i), ...,P(N-1)*Sp(i).
  • P(0), P(1), ..., P(N-1) identify a synchronization sequence corresponding to a preamble symbol
  • the spreading sequence is N Sp(i) corresponding to the synchronization sequence.
  • a single preamble symbol Cts(i) among multiple preamble symbols is generated by the synchronization sequence and the spreading code Sp(i) corresponding to the single preamble symbol.
  • the above spreading operation is to use the spreading code Sp(i) multiplied by the corresponding synchronization sequence P(0), P(1), ..., P(N-1) Generated for each sequence member.
  • the synchronization sequences corresponding to different preamble symbols may be the same or different.
  • the length of the CIR training sequence is configurable.
  • the above synchronization sequence can be composed of a synchronization code with good correlation characteristics, and this application does not limit the specific synchronization code.
  • Figure 11 is a schematic diagram of dividing N cts leading symbols.
  • the multiple segments divided by N cts leading symbols are Cts(0) ⁇ Cts(N seg -1), Cts(N seg ) ⁇ Cts(2*N seg -1),..., Cts((M seg -1 )*N seg ) ⁇ Cts(N cts -1).
  • T seg N seg *T sym .
  • T sym represents the duration of a single leading symbol (for example, 1us)
  • N seg represents the number of leading symbols in a segment. Therefore, Tseg represents the duration of a segment.
  • T Gap in Figure 11 represents the length of the time interval.
  • the CIR training field in this application is only sent at the time of the CTS segment, and the time intervals between segments are not sent.
  • signal which can reduce the signal duty cycle of the entire ultra-wideband frame and increase the transmit power of the ranging transmitter.
  • the communication device includes hardware and/or software modules that perform corresponding functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art can use different methods to implement the described functions in conjunction with the embodiments for each specific application, but such implementations should not be considered to be beyond the scope of this application.
  • This embodiment can divide the communication device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware. It should be noted that the division of modules in this embodiment is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • Figure 12 shows a possible composition diagram of the communication device 120 involved in the above embodiment.
  • the communication device 120 may include: an acquisition unit 1201, transceiver unit 1202 and ranging unit 1203.
  • the acquisition unit 1201 may be used to support the communication device 120 to perform the above-mentioned step 401, step 601, step 602, etc., and/or other processes for the technology described herein.
  • the transceiver unit 1202 may be used to support the communication device 120 to perform the above steps 402, 603, and 604. and step 606, etc., and/or other processes for the techniques described herein.
  • the ranging unit 1203 may be used to support the communication device 120 to perform the above steps 605 and the like, and/or other processes for the technology described herein.
  • the communication device 120 provided in this embodiment is used to perform the above ultra-wideband frame sending method, and therefore can achieve the same effect as the above implementation method.
  • the communication device 120 may include a processing module, a storage module, and a communication module.
  • the processing module may be used to control and manage the actions of the communication device 120. For example, it may be used to support the communication device 120 in performing the steps performed by the acquisition unit 1201 and the ranging unit 1203.
  • the storage module may be used to support the communication device 120 in storing program codes, data, and the like.
  • the communication module may be used to support communication between the communication device 120 and other devices. For example, when the communication device 120 is a ranging sending device, the communication module is used to support communication between the ranging sending device and the ranging receiving device.
  • the processing module may be a processor or a controller. It may implement or execute the various illustrative logical blocks, modules, and circuits described in connection with this disclosure.
  • a processor can also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of digital signal processing (DSP) and a microprocessor, etc.
  • the storage module may be a memory.
  • the communication module can specifically be a radio frequency circuit, a Bluetooth chip, a Wi-Fi chip and other devices that interact with other electronic devices.
  • the processing module is a processor
  • the storage module is a memory
  • the communication module is a transceiver
  • the communication device 120 involved in this embodiment may be the ranging device 130 with the structure shown in FIG. 13 .
  • An embodiment of the present application also provides an electronic device, including one or more processors and one or more memories.
  • the one or more memories are coupled to one or more processors.
  • the one or more memories are used to store computer program codes.
  • the computer program codes include computer instructions.
  • the electronic device causes the electronic device to execute The above related method steps implement the ultra-wideband frame sending method in the above embodiment.
  • Embodiments of the present application also provide a computer storage medium.
  • Computer instructions are stored in the computer storage medium.
  • the electronic device causes the electronic device to execute the above related method steps to implement the ultra-wideband in the above embodiment.
  • the frame sending method is not limited to:
  • Embodiments of the present application also provide a computer program product.
  • the computer program product When the computer program product is run on a computer, it causes the computer to perform the above related steps to implement the ultra-wideband frame sending method performed by the electronic device in the above embodiment.
  • inventions of the present application also provide a device.
  • This device may be a chip, a component or a module.
  • the device may include a connected processor and a memory.
  • the memory is used to store computer execution instructions.
  • the processor can execute computer execution instructions stored in the memory, so that the chip executes the ultra-wideband frame sending method performed by the communication device in each of the above method embodiments.
  • the communication equipment, computer storage media, computer program products or chips provided by this embodiment are all used to execute the corresponding methods provided above. Therefore, the beneficial effects they can achieve can be referred to the corresponding methods provided above. The beneficial effects of the method will not be repeated here.
