WO2024000922A1 - 柔性可控器械的拉线驱动装置 - Google Patents

柔性可控器械的拉线驱动装置 Download PDF

Info

Publication number
WO2024000922A1
WO2024000922A1 PCT/CN2022/125005 CN2022125005W WO2024000922A1 WO 2024000922 A1 WO2024000922 A1 WO 2024000922A1 CN 2022125005 W CN2022125005 W CN 2022125005W WO 2024000922 A1 WO2024000922 A1 WO 2024000922A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
cable
screw
flexible controllable
flexible
Prior art date
Application number
PCT/CN2022/125005
Other languages
English (en)
French (fr)
Inventor
肖莹
刘宏斌
Original Assignee
中国科学院自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院自动化研究所 filed Critical 中国科学院自动化研究所
Publication of WO2024000922A1 publication Critical patent/WO2024000922A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/0016Holding or positioning arrangements using motor drive units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0057Constructional details of force transmission elements, e.g. control wires

Definitions

  • the present application relates to the technical field of medical devices, and in particular to a cable driving device for a flexible controllable device.
  • Flexible medical devices with controllable ends can be endoscopes used in the medical field, such as bronchoscopes, urethroscopes, duodenoscopes, choledochoscopes, pyeloscopes and other slim flexible electronic endoscopes.
  • An endoscope is a medical device widely used for clinical examination and diagnosis. It consists of a sheath, an insertion part, and flexible controllable instruments at their respective front ends, a light source, and a lens. When the flexible controllable instrument undergoes bending and deformation, it is generally achieved by pulling the pull wire built into the flexible controllable instrument.
  • the bending posture control mostly adopts the method of driving the motor to rotate and drive the cable.
  • the drive mechanism composed of the drive motor, coupling and screw has a long length and flexible control.
  • the driving mechanism of the controllable instrument bending takes up a large space and is not compact in structure.
  • the present application provides a linear motion cable driving device for flexible controllable instruments to solve the problem in the prior art that the driving mechanism of a flexible surgical instrument robot takes up a large space and is not compact in structure.
  • This application provides a cable driving device for flexible controllable instruments, including:
  • a mounting base the mounting base includes two side plates arranged oppositely;
  • a plurality of driving mechanisms includes a motor and a screw, the screw is connected to the output end of the motor, the motor is installed on one side plate of the mounting base, and the motor is located on both sides of the mounting base. Between two side plates, the two ends of the screw are respectively installed on the two side plates.
  • the motor is used to drive the screw to rotate synchronously with the output end of the motor.
  • the screw is used to drive The flexible controllable instrument cable moves along the axial direction of the lead screw.
  • the driving mechanism further includes:
  • a first synchronous wheel, a second synchronous wheel and a synchronous belt The first synchronous wheel is connected to the output end of the motor. One end of the screw is connected to the second synchronous wheel.
  • the synchronous belt is sleeved on The outer periphery of the first synchronous wheel and the second synchronous wheel, the first synchronous wheel, the second synchronous wheel and the synchronous belt are located on the outside of the same side plate.
  • the output end of the motor is provided with a first gear
  • one end of the screw is provided with a second gear.
  • the first gear and the second gear Gear mesh.
  • the side plate is provided with a plurality of mounting holes, and the plurality of mounting holes correspond to the screws of the plurality of driving mechanisms, so The end of the lead screw penetrates the mounting hole and is located outside the side plate.
  • the plurality of mounting holes are evenly arranged on the side plate.
  • the driving mechanism further includes:
  • a cable connector is installed on the screw, and is used to connect the flexible controllable instrument cable.
  • the driving mechanism further includes:
  • Lead screw nut connector the lead screw nut connector is installed on the lead screw nut of the lead screw, the lead screw nut is sleeved on the lead screw, the lead screw nut connector is located on the two between side panels;
  • Tension sensor the tension sensor is installed on the screw nut connector, the tension sensor is connected to the pull wire connector, and the tension sensor is used to measure the flexible controllable instrument pull wire connected to the pull wire connector. real-time pull on.
  • a cable driving device for a flexible controllable instrument also includes:
  • a plurality of guide assemblies include at least two guide posts, the two ends of the guide posts are respectively installed on the two side plates, the plurality of guide assemblies correspond to the plurality of driving mechanisms one by one,
  • the screw nut connecting piece is provided with a through hole, and the guide post passes through the through hole.
  • the motor is installed on one of the two side plates, and the other of the two side plates is used to install the cable of the flexible controllable instrument. seat assembly.
  • the cable driving device for flexible controllable instruments places a plurality of driving mechanisms between the two side plates of the mounting base, and the motor drives the screw to rotate synchronously, thereby driving the cable for the flexible controllable instrument on the screw to move. It achieves precise control of the bending posture of flexible controllable instruments.
  • the overall cable drive device occupies a small space and has a compact structure, which helps to realize the miniaturization of flexible surgical instrument robots.
  • the cable drive device adopts a linear motion drive cable to avoid the bending delay of the flexible controllable instrument caused by the loosening of the cable of the flexible controllable instrument caused by the motor rotation driving cable when the motor reverses and rotates.
  • the linear motion drive cable realizes the control of the flexible controllable instrument.
  • the wire drawing is more precise and has higher precision.
  • Figure 1 is one of the three-dimensional structural schematic diagrams of the cable driving device of the flexible controllable instrument provided by this application;
  • Figure 2 is the second schematic three-dimensional structural diagram of the cable driving device of the flexible controllable instrument provided by the present application
  • Figure 3 is the third schematic three-dimensional structural diagram of the cable driving device of the flexible controllable instrument provided by this application.
  • Figure 4 is a schematic cross-sectional view of the wire driving device of the flexible controllable instrument provided by the present application.
  • Figure 5 is one of the partial structural schematic diagrams of the cable driving device of the flexible controllable instrument provided by this application.
  • Figure 6 is the second partial structural schematic diagram of the cable driving device of the flexible controllable instrument provided by this application.
  • 220 Lead screw; 231: First synchronizing wheel; 232: Second synchronizing wheel;
  • timing belt 240: cable connector; 250: screw nut;
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection. Or integrated connection; it can be a mechanical connection, an electrical connection, a wired communication connection, or a wireless communication connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • connection can be a fixed connection or a detachable connection. Or integrated connection; it can be a mechanical connection, an electrical connection, a wired communication connection, or a wireless communication connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • the first feature "on” or “below” the second feature may be that the first and second features are in direct contact, or the first and second features are in intermediate contact. Indirect media contact.
  • the terms “above”, “above” and “above” a first feature on a second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the embodiments of this application. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.
  • Flexible medical devices with controllable ends can be inserted into human body cavities and organ cavities for direct observation, diagnosis or treatment.
  • the sheaths and insertion parts of this type of flexible medical devices are equipped with flexible controllable devices at the front end.
  • the pull wire driving device drives the multiple pull wires to move forward and backward, which can control the bending posture of the flexible controllable device, making the end of the flexible medical device controllable.
  • Flexible medical devices with controllable ends can be endoscopes used in the medical field, such as bronchoscopes, urethroscopes, duodenoscopes, choledochoscopes, pyeloscopes and other slim flexible electronic endoscopes.
  • endoscopes used in the medical field, such as bronchoscopes, urethroscopes, duodenoscopes, choledochoscopes, pyeloscopes and other slim flexible electronic endoscopes.
  • the cable driving device of a flexible controllable instrument includes: a mounting base and a plurality of driving mechanisms.
  • the mounting base includes two side plates 110 arranged opposite each other, and the two side plates 110 are used to install multiple driving mechanisms that support the cable driving device.
  • the mounting base may further include at least one bottom plate 120 , and the bottom plate 120 is connected to the two side plates 110 .
  • the driving mechanism includes a motor 210, a screw 220 and a guide post 270.
