WO2024000902A1 - 风机的抗涡激振动的控制方法、装置和系统 - Google Patents

风机的抗涡激振动的控制方法、装置和系统 Download PDF

Info

Publication number
WO2024000902A1
WO2024000902A1 PCT/CN2022/123260 CN2022123260W WO2024000902A1 WO 2024000902 A1 WO2024000902 A1 WO 2024000902A1 CN 2022123260 W CN2022123260 W CN 2022123260W WO 2024000902 A1 WO2024000902 A1 WO 2024000902A1
Authority
WO
WIPO (PCT)
Prior art keywords
vortex
pitch
mode
wind turbine
blade
Prior art date
Application number
PCT/CN2022/123260
Other languages
English (en)
French (fr)
Inventor
肖飞
丁亚超
谢晋
Original Assignee
金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金风科技股份有限公司 filed Critical 金风科技股份有限公司
Priority to KR1020247003834A priority Critical patent/KR20240027819A/ko
Priority to EP22948990.1A priority patent/EP4353967A1/en
Priority to AU2022466589A priority patent/AU2022466589A1/en
Publication of WO2024000902A1 publication Critical patent/WO2024000902A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0298Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • F03D17/009Monitoring or testing of wind motors, e.g. diagnostics characterised by the purpose
    • F03D17/015Monitoring or testing of wind motors, e.g. diagnostics characterised by the purpose for monitoring vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/024Adjusting aerodynamic properties of the blades of individual blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0264Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for stopping; controlling in emergency situations
    • F03D7/0268Parking or storm protection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/334Vibration measurements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present application relates to the field of wind power, and more specifically, to a control method, device and system for resisting vortex-induced vibration of a wind turbine generator set.
  • wind turbine In order to suppress vortex-induced vibration, engineers usually need to enter the hub of the wind turbine (hereinafter also referred to as “wind turbine” or “unit”), manually change the three blades of the wind turbine to the anti-vortex position, and manually yaw to achieve anti-vortex Vortex induced vibration function.
  • the wind turbine cannot automatically resist vortex induction after the hoisting is completed.
  • the three blades of the wind turbine cannot automatically stop in the anti-vortex position when the power grid fails.
  • Additional generators need to be used to power the pitch system of the wind turbine, and then the three blades of the wind turbine are manually moved Change to anti-vortex position.
  • the pitch when a pitch failure occurs, the pitch may no longer be able to perform the corresponding pitch requirements. At this time, if anti-vortex is forced to be performed, other unknown risks may arise. Therefore, when the wind turbine has no pitch failure, the blades of the wind turbine It should stop to the anti-vortex position of, for example, 90°-90°-40°, and if a pitch failure occurs, it should stop to the normal stopping position of 90°-90°-90°.
  • the blade can absorb wind energy to generate a certain lift, which can cause the unit to rotate at 90°- Under the anti-vortex pitch angle of 90°-40°, if the unit speed exceeds a certain threshold, the aerodynamic imbalance of the impeller will increase the fatigue load of the unit. In these cases, the anti-vortex mode should be exited in time to ensure the safety of the wind turbine and reduce the fatigue load of the unit.
  • this application provides a control method, device and system for resisting vortex-induced vibration of a wind turbine.
  • a method for controlling anti-vortex induced vibration of a fan includes: determining whether the fan enters the anti-vortex mode; and in response to the fan entering the anti-vortex mode, turning on the anti-vortex function. And trigger a window period; within the window period, adjust the blades of the fan to the preset anti-vortex position, where the window period indicates the minimum time required to complete the anti-vortex function.
  • a controller for anti-vortex induced vibration of a wind turbine includes: an anti-vortex mode confirmation module configured to determine whether the wind turbine enters the anti-vortex mode; and an anti-vortex trigger.
  • the module is configured to respond to the wind turbine entering the anti-vortex mode, turning on the anti-vortex function and triggering the window period;
  • the anti-vortex execution module is configured to adjust the blades of the wind turbine to the preset anti-vortex position within the window period, Among them, the window period indicates the minimum time required to complete the anti-vortex function.
  • a control system for resisting vortex-induced vibration of a wind turbine includes: a pitch system configured to adjust the blade position of the wind turbine; and a main control system configured In order to control the operation of the pitch system, the pitch system is further configured to: determine whether the wind turbine enters the anti-vortex mode; in response to the wind turbine entering the anti-vortex mode, turn on the anti-vortex function and trigger the window period ; Adjust the blades of the fan to the preset anti-vortex position within the window period, where the window period indicates the minimum time required to complete the anti-vortex function.
  • a computer-readable storage medium storing a computer program.
  • the processor is prompted to perform the aforementioned anti-vortex-induced vibration of a wind turbine. control method.
  • an electronic device includes: a processor; and a memory storing a computer program.
  • the processor is prompted to execute the foregoing.
  • the above-mentioned control method of anti-vortex induced vibration of the fan is provided.
  • the wind turbine can automatically resist under various conditions (for example, operation phase, maintenance phase, power grid failure, etc.) vortex, reducing human workload and reducing economic losses.
  • various conditions for example, operation phase, maintenance phase, power grid failure, etc.
  • the wind turbine can also automatically exit the anti-vortex state to prevent the wind turbine from falling down and ensure the safety of the wind turbine. This can reduce the fatigue load of the wind turbine and reduce economic losses.
  • FIG. 1 is a schematic structural diagram illustrating a control system 100 for resisting vortex-induced vibration of a wind turbine according to an exemplary embodiment of the present application.
  • FIG. 2 is a flowchart illustrating a control method for resisting vortex-induced vibration of a wind turbine according to an exemplary embodiment of the present application.
  • FIG. 3 shows an example flowchart of the anti-vortex process of the main control system 110 according to an exemplary embodiment of the present invention.
  • FIG. 4 shows an example flowchart of the vortex de-vortexing process of the main control system 110 according to another exemplary embodiment of the present invention.
  • FIG. 5 shows an example flowchart of an anti-vortex process of the pitch system 120 according to an exemplary embodiment of the present invention.
  • FIG. 6 shows an example flowchart of an anti-vortex process of the pitch system 120 according to another exemplary embodiment of the present invention.
  • FIG. 7 shows an example flowchart of a vortex de-vortexing process of the pitch system 120 according to another exemplary embodiment of the present invention.
  • Figure 8 shows a block diagram of a control device for anti-vortex induced vibration of a wind turbine according to an exemplary embodiment of the present invention.
  • Normal shutdown pitch angle When the wind turbine is in shutdown state, the shutdown angles of the three blades are all around 90°, and 90° is the normal shutdown pitch angle.
  • Anti-vortex pitch angle When the wind turbine is in the stopped state, the stopping angle of the three blades is 90°-90°-X°, and X° is the anti-vortex pitch angle (in the following, 40° will be used as an example to explain. However, It should be understood that different wind turbine models can be set to different anti-vortex pitch angles, and a certain deviation between the actual blade angle and the required angle is allowed, for example, there may be a deviation of ⁇ 0.5° or ⁇ 1°).
  • Stop anti-vortex mode After the wind turbine enters the shutdown state, the three blades first retract to the normal shutdown pitch angle, and then the corresponding anti-vortex blades automatically open to the anti-vortex pitch angle (for example, 40°). This is Shutdown anti-vortex mode.
  • Planned power outage anti-eddy mode When the power grid is about to lose power, the wind turbine is stopped in advance and prohibited from starting. This ensures that after the power grid is cut off, the wind turbine is still in the anti-eddy state, that is, the pitch angle of the wind turbine is maintained at 90°. -90°-40°, this is the planned power outage anti-eddy mode. In addition, in planned power outage anti-vortex mode, the wind turbine should be aligned with the predicted main wind direction.
  • Unplanned power outage anti-vortex mode When the wind turbine is in the process of starting up, generating power or shutting down, and the blade pitch angle is less than 40°, the wind turbine will lose power due to grid failure or wind turbine failure. At this time, the wind turbine will enter the unplanned state. In the power-off anti-vortex mode, during the blade emergency stop and retraction process, the anti-vortex blades stop at 40° and the non-anti-vortex blades stop at 90°. In addition, if the pitch angle of the anti-vortex blades is greater than 40° during an unplanned power outage, the blades cannot open to a small angle due to the protection function of the wind turbine safety chain. Therefore, the anti-vortex blades cannot reach 40°, and the anti-vortex function cannot be realized. . In an exemplary embodiment of the present disclosure, the unplanned power outage anti-vortex function will be implemented independently by the pitch system of the wind turbine.
  • Forced anti-vortex mode When the wind turbine is in maintenance status, or the power grid is out of power, and the wind turbine is powered by an external power supply, the wind turbine is controlled to enter the anti-vortex state by manually sending commands. This is the forced anti-vortex mode. In forced anti-vortex mode, the wind turbine should be aligned with the predicted main wind direction.
  • pitch systems usually include normal pressure pitch systems and low pressure pitch systems.
  • the normal pressure pitch system may include, for example, the "Dan control platform", the “Huichuan platform”, etc.
  • the low pressure pitch system may include, for example, the "low pressure platform”.
  • Normal pitch mode There is no fault in the pitch system, and the blade movement is controlled by the wind turbine main control system.
  • Pitch fault mode (or emergency stop mode): There is a fault in the pitch system.
  • the blade movement is controlled by the pitch controller, and the blades are retracted to the normal stopping pitch angle at a preset speed (for example, a speed of 2°/s).
  • Pitch anti-vortex mode The mode in which the pitch system performs the anti-vortex function.
  • Pitch drive enable When the pitch drive enable is cut off (for example, when the pitch drive enable signal is a preset voltage (for example, 0V)), the pitch drive will realize motor braking in a very short time. Hold the brake after stopping. The motor cannot rotate during any operation at this time.
  • a preset voltage for example, 0V
  • Pitch drive virtual limit When the pitch drive enable is cut off by the pitch controller, the pitch controller will set a virtual limit value (0° ⁇ 40°) for the pitch drive. At this time, even if the pitch driver is enabled, the motor can only move between 0° and 40°. This ensures that after the wind turbine is powered on again, the pitch driver cannot operate until communication between the pitch controller and the pitch driver is established. It will automatically retract the paddle in the 90° direction.
  • the virtual limit can only be used by the Dan control platform. The reason is that when the Dan control platform is powered on again, the pitch driver completes initialization before the pitch controller. Before the communication between the two is established, the pitch controller cannot output the enable signal to cut off the pitch driver.
  • the pitch driver When the safety chain is disconnected and the 89° switch is not triggered, the pitch driver will automatically perform the pitch retraction action, so the pitch driver needs to be turned on.
  • the virtual limit function of the propeller driver ensures that the current position of the pitch driver can remain unchanged even if the safety chain is disconnected when anti-vortex is completed.
  • the above virtual limit function can also be applied to other pitch platforms that have similar problems to the Dan control platform.