  • Another embodiment of the present application provides a system, which may include the above-mentioned sending device and the above-mentioned receiving device, and may be used to implement the above-mentioned ultra-wideband frame sending method.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be The combination can either be integrated into another device, or some features can be omitted, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or contribute to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the software product is stored in a storage medium , including several instructions to cause a device (which can be a microcontroller, a chip, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种超宽带帧的发送方法和通信设备,涉及通信技术领域,能够提升UWB发送和接收过程中的安全防护能力。具体方案为:通信设备获取超宽带帧的密钥信息,超宽带帧包括多个数据片段。通信设备按照多个数据片段间的时间间隔发送多个数据片段,或通信设备按照多个数据片段间的时间间隔接收多个数据片段,多个数据片段间的时间间隔是根据密钥信息确定的。本申请实施例用于通信设备发送超宽带帧的过程。

Description

一种超宽带帧的发送方法和通信设备
本申请要求于2022年08月31日提交国家知识产权局、申请号为202211055970.2、申请名称为“一种超宽带帧的发送方法和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种超宽带帧的发送方法和通信设备。
背景技术
超宽带(Ultra-Wide Band,UWB)无线技术的特点是信号为很窄的脉冲信号,具有较好的多径解析能力,可以在室内复杂的多径环境下保证厘米级别的测距精度。但是,UWB无线技术下,超宽带芯片的面积、功耗及成本较高。
目前的一种方案是利用窄带(Narrow-Band,NB)信号来进行数据传输,并由NB为UWB信号提供时间同步信息,UWB只需要发送信道脉冲响应(Channel Impulse Response,CIR)训练序列进行测距。该方案是通过将UWB的CIR训练序列分成多个片段进行发送,从而增加UWB的链路预算(link budget),提高UWB中的脉冲发射功率。即功率谱密度不变的情况下,可增加UWB信号的覆盖距离。
但是,由于安全防护是实现安全测距应用的重要技术,目前的方案未对CIR训练序列提供安全保护措施,CIR训练序列中的片段的安全防护能力差。
发明内容
本申请实施例提供一种超宽带帧的发送方法和通信设备,能够提升UWB发送和接收过程中的安全防护能力。
为达到上述目的,本申请实施例采用如下技术方案。
第一方面,提供一种超宽带帧的发送方法,该方法包括:通信设备获取超宽带帧的密钥信息,超宽带帧包括多个数据片段。通信设备按照多个数据片段间的时间间隔发送多个数据片段,或通信设备按照多个数据片段间的时间间隔接收多个数据片段,多个数据片段间的时间间隔是根据密钥信息确定的。
也就是说,本申请中的通信设备在发送超宽带帧的过程中,可使用密钥信息对超宽带帧中的数据片段间的时间间隔进行加密后发送。相应地,通信设备在接收超宽带帧的过程中,可使用密钥信息确定数据片段间的时间间隔后,可按照该时间间隔接收超宽带帧。
本申请实施例不需要增加物理层实现代价,可在时间维度上对超宽带帧提供安全防护,这种采用结合加密的方式进行超宽带帧的数据片段间侧时间间隔的配置,可确保超宽带帧的安全收发。
在一种可能的设计中,多个数据片段用于测距。这样一来,在超宽带帧用于测距的过程中,通过密钥信息对超宽带帧中的多个数据片段间的时间间隔进行加密,可提升超宽带帧用于测距过程中的安全防护能力。
在一种可能的设计中,密钥信息为发送超宽带帧的通信设备和接收超宽带帧的通信设备间的对称密钥;
在通信设备按照多个数据片段间的时间间隔发送多个数据片段,或按照多个数据片段间侧时间间隔接收多个数据片段之前,该方法还包括:通信设备根据对称密钥生成随机数,并根据随机数确定多个数据片段间的时间间隔。
在本申请中,采用超宽带帧的发送侧和接收侧的对称密钥对超宽带帧的多个数据片段的时间间隔进行加密,可实现发送侧和接收侧按照一致的时间间隔控制超宽带帧的发送和接收。在发送侧和接收侧,根据对称密钥确定随机数,并根据随机数确定的多个数据片段间的时间间隔是相同的。
在一种可能的设计中,多个数据片段间的时间间隔相同。其中,多个数据片段间的时间间隔的值为随机数;或者,多个数据片段间的时间间隔的值是根据随机数进行计算后得到的。
也就是说,采用对称密钥确定随机数,并根据随机数确定的时间间隔的值为一种。多个数据片段间的时间间隔根据这一种时间间隔的值确定即可。
在一种可能的设计中,多个数据片段间的时间间隔不完全相同;
通信设备根据密钥信息生成随机数,并根据随机数确定多个数据片段间的时间间隔包括:通信设备根据对称密钥生成多个随机数,将多个随机数配置为多个数据片段间的时间间隔;或,通信设备根据对称密钥生成多个随机数,并根据多个随机数进行计算,得到多个数据片段间的时间间隔。
假设通信设备为发送设备,该发送设备可根据对称密钥设定超宽带帧中的多个数据片段间不完全相同的时间间隔,以按照时间间隔发送多个数据片段,确保发送设备发送超宽带帧时的安全。假设通信设备为接收设备,该接收设备也可根据对称密钥确定超宽带帧中的多个数据片段间不完全相同的时间间隔,以按照时间间隔接收多个数据片段,确保接收侧正确接收超宽带帧的多个数据片段。
在一种可能的设计中,多个数据片段间的时间间隔不完全相同;
通信设备根据对称密钥生成随机数,并根据随机数确定多个数据片段间的时间间隔包括:通信设备根据对称密钥生成第一随机数,第一随机数为多个随机数中的一个,多个随机数对应多种时间间隔模式;通信设备获取第一随机数对应的第一时间间隔模式,第一时间间隔模式用于指示多个数据片段间的时间间隔。
在这种设计中,相当于预先设定了多种时间间隔模式,每种时间间隔模式中用于多个数据片段间侧时间间隔。如果通信设备根据对称密钥生成的第一随机数确定,第一随机数对应的第一时间间隔模式即确定,对于发送侧和接收侧来说,确定的第一时间间隔模式也是相同的。这样可确保超宽带帧的收发过程中的安全。