  • the motor 210 is the power source of the driving mechanism.
  • the motor 210 can convert electrical energy into mechanical energy and transmit the mechanical energy to the screw 220;
  • the screw 220 is the transmission element of the driving mechanism.
  • the screw 220 transmits mechanical energy to the flexible controllable instrument cable, so that the motor 210 in the driving mechanism can drive the flexible controllable instrument cable to move and control the bending posture of the flexible controllable instrument.
  • the guide post 270 is the guide mechanism of the driving mechanism.
  • the screw 220 of the driving mechanism is connected to the output end of the motor 210.
  • the motor 210 is installed on one side plate.
  • the motor 210 is located between the two side plates 110.
  • the two ends of the screw 220 are respectively installed on both sides. 110 side panels.
  • the screw 220 can convert rotational motion into linear motion, or convert torque into axial repeated force, and has the characteristics of high precision, reversibility and high efficiency.
  • the screw 220 is connected to the output end of the motor 210.
  • the motor 210 is used to drive the screw 220 to rotate synchronously with the output end of the motor 210.
  • the screw 220 can convert the rotational motion output by the output end of the motor 210 into linear motion.
  • the screw 220 converts the rotational motion output by the output end of the motor 210 into a linear motion to drive the flexible controllable instrument cable movement.
  • the flexible controllable instrument cable moves along the axial direction of the screw, passing through the front and back of different cables. Move and then control the bending posture of the flexible controllable instrument.
  • the two opposite side plates 110 on the mounting base define a semi-enclosed installation space.
  • the motor 210 and the screw 220 of the driving mechanism are located in this installation space.
  • the mounting base is composed of multiple driving mechanisms. It provides fixing and supporting functions, and the driving mechanism achieves precise control of the flexible controllable instrument cable.
  • the cable driving device occupies a small space and has a compact structure, which helps to realize the miniaturization of flexible surgical instrument robots.
  • the number of driving mechanisms in the pulling wire driving device can be adjusted according to the number of flexible controllable instrument pulling wires in the flexible controllable instrument.
  • the bending posture of the flexible controllable instrument is controlled by changing the front and rear positions of the three flexible controllable instrument cables.
  • the cable driving device is equipped with three driving mechanisms corresponding to one.
  • the lead screw 220 of the driving mechanism is connected to a flexible controllable instrument cable, and the three motors 210 can respectively drive the movement of the three flexible controllable instrument cables to control the bending posture of the flexible controllable instrument.
  • the flexible controllable instrument may be a flexible controllable instrument provided on an endoscope, or may be a flexible controllable instrument provided on other end-controllable flexible medical instruments.
  • a plurality of driving mechanisms are located between the two side plates 110 of the mounting base.
  • the motor 210 drives the screw 220 to rotate synchronously, thereby driving the flexible controllable instrument cable on the screw 220 to move. It achieves precise control of the bending posture of flexible controllable instruments.
  • the overall cable drive device occupies a small space and has a compact structure, which helps to realize the miniaturization of flexible surgical instrument robots.
  • the driving mechanism of the cable driving device further includes: a first synchronous wheel 231 , a second synchronous wheel 232 and a synchronous belt 233 .
  • the first synchronous wheel 231 is connected to the output end of the motor 210, one end of the screw 220 is connected to the second synchronous wheel 232, and the synchronous belt 233 is sleeved on the first synchronous wheel 231 and the second synchronous wheel 232.
  • the first synchronous wheel 231 , the second synchronous wheel 232 and the synchronous belt 233 are located outside the same side plate 110 .
  • the motor 210 can be installed on one of the side plates 110 of the mounting base.
  • the output end of the motor 210 is located on the outside of the side plate 110.
  • the inside of the side plate 110 is between the two side plates 110.
  • the outer side of the side plate 110 is the side located outside the two side plates 110 .
  • the first synchronizing wheel 231 is connected to the output end of the motor 210 located outside the side plate 110.
  • the output end of the motor 210 rotates, driving the first synchronizing wheel 231 to rotate.
  • one end of the screw 220 is connected to the second synchronizing wheel 232 , and one end of the screw 220 is connected to the second synchronizing wheel 232 and is located on the side plate 110 where the output end of the motor 210 is located.
  • the synchronous belt 233 is sleeved on the outer periphery of the first synchronous wheel 231 and the second synchronous wheel 232.
  • the motor 210 passes through the synchronous belt transmission assembly composed of the first synchronous wheel 231, the second synchronous wheel 232 and the synchronous belt 233.
  • the output end drives the screw 220 to rotate synchronously.
  • the synchronous belt 233 can be an annular belt with steel wire or glass fiber as the strong layer and covered with polyurethane or neoprene.
  • the inner circumference of the synchronous belt 233 can be made into a tooth shape.
  • the first synchronous wheel 231 and the second synchronous wheel The outer periphery of the wheel 232 is provided in a tooth shape that meshes with the tooth shape of the inner periphery of the timing belt 233 .
  • the synchronous belt 233 can realize the synchronous transmission of the first synchronous wheel 231 and the second synchronous wheel 232, and can also realize the synchronous transmission of the first synchronous wheel 231 by adjusting the outer circumferential dimensions of the first synchronous wheel 231 and the second synchronous wheel 232. and the speed change transmission of the second synchronizing wheel 232.
  • the transmission between the motor 210 and the screw 220 is realized through two synchronous wheels and a synchronous belt 233.
  • Using the synchronous wheels for power transmission can make the structure of the cable driving device more compact.
  • first synchronous wheel 231, the second synchronous wheel 232 and the synchronous belt 233 are located outside the same side plate 110, which separates the synchronous belt transmission assembly from the space where the motor 210 and the lead screw 220 are located. It ensures that the transmission of the synchronous belt transmission assembly is stable and effective, and at the same time, the structure of the driving device is more compact and orderly.
  • the output end of the motor 210 is provided with a first gear
  • one end of the screw 220 is provided with a second gear
  • the first gear meshes with the second gear
  • the motor 210 drives the screw 220 to rotate synchronously through the output end of the motor 210 through gear transmission.
  • a gear refers to a mechanical element that has gear teeth on the rim that mesh continuously to transmit motion and power.
  • the gear teeth are the raised parts on the gear for meshing.
  • the first gear is disposed at the output end of the motor 210
  • the second gear is disposed at one end of the screw 220.
  • the first gear meshes with the second gear, the motor 210 works, and the output end of the motor 210 drives the first gear.
  • Rotate, the first gear drives the second gear to rotate, so that the output end of the motor 210 drives the screw 220 to rotate synchronously.
  • first gear and the second gear may be located between two side plates 110 of the mounting base, and the first gear and the second gear are located outside the same side plate 110 of the mounting base.
  • the motor 210 can be installed on one of the side plates 110 of the mounting base, the output end of the motor 210 is located outside the side plate 110 , and the first gear is disposed on the output end of the motor 210 .
  • one end of the screw 220 is also located outside the side plate 110 , the second gear is disposed on one end of the screw 220 , the first gear and the second gear mesh with each other, and the output end of the motor 210 drives the screw 220 Synchronized rotation.
  • the gear transmission method can realize synchronous transmission between the output end of the motor 210 and the screw 220, or can also realize the synchronous transmission between the output end of the motor 210 and the screw 220 by adjusting the outer circumferential dimensions of the first gear and the second gear. speed transmission between.
  • the side plate 110 is provided with a plurality of mounting holes, and the plurality of mounting holes correspond to the screws 220 of the plurality of driving mechanisms. The ends of the screws 220 pass through the mounting holes and are located outside the side plate 110 .
  • each of the two side plates 110 of the mounting base is provided with a plurality of mounting holes.
  • the two side plates 110 are arranged oppositely, and the positions of the multiple mounting holes on each side plate 110 are also Directly opposite.
  • each side plate 110 corresponds to the screws 220 of multiple driving mechanisms.
  • the cable driving device includes three driving mechanisms and three screws 220 .
  • Each side plate 110 is provided with Corresponding 3 mounting holes.
  • the end of the screw 220 passes through the mounting hole and is located on the outside of the side plate 110.
