WO2024000714A1 - 多动子直驱传输系统及相关控制方法、设备和存储介质 - Google Patents

多动子直驱传输系统及相关控制方法、设备和存储介质 Download PDF

Info

Publication number
WO2024000714A1
WO2024000714A1 PCT/CN2022/108453 CN2022108453W WO2024000714A1 WO 2024000714 A1 WO2024000714 A1 WO 2024000714A1 CN 2022108453 W CN2022108453 W CN 2022108453W WO 2024000714 A1 WO2024000714 A1 WO 2024000714A1
Authority
WO
WIPO (PCT)
Prior art keywords
mover
frame
transmission system
drive transmission
hall element
Prior art date
Application number
PCT/CN2022/108453
Other languages
English (en)
French (fr)
Inventor
钱林
秦彧
陈敏
史卫领
郭顺
朱学园
Original Assignee
瑞声光电科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声光电科技(常州)有限公司 filed Critical 瑞声光电科技(常州)有限公司
Publication of WO2024000714A1 publication Critical patent/WO2024000714A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G35/00Mechanical conveyors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/08Control devices operated by article or material being fed, conveyed or discharged

Definitions

  • the present invention relates to the technical field of transmission system control, and in particular to a multi-motor direct-drive transmission system, a multi-motor direct-drive transmission system control method, computer equipment and computer-readable storage media.
  • the related art multi-motor direct-drive transmission system includes multiple segments and multiple movers installed on the stator; the stator includes coil windings, and the multiple segments of the stator are composed of linear segments and arc segments; the movers include magnetic Steel, the magnetic steel is arranged opposite to the coil winding, and the coil winding drives the magnetic steel to move the mover.
  • the coil winding structures in the multi-segments in the multi-motor direct-drive transmission system are divided into two categories: linear segments and arc segments.
  • the multi-motor direct-drive transmission system in the related art arranges displacement sensors in straight line segments and arc segments to identify the position of the movers. Among them, the displacement sensor is generally implemented using an encoder array.
  • each stator in the related art requires an encoder array, resulting in a complex structure, difficult assembly process, and high cost.
  • no workstations are arranged on some stators, no positioning is required, only simple transitions are performed, so there is no need for expensive encoder arrays.
  • How to control a part of the stator that only performs a simple transition without arranging work stations and without positioning is a technical problem that needs to be solved.
  • the purpose of the present invention is to overcome the above technical problems and provide a multi-motor direct-drive transmission system, a multi-motor direct-drive transmission system control method, computer equipment and Computer-readable storage media.
  • an embodiment of the present invention provides a multi-motor direct-drive transmission system, which includes a stator unit that is connected in sequence to form an integral body and a plurality of mover units that move relative to the stator unit.
  • Driver the stator unit includes a frame and a plurality of coil windings installed on the frame and arranged sequentially along the extension direction of the frame.
  • Each of the mover units includes a frame that forms a sliding connection with the stator unit and can be relative to the stator unit.
  • the mover of the frame and the magnet fixed to the mover, the magnet and the coil winding are arranged facing each other and spaced apart, and the coil winding drives the magnet to move the mover;
  • the narrative framework includes alternating feedback sections and transition sections;
  • the stator unit also includes a plurality of Hall elements installed on the transition section and fixed to the frame at intervals.
  • Each driver corresponds to a plurality of coil windings.
  • Each Hall element and one of the Coil windings are arranged, and each driver is electrically connected to the Hall element and the coil winding respectively; the Hall element is spaced apart from the magnet; the Hall element and the coil winding are located on the same side ;
  • the mover unit moves to the magnetic field range of one of the coil windings, a magnetic field change is generated, and one of the Hall elements located within the magnetic field range generates a Hall signal according to the detected magnetic field change;
  • the driver calculates the electrical angle through the received Hall signal, and calculates the driving current according to the preset initial speed of the mover unit and the electrical angle.
  • One of the coil windings corresponding to the Hall element is based on The driving current drives the magnet to move to achieve position correction.
  • the height between the Hall element and the magnetic steel is adjustable.
  • the frame includes a first frame, a support frame bent and extended from the first frame, and a second frame bent and extended from one end of the support frame away from the first frame; the first frame The support frame and the second frame together form a receiving space, the Hall element and the coil winding are accommodated in the receiving space, and the Hall element is located on the second frame close to the support frame. side, the coil winding is located on the side of the second frame away from the support frame; the mover is partially received in the receiving space, and the mover is connected to the second frame and connected with the second frame Form a sliding connection.
  • the stator unit further includes a track fixed to the first frame, and the track is received in the receiving space;
  • the mover further includes a mover body and a pulley fixed to the mover body.
  • the pulley and the magnet are respectively located on opposite sides of the mover body, the pulley matches the track and forms a sliding connection with the track.
  • embodiments of the present invention also provide a multi-motor direct-drive transmission system control method.
  • the multi-motor direct-drive transmission system control method is applied to the multi-motor direct-drive transmission system as provided in the embodiment of the present invention.
  • the stator unit also includes a plurality of displacement sensors installed on the feedback section, each displacement sensor corresponding to one of the stator units; the method includes the following steps:
  • Step S1 The displacement sensor detects the real-time position of the mover unit in the feedback section in real time.
  • Step S2 Determine in real time whether the mover unit enters the boundary area between the feedback section and the transition section:
  • the speed of the mover unit is set as the initial speed
  • the Hall element detects and generates the Hall signal in real time
  • the driver calculates the electrical angle based on the received Hall signal.
  • the initial speed and the electrical angle are used to calculate the driving current.
  • One of the coil windings corresponding to the Hall element drives the magnet to move according to the driving current to achieve position correction, and sets the value of the coil winding.