在一种可能的设计中,超宽带帧包括同步字段和信道冲击响应训练序列CTS字段,CTS字段包括多个数据片段。其中,同步字段用于进行发送超宽带帧的测距设备和接收超宽带帧的测距设备间的时频同步,CTS字段用于得到测距结果。
在一种可能的设计中,多个数据片段是对多个前导符号进行划分得到的;
其中,多个前导符号是根据同步序列和扩频序列生成的,同步序列包括多个同步码,扩频序列包括多个扩频码,多个扩频码与多个前导符号一一对应。
在一种可能的设计中,多个前导符号中的单个前导符号是由同步序列和单个前导符号对应的扩频码生成的。
第二方面,提供一种通信设备,该通信设备包括:获取单元,用于获取超宽带帧的密钥信息,超宽带帧包括多个数据片段;收发单元,用于按照多个数据片段间的时间间隔发送多个数据片段,或按照多个数据片段间的时间间隔接收多个数据片段,多个数据片段间的时间间隔是根据密钥信息确定的。
第二方面的有益效果可参见第一方面的说明,第二方面不再赘述。
在一种可能的设计中,多个数据片段用于测距。
在一种可能的设计中,密钥信息为发送超宽带帧的通信设备和接收超宽带帧的通信设备间的对称密钥。获取单元,还用于:根据对称密钥生成随机数,并根据随机数确定多个数据片段间的时间间隔。
在一种可能的设计中,多个数据片段间的时间间隔相同。
其中,多个数据片段间的时间间隔的值为随机数;或者,多个数据片段间的时间间隔的值是根据随机数进行计算后得到的。
在一种可能的设计中,多个数据片段间的时间间隔不完全相同;
获取单元,用于:根据对称密钥生成多个随机数,将多个随机数配置为多个数据片段间的时间间隔;或,根据对称密钥生成多个随机数,并根据多个随机数进行计算,得到多个数据片段间的时间间隔。
在一种可能的设计中,多个数据片段间的时间间隔不完全相同;
获取单元用于:根据对称密钥生成第一随机数,第一随机数为多个随机数中的一个,多个随机数对应多种时间间隔模式;通信设备获取第一随机数对应的第一时间间隔模式,第一时间间隔模式用于指示多个数据片段间的时间间隔。
第三方面,提供一种通信装置,包括至少一个处理器,至少一个处理器与存储器相连,所述至少一个处理器用于读取并执行所述存储器中存储的程序,以使得所述装置执行如上述第一方面或第一方面的任一项所述的方法。
第四方面,提供一种芯片,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如上述第一方面或第一方面的任一项所述的方法。
第五方面,提供了一种测距设备,该测距设备包括:存储器和处理器。上述存储器和处理器耦合。该存储器用于存储计算机程序代码,该计算机程序代码包括计算机指令。该收发器用于接收数据和发送数据。当处理器执行该计算机指令时,以使该测距设备执行如第一方面或其相应的可能的设计提供的任意一种基于场景的超宽带帧的发送方法。
第六方面,本申请实施例提供了一种测距装置,该装置包含在电子设备中,该装置具有实现上述任一方面及任一项可能的实现方式中通信设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块或单元。例如,获取模块或单元、收发模块或单元等。
第七方面,本申请实施例提供了一种电子设备,包括天线、一个或多个处理器以及一个或多个存储器。该一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理 器执行计算机指令时,使得电子设备执行上述第一方面及任一项可能的实现方式中的超宽带帧的发送方法。
第八方面,本申请实施例提供了一种计算机可读存储介质,包括计算机指令,当计算机指令在电子设备上运行时,使得电子设备执行上述第一方面及任一项可能的实现方式中的超宽带帧的发送方法。
第九方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在计算机或处理器上运行时,使得计算机或处理器执行上述第一方面及任一项可能的实现方式中的超宽带帧的发送方法。
第十方面,本申请实施例提供了一种通信系统,该系统可以包括以上任一方面的任一项可能的实现方式中用于发送超宽带帧的通信设备和用于接收超宽带帧的通信设备。该通信设备可以执行上述第一方面及任一项可能的实现方式中的超宽带帧的发送方法。
可以理解的是,上述提供的任一种通信装置、通信设备、测距设备、芯片、计算机可读存储介质或计算机程序产品等均可以应用于上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
本申请的这些方面或其他方面在以下的描述中会更加简明易懂。
附图说明
图1为本申请实施例提供的一种在UWB数据包添加中STS字段进行安全防护的数据结构示意图;
图2为本申请实施例提供的一种测距数据的数据发送结构示意图;
图3为本申请实施例提供的一种超宽带帧的发送方法的网络框架示意图;
图4为本申请实施例提供的一种超宽带帧的发送方法流程示意图;
图5为本申请实施例提供的一种超宽带帧的结构示意图;
图6为本申请实施例提供的一种超宽带帧的发送方法流程示意图;
图7为本申请实施例提供的一种超宽带帧的结构示意图;
图8为本申请实施例提供的一种超宽带帧的结构示意图;
图9为本申请实施例提供的一种超宽带帧的结构示意图;
图10为本申请实施例提供的一种多个前导符号的构成示意图;
图11为本申请实施例提供的一种对Ncts个前导符号进行划分的示意图;
图12为本申请实施例提供的一种通信设备的结构示意图;
图13为本申请实施例提供的一种测距设备的结构示意图。
具体实施方式
为了便于理解,示例的给出了部分与本申请实施例相关概念的说明以供参考。如下所示:
UWB:又名超宽带,可采用时间间隔极短(例如小于1ns)的脉冲进行通信。本申请中,UWB可以是脉冲无线电(Impulse Radio,IR)-UWB,能够利用纳秒级别的窄脉冲信号传输数据,可用于高精度定位等场景。
NB:又名窄带,具有强连接、高覆盖、低功耗和低成本等优点。本申请不对NB的类型进行限制,例如可以是短距离无线技术中的窄带技术,比如蓝牙技术、WiFi技 术或Zigbee等。
CIR:信道脉冲响应,可用于提取物理信道信息。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
随着万物互联时代的到来,UWB在日常生活中有着广泛的应用。和其他的商用无线技术,例如WiFi和蓝牙相比较,IR-UWB(以下简称UWB)无线技术的特点是信号为很窄的脉冲信号,例如为ns级别,具有较好的多径解析能力。
然而相较于窄带系统NB,UWB无线技术的缺点之一为功耗和成本较高。一个原因是,UWB同时实现数据传输和测距,但是,UWB进行数据传输通信的效能较低。另一个原因是,UWB的大宽带需要硬件工作在很高的信号采样率,例如GHz级别,即UWB芯片的时钟需要工作在很高的频率。这将使得UWB芯片的面积、功耗和成本相对较高。为了使得UWB无线技术有更多的吸引力,需要降低UWB芯片的面积、功耗和成本。