  • Planned power outage window period the time required for the process of the anti-vortex blades changing pitch from 90° to 40° during shutdown and the process of changing pitch from 40° to 90° during startup.
  • the calculation formula is:
  • the compensation time is the time for the pitch controller to cut off the pitch driver enable and write the virtual limit. It is the time required for the anti-vortex blade to pitch from 90° to 40° and from 40° to 90°. 0 means that the anti-vortex blade is at the target position and no angle adjustment is required. 120s is the maximum time of the window period.
  • the compensation time of the Dan control platform can be set higher than that of the Inovance platform and the low-voltage platform. For example, the compensation time of the Dan control platform can be 30s, and the compensation time of the Inovance platform can be 30s.
  • the compensation time of the platform and low-voltage platform can be 10s.
  • the length setting of the planned power outage window period can also be similarly applied to other situations in which the angle of the anti-vortex blades is adjusted from the normal shutdown pitch angle to the anti-vortex pitch angle when the wind turbine is stopped (for example, forced anti-vortex blade Eddy mode, shutdown anti-vortex mode).
  • Unplanned power outage window period When the wind turbine loses power unplanned, it needs to complete the anti-vortex attitude of 90°-90°-40° within the specified time. The time spent in this process is the unplanned power outage window period.
  • the calculation formula is:
  • the fan completes the anti-vortex attitude of 90°-90°-40°, which requires at least seconds to adjust to this posture
  • is the preset deviation time
  • the window period is at least The larger value among them, the maximum is 120s. For example, assuming that the blades are at 0° when the power is off, the propeller retraction speed is 1°/s, ⁇ is 5s, the compensation time of the Dan control platform is 30s, and the compensation time of the Inovance platform and the low-voltage platform is 10s, then the minimum window period is 95s.
  • Propeller stuck When the wind turbine triggers an emergency stop and retracts the propellers, before the blades reach a safe position, if the pitch system determines that the blade position change is less than, for example, 1° within a preset time (for example, 5 seconds), it will be determined that the blades are stuck.
  • the stuck propeller logic applies to any blade, and the anti-vortex function cannot be performed after the propeller is stuck. It should be understood that the anti-vortex blades stop at the anti-vortex position and are not stuck.
  • FIG. 1 is a schematic structural diagram illustrating a control system 100 for resisting vortex-induced vibration of a wind turbine according to an exemplary embodiment of the present application.
  • the control system 100 for anti-vortex induced vibration can include a main control system 110 and a pitch system 120.
  • the main control system 110 can control various operations of the pitch system 120, and the pitch system 110 can adjust the wind turbine blades 200.
  • the pitch system 120 may include a pitch controller 121, a relay 122, a pitch driver 123, a pitch motor 124, a pitch reducer 125, and a pitch bearing 126.
  • the main control system 110 can set the pitch system anti-vortex control word (which can be, for example, a 2-second pulse signal.
  • a control word of 0 indicates that the anti-vortex function is turned on, a control word of 1 indicates that the pitch driver is turned off, and a control word of 2 indicates that the anti-vortex function is enabled.
  • Vortex function exit given anti-vortex position, anti-vortex speed, pitch enable and other information are sent to the pitch controller 121 in the pitch system 120 for various pitch controls.
  • the pitch controller 121 can feed back the anti-vortex feedback word of the pitch system to the main control system 110 (it can be effective at a given level, for example, at a high level.
  • a feedback word of 0 indicates that the anti-vortex mode is turned on and a feedback word of 1 indicates that the anti-vortex mode is turned on.
  • Anti-vortex function completion feedback for example, pitch drive enable has been switched, virtual limit has been turned on
  • pitch system fault word can be valid at a given level, such as high level, including for indication The fault word of pitch anti-vortex timeout and the control word indicating large pitch anti-vortex position deviation), the actual blade pitch position and other information.
  • the pitch controller 121 can control whether to enable the pitch driver by controlling the closing of the relay 122 .
  • the pitch driver 123 is not enabled and stops working, and the pitch motor 124 stops rotating, so that the blade 200 can stop at the anti-vortex position.
  • the pitch controller 121 controls the pitch driver 123 by turning on the pitch speed and turning on the virtual limit function of the pitch driver 123, so that the pitch driver 123 drives the pitch motor 124 to a designated position.
  • the pitch driver 123 can feed back the three-blade pitch position and anti-vortex feedback signal to the pitch controller 121, and feedback to the pitch controller 121 whether the blades have reached the designated position and whether the anti-vortex is completed.
  • the pitch driver 123 outputs voltage signals, current signals, brake signals and other control signals to the pitch motor 124 to control the pitch motor 124.
  • the pitch motor 124 drives the pitch reducer 125, and the pitch reducer 125 passes through the gear.
  • the belt drives the pitch bearing 126, thereby controlling the blade 200 to rotate to a designated position.
  • FIG. 2 is a flowchart illustrating a control method for resisting vortex-induced vibration of a wind turbine according to an exemplary embodiment of the present application.
  • the method shown in Figure 2 can be implemented in the pitch system 120 of the wind turbine, which will be explained in detail below.
  • step S210 it may be determined whether the fan enters the anti-vortex mode.
  • the anti-vortex mode may include a shutdown anti-vortex mode, a planned power outage anti-vortex mode, an unplanned power outage anti-vortex mode, and a forced anti-vortex mode.
  • a shutdown anti-vortex mode may include a shutdown anti-vortex mode, a planned power outage anti-vortex mode, an unplanned power outage anti-vortex mode, and a forced anti-vortex mode.
  • the pitch system 120 may determine whether the wind turbine enters the anti-vortex mode by determining whether an anti-vortex start signal is received from the main control system 110, or by determining whether the anti-vortex mode for unplanned power outage is met.
  • the first preset condition of the mode automatically determines whether the fan enters the anti-vortex mode.
  • the pitch system 120 may determine that the wind turbine enters the anti-vortex mode.
  • the main control system 110 determines that the second preset condition for the shutdown anti-vortex mode, the third preset condition for the planned power-off anti-vortex mode, or the fourth preset condition for the forced anti-vortex mode is met.
  • the main control system 110 can send an anti-vortex opening signal to the pitch system 120, so that the pitch system can take the next action.
  • the pitch system 120 may also determine whether to enter the anti-vortex mode by itself based on whether the first preset condition for the unplanned power outage anti-vortex mode is met.
  • the first preset condition may include: the wind turbine has an unplanned power outage and the pitch angle of the blades of the wind turbine when the power is outage is smaller than the anti-vortex pitch angle.
  • the second preset condition may include: the fan is in a shutdown state and the shutdown anti-vortex function is turned on.
  • the third preset condition may include: the wind turbine is in a shutdown state and the planned power outage anti-vortex is turned on.
  • the fourth preset condition may include: the fan is in shutdown or maintenance status and the forced anti-vortex function is turned on.
  • step S220 in response to the fan entering the anti-vortex mode, the anti-vortex function may be turned on and the window period may be triggered.
  • the window period may indicate the minimum time required for the pitch system 120 to complete the anti-vortex function, that is, to adjust the three blades of the wind turbine to 90 °-90°-40°, the time required to cut off the pitch drive enable of the pitch drive and (in the case of Dan control platform) write the virtual limit.
  • the length of the window period may depend on the preset pitch rate and the compensation time preset for the pitch drive (i.e., consider switching off the pitch drive enable of the pitch drive and writing the virtual limit preset compensation time), and in the case of unplanned power outage anti-vortex mode, also depends on the angle of the wind turbine blades at the time of power outage.
  • triggering the window period means starting timing until the end of the window period.
  • step S230 the blades of the wind turbine can be adjusted to the preset anti-vortex position within the window period.
  • the pitch system 120 may first shield the anti-vortex blade position comparison fault function, and then adjust the pitch angle of the anti-vortex blade at a preset pitch rate.
  • the anti-vortex blade position comparison fault function is used to determine whether the blades are at the normal shutdown pitch angle. If the blades are not at the normal shutdown pitch angle, it will be determined that the wind turbine is faulty.
  • which blade among the three blades of the wind turbine is selected as the anti-vortex blade may be predetermined.
  • the main control system 110 may enter the anti-vortex mode when the wind turbine enters the anti-vortex mode. The information is sent to the pitch system 120, and the fixed blade (for example, blade #1) can always be selected as the anti-vortex blade for adjustment.
  • the pitch system 120 may detect whether the pitch angle of the anti-vortex blades is adjusted to a preset anti-vortex pitch angle, and if not, the adjustment may continue. If the pitch angle of the anti-vortex blades has been adjusted to the preset anti-vortex pitch angle, and other blades except the anti-vortex blades are at normal shutdown pitch angles, it can be determined that the blades of the wind turbine have reached the preset anti-vortex pitch angle. vortex position.
  • the preset anti-vortex position can be the 90°-90°-40° position illustrated above, that is, the preset anti-vortex pitch angle is 40°, and the normal parking pitch angle can be It's 90°.
  • adjusting the anti-vortex blades to the preset anti-vortex pitch angle may mean adjusting the anti-vortex blades to about 40°, but a certain deviation is allowed.
  • the wind turbine is in a shutdown state, and the three blades are all in the shutdown propeller position.
  • the pitch angle for example, 90°
  • the pitch angle of the anti-vortex blade can only be adjusted to the anti-vortex pitch angle (for example, 40°), that is, the anti-vortex blade is controlled to reach the preset anti-vortex position.
  • the anti-vortex mode is the unplanned power outage anti-vortex mode, it means that the wind turbine may have been running before the power was cut off, and the position of the three blades may be at an operating angle (for example, 0°).
  • the pitch angle of the blades must be adjusted to the anti-vortex pitch angle (for example, 40°), and the pitch angle of the non-anti-vortex blades must be adjusted to the normal shutdown pitch angle (for example, 90°) so that the blades of the wind turbine can reach the preset value.
  • Anti-vortex position is the unplanned power outage anti-vortex mode
  • the pitch system 120 may enable the cut-off signal based on the pitch driver sent by the main control system 110, Cut off the pitch driver enable signal of the anti-vortex blades, that is, cut off the pitch driver enable signal of the pitch driver 113 for driving the anti-vortex blades to maintain the pitch angle of the anti-vortex blades as the anti-vortex pitch angle. It should be understood that in the exemplary embodiment of the present invention, when the pitch system 120 adjusts the angle of the blades, the pitch system 120 can continuously send information such as the blade angle to the main control system 110, so that the main control system 110 can adjust the blade angle in real time.
  • This information generates pitch system control signals.
  • the main control system 110 can determine whether the anti-vortex blades have reached the anti-vortex pitch angle through the blade angle information sent by the pitch system 120, and send a drive cut-off enable signal to the pitch system 120 when the anti-vortex pitch angle is reached. .
  • the pitch drive enable signal is cut off and (in the case of the Dan control platform) the virtual limit is written, it can be determined that the wind turbine has completed the anti-vortex operation.