  • One screw 220 has two ends, and the two ends of the screw 220 respectively pass through the opposite holes on the two side plates 110.
  • the end of the screw 220 is located on the outside of the side plate 110.
  • Transmission components such as synchronization wheels or gears can be installed on the ends of the screw 220 to make the structure of the cable driving device more compact.
  • a plurality of mounting holes are evenly arranged on the side panel 110 .
  • multiple mounting holes are evenly arranged on the side plate 110, and the screw 220 of each driving mechanism penetrates the corresponding mounting hole.
  • the screws 220 are evenly distributed in the internal space of the mounting base, and the structure of the cable driving device is more regular. Easy to install and maintain.
  • a plurality of mounting holes are evenly arranged on the side plate 110, and each mounting hole forms the same angle with its two adjacent mounting holes.
  • the cable driving device includes three driving mechanisms.
  • Each side plate 110 of the mounting base is provided with three mounting holes.
  • the two ends of each screw 220 respectively pass through the two opposite holes on the two side plates 110. Mounting holes.
  • the three mounting holes on the side plate 110 are evenly distributed at 120°.
  • the screw 220 penetrates the corresponding mounting holes.
  • the angle formed by each mounting hole and its two adjacent mounting holes is 60°.
  • the connection of the three mounting holes forms an equilateral triangle.
  • the cable driving device includes 4 driving mechanisms.
  • Each side plate 110 of the mounting base is provided with 4 mounting holes.
  • the two ends of each screw 220 respectively pass through the two opposite holes on the two side plates 110 . mounting holes.
  • the four mounting holes on the side plate 110 are evenly distributed at 90°, and the angle between each mounting hole and its two adjacent mounting holes is 90°.
  • the connection of the four mounting holes forms a square.
  • the drive mechanism also includes a pull wire connection 240.
  • the cable connector 240 is installed on the screw 220 , and the cable connector 240 is used to connect the flexible controllable instrument cable.
  • the screw 220 of the driving mechanism is connected to the output end of the motor 210.
  • the motor 210 drives the screw 220 to rotate synchronously with the output end of the motor 210.
  • the cable connector 240 installed on the screw 220 moves along the screw 220.
  • the linear motion in the axial direction causes the cable of the flexible controllable instrument to move forward and backward to control the bending posture of the flexible controllable instrument.
  • the cable connector 240 is installed on the screw 220.
  • the end of the screw 220 can pass through the installation hole and be located on the outside of the side plate 110.
  • the cable connector 240 is connected to the screw nut connector 251; accordingly, synchronization Transmission components such as wheels or gears can be installed on the screw 220 , located outside the other side plate 110 of the two side plates 110 .
  • the driving mechanism also includes a lead screw nut 250, a lead screw nut connector 251, and a tension sensor 260.
  • the screw nut 250 is sleeved on the screw nut 220.
  • the screw nut 250 is located between the two side plates 110.
  • the screw nut connector 251 is connected to the screw nut 250.
  • the tension sensor 260 is installed on the screw nut connector 251 and is connected to the cable connector 240.
  • the tension sensor 260 is used to measure the real-time tension on the flexible controllable instrument cable connected to the cable connector 240.
  • the screw nut 250 is sleeved on the screw 220.
  • the screw nut 250 moves on the screw 220, and the tension sensor 260 can be connected to the cable that fixes the cable of the flexible controllable instrument.
  • Part 240 is snap-fitted.
  • the moving distance of the screw nut 250 on the screw 220 is related to the rotation of the screw 220.
  • the rotation of the screw 220 drives the movement of the flexible controllable instrument cable.
  • the tension sensor 260 can drive the flexible controllable instrument cable through the motor 210 through the screw 220.
  • the real-time pulling force on the cable of the flexible controllable instrument is detected in real time.
  • the cable driving device further includes a plurality of guide assemblies.
  • each guide component includes at least two guide posts 270. Both ends of the guide posts 270 are respectively installed on the two side plates 110. Multiple guide components correspond to multiple drive mechanisms one by one, and the screw nuts are connected.
  • the member 251 is provided with a through hole, and the guide post 270 passes through the through hole.
  • the guide post 270 of the guide assembly plays a guiding role in the movement of the screw nut connector 251 on the screw 220 .
  • both ends of the guide pillar 270 are respectively installed on the two side plates 110, and the guide assembly is also arranged in the mounting base.
  • the structure of the cable driving device is more compact, and the guide pillar 270 can also play a certain role in the mounting base. the supporting role.
  • a plurality of guide components correspond to a plurality of driving mechanisms.
  • the screw nut 250 on the screw 220 of each driving mechanism corresponds to a set of guide components.
  • the screw nut connector 251 is provided with a through hole for the guide post 270 to penetrate. When the screw 220 rotates, the screw nut connector 251 moves along the screw 220 and the guide post 270 .
  • the motor 210 is mounted on one of the two side plates 110 , and the other of the two side plates 110 is used to install a flexible controllable instrument cable mount assembly for mounting the cable.
  • the two side plates 110 of the mounting base provide fixation and support functions for the driving mechanism.
  • the motor 210 is installed on one of the two side plates 110, and the flexible controllable instrument mounting base assembly is installed on the two side plates. On the other one in 110.
  • the flexible controllable instrument cable mounting assembly is used to install and secure the sheath and insertion part of the flexible medical device and the cables of the flexible controllable instrument at their respective front ends.
  • the motor 210 and the flexible controllable instrument cable mounting assembly are respectively Installed on different side plates 110 of the mounting base to improve the stability of the mounting base.
  • the cable driving device includes 3 driving mechanisms, and each flexible controllable instrument cable is connected to the lead screw 220 of the corresponding driving mechanism. Connected to the pull wire connector 240 on.
  • Each driving mechanism includes a motor 210, a lead screw 220, two guide posts 270, a first synchronous wheel 231, a second synchronous wheel 232 and a synchronous belt 233.
  • Two guide posts 270 are arranged on both sides of the screw 220.
  • the first synchronization wheel 231 and the second synchronization wheel 232 are respectively arranged at the output end of the motor 210 and one end of the screw 220.
  • the synchronous belt 233 is sleeved on the first synchronization wheel. 231 and the outer periphery of the second synchronizing wheel 232.
  • the three mounting holes on the side plate 110 of the mounting base are evenly distributed at 120°.
  • the two ends of each screw 220 pass through the two opposite mounting holes on the two side plates 110.
  • the screw 220 is installed The seats are evenly arranged.
  • the transmission between the motor 210 and the screw 220 is realized through two synchronous wheels and a synchronous belt 233.
  • the overall cable driving device occupies a small space and has a compact structure.
  • the flexible surgical instrument robot provided by the embodiment of the present application is described below.
  • the flexible surgical instrument robot described below includes the pull wire driving device described above.
  • the flexible surgical instrument robot provided by the embodiment of the present application includes: a flexible medical instrument and a cable driving device of a flexible controllable instrument, etc.
  • the flexible medical instrument is provided with a sheath and an insertion part and flexible controllable instruments at their respective front ends.
  • the flexible controllable instrument The bending posture can be controlled by the cable drive device and the cable.
  • multiple driving mechanisms correspond to multiple flexible controllable instrument cables.
  • the first end of the flexible controllable instrument cable is connected to the flexible controllable instrument.
  • the second end of the flexible controllable instrument cable is connected to the driving mechanism. Lead screw 220 connection.
  • a plurality of driving mechanisms are located between the two side plates 110 of the mounting base.
  • the motor 210 drives the screw 220 to rotate synchronously, thereby driving the flexible controllable instrument cable on the screw 220 to move. It achieves precise control of the bending posture of flexible controllable instruments.
  • the overall cable drive device occupies a small space and has a compact structure, which helps to realize the miniaturization of flexible surgical instrument robots.
  • the cable driving device adopts a linear motion driving cable to avoid bending delay of the flexible controllable instrument caused by the relaxation of the cable of the flexible controllable instrument caused by the rotation of the motor when the motor reverses and rotates. Linear motion wire drawing realizes more precise control of flexible controllable instrument wire drawing with higher precision.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