另外,UWB的另一个问题是覆盖距离受限。按照关于UWB频段使用规定里对功率谱密度(Power Spectral Density,PSD)的要求,UWB的发射功率不能超过-41.3dBm/MHz。同时,UWB测距通常工作的频段为6-9GHz,在该频段上的信号衰减都较大。这些因素都会导致UWB测距的覆盖能力受限。
目前,一种技术中,较普遍采用的UWB测距协议为电气与电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.15a/z的高速脉冲重复频率(high rate pulse repetition frequency,HPR)UWB协议,该协议中定义的信号格式支持数据传输和测距功能。同时,为了增加安全防护能力,在传输的信号中加入了一段较长的安全令牌服务(Security Token Services,STS)数据做安全防护。
示例性的,如图1所示为一种在UWB数据包添加中STS字段进行安全防护的数据结构示意图。图1示出了4个UWB数据包的结构。每个数据包括同步(Sync)字段、帧起始分隔符(start-of-frame delimiter,SFD)字段,部分数据包还包括物理信息头(PHY header,PHR)字段和物理层负载(PHY payload)字段。其中3个数据包包括STS字段。
在该协议下,UWB本身的复杂度较高,空中传输时间较长,UWB系统的功耗以及成本都较高,整体测距效率较低。另外,由于对较高数据传输速率的支持,UWB信号发送的mean PRF也较高。其中,mean PRF可理解为脉冲发射的频率,即单位时间内发送的脉冲的平均个数。PRF为脉冲重复频率(Pulse repetition frequency)。
在另一种技术中,可利用NB进行数据传输,且通过NB为UWB提供时间同步信 息,UWB可只用于发送CIR训练序列进行测距。示例性的,参考图2,图2示出了一种测距数据的数据发送结构。其中,测距设备先传输NB数据包,再传输CIR训练序列,CIR训练序列包括N个UWB frag(片段)。
也就是说,该技术通过将UWB的CIR训练序列分成多个片段进行发送,从而增加系统的链路预算,增加覆盖距离。但是,该技术并未涉及CIR训练序列的安全保护措施。
因此,本申请实施例提供一种超宽带帧的发送方法,主要针对如何在超宽带帧的收发过程中,利用训练序列的片段的架构提供时间维度上对超宽带帧的安全防护,可以实现超宽带帧的安全防护。
如图3所示为本申请的超宽带帧的发送方法的网络框架示意图。本申请提供的超宽带帧的发送方法可应用于通信设备,具体应用的网络架构中,通信设备可以为发送设备或接收设备。
示例性的,在超宽带帧用于测距的场景中,发送设备可以向接收设备发送测距请求。接收设备向发送设备返回测距响应。本申请实施例中,测距请求可以是本申请中的超宽带帧(超宽带测距帧),超宽带帧包括多个数据片段,多个数据片段用于测距。多个数据片段中,相邻的数据片段间的时间间隔是根据发送设备和接收设备间的密钥信息确定的。由此,可实现在数据片段的架构上提供时间维度上对超宽带帧或超宽带测距帧的安全防护。
在一些实施例中,在测距场景中,本申请实施例中的超宽带帧的发送方法可以支持一对一,一对多以及多对多测距,可根据组网灵活确定。其中,一对一可理解为一个发送设备对应一个接收设备,一对多可理解为一个发送设备对应多个接收设备,多对多可理解为多个发送设备对应多个接收设备。
在一些实施例中,本申请实施例中的超宽带帧的发送方法可以应用于室内空间的人员或者物资定位的技术,这种测距/定定位技术的特点就是定位精度可以做到一米以内。
举例来说,UWB测距/定位技术可对人员进行实时精确定位,并集风险管控、视频联动、历史轨迹回放、人员管理、电子围栏、各种行为监控、应急救援等功能。
举例来说,在一些实施例中,在测距场景中,发送设备为定位端,接收设备为被定位端时,定位端一般可为接入点(Access Point,AP),被定位端一般可为Tag。Tag可理解为厂商生产出来的无线定位系统的信号发生源,通常放置或粘贴在需要测距/定位的物体上,为需要定位的源设备,会定时向周围发送射频信号。
应用上述网络架构,下面对本申请的方法实施例进行说明。
本申请提供一种超宽带帧的发送方法,如图4所示,该方法流程包括以下步骤。
401、通信设备获取超宽带帧的密钥信息,超宽带帧包括多个数据片段。
其中,该通信设备可以为发送设备,例如可以是发送用于测距的超宽带帧的设备。测距设备也可以是接收设备,例如可以是接收用于测距的超宽带帧的设备。这种测距场景下,接收设备可根据超宽带帧得到发送设备和接收设备间的测距结果。
本申请实施例中的超宽带帧为UWB帧。UWB帧中的多个数据片段相当于CIR训练序列(training sequence),可简称为CTS。多个数据片段中的单个数据片段可以理 解为CTS中的一个序列成员。
在一些实施例中,该密钥信息可为发送设备和接收设备间的对称密钥。
402、通信设备按照多个数据片段间的时间间隔发送多个数据片段,或通信设备按照多个数据片段间的时间间隔接收多个数据片段,多个数据片段间的时间间隔是根据密钥信息确定的。
在一些实施例中,发送设备和接收设备都可根据对称密钥得到多个数据片段间的时间间隔。发送设备可按照多个数据片段间的时间间隔向接收设备发送多个数据片段,接收设备也可按照多个数据片段间的时间间隔从发送设备接收多个数据片段。
如图5所示为超宽带帧的结构示意图。即超宽带帧在发送时,包括多个数据片段,相邻的数据片段间存在时长加密的时间间隔Gap。超宽带帧中的多个时间间隔可以都相同,也可以不完全相同。具体将在后文中进行介绍。
由此,在超宽带帧的传输过程中,本申请实施例不需要增加物理层实现代价,可在时间维度上对超宽带帧提供安全防护,相当于通过密钥信息对超宽带帧中的多个数据片段间的时间间隔进行加密,即对上述Gap的时长,采用结合加密的方式进行配置,可确保超宽带帧的安全防护能力。
下面以上述通信设备用于测距场景时的超宽带帧的发送流程进行介绍。基于图4示出的方法流程,下面对本申请实施例进一步进行说明。
本申请提供一种超宽帧的发送方法,如图6所示,该方法流程包括以下步骤。
601、发送设备和接收设备间建立连接,并协商用于测距的超宽带帧的密钥信息。
本申请中的发送设备可理解为发送超宽带帧的测距设备,接收设备可理解为接收超宽带帧的测距设备。
在一些实施例中,发送设备可以是定位端,接收设备可以是被定位端。
示例性的,发送设备可向接收设备发送广播消息,广播消息中携带发送设备和接收设备的地址信息、时钟信息、加密与否的指示、测距与否的指示、测距/定位所采用的方法的指示等参数。接收设备在接收到广播消息后,可以向发送设备发送连接完成消息,发送设备和接收设备建立连接完成。
而后,发送设备和接收设备可以进行密钥协商流程,得到密钥信息。该密钥信息用于超宽带帧发送时对超宽带帧进行加密。
在一些实施例中,该密钥信息可以是对称密钥。对称密钥可以理解为发送和接收数据的双方使用相同的密钥对明文进行加密和解密运算。
即本申请中,发送设备对超宽带帧进行加密的密钥和接收设备对超宽带帧进行解密的密钥相同,本申请中的密钥信息为发送超宽带帧的测距设备和接收超宽带帧的测距设备间的对称密钥。