  • the pitch system 120 may feed back the anti-vortex completion signal to the main control system 110 .
  • the anti-vortex induced vibration control method can also automatically exit the anti-vortex mode in some cases.
  • the pitch system 120 may exit the anti-vortex mode when the wind turbine reaches a preset exit condition.
  • exit conditions for different anti-vortex modes are listed below.
  • the unit does not enter the shutdown anti-vortex mode after shutdown. If it has entered the shutdown anti-vortex mode, it needs to exit the anti-vortex mode:
  • the unit triggers NA overspeed
  • a power grid fault is triggered (that is, before the power grid is powered off, if the unit does not complete anti-vortex, the unit will retract the propeller to the normal shutdown pitch angle);
  • the unit speed exceeds the anti-vortex speed threshold (to prevent the unit from rotating the impeller in anti-vortex mode, resulting in excessive fatigue load);
  • the unit meets the startup conditions (that is, before starting, the unit must exit the shutdown anti-vortex mode, retract the propellers to the normal shutdown pitch angle, and then turn on the propellers according to the startup process);
  • the unit is not in shutdown state (that is, in shutdown anti-vortex mode, if the operation and maintenance personnel manually adjust the unit to maintenance mode, the unit will exit the shutdown anti-vortex mode and retract the propeller to the normal shutdown pitch angle).
  • the unit cannot enter the planned power-off anti-vortex mode. If it has entered the planned power-off anti-vortex mode, it needs to exit the anti-vortex mode:
  • the unit triggers NA overspeed
  • a power grid fault is triggered (that is, before the power grid is powered off, if the unit does not complete anti-vortex, the unit will retract the propeller to the normal shutdown pitch angle);
  • the unit speed exceeds the anti-vortex speed threshold (to prevent the unit from rotating the impeller in anti-vortex mode, resulting in excessive fatigue load);
  • the unit is not in shutdown state (that is, in shutdown anti-vortex mode, if the operation and maintenance personnel manually adjust the unit to maintenance mode, the unit will exit the shutdown anti-vortex mode and retract the propeller to the normal shutdown pitch angle);
  • the unit cannot enter the forced anti-vortex mode. If it has entered the forced anti-vortex mode, it needs to exit the anti-vortex mode:
  • the unit speed exceeds the anti-vortex speed threshold (to prevent the unit from rotating the impeller in anti-vortex mode, resulting in excessive fatigue load);
  • Impeller lock that is, after this action is triggered, it is determined that maintenance personnel may enter the wheel hub. At this time, the blades need to be retracted to the normal shutdown pitch angle);
  • exit conditions of the unplanned power outage anti-vortex mode can be the same as the exit conditions of each of the aforementioned anti-vortex modes, and will not be described again here.
  • the main control system 110 when the main control system 110 detects that one of the above exit conditions is met, the main control system 110 may send an exit anti-vortex signal to the pitch system 120 .
  • the pitch system 120 receives the anti-vortex exit signal from the main control system 110, it can perform the anti-vortex operation, trigger the window period (the window period triggered at this time is the same length as the window period used when entering the anti-vortex mode) and restore the anti-vortex mode.
  • the pitch drive enable signal of the blade is then adjusted to the stop position during the window period, and the anti-vortex blade position comparison fault function is turned on after the window period is over, so that the pitch system 120 can perform blade position comparison normally. Function.
  • the pitch system 120 may resume the pitch drive of the anti-vortex blades. Enable the signal and turn on the anti-vortex blade position comparison fault function, so that the blades automatically return to the normal shutdown pitch angle.
  • FIG. 3 shows an example flowchart of the anti-vortex process of the main control system 110 according to an exemplary embodiment of the present invention.
  • the main control system 110 can determine whether the wind turbine enters the anti-vortex mode.
  • the main control system 110 can send an anti-vortex start signal to the pitch system 120. (e.g. 2s pulse). Thereafter, in step 303 , the main control system 110 may determine whether an anti-vortex mode opening feedback signal is received from the pitch system 120 .
  • the main control system 110 can shield the anti-vortex blade position comparison fault function, detect the blade pitch angle of the anti-vortex blade, and determine whether it is greater than the anti-vortex pitch angle.
  • the main control system 110 may determine that the pitch angle of the anti-vortex blade needs to be adjusted, and control the pitch system 120 to a preset pitch rate ( For example, 2deg/s) adjust the anti-vortex blade (step 305), and then continuously detect whether the blade pitch angle of the anti-vortex blade is greater than the anti-vortex pitch angle (step 306), and when it is greater than the anti-vortex pitch angle (step 306- No), return to the previous step to continue adjusting.
  • a preset pitch rate For example, 2deg/s
  • the main control system 110 can determine whether the blade pitch angle of the anti-vortex blade is greater than (anti-vortex blade Pitch angle -2°).
  • is only an example, and can be adjusted according to actual conditions during specific implementation.
  • step 307 - No When the blade pitch angle of the anti-vortex blade is greater than (anti-vortex pitch angle - 2°) (step 307 - No), it indicates that the anti-vortex angle is normal, so the pitch can be stopped and the driver cut-off enable is sent to the pitch system 120 signal (step 308) to cut off the pitch driver enable of the pitch system 120, and then determine whether the anti-vortex function completion feedback sent by the pitch system 120 is received (step 310). If feedback is received, it indicates that the pitch system 120 side Anti-vortex has been completed.
  • FIG. 4 shows an example flowchart of the vortex de-vortexing process of the main control system 110 according to an exemplary embodiment of the present invention.
  • the main control system 110 may determine whether the wind turbine exits the anti-vortex mode (for example, exits the anti-vortex mode based on whether one of the preset exit conditions is met). When it is determined that the wind turbine exits the anti-vortex mode, in step 402, the main control system 110 may send an anti-vortex function exit signal (for example, a 2s pulse) to the pitch system 120. Thereafter, in step 403, the main control system 110 may determine whether the anti-vortex mode opening feedback received from the pitch system 120 is TRUE. If the anti-vortex mode opening feedback is TRUE (403-Yes), continue to wait.
  • the main control system 110 may determine whether the wind turbine exits the anti-vortex mode (for example, exits the anti-vortex mode based on whether one of the preset exit conditions is met).
  • the main control system 110 may send an anti-vortex function exit signal (for example, a 2s pulse) to the pitch system 120. Thereafter, in step 403, the main control system 110 may determine whether the anti-vortex mode opening feedback
  • step 404 the main control system 110 detects the blade pitch angle of the anti-vortex blade and determines whether it is smaller than the normal shutdown pitch angle.
  • the main control system 110 may determine that the pitch angle of the anti-vortex blade needs to be adjusted, and in step 405, control the pitch system 120 to preset The pitch rate (for example, 2 degrees/s) adjusts the anti-vortex blades in the direction of the normal parking pitch angle, and then continuously detects whether the blade pitch angle of the anti-vortex blades is greater than or equal to (normal parking pitch angle - 2°) in step 406 and lasts for a period of time (for example, 5 seconds).
  • the pitch rate for example, 2 degrees/s
  • step 406 - yes When the blade pitch angle of the anti-vortex blade is greater than or equal to (normal shutdown pitch angle - 2°) and continues for a period of time (step 406 - yes), the pitch can be stopped and the anti-vortex blade position comparison fault function can be turned on (step 407 ).
  • the main control system 110 may perform the comparison in step 406 and perform subsequent operations.
  • FIG. 5 shows an example flowchart of an anti-vortex process of the pitch system 120 according to an exemplary embodiment of the present invention.
  • the flow chart in Figure 5 is only for shutdown anti-vortex mode, planned power-off anti-vortex mode and forced anti-vortex mode.
  • the pitch system 120 may receive the anti-vortex function start signal sent by the main control system 110, then enter the anti-vortex mode in step 502, and trigger the window period in step 503. After that, in step 504, it can be determined whether it is still within the window period. If so (step 504-yes), then in step 505, anti-vortex mode opening feedback is sent to the main control system 110, and the feedback enters the anti-vortex mode, and in step 506 shields the anti-vortex blade position comparison fault function. During this process, the pitch system 120 continuously sends the angle of the anti-vortex blade to the main control system 110 .
  • the pitch system 120 may adjust the position of the anti-vortex blades of the wind turbine and determine whether the three blades of the wind turbine have reached the preset anti-vortex position. If so (step 507-yes), then in step 508, the driver cut-off enable signal is received from the main control system 110, and in step 509, the anti-vortex blade is selected (the main control system 110 sends the determined specific anti-vortex blade information to the pitch This step is performed under the premise of system 120 (if the anti-vortex blade is a fixed blade, there is no need to perform this step), and the pitch drive enable signal of the anti-vortex blade is cut off in step 510 (at this time, the shutdown of the blade can be further determined.
  • the position is the same as the preset anti-vortex position (there may be a certain error) before cutting off), and then set the driver virtual limit of the anti-vortex blade in step 511 (only executed in the case of Dan control platform, other platforms can be omitted),
  • the pitch driver enable signal is written into the power-off retention area, and in step 513, feedback on the completion of the anti-vortex function is sent to the main control system 110, indicating that the anti-vortex is completed.
  • the pitch system 120 may further determine whether the blade position deviates from the preset anti-vortex position after the anti-vortex function is completed. If there is no deviation (step 514-No), it indicates that the anti-vortex is successful and the process ends.
  • step 515 it is determined that a pitch trigger fault "the blade deviates from the anti-vortex position after the anti-vortex is completed" occurs. At this time, you can enter the anti-vortex process, exit the anti-vortex mode in step 518, clear the driver virtual limit of the anti-vortex blade in step 519 (only executed in the case of Dan control platform, other platforms can be omitted), and restore the variable speed in step 520.
  • the propeller drive enable signal is turned on (i.e., shielded) in step 521.
  • the anti-vortex blade position comparison fault function is turned on. At this time, since the anti-vortex blade position comparison fault function has been turned on, the blades of the wind turbine can be controlled under the control of this function. Automatically adjust to the parking pitch angle.
  • step 504 determines whether the anti-vortex is completed by itself in step 516. If it is completed (step 516-yes), the current process ends. If it is not completed (step 516 - No), it is determined in step 517 that the pitch triggering fault "anti-vortex timeout" occurs, and the process proceeds to step 518 to perform the subsequent vortex removal process.
  • FIG. 6 shows an example flowchart of an anti-vortex process of the atmospheric pitch system 120 according to an exemplary embodiment of the present invention.
  • the flow chart in Figure 6 is only for the unplanned power outage anti-eddy mode.
  • the pitch system 120 may determine whether a resolver failure or a stuck propeller occurs. If a resolver failure or propeller jamming occurs (step 601 - Yes), the current process cannot be performed because the anti-vortex cannot be performed. If no resolver failure or propeller jamming occurs (step 601 - No), then it can be determined in step 602 Whether the pitch angle of the anti-vortex blade is smaller than the anti-vortex pitch angle.