一种柔性可控器械的拉线驱动装置,该拉线驱动装置包括:安装座,安装座包括相对设置的两个侧板(110);多个驱动机构,驱动机构包括电机(210)和丝杠(220),丝杠(220)与电机(210)的输出端连接,电机(210)安装于安装座的一个侧板(110)上,电机(210)位于两个侧板(110)之间,丝杠(220)的两端分别安装于两个侧板(110),电机(210)用于驱动丝杠(220)与电机(210)的输出端同步旋转,丝杠(220)用于驱动柔性医疗器械的柔性可控器械拉线沿丝杠(220)的轴向移动。拉线驱动装置为柔性手术器械机器人的内部组件,拉线驱动机构结构紧凑有助于实现柔性手术器械机器人的小型化。

Description

柔性可控器械的拉线驱动装置
相关申请的交叉引用
本申请要求于2022年6月30日提交的申请号为2022107715071,发明名称为“柔性可控器械的拉线驱动装置”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及医疗器械技术领域,尤其涉及一种柔性可控器械的拉线驱动装置。
背景技术
末端可控的柔性医疗器械可以为医疗领域中应用的内窥镜,如支气管镜、尿道镜、十二指肠镜、胆道镜、肾盂镜等纤细的柔性电子内窥镜。内窥镜是一种广泛用于临床检查和诊断的医疗器械,由鞘、插入部及其各自前端的柔性可控器械、光源及镜头等组成。柔性可控器械在进行弯曲变形时,一般是通过牵拉内置于柔性可控器械的拉线来实现的。
目前,柔性可控器械弯曲姿态的控制因减小体积的需求多采用驱动电机旋转驱动拉线方式。也有方案或通过联轴器连接的驱动电机和丝杠实现线性运动式驱动拉线,以达到更精准的控制效果,但驱动电机、联轴器和丝杠构成的驱动机构存在长度较长,控制柔性可控器械弯曲的驱动机构整体占用空间大且结构不紧凑等不足。
发明内容
本申请提供一种柔性可控器械的线性运动式拉线驱动装置,用以解决现有技术中柔性手术器械机器人的驱动机构整体占用空间大且结构不紧凑的问题。
本申请提供一种柔性可控器械的拉线驱动装置,包括:
安装座,所述安装座包括相对设置的两个侧板;
多个驱动机构,所述驱动机构包括电机和丝杠,所述丝杠与所述电机 的输出端连接,所述电机安装于所述安装座的一个侧板上,所述电机位于所述两个侧板之间,所述丝杠的两端分别安装于所述两个侧板,所述电机用于驱动所述丝杠与所述电机的输出端同步旋转,所述丝杠用于驱动柔性可控器械拉线沿所述丝杠的轴向移动。
根据本申请提供的一种柔性可控器械的拉线驱动装置,所述驱动机构还包括:
第一同步轮、第二同步轮和同步带,所述第一同步轮与所述电机的输出端连接,所述丝杠的一端与所述第二同步轮连接,所述同步带套设于所述第一同步轮和所述第二同步轮的外周,所述第一同步轮、所述第二同步轮和所述同步带位于同一个所述侧板的外侧。
根据本申请提供的一种柔性可控器械的拉线驱动装置,所述电机的输出端设置有第一齿轮,所述丝杠的一端设置有第二齿轮,所述第一齿轮和所述第二齿轮啮合。
根据本申请提供的一种柔性可控器械的拉线驱动装置,所述侧板设置有多个安装孔,所述多个安装孔与所述多个驱动机构的所述丝杠一一对应,所述丝杠的端部贯穿所述安装孔位于所述侧板的外侧。
根据本申请提供的一种柔性可控器械的拉线驱动装置,所述多个安装孔均匀布置于所述侧板。
根据本申请提供的一种柔性可控器械的拉线驱动装置,所述驱动机构还包括:
拉线连接件,所述拉线连接件安装于所述丝杠,所述拉线连接件用于连接所述柔性可控器械拉线。
根据本申请提供的一种柔性可控器械的拉线驱动装置,所述驱动机构还包括:
丝杠螺母连接件,所述丝杠螺母连接件安装在所述丝杠的丝杠螺母上,所述丝杠螺母套设于所述丝杠,所述丝杠螺母连接件位于所述两个侧板之间;
拉力传感器,所述拉力传感器安装于所述丝杠螺母连接件,所述拉力传感器与所述拉线连接件连接,所述拉力传感器用于测量所述拉线连接件连接的所述柔性可控器械拉线上的实时拉力。
根据本申请提供的一种柔性可控器械的拉线驱动装置,还包括:
多个导向组件,所述导向组件包括至少两个导柱,所述导柱的两端分别安装于所述两个侧板,所述多个导向组件与所述多个驱动机构一一对应,所述丝杠螺母连接件设有通孔,所述导柱贯穿所述通孔。
根据本申请提供的一种柔性可控器械的拉线驱动装置,所述电机安装于所述两个侧板中的一个,所述两个侧板中的另一个用于安装柔性可控器械拉线安装座组件。
本申请提供的柔性可控器械的拉线驱动装置,通过将多个驱动机构位于安装座的两个侧板之间,电机驱动丝杠同步旋转,进而带动丝杠上的柔性可控器械拉线移动,实现对柔性可控器械弯曲姿态的精准控制,拉线驱动装置整体占用空间小且结构紧凑,有助于实现柔性手术器械机器人的小型化。拉线驱动装置采用线性运动式驱动拉线,避免电机旋转式驱动拉线在电机换向旋转时造成的柔性可控器械拉线松弛造成的柔性可控器械弯曲延迟,线性运动式驱动拉线实现控制柔性可控器械拉线更加精准,精度更高。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的柔性可控器械的拉线驱动装置的立体结构示意图之一;
图2是本申请提供的柔性可控器械的拉线驱动装置的立体结构示意图之二;
图3是本申请提供的柔性可控器械的拉线驱动装置的立体结构示意图之三;
图4是本申请提供的柔性可控器械的拉线驱动装置的截面示意图;
图5是本申请提供的柔性可控器械的拉线驱动装置的局部结构示意图之一;
图6是本申请提供的柔性可控器械的拉线驱动装置的局部结构示意图之二。
附图标记:
110:侧板;            120:底板;         210:电机;
220:丝杠;            231:第一同步轮;   232:第二同步轮;
233:同步带;          240:拉线连接件;   250:丝杠螺母;
251:丝杠螺母连接件;  260:拉力传感器;   270:导柱。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例的描述中,需要说明的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接,或有线通信连接,或无线通信连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和 “上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
下面结合图1至图6描述本申请实施例的柔性可控器械的拉线驱动装置。
末端可控的柔性医疗器械可以插入人体体腔和脏器内腔进行直接观察、诊断或治疗,该类柔性医疗器械的鞘及插入部前端设置有柔性可控器械。
柔性可控器械上均匀有多根拉线,通过拉线驱动装置驱动多根拉线前后移动,可控制柔性可控器械的弯曲姿态,使得柔性医疗器械的末端可控。