本申请之所以考虑使用对称密钥对多个数据片段间的时间间隔进行加密是考虑到发送设备和接收设备需按照一致的时间间隔控制发送和接收。具体加密方式将在后文中介绍。
602、发送设备和接收设备根据密钥信息生成随机数,并根据随机数确定多个数据片段间的时间间隔。
步骤601中已经说明,密钥信息为对称密钥。这是考虑到,在发送设备和接收设 备使用相同的密钥信息产生的时间间隔的情况下,发送设备采用该密钥信息和相同的随机数算法产生的时间间隔控制多个数据片段的发送,接收设备使用相同的密钥信息和相同的随机数算法会产生一致的时间间隔,接收设备才能正确控制多个数据片段的接收和计算。这样,接收设备才能正确控制多个片段的相关累加器进行有效CIR的计算。
其中,相关累加器可理解为是接收设备对超宽带帧的处理实现算法。有效CIR可理解为有效CIR训练序列(即各个数据片段),即不会累加到Gap段(没有信号,接收设备只有噪声)。
可理解,本申请实施例是通过在时间维度上对超宽带帧进行加密,在配合CIR训练序列本身也进行加密的情况下,可以实现超宽带帧两个维度的安全保护。
在一些实施例中,如图7所示,假设超宽带帧包括M+1个数据片段,M+1个数据片段的编号为CTS 0~CTS M,还包括M个时间间隔,M个时间间隔的编号为Tgap0~Tgap(M-1)。M个时间间隔的确定方式可参考以下方式A、方式B和方式C。
其中,本申请对时间间隔的单位不进行限制,例如可以采用ns(纳秒),us(微秒),ms(毫秒)或者几十ns为一个unit(时间单位)等。
方式A:多个数据片段间的时间间隔相同,即Tgap0~TgapM-1的取值相等。
其中,多个数据片段间的时间间隔的值为随机数。
或者,多个数据片段间的时间间隔的值是根据随机数进行计算后得到的。
也即,方式A中,发送设备和接收设备可以采用对称密钥生成一定范围内的一个随机数。这一个随机数可以直接用于配置数据片段间的时间间隔的长度。或者,发送设备和接收设备可以进一步根据该随机数进行计算后的值配置数据片段间的时间间隔的长度。
方式B:多个数据片段间的时间间隔不完全相同,即Tgap0~TgapM-1的取值不完全相同。
方式B中,测距设备根据对称密钥生成多个随机数,将多个随机数配置为多个数据片段间的时间间隔。
例如,该多个随机数的数量例如为M个,M个随机数的值各不相同,M个随机数的值可直接分别用于配置Tgap0~TgapM-1这M个时间间隔。
或者,测距设备根据对称密钥生成多个随机数,并根据多个随机数进行计算,得到多个数据片段间的时间间隔。
例如,该多个随机数的数量例如为M个,M个随机数的值不完全相同。发送设备和接收设备可进一步根据这M个随机数的进行计算,得到进一步计算后的M个值。这进一步计算后的M个值分别用于配置Tgap0~TgapM-1这M个时间间隔。
方式C:多个数据片段间的时间间隔不完全相同,即Tgap0~TgapM-1的取值不完全相同。
方式C中,Tgap0~TgapM-1这M个时间间隔按照多种预先配置的支持模式可选,多种支持模式一一对应多个序列号。在发送设备和接收设备可根据对称密钥生成随机数算法相同的情况下,发送设备和接收设备根据对称密钥生成的第一随机数相同,第一随机数可理解为一个序列号。这样,可根据确定的序列号选择支持模式,也就确定 了该支持模式下对应的Tgap0~TgapM-1这M个时间间隔。
换句话说,发送设备和接收设备可根据对称密钥生成第一随机数,第一随机数为多个随机数中的一个,多个随机数对应多种时间间隔模式。发送设备和接收设备可获取第一随机数对应的第一时间间隔模式(支持模式),第一时间间隔模式用于指示多个数据片段间的时间间隔。
例如,在发送设备和接收设备中预先配置有16种Tgap0~TgapM-1的支持模式。这16种Tgap0~TgapM-1的支持模式分别对应的序列号为0~15。当上述第一随机数的值为7时,可选序列号为7对应的支持模式。或者可选第一随机数的值+1后得到的值为可选序列号,即序列号为8对应的支持模式。
当然,本申请不限于仅采用上述方式A、B和C对应的实现方式,也可以采用其他的实现方式。
在一些实施例中,本申请对如何根据对称密钥生成随机数的方式不进行限定。
举例来说,本申请可采用高级加密标准(Advanced Encryption Standard,AES)的方式,根据对称密钥生成随机数。例如,采用AES-128时,可根据对称密钥生成128个随机比特(bit)数,这128个随机bit数对应0~2128-1的随机数范围。发送设备和接收设备可按照一定的随机数抽取规则从0~2128-1这个随机数范围内确定本申请用于确定时间间隔所需的随机数。例如0~2128-1这个随机数范围对应(0~2128-1)us的时间间隔范围,可按照规则从0~2128-1这个随机数范围抽取一个随机数,用于配置多个数据片段间的时间间隔,多个数据片段间的时间间隔相同;或者,按照规则抽取多个随机数,用于配置多个数据片段间的时间间隔,多个数据片段间的时间间隔不完全相同。
或者,在一些实施例中,在多个数据片段间的时间间隔不完全相同的情况下,考虑到采用AES-128的方式得到0~2128-1这个随机数范围的范围较大,可在根据对称密钥生成128个随机bit数后,将128个随机bit数按照每8个bits分为16个随机bit组。每个随机bit组可对应0~28,即0~255的随机数范围。每个0~255的随机数范围对应(0~255)us的时间间隔范围。发送设备和接收设备可按照一定的随机数抽取规则,从每个随机bit组的0~255的随机数范围内抽取一个随机数作为一个时间间隔,可得到16个随机数作为16个不完全相同的时间间隔。假设上述多个数据片段需要16个时间间隔,这个16个随机数就可以作为16个时间间隔。
603、发送设备按照多个数据片段间的时间间隔向接收设备发送多个数据片段。
在确定了多个数据片段间的时间间隔后,发送设备可向接收设备发送超宽带帧,超宽带帧包括多个数据片段。
因此,在一些实施例中,如图8所示,本申请中的超宽带帧可包括用于时频同步的同步(Sync)字段和CTS字段。CTS字段包括CIR训练序列,即本申请中的多个数据片段,用于进行CIR的计算并完成测距。这种情况下,超宽带系统可完成时频同步和测距。这种情况下的超宽带帧的结构将在后文中进行介绍。
或者,在一些实施例中,如图9所示,可采用窄带辅助超宽带的测距系统进行测距。这种情况下,窄带系统用于进行发送设备和接收设备间的时频同步,超宽带系统用于发送超宽带帧,超宽带帧包括CIR训练序列,即本申请中的多个数据片段,多个数据片段用于进行CIR的计算并完成测距。
604、接收设备按照多个数据片段间的时间间隔接收多个数据片段。
605、接收设备根据超宽带帧进行测距,得到测距结果。
在一些实施例中,可采用飞行时间法(time of flight,TOF)进行测距。例如,发送设备发送的超宽带帧包括发送超宽带帧的发送时间Ta1,接收设备在接收到超宽带帧时,可记录接收到超宽带帧的接收时间Tb1。而后,接收设备可向发送设备返回超宽带帧的响应,并记录接收设备发送超宽带帧的响应的发送时间Tb2,并获取发送设备接收超宽带帧的响应的接收时间Ta2。由此,测距结果S的计算方式可以示例为:S=C×[(Ta2-Ta1)-(Tb2-Tb1)]/2,其中,C为光速。