  • step 602 - No If the pitch angle of the anti-vortex blade is greater than the anti-vortex pitch angle (step 602 - No), as mentioned above, in this case, due to the unit safety chain protection function, the anti-vortex blade cannot be opened to a small angle. paddle, thus exiting the current process. If the pitch angle of the anti-vortex blade is less than the anti-vortex pitch angle (step 602 - Yes), then in step 603, the pitch system 120 may enter the anti-vortex mode, and in step 604, the window period is triggered. After that, in step 605, it can be determined whether it is still within the window period.
  • step 606 anti-vortex mode opening feedback is sent to the main control system 110, and the feedback enters the anti-vortex mode. And in step 607, select the anti-vortex blade and shield the anti-vortex blade position comparison fault function.
  • the pitch system 120 may adjust the position of the anti-vortex blades of the wind turbine and determine whether the pitch angle of the anti-vortex blades reaches the anti-vortex pitch angle. If so (step 608-yes), then in step 609, the pitch system 120 cuts off the pitch driver enable signal (to ensure that the blades can stop within the range of, for example, (40 ⁇ 1)°, the cutoff can be started at 39° the action of the enable signal).
  • step 610 it is determined whether the pitch angle of the non-anti-vortex blades reaches the shutdown pitch angle. If it does not reach the shutdown pitch angle (step 610-No), then return to step 610 to continue adjusting the pitch angle of the non-anti-vortex blades. If the pitch angle of the non-anti-vortex blade reaches the shutdown pitch angle (step 610 - yes), then the anti-vortex function completion feedback can be sent to the main control system 110 in step 611, feedback that the anti-vortex function is completed, and the pitch will be changed in step 612.
  • the driver enable signal is written into the power-down retention area (the order of steps 611 and 612 can also be interchanged). Steps 613 to 619 are similar to steps 515 to 521 of FIG. 5 and therefore will not be explained in detail.
  • FIG. 7 shows an example flowchart of a vortex de-vortexing process of the atmospheric pitch system 120 according to an exemplary embodiment of the present invention.
  • this process is initiated and controlled by the main control system 110.
  • the main control system 110 may send an exit anti-vortex signal to the pitch system 120 to cause the pitch system 120 to exit the anti-vortex mode.
  • the main control system 110 may send an exit anti-vortex signal.
  • the pitch system 120 may receive the exit anti-vortex signal sent by the main control system 110 , then exit the anti-vortex mode in step 702 and trigger the window period in step 703 , and then clear the anti-vortex signal in step 704
  • the driver of the blade is virtual limited (this step is only performed on the Dan control platform and may not be performed on other platforms).
  • step 705 the pitch driver enable signal of the anti-vortex blade is restored, and then in step 706, the pitch driver enable signal of the anti-vortex blade is restored according to the main control system 110 Control the blades from the anti-vortex position (90°-90°-40°) to the normal stop position (90°-90°-90°).
  • step 707 it can be determined in step 707 whether the window period has ended. If it has not ended (step 706-no), then continue to wait. If the window period has ended (step 707-yes), then in step 708, the pitch system 120 can cancel the shielding.
  • the blade position comparison fault function ie, the blade position comparison fault function is activated so that the blade can return to normal operation.
  • the anti-vortex process and vortex retreat process of the normal pressure pitch system are described above with reference to Figures 5 to 7. However, it should be understood that since the low-pressure pitch system does not use a Dan control platform, the anti-vortex process and retreat process of the low-pressure pitch system are The vortex process does not include steps related to virtual limiting of the drive. In addition, in the low-voltage pitch system, in the unplanned power outage anti-vortex mode, if there is a communication failure between the main control and the pitch after the box-type transformer is powered off, the anti-vortex module will not be entered, and the other steps are the same as the normal pressure pitch. The systems are similar and will not be described in detail here for the sake of brevity.
  • FIG. 8 shows a block diagram of a control device for anti-vortex induced vibration of a wind turbine according to an exemplary embodiment of the present invention.
  • an anti-vortex induced vibration control device 800 may include an anti-vortex mode confirmation module 810 , an anti-vortex trigger module 820 , and an anti-vortex execution module 830 .
  • the anti-vortex mode confirmation module 810 may be configured to determine whether the wind turbine enters the anti-vortex mode.
  • the anti-vortex mode may include a shutdown anti-vortex mode, a planned power-off anti-vortex mode, an unplanned power-off anti-vortex mode, and a forced anti-vortex mode.
  • the anti-vortex mode confirmation module 810 may determine whether an anti-vortex start signal is received from the main control system of the wind turbine or whether the first preset condition for the unplanned power outage anti-vortex mode is met, and in response to receiving the anti-vortex start signal from the main control system When the signal is turned on or the first preset condition for the unplanned power outage anti-vortex mode is met, it is determined that the wind turbine enters the anti-vortex mode.
  • the anti-vortex opening signal is generated when the second preset condition for the shutdown anti-vortex mode, the third preset condition for the planned power-off anti-vortex mode, or the fourth preset condition for the forced anti-vortex mode is met. Sent by the main control system.
  • the first preset condition may include: the wind turbine has an unplanned power outage and the pitch angle of the blades of the wind turbine when the power is outage is smaller than the anti-vortex pitch angle.
  • the second preset condition may include: the fan is in a shutdown state and the shutdown anti-vortex function is turned on.
  • the third preset condition may include: the wind turbine is in a shutdown state and the planned power outage anti-vortex is turned on.
  • the fourth preset condition may include that the fan is in a shutdown or maintenance state and the forced anti-vortex function is turned on.
  • the length of the window period is determined based on a preset pitch rate and a preset compensation time for the pitch drive of the wind turbine.
  • the anti-vortex execution module 830 when adjusting the blades of the wind turbine to the preset anti-vortex position, can shield the anti-vortex blade position comparison fault function and adjust the anti-vortex at the preset pitch rate.
  • the pitch angle of the blade determine whether the pitch angle of the anti-vortex blade is adjusted to the preset anti-vortex pitch angle, and in response to the pitch angle of the anti-vortex blade being adjusted to the preset anti-vortex pitch angle and remove the anti-vortex blade Blades other than the blades are at normal shutdown pitch angles, which determines that the blades of the wind turbine have reached the preset anti-vortex position.
  • the anti-vortex execution module 830 may also enable the pitch driver based on the main control system of the wind turbine. Cut off the signal, cut off the pitch driver enable signal of the anti-vortex blades to maintain the pitch angle of the anti-vortex blades.
  • the anti-vortex induced vibration controller 800 may further include a vortex escape execution module (not shown) for exiting the anti-vortex mode in response to the wind turbine reaching a preset exit condition.
  • the anti-vortex execution module when an anti-vortex exit signal is received from the main control system of the wind turbine, the anti-vortex execution module (not shown) may restore the pitch drive enable signal of the anti-vortex blade and trigger the window period , and adjust the fan blades to the stop position during the window period, and turn on the anti-vortex blade position comparison fault function.
  • the exit anti-eddy signal is sent by the main control system when it detects the exit condition.
  • the vortex escape execution module (not shown) can restore the pitch driver enable signal of the anti-vortex blade and enable the anti-vortex blade position comparison fault function.
  • the control method and system for anti-vortex induced vibration of a wind turbine can be applied to various application scenarios such as before the wind turbine is powered on, when the wind turbine is in operation, when the power grid is powered off, for unit maintenance, and when exiting anti-vortex vibration.
  • Tables 1 to 5 below illustrate some specific examples in these application scenarios, corresponding working conditions, and shutdown angles after implementing the anti-vortex-induced vibration control scheme of the present disclosure (ie, after implementing the anti-vortex-induced vibration control scheme of the present disclosure) the angle of the blade) and the execution plan.
  • the wind turbine can automatically anti-vortex under various conditions (for example, operation phase, maintenance phase, power grid failure anti-vortex), Reduces human workload and reduces economic losses.
  • the wind turbine can also automatically exit the anti-vortex to prevent the wind turbine from falling down and ensure the safety of the wind turbine. This can reduce the fatigue load of the wind turbine and reduce economic losses.
  • FIGS. 1 to 8 The anti-vortex induced vibration control method and system for a wind turbine according to exemplary embodiments of the present disclosure have been described above with reference to FIGS. 1 to 8 .
  • the devices and systems illustrated in the figures may be configured individually as software, hardware, firmware, or any combination of the foregoing to perform specific functions.
  • these systems and devices may correspond to dedicated integrated circuits, pure software codes, or modules that combine software and hardware.
  • one or more functions implemented by these systems or devices may also be uniformly performed by components in a physical entity device (eg, processor, client or server, etc.).
  • a computer-readable storage medium storing instructions may be provided, wherein the instructions, when executed by at least one computing device, cause the at least one computing device to perform the following steps: determining Whether the fan enters the anti-vortex mode; in response to the fan entering the anti-vortex mode, the anti-vortex function is turned on and the window period is triggered; during the window period, the blades of the fan are adjusted to the preset anti-vortex position, where the window Period indicates the minimum time required to complete the anti-vortex function.
  • the instructions stored in the above computer-readable storage medium can be run in an environment deployed in computer equipment such as a client, a host, a proxy device, a server, etc. It should be noted that the instructions can also be used to perform additional steps in addition to the above steps or More specific processing is performed when performing the above steps. The contents of these additional steps and further processing have been mentioned in the description of the relevant systems and methods with reference to Figures 1 to 8, so they will not be described again here to avoid repetition. .
  • control system and method for resisting vortex-induced vibration of a wind turbine can completely rely on the execution of computer programs or instructions to implement corresponding functions, that is, each device is in the functional architecture of the computer program and each The steps are corresponding, so that the entire system is called through a specialized software package (for example, lib library) to implement the corresponding function.
  • a specialized software package for example, lib library
  • the program code or code segment for performing the corresponding operation may be stored in a computer-readable medium such as a storage medium, So that at least one processor or at least one computing device can perform corresponding operations by reading and running corresponding program codes or code segments.
  • a computer device including a readable medium storing computer program instructions, wherein the instructions, when executed by at least one computing device, cause the at least one computing device to perform The following steps: determine whether the fan enters the anti-vortex mode; in response to the fan entering the anti-vortex mode, turn on the anti-vortex function and trigger the window period; during the window period, move the blades of the fan to the preset anti-vortex position Adjustment, where the window period indicates the minimum time required to complete the anti-vortex function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种风机的抗涡激振动的控制方法、装置和系统(100)。方法包括:确定风机是否进入抗涡模式;响应于风机进入抗涡模式,开启抗涡功能并触发窗口期;在窗口期内,将风机的叶片(200)向预设抗涡位置调整,窗口期指示完成抗涡功能所需的最小时间。