末端可控的柔性医疗器械可以为医疗领域中应用的内窥镜,如支气管镜、尿道镜、十二指肠镜、胆道镜、肾盂镜等纤细的柔性电子内窥镜。
如图1所示,本申请实施例提供的柔性可控器械的拉线驱动装置包括:安装座和多个驱动机构。安装座包括相对设置的两个侧板110,两个侧板110用于安装支撑拉线驱动装置的多个驱动机构。
如图3所示,安装座还可以包括至少一个底板120,底板120连接与两个侧板110之间。
驱动机构包括电机210、丝杠220和导柱270,电机210是驱动机构的动力源,电机210可以将电能转换为机械能,并将机械能传递到丝杠220;丝杠220是驱动机构的传动元件,丝杠220将机械能传递到柔性可控器械拉线,以实现驱动机构中的电机210可驱动柔性可控器械拉线移动,控制 柔性可控器械的弯曲姿态,导柱270是驱动机构的导向机构。
在该实施例中,驱动机构的丝杠220与电机210的输出端连接,电机210安装于一个侧板上,电机210位于两个侧板110之间,丝杠220的两端分别安装于两个侧板110。
丝杠220可以将旋转运动转换成线性运动,或将扭矩转换成轴向反复作用力,同时兼具高精度、可逆性和高效率的特点。
丝杠220与电机210的输出端连接,电机210用于驱动丝杠220与电机210的输出端同步旋转,同时丝杠220可以将电机210的输出端所输出的旋转运动转换成线性运动。
在该实施例中,丝杠220将电机210的输出端所输出的旋转运动转换成线性运动驱动柔性可控器械拉线运动,柔性可控器械拉线沿丝杠的轴向移动,通过不同拉线的前后移动,进而控制柔性可控器械的弯曲姿态。
如图5所示,安装座上相对设置的两个侧板110限定出了一个半封闭的安装空间,驱动机构的电机210和丝杠220均位于该安装空间内,安装座为多个驱动机构提供固定及支撑功能,驱动机构实现对柔性可控器械拉线的精准控制的同时,拉线驱动装置整体占用空间小且结构紧凑,有助于实现柔性手术器械机器人的小型化。
在实际执行中,可以根据柔性可控器械中柔性可控器械拉线的数量,调整拉线驱动装置中驱动机构的数量。
例如,柔性可控器械内部设有3根柔性可控器械拉线,通过改变3根柔性可控器械拉线的前后位置控制柔性可控器械的弯曲姿态,拉线驱动装置对应设置3个驱动机构,1个驱动机构的丝杠220连接1根柔性可控器械拉线,3个电机210可分别驱动柔性可控器械的3根柔性可控器械拉线移动,控制柔性可控器械的弯曲姿态。
在该实施例中,柔性可控器械可以为内窥镜上设置的柔性可控器械,也可以为其他末端可控的柔性医疗器械上设置的柔性可控器械。
根据本申请实施例提供的拉线驱动装置,多个驱动机构位于安装座的两个侧板110之间,电机210驱动丝杠220同步旋转,进而带动丝杠220上的柔性可控器械拉线移动,实现对柔性可控器械弯曲姿态的精准控制,拉线驱动装置整体占用空间小且结构紧凑,有助于实现柔性手术器械机器 人的小型化。
在一些实施例中,拉线驱动装置的驱动机构还包括:第一同步轮231、第二同步轮232和同步带233。
在该实施例中,第一同步轮231与电机210的输出端连接,丝杠220的一端与第二同步轮232连接,同步带233套设于第一同步轮231和第二同步轮232的外周,第一同步轮231、第二同步轮232和同步带233位于同一个侧板110的外侧。
如图3所示,电机210可以安装于安装座的其中一个侧板110上,电机210的输出端位于该侧板110的外侧,其中,侧板110的内侧为位于两个侧板110之间的一侧,侧板110的外侧为位于两个侧板110之外的一侧。
第一同步轮231与位于侧板110的外侧的电机210的输出端连接,电机210工作,电机210的输出端转动,带动第一同步轮231转动。
在该实施例中,丝杠220的一端与第二同步轮232连接,丝杠220上与第二同步轮232连接的一端位于电机210的输出端所位于的侧板110上。
同步带233套设于第一同步轮231和第二同步轮232的外周,电机210工作时,通过第一同步轮231、第二同步轮232和同步带233组成的同步带传动组件,电机210的输出端带动丝杠220同步旋转。
同步带233可以是以钢丝绳或玻璃纤维为强力层,外覆以聚氨酯或氯丁橡胶的环形带,同步带233的内周可以制成齿状,相应的,第一同步轮231和第二同步轮232的外周设置为与同步带233的内周的齿状相啮合的齿状。
在实际执行中,同步带233可以实现第一同步轮231和第二同步轮232的同步传动,也可以通过调整第一同步轮231和第二同步轮232的外周尺寸,实现第一同步轮231和第二同步轮232的变速传动。
在该实施例中,电机210与丝杠220之间的传动通过两个同步轮和一条同步带233实现,使用同步轮进行动力传动,可以使得拉线驱动装置的结构更加紧凑。
可以理解的是,第一同步轮231、第二同步轮232和同步带233位于同一个侧板110的外侧,该侧板110将同步带传动组件和电机210、丝杠 220所处空间分隔开来,保证同步带传动组件的传动稳定有效的同时,驱动装置的结构更加紧凑、有序。
在一些实施例中,电机210的输出端设置有第一齿轮,丝杠220的一端设置有第二齿轮,第一齿轮和第二齿轮啮合。
在该实施例中,电机210通过齿轮传动方式,由电机210的输出端带动丝杠220同步旋转。
齿轮是指轮缘上有轮齿连续啮合传递运动和动力的机械元件,轮齿是齿轮上的用于啮合的凸起部分。
在该实施例中,第一齿轮设置于电机210的输出端,第二齿轮设置于丝杠220的一端,第一齿轮和第二齿轮啮合,电机210工作,电机210的输出端带动第一齿轮转动,第一齿轮带动第二齿轮转动,实现电机210的输出端带动丝杠220同步旋转。
在实际执行中,第一齿轮和第二齿轮可以位于安装座的两个侧板110之间,第一齿轮和第二齿轮位于安装座的同一个侧板110的外侧。
例如,电机210可以安装于安装座的其中一个侧板110,电机210的输出端位于该侧板110的外侧,第一齿轮设置于电机210的输出端。
在该实施例中,丝杠220的一端也位于该侧板110的外侧,第二齿轮设置于丝杠220的一端,第一齿轮和第二齿轮相互啮合,电机210的输出端带动丝杠220同步旋转。
可以理解的是,齿轮传动方式可以实现电机210的输出端和丝杠220之间的同步传动,也可以通过调整第一齿轮和第二齿轮的外周尺寸,实现电机210的输出端和丝杠220之间的变速传动。
在一些实施例中,侧板110设置有多个安装孔,多个安装孔与多个驱动机构的丝杠220一一对应,丝杠220的端部贯穿安装孔位于侧板110的外侧。
在该实施例中,安装座的两个侧板110的每个侧板110均设置有多个安装孔,两个侧板110相对设置,每个侧板110上的多个安装孔的位置也是正对的。