当然,这里只是对测距方式进行举例,还可以通过其他的测距方式得到测距结果。
其中,上述计算测距结果S的公式中的时间信息可理解为直射径(line of sight,LOS)的时间信息。本申请中的CIR训练序列可理解为多径信息,需要进一步对CIR训练序列进行分析处理,得到LOS的位置信息,再根据LOS的位置信息进一步计算得到时间LOS的时间信息。
606、接收设备向发送设备发送测距结果。
由此,在本申请中,在超宽带用于测距设备间测距时,本申请实施例可通过密钥信息对超宽带帧中的多个数据片段,即CIR训练序列中的时间间隔进行加密,即对上述Gap的时长,采用结合加密的方式进行配置,可实现某种程度上的随机性的安全方案,确保最终超宽带的安全测距。
另外,在超宽带帧中采用在多个数据片段的时间发送,Gap的时间没有信号发送的方式中,可以降低整个超宽带帧的信号占空比(有信号发送的时长占整个发送周期时长的比值),在保证功率谱密度的要求下,减少发送脉冲信号的频率时,可提高单段的脉冲发射功率。
上文中已经说明,本申请可适用于UWB/IR-UWB的各种通信以及测距系统,以及窄带辅助下UWB/IR-UWB的测距系统。
在没有窄带辅助下的UWB/IR-UWB的测距系统中,本申请的超宽带帧包括同步字段和CTS字段。下面对超宽带帧包括同步字段和CTS字段这种结构方式进行说明。
其中,CTS字段包括所述多个数据片段,或者称为多个CTS片段,多个CTS片段组成了CIR训练序列中的序列成员。多个CTS片段间存在Gap。
其中,同步字段用于进行发送所述超宽带帧的测距设备和接收所述超宽带帧的测距设备间的时频同步,所述CTS字段用于得到测距结果。
这样,本申请可将对时间间隔Gap的安全加密和CIR训练序列的生成结合了起来。
在一些实施例中,CTS字段由具有良好相关性的前导符号(preamble symbol)生成的,或者说,多个数据片段是对多个前导符号进行划分得到的。
其中,多个前导符号是根据同步序列和扩频序列生成的,同步序列包括多个同步码,扩频序列包括多个扩频码,多个扩频码与所述多个前导符号一一对应。
也可以理解为,多个前导符号是对同步序列进行扩频后生成的。
如图10所示为多个前导符号的构成示意图。Cts(0)、Cts(1)、…、Cts(i)、…、Cts(Ncts-1)为Ncts个前导符号。每个前导符号包括N个数据,即图10中示出的一个前导符号Cts(i)包括的N个数据为:P(0)*Sp(i)、P(1)*Sp(i)、…、P(N-1)*Sp(i)。
其中,P(0)、P(1)、…、P(N-1)标识一个前导符号对应的同步序列,扩频序列为该同步序列对应的N个Sp(i)。
相当于,多个前导符号中的单个前导符号Cts(i)是由同步序列和单个前导符号对应的扩频码Sp(i)生成的。对于单个前导符号Cts(i),上述扩频操作,即为使用扩频码Sp(i)乘以对应的同步序列P(0)、P(1)、…、P(N-1)中的每个序列成员生成的。
其中,不同的前导符号对应的同步序列可以相同,也可以不相同。
在一些实施例中,CIR训练序列的长度可配。上述同步序列可以选择具有良好相关特性的同步码构成,本申请不对具体的同步码进行限制。
在图10的基础上,本申请可对Ncts个前导符号进行划分,相邻的前导符号间设置时间间隔Gap。例如如图11所示为对Ncts个前导符号进行划分的示意图。Ncts个前导符号划分后的多个片段为Cts(0)~Cts(Nseg-1)、Cts(Nseg)~Cts(2*Nseg-1)、…、Cts((Mseg-1)*Nseg)~Cts(Ncts-1)。
其中,假设多个片段的长度相等,每个片段的时间长度可以表示为:Tseg=Nseg*Tsym。Tsym表示单个前导符号的时长(例如1us),Nseg表示一个片段里前导符号里的个数。因此,Tseg表示一个片段的时长。图11中的TGap表示时间间隔的长度。
示例性的,假设CTS字段包含的前导符号为Cts(0)~Cts(Ncts-1),Ncts=1024,即CTS字段有1024个前导符号。如果一个片段包含32个前导符号,那么1024的前导符号就被分成1024/32=32个片段来发送,其中第0~31个前导符号为第1个片段,第32~63个前导符号为第2个片段,其他片段同理可依次发送。
这样,在超宽带帧包括同步字段和CTS字段,且CTS字段包括多个存在加密的时间间隔的情况下,本申请中的CIR训练字段只在CTS片段的时间发送,片段间的时间间隔不发送信号,可以降低整个超宽带帧的信号占空比,提升测距发送端的发射功率。
可以理解的是,为了实现上述功能,通信设备包含了执行各个功能相应的硬件和/或软件模块。结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以结合实施例对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本实施例可以根据上述方法示例对通信设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块可以采用硬件的形式实现。需要说明的是,本实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图12示出了上述实施例中涉及的通信设备120的一种可能的组成示意图,如图12所示,该通信设备120可以包括:获取单元1201、收发单元1202和测距单元1203。
其中,获取单元1201可以用于支持通信设备120执行上述步骤401、步骤601、步骤602等,和/或用于本文所描述的技术的其他过程。
收发单元1202可以用于支持通信设备120执行上述步骤402、步骤603、步骤604 和步骤606等,和/或用于本文所描述的技术的其他过程。
测距单元1203可以用于支持通信设备120执行上述步骤605等,和/或用于本文所描述的技术的其他过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本实施例提供的通信设备120,用于执行上述超宽带帧的发送方法,因此可以达到与上述实现方法相同的效果。
在采用集成的单元的情况下,通信设备120可以包括处理模块、存储模块和通信模块。其中,处理模块可以用于对通信设备120的动作进行控制管理,例如,可以用于支持通信设备120执行上述获取单元1201和测距单元1203执行的步骤。存储模块可以用于支持通信设备120存储程序代码和数据等。通信模块,可以用于支持通信设备120与其他设备的通信,例如通信设备120为测距发送设备时,通信模块用于支持测距发送设备与测距接收设备的通信。
其中,处理模块可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理(digital signal processing,DSP)和微处理器的组合等等。存储模块可以是存储器。通信模块具体可以为射频电路、蓝牙芯片、Wi-Fi芯片等与其他电子设备交互的设备。