Description

风机的抗涡激振动的控制方法、装置和系统
本申请要求享有2022年6月30日提交的名称为“用于风机的抗涡激振动控制方法、装置和系统”,申请号为202210778989.3的中国专利申请的优先权,该申请的全部内容在此通过引用并入本文。
技术领域
本申请涉及风电领域,更具体地讲,涉及一种风力发电机组的抗涡激振动的控制方法、装置和系统。
背景技术
当流体(风)流经细长圆柱型(例如,塔筒)表面时,由于边界层的不稳定,会在下游脱离出成对的反对称漩涡。漩涡的生成与释放直接关系到塔筒表面的激励周期性变化,当激励的频率(fs)与塔筒的固有频率(f)接近时,塔架振动放大,而振动同时反向影响流场、加剧激励,形成大幅值的振动。这样的流固耦合现象被称为涡激振动。
根据动力学仿真结果,在机组停机时,风机的3支叶片均停至90°的状态下,较容易激起涡激振动,若将其中的一支叶片停至40°,则可以将涡激的概率极大降低。
为了抑制涡激振动,通常需要工程师进入风力发电机组(以下也可简称为“风机”或“机组”)的轮毂,手动将风机的三个叶片变到抗涡位置,并且手动偏航来实现抗涡激振动功能。然而,风机在吊装完成之后无法自动抗涡激。另一方面,在风机并网之后,当电网停电时风机的三个叶片不能自动停在抗涡位置,需要额外使用其他发电机来对风机的变桨系统供电,然后人工将风机的三个叶片变到抗涡位置。现有技术的这些抗涡方式,需要大量的人工,也增加了经济成本。
此外,当出现变桨故障时,变桨可能已无法执行相应的变桨需求,此时如果还强行执行抗涡,可能会产生其他的未知风险,因此在风机无变桨故障时,风机的叶片应停机至例如90°-90°-40°的抗涡位置,而若发生变桨故 障,则应停机至90°-90°-90°的正常停机位置。
另一方面,仅作为示例,在风机停机至抗涡位置后,可能存在后续时间段中风速过大的情况,如果风速大于一个阈值之后,由于抗涡叶片的桨距角为例如40°而不是90°,风速过大将对该叶片产生较大的疲劳载荷,对机组安全不利。此外,作为又一示例,在风机停机至抗涡桨距角后,由于抗涡叶片的桨距角为40°,该叶片可吸收风能产生一定的升力,其可导致机组转动,在90°-90°-40°的抗涡桨距角下,如果机组转速超过一定的阈值,叶轮气动不平衡将增大机组疲劳载荷。在这些情况下,应及时退出抗涡模式,保证风机安全并降低机组的疲劳载荷。
因此需要一种能够根据风机当前情况自动进入抗涡模式或退出抗涡模式的抗涡激振动方案。
发明内容
为了至少解决现有技术中的上述问题,本申请提供了一种风机的抗涡激振动的控制方法、装置和系统。
根据本公开的一方面,提供了一种风机的抗涡激振动的控制方法,所述方法包括:确定所述风机是否进入抗涡模式;响应于所述风机进入抗涡模式,开启抗涡功能并触发窗口期;在窗口期内,将所述风机的叶片向预设抗涡位置调整,其中,窗口期指示完成抗涡功能所需的最小时间。
根据本公开的另一方面,提供了一种风机的抗涡激振动的控制器,所述控制器包括:抗涡模式确认模块,被配置为确定所述风机是否进入抗涡模式;抗涡触发模块,被配置为响应于所述风机进入抗涡模式,开启抗涡功能并触发窗口期;抗涡执行模块,被配置为在窗口期内将所述风机的叶片向预设抗涡位置调整,其中,窗口期指示完成抗涡功能所需的最小时间。
根据本公开的另一方面,提供了一种风机的抗涡激振动的控制系统,所述控制系统包括:变桨系统,被配置为调整所述风机的叶片位置;以及主控系统,被配置为控制所述变桨系统的操作,其中,所述变桨系统还被配置为:确定所述风机是否进入抗涡模式;响应于所述风机进入抗涡模式,开启抗涡功能并触发窗口期;在窗口期内将所述风机的叶片向预设抗涡位置调整,其中,窗口期指示完成抗涡功能所需的最小时间。
根据本公开的另一方面,提供了一种存储有计算机程序的计算机可读存 储介质,当所述计算机程序被处理器执行时,促使所述处理器执行前面所述的风机的抗涡激振动的控制方法。
根据本公开的另一方面,提供了一种电子设备,所述电子设备包括:处理器;存储器,存储有计算机程序,当所述计算机程序被处理器执行时,促使所述处理器执行前面所述的风机的抗涡激振动的控制方法。
有益效果
通过应用根据本申请的示例性实施例的风机的抗涡激振动的控制方法、装置和系统,在风机处于各种情况(例如,运行阶段、维护阶段、电网故障等情况)下均能够自动抗涡,降低了人的工作量,并且减少了经济损失。另一方面,在一些特定工况下,考虑到风机的安全性,风机还能够自动退出抗涡状态以防止风机倒塔,保证风机安全。由此,能够减少风机的疲劳载荷、减少经济损失。
附图说明
从下面结合附图对本申请实施例的详细描述中,本申请的这些和/或其他方面和优点将变得更加清楚并更容易理解,其中:
图1是示出根据本申请的示例性实施例的风机的抗涡激振动的控制系统100的结构示意图。
图2是示出根据本申请的示例性实施例的风机的抗涡激振动的控制方法的流程图。
图3示出根据本发明的示例性实施例的主控系统110的抗涡过程的示例流程图。
图4示出根据本发明的另一示例性实施例的主控系统110的退涡过程的示例流程图。
图5示出根据本发明的一示例性实施例的变桨系统120的抗涡过程的示例流程图。
图6示出根据本发明的另一示例性实施例的变桨系统120的抗涡过程的示例流程图。
图7示出根据本发明的另一示例性实施例的变桨系统120的退涡过程的示例流程图。
图8示出根据本发明的示例性实施例的风机的抗涡激振动的控制装置的 框图。
在下文中,将结合附图详细描述本申请,贯穿附图,相同或相似的元件将用相同或相似的标号来指示。
具体实施方式
提供以下参照附图进行的描述,以帮助全面理解由权利要求及其等同物限定的本申请的示例性实施例。所述描述包括各种特定细节以帮助理解,但这些细节被认为仅是示例性的。因此,本领域的普通技术人员将认识到:在不脱离本申请的范围和精神的情况下,可对这里描述的实施例进行各种改变和修改。此外,为了清楚和简明,可省略已知功能和构造的描述。
在开始本申请的详细描述之前,为更加容易地理解本申请的技术方案,首先对本申请所涉及的一些技术术语和技术内容进行解释和说明。
正常停机桨距角:风机在停机状态时,三支叶片停机角度均在90°左右,90°为正常停机桨距角。
抗涡桨距角:风机在停机状态时,三支叶片停机角度为90°-90°-X°,X°为抗涡桨距角(在下文中,将以40°为例进行阐述,然而,应该理解,不同风机机型可设置不同的抗涡桨距角,且允许叶片实际角度与需求角度存在一定偏差,例如,可存在±0.5°或±1°的偏差)。
停机抗涡模式:风机进入停机状态后,三支叶片先收桨至正常停机桨距角,之后,相应的抗涡叶片自动开桨至抗涡桨距角(例如,40°),此即为停机抗涡模式。
计划内断电抗涡模式:在电网即将断电的情况下,提前将风机停机并禁止风机启机,确保电网断电后,风机仍处于抗涡状态,即风机的桨距角保持在90°-90°-40°,此即为计划内断电抗涡模式。此外,在计划内断电抗涡模式下,风机应对准预测的主风向。
计划外断电抗涡模式:当风机状态处于启机过程、发电或停机过程中,且叶片桨距角小于40°时,因电网故障或风机故障导致风机掉电,此时风机会进入计划外断电抗涡模式,在叶片急停收桨过程中,抗涡叶片停至40°,非抗涡叶片停至90°。此外,若计划外掉电时抗涡叶片的桨距角大于40°,受限于风机安全链保护功能,叶片不能向小角度开桨,因此抗涡叶片不能到达40°,无法实现抗涡功能。在本公开的示例性实施例中,计划外断电抗涡 功能将由风机的变桨系统独立实现。
强制抗涡模式:在风机处于维护状态,或者电网已断电,通过外部电源为风机供电的情况下,通过人工发送命令的方式,控制风机进入抗涡状态,此即为强制抗涡模式。在强制抗涡模式下,风机应对准预测的主风向。
现有技术中,变桨系统通常包括常压变桨系统和低压变桨系统。常压变桨系统可包括例如“丹控平台”、“汇川平台”等,低压变桨系统包括例如“低压平台”。
变桨正常模式:变桨系统无故障,叶片动作受风机主控系统控制。
变桨故障模式(或急停模式):变桨系统存在故障,叶片动作受变桨控制器控制,以预设速度(例如,2°/s的速度)收桨至正常停机桨距角。
变桨抗涡模式:变桨系统执行抗涡功能的模式。
变桨驱动器使能:在变桨驱动器使能被切断时(例如,变桨驱动器使能信号为预设电压(例如,0V)时),变桨驱动器会在极短时间内实现电机制动,停止后抱闸。此时进行任何操作,电机都不能旋转。
变桨驱动器虚拟限位:在变桨驱动器使能被变桨控制器切断时,变桨控制器会给变桨驱动器设置虚拟限位值(0°~40°)。此时,即使恢复了变桨驱动器使能,电机也只能在0°~40°之间动作,保证风机重新上电后,在变桨控制器与变桨驱动器建立通信之前,变桨驱动器不会自行向90°方向收桨。这里,虚拟限位可仅限丹控平台使用,其原因在于:丹控平台重新上电时,变桨驱动器先于变桨控制器完成初始化。两者在通信建立之前,变桨控制器无法输出切断变桨驱动器使能信号,在安全链断开且未触发89°开关的情况下,变桨驱动器会自动执行收桨动作,因此需要开启变桨驱动器的虚拟限位功能,保证变桨驱动器在抗涡完成的情况下,断开安全链也可保持当前位置不变。然而,应该理解,上述虚拟限位功能还可被应用于与丹控平台具有相似问题的其他变桨平台。
计划内断电窗口期:停机时抗涡叶片从90°变桨到40°的过程以及启机时从40°变桨到90°的过程所需的时间。其计算公式为:
Figure PCTCN2022123260-appb-000001
补偿时间为变桨控制器切断变桨驱动器使能和写虚拟限位的时间。
Figure PCTCN2022123260-appb-000002
为抗涡叶片从90°变桨到40°以及从40°变桨到 90°的过程所需的时间,0表示抗涡叶片处于目标位置,无需调整角度,120s为窗口期的最长时间。此外,因只有丹控平台需要开启变桨驱动器虚拟限位功能,丹控平台的补偿时间可被设置为高于汇川平台和低压平台,例如,丹控平台的补偿时间可为30s,汇川平台和低压平台补偿时间可为10s。此外,计划内断电窗口期的长度设置也可类似地被应用于其他在风机停机状态下将抗涡叶片的角度从正常停机桨距角调整至抗涡桨距角的情况(例如,强制抗涡模式、停机抗涡模式)。
计划外断电窗口期:当风机计划外掉电后,需要在规定时间内完成90°-90°-40°的抗涡姿态,此过程所花费时间为计划外断电窗口期。其计算公式为:
Figure PCTCN2022123260-appb-000003
若掉电时叶片处于Y°,风机完成90°-90°-40°的抗涡姿态,至少需要
Figure PCTCN2022123260-appb-000004
秒来调整至该姿态,Δ为预设的偏差时间,窗口期最少为
Figure PCTCN2022123260-appb-000005
Figure PCTCN2022123260-appb-000006
之中的较大值,最大为120s。例如,假设掉电时叶片处于0°,收桨速度为1°/s,Δ为5s,丹控平台的补偿时间为30s,汇川平台和低压平台补偿时间为10s,则此窗口期最少为95s。
卡桨:当风机触发急停收桨后,在叶片到达安全位置之前,若变桨系统判断例如预设时间(例如,5s)内叶片位置变化小于例如1°,则判定为叶片卡桨。卡桨逻辑适用于任一支叶片,且卡桨后不能执行抗涡功能。应该理解,抗涡叶片停在抗涡位置,不属于卡桨。
图1是示出根据本申请的示例性实施例的风机的抗涡激振动的控制系统100的结构示意图。
如图1所示,抗涡激振动的控制系统100可包括主控系统110和变桨系统120,主控系统110可控制变桨系统120的各种操作,变桨系统110可调整风机叶片200位置。变桨系统120可包括变桨控制器121、继电器122、变桨驱动器123、变桨电机124、变桨减速器125、变桨轴承126。
主控系统110可将变桨系统抗涡控制字(可以是例如2秒的脉冲信号,控制字为0可指示抗涡功能开启,为1可指示切断变桨驱动器使能,为2可指示抗涡功能退出)、给定抗涡位置、抗涡速度、变桨使能等信息发给变桨系统120中的变桨控制器121以用于各种变桨控制。变桨控制器121可向主控系统110反馈变桨系统抗涡反馈字(可在给定电平下有效,例如高电平下有效,反馈字为0指示抗涡模式开启反馈、为1指示抗涡功能完成反馈(例如,已切换变桨驱动器使能、已开启虚拟限位))、变桨系统故障字(可在给定电平下有效,例如高电平下有效,包括用于指示变桨抗涡超时的故障字以及指示变桨抗涡位置偏差大的控制字)、叶片变桨实际位置等信息。
变桨控制器121可通过控制继电器122的吸合,来控制给不给变桨驱动器使能。当继电器122触点断开后,变桨驱动器123没有使能,停止工作,变桨电机124停止旋转,这样叶片200就能停在抗涡位置。