每个侧板110上的多个安装孔与多个驱动机构的丝杠220一一对应,例如,拉线驱动装置包括3个驱动机构,有3个丝杠220,每个侧板110 上设置有对应的3个安装孔。
在实际执行中,丝杠220的端部贯穿安装孔位于侧板110的外侧,一个丝杠220有两个端部,丝杠220的两个端部分别贯穿两个侧板110上正对的两个安装孔,丝杠220的端部位于侧板110的外侧,同步轮或齿轮等传动组件可以安装于丝杠220的端部,以使拉线驱动装置的结构更加紧凑。
在一些实施例中,多个安装孔均匀布置于侧板110。
在该实施例中,多个安装孔均匀布置于侧板110,每个驱动机构的丝杠220贯穿对应的安装孔,丝杠220在安装座内部空间均匀分布,拉线驱动装置的结构更加规整,便于安装和维修。
在实际执行中,侧板110上均匀布置的多个安装孔,每个安装孔与其相邻的两个安装孔形成的夹角相同。
例如,拉线驱动装置包括3个驱动机构,安装座的每个侧板110上设置有3个安装孔,每个丝杠220的两个端部分别贯穿两个侧板110上正对的两个安装孔。
如图4所示,在侧板110上的3个安装孔呈120°均匀分布,丝杠220贯穿对应的安装孔,每个安装孔与其相邻的两个安装孔形成的夹角为60°,3个安装孔的连线构成等边三角形。
再例如,拉线驱动装置包括4个驱动机构,安装座的每个侧板110上设置有4个安装孔,每个丝杠220的两个端部分别贯穿两个侧板110上正对的两个安装孔。
在侧板110上的4个安装孔呈90°均匀分布,每个安装孔与其相邻的两个安装孔形成的夹角为90°,4个安装孔的连线构成正方形。
在一些实施例中,驱动机构还包括拉线连接件240。
在该实施例中,如图2所示,拉线连接件240安装于丝杠220,拉线连接件240用于连接柔性可控器械拉线。
驱动机构的丝杠220与电机210的输出端连接,电机210带动丝杠220与电机210的输出端同步旋转,丝杠220转动时,安装于丝杠220的拉线连接件240沿着丝杠220轴向的直线运动,进而使柔性可控器械拉线前后移动,控制柔性可控器械的弯曲姿态。
在实际执行中,拉线连接件240安装于丝杠220,丝杠220的端部可 以贯穿安装孔位于侧板110的外侧,拉线连接件240连接在丝杠螺母连接件251上;相应的,同步轮或齿轮等传动组件可以安装于丝杠220,位于两个侧板110中的另一个侧板110的外侧。
在一些实施例中,驱动机构还包括丝杠螺母250、丝杠螺母连接件251和拉力传感器260。
在该实施例中,如图6所示,丝杠螺母250套设于丝杠220,丝杠螺母250位于两个侧板110之间,丝杠螺母连接件251连接在丝杠螺母250上,拉力传感器260安装于丝杠螺母连接件251上,拉力传感器260与拉线连接件240连接,拉力传感器260用于测量拉线连接件240连接的柔性可控器械拉线上的实时拉力。
丝杠螺母250套设于丝杠220,丝杠220随着电机210的输出端同步旋转时,丝杠螺母250在丝杠220上移动,拉力传感器260可以与固定柔性可控器械拉线的拉线连接件240进行卡扣连接。
丝杠螺母250在丝杠220上移动距离与丝杠220的转动相关,丝杠220的转动带动柔性可控器械拉线的移动,拉力传感器260可以在电机210通过丝杠220驱动柔性可控器械拉线时,实时检测柔性可控器械拉线上的实时拉力。
在一些实施例中,拉线驱动装置还包括多个导向组件。
在该实施例中,每个导向组件包括至少两个导柱270,导柱270的两端分别安装于两个侧板110,多个导向组件与多个驱动机构一一对应,丝杠螺母连接件251设有通孔,导柱270贯穿通孔。
可以理解的是,导向组件的导柱270对丝杠220上的丝杠螺母连接件251的移动起到导向作用。
在该实施例中,导柱270的两端分别安装于两个侧板110,导向组件也是布置在安装座内的,拉线驱动装置的结构更加紧凑,导柱270还可以对安装座起到一定的支撑作用。
多个导向组件与多个驱动机构一一对应,每个驱动机构的丝杠220上的丝杠螺母250对应一组导向组件,丝杠螺母连接件251设有供导柱270贯穿的通孔,丝杠220旋转时,丝杠螺母连接件251沿着丝杠220和导柱270移动。
在一些实施例中,电机210安装于两个侧板110中的一个,两个侧板110中的另一个用于安装拉线的柔性可控器械拉线安装座组件。
如图3所示,安装座的两个侧板110为驱动机构提供固定及支撑功能,电机210安装于两个侧板110中的一个上,柔性可控器械安装座组件安装于两个侧板110中的另一个上。
在该实施例中,柔性可控器械拉线安装座组件用于安装固定柔性医疗器械的鞘和插入部及其各自前端的柔性可控器械的拉线,电机210和柔性可控器械拉线安装座组件分别安装于安装座的不同侧板110上,提升安装座的稳定性。
下面介绍一个具体的实施例。
柔性医疗器械的鞘和插入部的柔性可控器械内部均匀圆周分布3根柔性可控器械拉线,拉线驱动装置包括3个驱动机构,每根柔性可控器械拉线与对应的驱动机构的丝杠220上的拉线连接件240相连。
每个驱动机构包括一个电机210、一个丝杠220、两个导柱270、第一同步轮231、第二同步轮232和同步带233。
两个导柱270设置于丝杠220的两侧,第一同步轮231和第二同步轮232分别设置于电机210的输出端和丝杠220的一端,同步带233套设于第一同步轮231和第二同步轮232的外周。
在安装座的侧板110上的3个安装孔呈120°均匀分布,每个丝杠220的两个端部分别贯穿两个侧板110上正对的两个安装孔,丝杠220在安装座内均匀布置。
电机210与丝杠220之间的传动通过两个同步轮和一条同步带233实现,拉线驱动装置整体占用空间小且结构紧凑。
下面对本申请实施例提供的柔性手术器械机器人进行描述,下文描述的柔性手术器械机器人包括上文描述的拉线驱动装置。
本申请实施例提供的柔性手术器械机器人包括:柔性医疗器械和柔性可控器械的拉线驱动装置等,柔性医疗器械设置有鞘和插入部及其各自前端的柔性可控器械等,柔性可控器械的弯曲姿态可由拉线驱动装置和拉线控制。
在该实施例中,多个驱动机构与多根柔性可控器械拉线一一对应,柔 性可控器械拉线的第一端连接柔性可控器械,柔性可控器械拉线的第二端与驱动机构的丝杠220连接。
根据本申请实施例提供的拉线驱动装置,多个驱动机构位于安装座的两个侧板110之间,电机210驱动丝杠220同步旋转,进而带动丝杠220上的柔性可控器械拉线移动,实现对柔性可控器械弯曲姿态的精准控制,拉线驱动装置整体占用空间小且结构紧凑,有助于实现柔性手术器械机器人的小型化。拉线驱动装置采用线性运动式驱动拉线,避免电机旋转式驱动拉线在电机换向旋转时造成的柔性可控器械拉线松弛造成的柔性可控器械弯曲延迟。线性运动式拉丝实现控制柔性可控器械拉线更加精准,精度更高。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (9)