在一个实施例中,当处理模块为处理器,存储模块为存储器,通信模块为收发器时,本实施例所涉及的通信设备120可以为具有图13所示结构的测距设备130。
本申请实施例还提供一种电子设备,包括一个或多个处理器以及一个或多个存储器。该一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器执行计算机指令时,使得电子设备执行上述相关方法步骤实现上述实施例中的超宽带帧的发送方法。
本申请的实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机指令,当该计算机指令在电子设备上运行时,使得电子设备执行上述相关方法步骤实现上述实施例中的超宽带帧的发送方法。
本申请的实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述相关步骤,以实现上述实施例中电子设备执行的超宽带帧的发送方法。
另外,本申请的实施例还提供一种装置,这个装置具体可以是芯片,组件或模块,该装置可包括相连的处理器和存储器;其中,存储器用于存储计算机执行指令,当装置运行时,处理器可执行存储器存储的计算机执行指令,以使芯片执行上述各方法实施例中通信设备执行的超宽带帧的发送方法。
其中,本实施例提供的通信设备、计算机存储介质、计算机程序产品或芯片均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
本申请另一实施例提供了一种系统,该系统可以包括上述发送设备和上述接收设备,可以用于实现上述超宽带帧的发送方法。
通过以上实施方式的描述,所属领域的技术人员可以了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种超宽带帧的发送方法,其特征在于,包括:
    通信设备获取超宽带帧的密钥信息,所述超宽带帧包括多个数据片段;
    所述通信设备按照所述多个数据片段间的时间间隔发送所述多个数据片段,或所述通信设备按照所述多个数据片段间的时间间隔接收所述多个数据片段,所述多个数据片段间的时间间隔是根据所述密钥信息确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述密钥信息为发送所述超宽带帧的通信设备和接收所述超宽带帧的通信设备间的对称密钥;
    在所述通信设备按照所述多个数据片段间的时间间隔发送所述多个数据片段,或按照所述多个数据片段间的时间间隔接收所述多个数据片段之前,所述方法还包括:
    所述通信设备根据所述对称密钥生成随机数,并根据所述随机数确定所述多个数据片段间的时间间隔。
  3. 根据权利要求2所述的方法,其特征在于,
    所述多个数据片段间的时间间隔相同;
    其中,所述多个数据片段间的时间间隔的值为所述随机数;
    或者,所述多个数据片段间的时间间隔的值是根据所述随机数进行计算后得到的。
  4. 根据权利要求2所述的方法,其特征在于,
    所述多个数据片段间的时间间隔不完全相同;
    所述通信设备根据所述密钥信息生成随机数,并根据所述随机数确定所述多个数据片段间的时间间隔包括:
    所述通信设备根据所述对称密钥生成多个随机数,将所述多个随机数配置为所述多个数据片段间的时间间隔;
    或,所述通信设备根据所述对称密钥生成多个随机数,并根据所述多个随机数进行计算,得到所述多个数据片段间的时间间隔。
  5. 根据权利要求2所述的方法,其特征在于,
    所述多个数据片段间的时间间隔不完全相同;
    所述通信设备根据所述对称密钥生成随机数,并根据所述随机数确定所述多个数据片段间的时间间隔包括:
    所述通信设备根据所述对称密钥生成第一随机数,所述第一随机数为多个随机数中的一个,所述多个随机数对应多种时间间隔模式;
    所述通信设备获取所述第一随机数对应的第一时间间隔模式,所述第一时间间隔模式用于指示所述多个数据片段间的时间间隔。
  6. 一种通信设备,其特征在于,所述通信设备包括:
    获取单元,用于获取超宽带帧的密钥信息,所述超宽带帧包括多个数据片段;
    收发单元,用于按照所述多个数据片段间的时间间隔发送所述多个数据片段,或按照所述多个数据片段间的时间间隔接收所述多个数据片段,所述多个数据片段间的时间间隔是根据所述密钥信息确定的。
  7. 根据权利要求6所述的通信设备,其特征在于,所述密钥信息为发送所述超宽带帧的通信设备和接收所述超宽带帧的通信设备间的对称密钥;
    所述获取单元,还用于:
    根据所述对称密钥生成随机数,并根据所述随机数确定所述多个数据片段间的时间间隔。
  8. 根据权利要求7所述的通信设备,其特征在于,
    所述多个数据片段间的时间间隔相同;
    其中,所述多个数据片段间的时间间隔的值为所述随机数;
    或者,所述多个数据片段间的时间间隔的值是根据所述随机数进行计算后得到的。
  9. 根据权利要求7所述的通信设备,其特征在于,
    所述多个数据片段间的时间间隔不完全相同;
    所述获取单元,用于:
    根据所述对称密钥生成多个随机数,将所述多个随机数配置为所述多个数据片段间的时间间隔;
    或,根据所述对称密钥生成多个随机数,并根据所述多个随机数进行计算,得到所述多个数据片段间的时间间隔。
  10. 根据权利要求7所述的通信设备,其特征在于,
    所述多个数据片段间的时间间隔不完全相同;
    所述获取单元用于:
    根据所述对称密钥生成第一随机数,所述第一随机数为多个随机数中的一个,所述多个随机数对应多种时间间隔模式;
    所述通信设备获取所述第一随机数对应的第一时间间隔模式,所述第一时间间隔模式用于指示所述多个数据片段间的时间间隔。
  11. 一种计算机可读存储介质,其特征在于,包括计算机指令,当计算机指令在电子设备上运行时,使得所述电子设备执行上述权利要求1-5中的任一项所述的方法。
PCT/CN2023/073140 2022-08-31 2023-01-19 一种超宽带帧的发送方法和通信设备 WO2024045483A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211055970.2 2022-08-31
CN202211055970.2A CN117715189A (zh) 2022-08-31 2022-08-31 一种超宽带帧的发送方法和通信设备

Publications (1)

Publication Number Publication Date
WO2024045483A1 true WO2024045483A1 (zh) 2024-03-07

Family