变桨控制器121通过变桨速度、开启变桨驱动器123的虚拟限位功能来控制变桨驱动器123,以使变桨驱动器123驱动变桨电机124到指定位置。
变桨驱动器123可将三叶片变桨位置、抗涡反馈信号反馈给变桨控制器121,向变桨控制器121反馈叶片是否到达指定位置,以及是否完成抗涡。
变桨驱动器123输出电压信号、电流信号、抱闸信号等控制信号给变桨电机124,实现对变桨电机124的控制,变桨电机124驱动变桨减速器125,变桨减速器125通过齿形带驱动变桨轴承126,进而控制叶片200旋转到指定位置。
上述各个装置和部件及其功能对于本领域技术人员而言是已知的,因此为了简明这里将不再进行更详细的描述。下面将参照图2详细描述本申请的抗涡激振动的控制方法。
图2是示出根据本申请的示例性实施例的风机的抗涡激振动的控制方法的流程图。图2所示出的方法可在风机的变桨系统120中实现,下面将对此进行详细解释。
参照图2,在步骤S210,可确定风机是否进入抗涡模式。
如前所示,所述抗涡模式可包括停机抗涡模式、计划内断电抗涡模式、计划外断电抗涡模式、以及强制抗涡模式,这些抗涡模式的解释已在前面详细描述,这里不再进行重复描述。
在本发明的示例性实施例中,变桨系统120可通过确定是否从主控系统 110接收到抗涡开启信号来确定风机是否进入抗涡模式,或者通过确定是否满足针对计划外断电抗涡模式的第一预设条件来自行确定风机是否进入抗涡模式。响应于从主控系统110接收到抗涡开启信号或者满足针对计划外断电抗涡模式的第一预设条件,变桨系统120可确定所述风机进入抗涡模式。
更具体地,当主控系统110确定满足针对停机抗涡模式的第二预设条件、针对计划内断电抗涡模式的第三预设条件、或者针对强制抗涡模式的第四预设条件时,主控系统110可向变桨系统120发送抗涡开启信号,使得变桨系统进行下一步动作。或者,在计划外断电的情况下,变桨系统120也可根据是否满足针对计划外断电抗涡模式的第一预设条件,自行判断是否进入抗涡模式。
在本发明的示例性实施例中,第一预设条件可包括:风机计划外断电且断电时风机的叶片的桨距角小于抗涡桨距角。第二预设条件可包括:风机处于停机状态且停机抗涡功能开启。第三预设条件可包括:风机处于停机状态且计划内断电抗涡开启。第四预设条件可包括:风机处于停机或维护状态且强制抗涡功能开启。应该理解,上述预设条件的设置仅是示例,本申请不限于此,还可根据实际需求修改、添加或者删除各个预设条件中的具体内容。
在步骤S220,响应于风机进入抗涡模式,可开启抗涡功能并触发窗口期。
在本发明的示例性实施例中,如前面对于窗口期的解释可知,窗口期可指示变桨系统120完成抗涡功能所需的最小时间,也就是说,将风机的三支叶片调整至90°-90°-40°,切断变桨驱动器的变桨驱动器使能并(在丹控平台的情况下)写入虚拟限位所需的时间。如前面所描述的,窗口期的长度可取决于预设的变桨速率以及针对变桨驱动器预设的补偿时间(即,考虑切断变桨驱动器的变桨驱动器使能和写虚拟限位预设的补偿时间),并且在计划外断电抗涡模式的情况下,还取决于断电时风机叶片的角度。
此外,在本发明的示例性实施例中,触发窗口期是指开始计时,直至窗口期结束为止。
之后,在步骤S230,可在窗口期内,将风机的叶片向预设抗涡位置调整。
具体地,变桨系统120可首先屏蔽抗涡叶片位置比较故障功能,然后以预设变桨速率调整抗涡叶片的桨距角。一般来说,抗涡叶片位置比较故障功能用于判断叶片是否处于正常停机桨距角,如果叶片未处于正常停机桨距角,则会确定风机出现故障。在本发明的示例性实施例中,选择风机的三个叶片 中的哪个叶片作为抗涡叶片可以是预先确定的,例如,可在风机进入抗涡模式时由主控系统110将进入抗涡模式的信息发送给变桨系统120,也可总是选择固定叶片(例如,1#叶片)作为抗涡叶片进行调整。
变桨系统120可检测抗涡叶片的桨距角是否被调整至预设的抗涡桨距角,如果没有,则可继续调整。如果抗涡叶片的桨距角已被调整至所述预设的抗涡桨距角,并且除抗涡叶片以外的其他叶片处于正常停机桨距角,则可确定风机的叶片已经到达预设抗涡位置。
在本发明的示例性实施例中,预设抗涡位置可以是前面所例示的90°-90°-40°位置,即预设的抗涡桨距角是40°,正常停机桨距角可以是90°。这里,将抗涡叶片调整至预设的抗涡桨距角,可指将抗涡叶片调整至40°左右,但允许一定偏差。
当抗涡叶片的桨距角被调整至预设的抗涡桨距角,并且另外两个叶片的桨距角处于正常停机桨距角时,可确定风机的叶片到达预设抗涡位置。
也就是说,当抗涡模式为停机抗涡模式、或计划内断电抗涡模式、或强制抗涡模式时,在开始抗涡之前,风机处于停机状态,三个叶片的位置均为停机桨距角(例如,90°),此时,可仅调整抗涡叶片的桨距角至抗涡桨距角(例如,40°),即控制抗涡叶片到达预设抗涡位置。然而,当抗涡模式为计划外断电抗涡模式时,说明风机断电之前可能处于运行状态,三个叶片的位置可能在运行角度(例如,0°),此时,不仅要调整抗涡叶片的桨距角至抗涡桨距角(例如,40°),还要调整非抗涡叶片的桨距角至正常停机桨距角(例如,90°),才能使风机的叶片到达预设抗涡位置。
在本发明的示例性实施例中,在抗涡叶片的桨距角被调整至预设抗涡桨距角之后,变桨系统120可基于主控系统110发送的变桨驱动器使能切断信号,切断抗涡叶片的变桨驱动器使能信号,即,切断用于驱动抗涡叶片的变桨驱动器113的变桨驱动器使能信号,以保持抗涡叶片的桨距角为抗涡桨距角。应该理解,在本发明的示例性实施例中,在变桨系统120调整叶片的角度时,变桨系统120可持续向主控系统110发送叶片角度等信息,以使得主控系统110能够实时根据这些信息生成变桨系统控制信号。例如,主控系统110可通过变桨系统120发送的叶片角度信息,确定抗涡叶片是否到达抗涡桨距角,并在到达抗涡桨距角时向变桨系统120发送驱动器切断使能信号。
在风机的叶片到达预设抗涡位置,切断变桨驱动器使能信号并(在丹控 平台的情况下)写入虚拟限位之后,可确定风机完成抗涡操作。此时,变桨系统120可向主控系统110反馈抗涡完成信号。
此外,根据本发明的示例性实施例的抗涡激振动控制方法除了可如上所述自动进入抗涡模式,还可在一些情况下自动退出抗涡模式。
在本发明的示例性实施例中,当风机达到预设退出条件时,变桨系统120可退出抗涡模式。下面列出了针对不同抗涡模式的退出条件。
针对停机抗涡模式的退出条件
当出现以下任意一种工况时,机组停机后不进入停机抗涡模式,已进入停机抗涡模式的,则需退出抗涡模式:
a)机组触发NA过速;
b)机组完成抗涡前,触发变桨类故障;
c)机组完成抗涡前,触发电网类故障(即电网断电前,若机组未完成抗涡,机组将收桨至正常停机桨距角);
d)机组完成抗涡后,机组转速超过抗涡转速阈值(防止机组在抗涡模式下,叶轮转动,导致疲劳载荷过大);
e)机组完成抗涡后,10min平均风速超过抗涡风速阈值;
f)机组满足启机条件(即启机前,机组需先退出停机抗涡模式,收桨至正常停机桨距角后,再按照启机流程开桨启机);
g)机组未处于停机状态(即停机抗涡模式下,若运维人员将机组人工调节至维护模式后,机组将退出停机抗涡模式,收桨至正常停机桨距角)。
针对计划内断电抗涡模式的退出条件
当出现以下任意一种工况时,机组无法进入计划内断电抗涡模式,已进入计划内断电抗涡模式的,则需退出抗涡模式:
a)机组触发NA过速;
b)机组完成抗涡前,触发变桨类故障;
c)机组完成抗涡前,触发电网类故障(即电网断电前,若机组未完成抗涡,机组将收桨至正常停机桨距角);
d)机组完成抗涡后,机组转速超过抗涡转速阈值(防止机组在抗涡模式下,叶轮转动,导致疲劳载荷过大);
e)机组完成抗涡后,10min平均风速超过抗涡风速阈值;
f)机组未处于停机状态(即停机抗涡模式下,若运维人员将机组人工调节 至维护模式后,机组将退出停机抗涡模式,收桨至正常停机桨距角);
g)计划内断电抗涡关闭(此关闭命令需人工或者中控确认才能生效)。
针对强制抗涡模式的退出条件
当出现以下任意一种工况时,机组无法进入强制抗涡模式,已进入强制抗涡模式的,则需退出抗涡模式:
a)机组完成抗涡前,触发变桨类故障;
b)机组完成抗涡后,机组转速超过抗涡转速阈值(防止机组在抗涡模式下,叶轮转动,导致疲劳载荷过大);
c)机组完成抗涡后,10min平均风速超过抗涡风速阈值;
d)叶轮锁定(即该动作触发后,判定存在维护人员进入轮毂的可能,此时需先将叶片收桨至正常停机桨距角);
e)安全门开启(即该动作触发后,判定存在维护人员进入轮毂的可能,此时需先将叶片收桨至正常停机桨距角);
f)强制抗涡关闭(此关闭命令需人工确认才能生效)。
计划外断电抗涡模式的退出条件可与前述各抗涡模式的退出条件相同,在此不再赘述。
在本发明的示例性实施例中,当主控系统110检测到满足上述退出条件之一时,主控系统110可向变桨系统120发送退出抗涡信号。变桨系统120从主控系统110接收到退出抗涡信号时,可执行退涡操作,触发窗口期(此时触发的窗口期与进入抗涡模式时使用的窗口期长度相同)并恢复抗涡叶片的变桨驱动器使能信号,然后在窗口期内将风机的叶片调整至停机位置,并在窗口期结束之后开启抗涡叶片位置比较故障功能,以使得变桨系统120能够正常执行叶片位置比较功能。
此外,当变桨系统120自身检测到满足上述退出条件之一时,例如,当变桨系统120在抗涡模式下检测到变桨类故障时,变桨系统120可恢复抗涡叶片的变桨驱动器使能信号并开启抗涡叶片位置比较故障功能,从而使得叶片自动回到正常停机桨距角。
以下将参照图3至图7详细描述主控系统110、变桨系统120在不同抗涡模式下的抗涡过程,以及相应的退涡过程。
图3示出根据本发明的示例性实施例的主控系统110的抗涡过程的示例流程图。
由于计划外断电抗涡模式仅由变桨系统120独立完成,因此图3的流程图仅针对停机抗涡模式、计划内断电抗涡模式和强制抗涡模式。
如图3所示,在步骤301,主控系统110可确定风机是否进入抗涡模式,当风机进入抗涡模式时,在步骤302,主控系统110可向变桨系统120发送抗涡开启信号(例如,2s的脉冲)。之后,在步骤303,主控系统110可确定是否从变桨系统120处接收到抗涡模式开启反馈信号。在接收到抗涡模式开启反馈信号之后,在步骤304,主控系统110可屏蔽抗涡叶片位置比较故障功能,检测抗涡叶片的叶片桨距角,确定其是否大于抗涡桨距角,当抗涡叶片的叶片桨距角大于抗涡桨距角(304-是)时,主控系统110可确定需要调整抗涡叶片的桨距角,并控制变桨系统120以预设变桨速率(例如,2deg/s)调整抗涡叶片(步骤305),然后持续检测抗涡叶片的叶片桨距角是否大于抗涡桨距角(步骤306),并在大于抗涡桨距角(步骤306-否)的情况下返回上一步继续调整。反之,当抗涡叶片的叶片桨距角不大于抗涡桨距角时(步骤304-否,步骤306-是),主控系统110可确定抗涡叶片的叶片桨距角是否大于(抗涡桨距角-2°)。这里,2°仅是示例,具体实施时也可以根据实际情况作调整。当抗涡叶片的叶片桨距角不大于(抗涡桨距角-2°)时(步骤307-是),表示抗涡实际角度出现超限故障,因此需要退出抗涡(步骤309)。当抗涡叶片的叶片桨距角大于(抗涡桨距角-2°)时(步骤307-否),表明抗涡角度正常,因此可停止变桨,向变桨系统120发送驱动器切断使能信号(步骤308)以切断变桨系统120的变桨驱动器使能,然后判断是否接收到变桨系统120发送的抗涡功能完成反馈(步骤310),如接收到反馈,表明变桨系统120侧已完成抗涡。
图4示出根据本发明的示例性实施例的主控系统110的退涡过程的示例流程图。
如图4所示,在步骤401,主控系统110可确定风机是否退出抗涡模式(例如,根据是否满足预设退出条件之一而退出抗涡模式)。当确定风机退出抗涡模式时,在步骤402,主控系统110可向变桨系统120发送抗涡功能退出信号(例如,2s的脉冲)。之后,在步骤403,主控系统110可确定从变桨系统120接收到的抗涡模式开启反馈是否为TRUE。如果抗涡模式开启反馈为TRUE(403-是),则继续等待。如果为抗涡模式开启反馈为FALSE(403-否),则在步骤404,主控系统110检测抗涡叶片的叶片桨距角,确定其是否 小于正常停机桨距角。当抗涡叶片的叶片桨距角小于正常停机桨距角(404-是)时,主控系统110可确定需要调整抗涡叶片的桨距角,并在步骤405控制变桨系统120以预设变桨速率(例如,2度/s)向正常停机桨距角的方向调整抗涡叶片,然后在步骤406持续检测抗涡叶片的叶片桨距角是否大于等于(正常停机距角-2°)且持续了一段时间(例如,5秒)。这里,2°仅是示例,具体实施时也可以根据实际情况作调整。当抗涡叶片的叶片桨距角大于等于(正常停机桨距角-2°)且持续了一段时间时(步骤406-是),可停止变桨并开启抗涡叶片位置比较故障功能(步骤407)。此外,当在步骤404确定抗涡叶片的叶片桨距角不小于抗涡桨距角(404-否)时,主控系统110可进行步骤406的比较,并执行后续操作。