  1. 一种柔性可控器械的拉线驱动装置,包括:
    安装座,所述安装座包括相对设置的两个侧板;
    多个驱动机构,所述驱动机构包括电机和丝杠,所述丝杠与所述电机的输出端连接,所述电机安装于所述安装座的一个侧板上,所述电机位于所述两个侧板之间,所述丝杠的两端分别安装于所述两个侧板,所述电机用于驱动所述丝杠与所述电机的输出端同步旋转,所述丝杠用于驱动柔性可控器械拉线沿所述丝杠的轴向移动。
  2. 根据权利要求1所述的柔性可控器械的拉线驱动装置,其中,所述驱动机构还包括:
    第一同步轮、第二同步轮和同步带,所述第一同步轮与所述电机的输出端连接,所述丝杠的一端与所述第二同步轮连接,所述同步带套设于所述第一同步轮和所述第二同步轮的外周,所述第一同步轮、所述第二同步轮和所述同步带位于同一个所述侧板的外侧。
  3. 根据权利要求1所述的柔性可控器械的拉线驱动装置,其中,所述电机的输出端设置有第一齿轮,所述丝杠的一端设置有第二齿轮,所述第一齿轮和所述第二齿轮啮合。
  4. 根据权利要求1所述的柔性可控器械的拉线驱动装置,其中,所述侧板设置有多个安装孔,所述多个安装孔与所述多个驱动机构的所述丝杠一一对应,所述丝杠的端部贯穿所述安装孔位于所述侧板的外侧。
  5. 根据权利要求4所述的柔性可控器械的拉线驱动装置,其中,所述多个安装孔均匀布置于所述侧板。
  6. 根据权利要求1-5任一项所述的柔性可控器械的拉线驱动装置,其中,所述驱动机构还包括:
    拉线连接件,所述拉线连接件安装于所述丝杠,所述拉线连接件用于连接所述柔性可控器械拉线。
  7. 根据权利要求6所述的柔性可控器械的拉线驱动装置,其中,所述驱动机构还包括:
    丝杠螺母连接件,所述丝杠螺母连接件安装在所述丝杠的丝杠螺母 上,所述丝杠螺母套设于所述丝杠,所述丝杠螺母连接件位于所述两个侧板之间;
    拉力传感器,所述拉力传感器安装于所述丝杠螺母连接件,所述拉力传感器与所述拉线连接件连接,所述拉力传感器用于测量所述拉线连接件连接的所述柔性可控器械拉线上的实时拉力。
  8. 根据权利要求7所述的柔性可控器械的拉线驱动装置,还包括:
    多个导向组件,所述导向组件包括至少两个导柱,所述导柱的两端分别安装于所述两个侧板,所述多个导向组件与所述多个驱动机构一一对应,所述丝杠螺母连接件设有通孔,所述导柱贯穿所述通孔。
  9. 根据权利要求1-5任一项所述的柔性可控器械的拉线驱动装置,其中,所述电机安装于所述两个侧板中的一个,所述两个侧板中的另一个用于安装柔性可控器械拉线安装座组件。
PCT/CN2022/125005 2022-06-30 2022-10-13 柔性可控器械的拉线驱动装置 WO2024000922A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210771507.1 2022-06-30
CN202210771507.1A CN115281585A (zh) 2022-06-30 2022-06-30 柔性可控器械的拉线驱动装置