ID=90100252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073140 WO2024045483A1 (zh) 2022-08-31 2023-01-19 一种超宽带帧的发送方法和通信设备

Country Status (2)

Country Link
CN (1) CN117715189A (zh)
WO (1) WO2024045483A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0028272A1 (de) * 1979-11-03 1981-05-13 PATELHOLD Patentverwertungs- & Elektro-Holding AG Verfahren und Einrichtung zur verschlüsselten Nachrichtenübertragung
CN101536332A (zh) * 2006-11-16 2009-09-16 高通股份有限公司 用于uwb系统的速分多址接入
CN113206723A (zh) * 2020-01-31 2021-08-03 苹果公司 下一代超宽带帧格式
CN114222247A (zh) * 2022-01-28 2022-03-22 Oppo广东移动通信有限公司 Uwb测距方法、装置、终端设备及存储介质
CN114449660A (zh) * 2020-11-02 2022-05-06 苹果公司 用于混合的超宽带和窄带信令的技术

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0028272A1 (de) * 1979-11-03 1981-05-13 PATELHOLD Patentverwertungs- & Elektro-Holding AG Verfahren und Einrichtung zur verschlüsselten Nachrichtenübertragung
CN101536332A (zh) * 2006-11-16 2009-09-16 高通股份有限公司 用于uwb系统的速分多址接入
CN113206723A (zh) * 2020-01-31 2021-08-03 苹果公司 下一代超宽带帧格式
CN114449660A (zh) * 2020-11-02 2022-05-06 苹果公司 用于混合的超宽带和窄带信令的技术
CN114222247A (zh) * 2022-01-28 2022-03-22 Oppo广东移动通信有限公司 Uwb测距方法、装置、终端设备及存储介质

Also Published As

Publication number Publication date
CN117715189A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
US10944552B2 (en) Communication devices and associated method
US11892538B2 (en) Method and apparatus for controlling ranging in wireless communication system
Sedlacek et al. An overview of the IEEE 802.15. 4z standard its comparison and to the existing UWB standards
JP4814324B2 (ja) 秘匿uwb測距のためのデバイス、方法及びプロトコル
US11991107B2 (en) Techniques for hybridized ultra-wideband and narrowband signaling
US11729037B2 (en) Sequences for ultra-wideband ranging
KR102373623B1 (ko) 충돌 프리 랜덤 액세스를 위한 방법
Qian et al. An Overview of Ultra-Wideband Technology and Performance Analysis of UWB-TWR in Simulation and Real Environment.
WO2024045483A1 (zh) 一种超宽带帧的发送方法和通信设备
WO2023024940A1 (zh) Uwb通信方法、通信装置及系统
US20160360546A1 (en) Contention for shared wireless communication channel using multiple dedicated sensing intervals
Reinhold et al. Improvement of IEEE 802.15. 4a IR-UWB for time-critical industrial wireless sensor networks
Nilawar et al. Reduction of SFD bits of WiFi OFDM frame using wobbulation echo signal and barker code
US8705589B2 (en) Method for pulse-based ultra-broadband communication between at least one transmitting node and at least one receiving node
WO2023185855A1 (zh) 一种通信方法及装置
WO2024083179A1 (zh) 基于感知的通信方法及装置
WO2023236823A1 (zh) 基于uwb的ppdu传输方法及相关装置
CN115996071B (zh) Nb辅助uwb测距系统的跳时序列生成方法
Yeh High-throughput interference-aware MAC protocols for heterogeneous ad hoc networks and multihop wireless LANs
WO2023165454A1 (zh) 通信方法和装置
WO2024007477A1 (zh) 测距方法与装置
US20240201361A1 (en) Distance assessment with headerless packets
WO2023236805A1 (zh) 信息交互方法及相关装置
EP4131807A1 (en) Sequences for ultra-wideband ranging
WO2023207593A1 (zh) 应用于超带宽uwb系统感知测量的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858526

Country of ref document: EP

Kind code of ref document: A1