图5示出根据本发明的示例性实施例的变桨系统120的抗涡过程的示例流程图。图5的流程图仅针对停机抗涡模式、计划内断电抗涡模式和强制抗涡模式。
如图5所示,在步骤501,变桨系统120可接收主控系统110发送的抗涡功能开启信号,然后在步骤502进入抗涡模式,并在步骤503触发窗口期。之后,在步骤504,可确定当前是否仍在窗口期内,若在(步骤504-是),则在步骤505向主控系统110发送抗涡模式开启反馈,反馈进入抗涡模式,并在步骤506屏蔽抗涡叶片位置比较故障功能,在此过程中,变桨系统120可持续向主控系统110发送抗涡叶片的角度。在步骤507,变桨系统120可调整风机的抗涡叶片的位置,并确定风机的三个叶片是否到达预设抗涡位置。若是(步骤507-是),则在步骤508从主控系统110接收驱动器切断使能信号,在步骤509选择抗涡叶片(在主控系统110将所确定的特定抗涡叶片信息发送给变桨系统120的前提下执行此步骤,如果抗涡叶片是固定叶片,则无需执行此步),并在步骤510切断抗涡叶片的变桨驱动器使能信号(此时,可在进一步判断叶片的停机位置与预设的抗涡位置相同(可存在一定误差)之后再切断),然后在步骤511设置抗涡叶片的驱动器虚拟限位(仅在丹控平台的情况下执行,其他平台可省略),在步骤512将变桨驱动器使能信号写入掉电保持区,并在步骤513向主控系统110发送抗涡功能完成反馈,反馈抗涡完成。在步骤514,变桨系统120可在抗涡功能完成之后进一步确定叶片位置是否偏离预设的抗涡位置,如果没有偏离(步骤514-否),则说明抗涡成功,结束本流程。如果叶片位置偏离预设的抗涡位置(步骤514-是),则在步骤 515确定出现变桨触发故障“抗涡完成后叶片偏离抗涡位置”。此时可进入退涡流程,在步骤518退出抗涡模式,在步骤519清除抗涡叶片的驱动器虚拟限位(仅在丹控平台的情况下执行,其他平台可省略),在步骤520恢复变桨驱动器使能信号并在步骤521开启(即,取消屏蔽)抗涡叶片位置比较故障功能,此时,由于已开启抗涡叶片位置比较故障功能,因此风机的叶片可在该功能的控制下被自动调整至停机桨距角。
此外,如果在步骤504确定当前未在窗口期内(步骤504-否),则变桨系统可在步骤516自行确定抗涡是否完成,如果完成(步骤516-是),则结束当前流程。如果未完成(步骤516-否),则在步骤517确定出现变桨触发故障“抗涡超时”,进行到步骤518进行后续退涡流程。
图6示出根据本发明的示例性实施例的常压变桨系统120的抗涡过程的示例流程图。图6的流程图仅针对计划外断电抗涡模式。
如图6所示,当出现计划外断电状况时,在步骤601,变桨系统120可确定是否出现旋变故障或卡桨。如果出现旋变故障或卡桨(步骤601-是),则由于无法执行抗涡,因而退出当前流程,如果未出现然旋变故障或卡桨(步骤601-否),则在步骤602可确定抗涡叶片的桨距角是否小于抗涡桨距角。如果抗涡叶片的桨距角大于抗涡桨距角(步骤602-否),则如前所述,在这种情况下受限于机组安全链保护功能,不能将抗涡叶片向小角度开桨,因此退出当前流程。如果抗涡叶片的桨距角小于抗涡桨距角(步骤602-是),则在步骤603,变桨系统120可进入抗涡模式,在步骤604触发窗口期。之后,在步骤605,可确定当前是否仍在窗口期内,若在窗口期内(步骤605-是),则在步骤606向主控系统110发送抗涡模式开启反馈,反馈进入抗涡模式,并在步骤607选择抗涡叶片并屏蔽抗涡叶片位置比较故障功能。在步骤608,变桨系统120可调整风机的抗涡叶片的位置,并确定抗涡叶片的桨距角是否达到抗涡桨距角。若是(步骤608-是),则在步骤609由变桨系统120切断变桨驱动器使能信号(为保证叶片可以停在例如(40±1)°的范围内,可在39°时开始执行切断该使能信号的动作)。然后,在步骤610确定非抗涡叶片的桨距角是否达到停机桨距角,如果没有达到停机桨距角(步骤610-否),则返回步骤610继续调整非抗涡叶片的桨距角。如果非抗涡叶片的桨距角达到停机桨距角(步骤610-是),则可在步骤611向主控系统110发送抗涡功能完成反馈,反馈抗涡完成,并在步骤612将变桨驱动器使能信号写入掉电保持区(步 骤611和步骤612的顺序也可互换)。步骤613至步骤619与图5的步骤515至步骤521类似,因此不再详细解释。
图7示出根据本发明的示例性实施例的常压变桨系统120的退涡过程的示例流程图。在本发明的示例性实施例中,该过程由主控系统110发起和控制,主控系统110可向变桨系统120发送退出抗涡信号来使变桨系统120退出抗涡模式。
在本发明的示例性实施例中,当满足前面描述的抗涡模式退出条件时,主控系统110可发送退出抗涡信号。
参照图7,在步骤701,变桨系统120可接收主控系统110发送的退出抗涡信号,然后在步骤702退出抗涡模式并在步骤703触发窗口期,之后,可在步骤704清除抗涡叶片的驱动器虚拟限位(该步骤仅在丹控平台上执行,在其他平台上可不执行),在步骤705恢复抗涡叶片的变桨驱动器使能信号,然后在步骤706根据主控系统110的控制,将叶片从抗涡位置(90°-90°-40°)变桨至正常停机位置(90°-90°-90°)。之后,可在步骤707可确定窗口期是否结束,如果没有结束(步骤706-否),则继续等待,如果窗口期结束(步骤707-是),则在步骤708,变桨系统120可取消屏蔽叶片位置比较故障功能(即,启动叶片位置比较故障功能),以使叶片能够恢复正常运行。
以上参照图5至图7描述了常压变桨系统的抗涡过程和退涡过程,然而,应该理解,由于低压变桨系统不使用丹控平台,因此低压变桨系统的抗涡过程和退涡过程不包括与驱动器的虚拟限位相关的步骤。此外,在低压变桨系统中,在计划外断电抗涡模式下,如果箱变断电后出现主控与变桨通信故障,则也不进入抗涡模块,而其他步骤与常压变桨系统类似,因此为了简明这里将不再详细描述。
图8示出根据本发明的示例性实施例的风机的抗涡激振动的控制装置的框图。
参照图8,根据本公开的示例性实施例的抗涡激振动控制装置800可包括抗涡模式确认模块810、抗涡触发模块820以及抗涡执行模块830。
在本发明的示例性实施例中,抗涡模式确认模块810可被配置为确定风机是否进入抗涡模式。这里,抗涡模式可包括停机抗涡模式、计划内断电抗涡模式、计划外断电抗涡模式、以及强制抗涡模式。抗涡模式确认模块810可确定是否从风机的主控系统接收到抗涡开启信号或者是否满足针对计划外 断电抗涡模式的第一预设条件,并且响应于从主控系统接收到抗涡开启信号或者满足针对计划外断电抗涡模式的第一预设条件,确定所述风机进入抗涡模式。这里,抗涡开启信号是在满足针对停机抗涡模式的第二预设条件、针对计划内断电抗涡模式的第三预设条件、或者针对强制抗涡模式的第四预设条件时由主控系统发送的。
在本发明的示例性实施例中,所述第一预设条件可包括:风机计划外断电且断电时风机的叶片的桨距角小于抗涡桨距角。所述第二预设条件可包括:风机处于停机状态且停机抗涡功能开启。所述第三预设条件可包括:风机处于停机状态且计划内断电抗涡开启。所述第四预设条件可包括风机处于停机或维护状态且强制抗涡功能开启。
在本发明的示例性实施例中,窗口期的长度是基于预设变桨速率以及针对风机的变桨驱动器所预设的补偿时间确定的。
在本发明的示例性实施例中,在将风机的叶片向预设抗涡位置调整时,抗涡执行模块830可屏蔽抗涡叶片位置比较故障功能,以所述预设变桨速率调整抗涡叶片的桨距角,判断抗涡叶片的桨距角是否被调整至预设抗涡桨距角,并且响应于抗涡叶片的桨距角被调整至预设抗涡桨距角并且除抗涡叶片以外的其他叶片处于正常停机桨距角,确定风机的叶片到达所述预设抗涡位置。
在本发明的示例性实施例中,在抗涡叶片的桨距角被调整至预设抗涡桨距角后,抗涡执行模块830还可基于风机的主控系统发送的变桨驱动器使能切断信号,切断抗涡叶片的变桨驱动器使能信号以保持抗涡叶片的桨距角。
在本发明的示例性实施例中,抗涡激振动控制器800还可包括退涡执行模块(未示出),用于响应于风机达到预设退出条件,退出抗涡模式。
在本发明的示例性实施例中,当从风机的主控系统接收到退出抗涡信号时,退涡执行模块(未示出)可恢复抗涡叶片的变桨驱动器使能信号并触发窗口期,并且在窗口期内将风机的叶片调整至停机位置,并开启抗涡叶片位置比较故障功能。这里,退出抗涡信号是主控系统在检测到退出条件时发送的。此外,当在抗涡模式下检测到变桨类故障时,退涡执行模块(未示出)可恢复抗涡叶片的变桨驱动器使能信号并开启抗涡叶片位置比较故障功能。
根据本发明的示例性实施例的风机的抗涡激振动的控制方法和系统可被应用于风机上电之前、风机处于运行状态、电网掉电、机组维护、退出抗涡 等各种应用场景。下面的表1至表5例示出这些应用场景中的一些具体示例、对应工况、实施本公开的抗涡激振动控制方案之后的停机角度(即,实施本公开的抗涡激振动控制方案之后的叶片所处的角度)以及执行方案。
表1风机上电前的应用场景
Figure PCTCN2022123260-appb-000007
表2风机处于运行状态的应用场景
Figure PCTCN2022123260-appb-000008
Figure PCTCN2022123260-appb-000009
c)电网掉电
表3电网掉电时的应用场景
Figure PCTCN2022123260-appb-000010
表4机组维护时的应用场景
Figure PCTCN2022123260-appb-000011
Figure PCTCN2022123260-appb-000012
表5退出抗涡时的应用场景
Figure PCTCN2022123260-appb-000013
通过应用根据本申请的示例性实施例的风机的抗涡激振动的控制方法和系统,在风机处于各种情况(例如,运行阶段、维护阶段、电网故障抗涡)下均能够自动抗涡,降低了人的工作量,并且减少了经济损失。另一方面,在一些特定工况下,考虑到风机的安全性,风机还能够自动退出抗涡以防止风机倒塔,保证风机安全。由此,能够减少风机的疲劳载荷、减少经济损失。
以上已参照图1至图8描述了根据本公开的示例性实施例的用于风机的 抗涡激振动控制方法和系统。然而,应理解的是:附图中示出的装置和系统可被分别配置为执行特定功能的软件、硬件、固件或上述项的任意组合。例如,这些系统、装置可对应于专用的集成电路,也可对应于纯粹的软件代码,还可对应于软件与硬件相结合的模块。此外,这些系统或装置所实现的一个或多个功能也可由物理实体设备(例如,处理器、客户端或服务器等)中的组件来统一执行。
例如,根据本申请的示例性实施例,可提供一种存储指令的计算机可读存储介质,其中,当所述指令被至少一个计算装置运行时,促使所述至少一个计算装置执行以下步骤:确定所述风机是否进入抗涡模式;响应于所述风机进入抗涡模式,开启抗涡功能并触发窗口期;在窗口期内,将所述风机的叶片向预设抗涡位置调整,其中,窗口期指示完成抗涡功能所需的最小时间。
上述计算机可读存储介质中存储的指令可在诸如客户端、主机、代理装置、服务器等计算机设备中部署的环境中运行,应注意,所述指令还可用于执行除了上述步骤以外的附加步骤或者在执行上述步骤时执行更为具体的处理,这些附加步骤和进一步处理的内容已经在参照图1至图8进行相关系统和方法的描述过程中提及,因此这里为了避免重复将不再进行赘述。
应注意,根据本公开示例性实施例的风机的抗涡激振动的控制系统和方法可完全依赖计算机程序或指令的运行来实现相应的功能,即,各个装置在计算机程序的功能架构中与各步骤相应,使得整个系统通过专门的软件包(例如,lib库)而被调用,以实现相应的功能。
另一方面,当图8所示的系统和装置以软件、固件、中间件或微代码实现时,用于执行相应操作的程序代码或者代码段可以存储在诸如存储介质的计算机可读介质中,使得至少一个处理器或至少一个计算装置可通过读取并运行相应的程序代码或者代码段来执行相应的操作。
例如,根据本申请示例性实施例,可提供一种包括存储有计算机程序指令的可读介质的计算机设备,其中,所述指令在被至少一个计算装置运行时,促使所述至少一个计算装置执行下述步骤:确定所述风机是否进入抗涡模式;响应于所述风机进入抗涡模式,开启抗涡功能并触发窗口期;在窗口期内,将所述风机的叶片向预设抗涡位置调整,其中,窗口期指示完成抗涡功能所需的最小时间。