Publications (1)

Publication Number Publication Date
WO2024000922A1 true WO2024000922A1 (zh) 2024-01-04

Family

ID=83821427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125005 WO2024000922A1 (zh) 2022-06-30 2022-10-13 柔性可控器械的拉线驱动装置

Country Status (2)

Country Link
CN (1) CN115281585A (zh)
WO (1) WO2024000922A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016223614A1 (de) * 2016-11-29 2018-05-30 Schaeffler Technologies AG & Co. KG Linearaktorik
CN110260122A (zh) * 2019-06-20 2019-09-20 歌尔股份有限公司 摄像头升降装置和移动终端
CN110537945A (zh) * 2019-09-20 2019-12-06 沈阳术驰医疗科技有限公司 微创手术器械
CN111012500A (zh) * 2018-10-09 2020-04-17 成都博恩思医学机器人有限公司 一种手术机器人
CN113017837A (zh) * 2021-03-16 2021-06-25 山东大学 一种同心管手术机构及眼科手术装置
CN113040918A (zh) * 2021-03-17 2021-06-29 山东大学 一种用于受限空间骨病变区清除的手术机器人
CN113303914A (zh) * 2021-06-23 2021-08-27 山东大学 一种经鼻腔进行颅底肿瘤切除的微创手术机器人
CN113712666A (zh) * 2021-08-03 2021-11-30 复旦大学 一种柔性连续体手术机器人
CN114098972A (zh) * 2020-08-28 2022-03-01 中国科学院沈阳自动化研究所 一种可用于微创手术机器人的手术器械
CN216098910U (zh) * 2021-08-11 2022-03-22 术锐(上海)科技有限公司 连续体器械及机器人

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020797A (ja) * 2005-07-14 2007-02-01 Olympus Medical Systems Corp 内視鏡
CN103112438B (zh) * 2013-01-28 2014-01-22 浙江万安科技股份有限公司 一种拉索式电子驻车传动机构
CN103157170B (zh) * 2013-02-25 2014-12-03 中国科学院自动化研究所 一种基于两点夹持的血管介入手术导管或导丝操纵装置
CN206673775U (zh) * 2017-04-26 2017-11-24 田明霞 一种平行轴驱动器
CN108186171B (zh) * 2017-12-28 2020-08-28 中国科学院深圳先进技术研究院 一种仿生手装置及机器人
CN209564207U (zh) * 2018-10-09 2019-11-01 成都博恩思医学机器人有限公司 一种手术机器人
CN216768861U (zh) * 2022-01-24 2022-06-17 深圳市万至达电机制造有限公司 可伸缩柔性屏的驱动装置及包含其的可伸缩柔性屏
CN114305540B (zh) * 2022-03-08 2022-06-07 极限人工智能有限公司 器械驱动模组、手术动力装置及分体式手术装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016223614A1 (de) * 2016-11-29 2018-05-30 Schaeffler Technologies AG & Co. KG Linearaktorik
CN111012500A (zh) * 2018-10-09 2020-04-17 成都博恩思医学机器人有限公司 一种手术机器人
CN110260122A (zh) * 2019-06-20 2019-09-20 歌尔股份有限公司 摄像头升降装置和移动终端
CN110537945A (zh) * 2019-09-20 2019-12-06 沈阳术驰医疗科技有限公司 微创手术器械
CN114098972A (zh) * 2020-08-28 2022-03-01 中国科学院沈阳自动化研究所 一种可用于微创手术机器人的手术器械
CN113017837A (zh) * 2021-03-16 2021-06-25 山东大学 一种同心管手术机构及眼科手术装置
CN113040918A (zh) * 2021-03-17 2021-06-29 山东大学 一种用于受限空间骨病变区清除的手术机器人
CN113303914A (zh) * 2021-06-23 2021-08-27 山东大学 一种经鼻腔进行颅底肿瘤切除的微创手术机器人
CN113712666A (zh) * 2021-08-03 2021-11-30 复旦大学 一种柔性连续体手术机器人
CN216098910U (zh) * 2021-08-11 2022-03-22 术锐(上海)科技有限公司 连续体器械及机器人

Also Published As

Publication number Publication date
CN115281585A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
US5181514A (en) Transducer positioning system
EP3103374B1 (en) Traction balance adjustment mechanism, manipulator, and manipulator system
CN103263242B (zh) 一种弯曲部控制机构及其内窥镜设备
WO2024000922A1 (zh) 柔性可控器械的拉线驱动装置
US20190231331A1 (en) Flexible surgical instrument and driving unit thereof
CN111588470A (zh) 用于腔内介入诊疗的全方向异形弯曲连续体柔性机械臂
WO2024050966A1 (zh) 细长型医疗器械驱动装置
CN201968655U (zh) 三维立体硬质电子阴道镜系统
JPH05329097A (ja) 内視鏡湾曲操作装置
CN105877972A (zh) 一种外骨骼康复机器臂旋转关节
WO2016017842A1 (ko) 초음파 트랜스듀서 및 그 작동 방법
CN210038341U (zh) 一种伸缩摇杆式医学影像观片支架
CN112401944A (zh) 一种微创手术装置
KR20110122481A (ko) 심장 진단용 초음파 트랜스듀서
CN116392255A (zh) 一种基于同心管连续体的耳鼻喉科专用多自由度柔性内窥镜机器人
CN108393922B (zh) 一种具有多自由度的机器人器械手指及用途
WO2023051285A1 (zh) 一种双自由度执行器、机械臂与机器人
JPH0482529A (ja) 内視鏡
CN212574898U (zh) 一种超声三维成像导管
CN113616248A (zh) 可弯折介入探头、超声成像装置
WO2022001185A1 (zh) 连续体器械及手术机器人
CN109008925B (zh) 一种实现三维成像的集成式电子喉镜
CN111113392B (zh) 面向肠道检查的自组装微型模块化机器人
CN114983573A (zh) 一种夹持间距可调的介入手术用连续递送机器人
CN210185691U (zh) 一种用于手术导航设备的电动转台以及手术导航设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949007

Country of ref document: EP

Kind code of ref document: A1