Claims (12)

  1. 一种风机的抗涡激振动的控制方法,所述方法包括:
    确定所述风机是否进入抗涡模式;
    响应于所述风机进入抗涡模式,开启抗涡功能并触发窗口期;
    在窗口期内,将所述风机的叶片向预设抗涡位置调整,
    其中,窗口期指示完成抗涡功能所需的最小时间。
  2. 如权利要求1所述的方法,其中,所述抗涡模式包括:停机抗涡模式、计划内断电抗涡模式、计划外断电抗涡模式、以及强制抗涡模式,
    其中,确定所述风机是否进入抗涡模式的步骤包括:
    确定是否从所述风机的主控系统接收到抗涡开启信号或者是否满足针对计划外断电抗涡模式的第一预设条件,其中,所述抗涡开启信号是在满足针对停机抗涡模式的第二预设条件、针对计划内断电抗涡模式的第三预设条件、或者针对强制抗涡模式的第四预设条件时由所述主控系统发送的;
    响应于从所述主控系统接收到抗涡开启信号或者满足针对计划外断电抗涡模式的第一预设条件,确定所述风机进入抗涡模式。
  3. 如权利要求2所述的方法,其中:
    所述第一预设条件包括:风机计划外断电且断电时风机的叶片的桨距角小于抗涡桨距角;
    所述第二预设条件包括:风机处于停机状态且停机抗涡功能开启;
    所述第三预设条件包括:风机处于停机状态且计划内断电抗涡开启;
    所述第四预设条件包括:风机处于停机或维护状态且强制抗涡功能开启。
  4. 如权利要求1所述的方法,其中,窗口期的长度是基于预设变桨速率以及针对所述风机的变桨驱动器所预设的补偿时间确定的。
  5. 如权利要求4所述的方法,其中,在窗口期内将所述风机的叶片向预设抗涡位置调整的步骤包括:
    屏蔽抗涡叶片位置比较故障功能;
    以所述预设变桨速率调整抗涡叶片的桨距角;
    判断所述抗涡叶片的桨距角是否被调整至预设抗涡桨距角;
    响应于所述抗涡叶片的桨距角被调整至预设抗涡桨距角并且除抗涡叶片以外的其他叶片处于正常停机桨距角,确定所述风机的叶片到达所述预设抗 涡位置。
  6. 如权利要求5所述的方法,其中,在所述抗涡叶片的桨距角被调整至预设抗涡桨距角后,所述方法还包括:
    基于所述风机的主控系统发送的变桨驱动器使能切断信号,切断所述抗涡叶片的变桨驱动器使能信号以保持所述抗涡叶片的桨距角。
  7. 如权利要求6所述的方法,其中,所述方法还包括:
    响应于所述风机达到预设退出条件,退出抗涡模式。
  8. 如权利要求7所述的方法,其中,退出抗涡模式的步骤包括:
    当从所述风机的主控系统接收到退出抗涡信号时,触发窗口期并恢复所述抗涡叶片的变桨驱动器使能信号,并且在窗口期内将所述风机的叶片调整至停机位置,并在窗口期结束之后开启抗涡叶片位置比较故障功能,其中,所述退出抗涡信号是所述主控系统在检测到退出条件时发送的,
    当在抗涡模式下检测到变桨类故障时,恢复所述抗涡叶片的变桨驱动器使能信号并开启抗涡叶片位置比较故障功能。
  9. 一种风机的抗涡激振动的控制器,所述控制器包括:
    抗涡模式确认模块,被配置为确定所述风机是否进入抗涡模式;
    抗涡触发模块,被配置为响应于所述风机进入抗涡模式,开启抗涡功能并触发窗口期;
    抗涡执行模块,被配置为在窗口期内将所述风机的叶片向预设抗涡位置调整,
    其中,窗口期指示完成抗涡功能所需的最小时间。
  10. 一种风机的抗涡激振动的控制系统,所述控制系统包括:
    变桨系统,被配置为调整所述风机的叶片位置;以及
    主控系统,被配置为控制所述变桨系统的操作,
    其中,
    所述变桨系统还被配置为:
    确定所述风机是否进入抗涡模式;
    响应于所述风机进入抗涡模式,开启抗涡功能并触发窗口期;
    在窗口期内将所述风机的叶片向预设抗涡位置调整,
    其中,窗口期指示完成抗涡功能所需的最小时间。
  11. 一种存储有计算机程序的计算机可读存储介质,当所述计算机程序 被处理器执行时,促使所述处理器执行如权利要求1至8中的任意一项所述的风机的抗涡激振动的控制方法。
  12. 一种电子设备,所述电子设备包括:
    处理器;
    存储器,存储有计算机程序,当所述计算机程序被处理器执行时,促使所述处理器执行如权利要求1至8中的任意一项所述的风机的抗涡激振动的控制方法。
PCT/CN2022/123260 2022-06-30 2022-09-30 风机的抗涡激振动的控制方法、装置和系统 WO2024000902A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247003834A KR20240027819A (ko) 2022-06-30 2022-09-30 풍력 발전기 세트를 위한 항-와류 유발 진동 제어 방법, 장치 및 시스템
EP22948990.1A EP4353967A1 (en) 2022-06-30 2022-09-30 Anti-vortex-induced vibration control method, apparatus, and system for wind generator set
AU2022466589A AU2022466589A1 (en) 2022-06-30 2022-09-30 Anti-vortex-induced vibration control method, apparatus, and system for wind generator set

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210778989.3 2022-06-30
CN202210778989.3A CN117365843A (zh) 2022-06-30 2022-06-30 用于风机的抗涡激振动控制方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2024000902A1 true WO2024000902A1 (zh) 2024-01-04

Family

ID=89383784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123260 WO2024000902A1 (zh) 2022-06-30 2022-09-30 风机的抗涡激振动的控制方法、装置和系统

Country Status (5)

Country Link
EP (1) EP4353967A1 (zh)
KR (1) KR20240027819A (zh)
CN (1) CN117365843A (zh)
AU (1) AU2022466589A1 (zh)
WO (1) WO2024000902A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102032110A (zh) * 2009-09-30 2011-04-27 通用电气公司 减小风力涡轮机中振动的方法和实现该方法的风力涡轮机
WO2011051778A1 (en) * 2009-10-27 2011-05-05 Clipper Windpower, Inc. System for determining wind turbine blade pitch settings
US20150098820A1 (en) * 2013-10-09 2015-04-09 Siemens Aktiengesellchaft Method and apparatus for reduction of fatigue and gust loads on wind turbine blades
CN111396249A (zh) * 2020-03-31 2020-07-10 新疆金风科技股份有限公司 在阵风风况下降低塔架的载荷的方法及装置
CN112360684A (zh) * 2020-10-27 2021-02-12 中车株洲电力机车研究所有限公司 抑制风机涡激振动的方法
CN114676655A (zh) * 2022-04-22 2022-06-28 三一重能股份有限公司 变桨抗涡效果检测方法、装置及风力发电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102032110A (zh) * 2009-09-30 2011-04-27 通用电气公司 减小风力涡轮机中振动的方法和实现该方法的风力涡轮机
WO2011051778A1 (en) * 2009-10-27 2011-05-05 Clipper Windpower, Inc. System for determining wind turbine blade pitch settings
US20150098820A1 (en) * 2013-10-09 2015-04-09 Siemens Aktiengesellchaft Method and apparatus for reduction of fatigue and gust loads on wind turbine blades
CN111396249A (zh) * 2020-03-31 2020-07-10 新疆金风科技股份有限公司 在阵风风况下降低塔架的载荷的方法及装置
CN112360684A (zh) * 2020-10-27 2021-02-12 中车株洲电力机车研究所有限公司 抑制风机涡激振动的方法
CN114676655A (zh) * 2022-04-22 2022-06-28 三一重能股份有限公司 变桨抗涡效果检测方法、装置及风力发电机

Also Published As

Publication number Publication date
EP4353967A1 (en) 2024-04-17
KR20240027819A (ko) 2024-03-04
AU2022466589A1 (en) 2024-02-01
CN117365843A (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
US10662925B2 (en) Method and apparatus for yaw control of wind turbine under typhoon
CN106121914B (zh) 极端状态下风机的停机方法和系统
CN105222742A (zh) 浆距故障检测系统和方法
JP4875750B2 (ja) 風車のピッチ角制御装置及びその方法
Bottasso et al. Cyclic pitch control for the reduction of ultimate loads on wind turbines
WO2011140818A1 (zh) 强风下风力发电机组的控制方法
CN102374120A (zh) 一种风力发电机组控制方法及系统
US10982649B2 (en) System and method for detecting a pitch fault in a wind turbine via voltage, current, torque, or force monitoring
JP2013126371A (ja) インバータ制御装置
CN107131100A (zh) 一种变速变桨风电机组阵风控制方法
CN108223268A (zh) 风力发电机组的转速控制方法和装置
WO2024000902A1 (zh) 风机的抗涡激振动的控制方法、装置和系统
CN112963304B (zh) 一种包含转矩控制的风电机组超速保护辅助控制方法
CN112761874B (zh) 安全停机方法、系统和风力发电机
CN112128053B (zh) 叶片顺桨控制方法、风力发电机组主控制器与变桨控制器
CN107701368A (zh) 一种风电机组的叶片顺桨方法
CN111075651A (zh) 风电机组的极限载荷降低方法及系统
CN113048013B (zh) 风力发电机组偏航极端工况控制方法、系统、发电机组
CN112594131B (zh) 一种风力发电机组侧风偏航控制方法、系统及相关组件
JP2019163734A (ja) アップウィンド型風車の運転装置及びその台風時の運転方法
CN115875198A (zh) 停机控制方法、设备及风力发电机组
CN108533452A (zh) 风力发电机组的解缆控制方法和解缆控制装置
CN117514613A (zh) 一种风力发电机组涡激抑制方法、装置、系统、存储介质及其风力发电机组
CN112796941B (zh) 叶轮锁定方法、装置、电子设备及存储介质
CN116292131B (zh) 风力发电机组的控制方法、控制器和风力发电机组

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022948990

Country of ref document: EP

Ref document number: 22948990.1

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2022466589

Country of ref document: AU

Ref document number: AU2022466589

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20247003834

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2022466589

Country of ref document: AU

Date of ref document: 20220930

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247003834

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2022948990

Country of ref document: EP

Effective date: 20240111

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948990

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024002180

Country of ref document: BR