  • Step S3 Detect the real-time position of the mover unit in the transition section in real time, and set the collaborative control mode of each coil winding within the transition section according to the real-time position of the mover unit; the collaboration The control mode can be switched between master control mode and master-slave control mode;
  • Step S4 Determine in real time whether the mover unit enters the boundary area between the transition section and the feedback section: if so, stop the control of each coil winding within the transition section, and set the feedback
  • the cooperative control mode of each coil winding within the segment range is used to realize the transition from the transition segment to the feedback segment.
  • the setting of the collaborative control mode includes:
  • Step S31 The first Hall element in the transition section generates the Hall signal according to the magnetic field change detected by it.
  • the driver calculates the electrical angle based on the received Hall signal and calculates the electrical angle according to the calculation.
  • the electrical angle output is used to determine whether it reaches the first set value:
  • Step S32 The subsequent driver determines whether the second set value is reached based on the electrical angle calculated by the corresponding Hall element:
  • step S4 along the movement direction of the mover unit, the feedback signal detected by the displacement feedback unit of the feedback section in the area of the boundary between the transition section and the feedback section is When the preset feedback value is reached, the control of the mover unit is set to the cooperative control mode of each coil winding within the range of the feedback section.
  • embodiments of the present invention further provide a computer device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor executes the computer program.
  • embodiments of the present invention also provide a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the above-mentioned multiple functions as provided by the embodiments of the present invention are implemented. Steps in the control method of the mover direct drive transmission system.
  • the multi-motor direct-drive transmission system of the present invention is provided with a stator unit and a mover unit.
  • the mover unit moves to a magnetic field range of the coil winding, it generates a magnetic field change, which is located in the One of the Hall elements within the magnetic field range generates a Hall signal according to the magnetic field change detected by it; one of the drivers corresponding to the Hall element calculates the electrical angle by receiving the Hall signal and calculates the electrical angle according to the preset Assuming the initial speed of the mover unit and the electrical angle, the driving current is calculated, and one of the coil windings corresponding to the Hall element drives the magnet to move according to the driving current to achieve position correction.
  • This structure does not require an expensive encoder array in the transition section where a simple transition is made, and can be realized by using the Hall element.
  • the number of components used is small and the structure is simple. More preferably, the Hall element and the magnet are spaced apart at the same time; the Hall element and the coil winding are located on the same side. This structure makes the Hall element, the coil winding and the magnet.
  • the assembly of the steel is simple, so that the multi-motor direct-drive transmission system, the multi-motor direct-drive transmission system control method, the computer equipment and the computer-readable storage medium of the present invention have a simple structure and a low number of components. Few, motion control methods are simple and easy to implement.
  • Figure 1 is a partial three-dimensional structural schematic diagram of the multi-motor direct-drive transmission system of the present invention
  • Figure 2 is a partial three-dimensional structural schematic diagram from another angle of the multi-motor direct-drive transmission system of the present invention
  • Figure 3 is an exploded view of a partial three-dimensional structure of the multi-motor direct-drive transmission system of the present invention
  • Figure 4 is a cross-sectional view along line A-A in Figure 1
  • Figure 5 is a schematic three-dimensional structural diagram of another part of the multi-motor direct-drive transmission system of the present invention.
  • Figure 6 is a diagram showing the relationship between Hall signal and electrical angle in the multi-motor direct-drive transmission system of the present invention.
  • Figure 7 is a flow chart of the control method of the multi-motor direct-drive transmission system of the present invention.
  • Figure 8 is a flow chart of step S3 of the multi-motor direct drive transmission system control method of the present invention.
  • Figure 9 is a schematic structural diagram of a computer device provided by an embodiment of the present invention.
  • An embodiment of the present invention provides a multi-motor direct-drive transmission system 100. Please also see Figure 1-5.
  • the multi-motor direct-drive transmission system 100 includes a stator unit 1 that is connected in sequence to form an integral body and a plurality of mover units 2 that move relative to the stator unit 1 .
  • the stator unit 1 includes a frame 11 , a plurality of coil windings 12 , a Hall element 13 and a mounting and fixing plate 14 for the Hall element.
  • the frame 11 is used to support the stator 1 and the mover unit 2 .
  • the frame 11 includes a first frame 111, a support frame 112 bent and extended from the first frame 111, and a second frame 113 bent and extended from one end of the support frame 112 away from the first frame 111.
  • the first frame 111 , the support frame 112 and the second frame 113 together form a receiving space 110 .
  • the frame 11 has an annular structure and includes alternating feedback sections 20 and transition sections 10.
  • the coil winding 12 is used to drive the mover unit 2 to move.
  • the coil winding 12 is received in the receiving space 110 .
  • a plurality of coil windings 12 are installed on the frame 11 .
  • a plurality of the coil windings 12 are arranged in sequence along the extension direction of the frame 11 .
  • the coil winding 12 is located on the side of the second frame 113 away from the support frame 112 .
  • the Hall element 13 is used to generate a Hall signal based on the detected magnetic field change.
  • the Hall element 13 is received in the receiving space 110 , and the Hall element 13 is located on the side of the second frame 113 close to the support frame 112 .
  • the Hall element 13 and the coil winding 12 are located on the same side.
  • Each driver corresponds to multiple coil windings 13
  • each Hall element 13 corresponds to one coil winding 12 .
  • Each driver is electrically connected to the Hall element 13 and the coil winding 12 respectively.
  • each driver and the adjacent driver implement a collaborative control strategy through the feedback of the Hall element.
  • the collaborative control strategy includes a master-slave collaborative control strategy.
  • the master-slave collaborative control strategy is that when the mover unit 2 moves to the junction area of two adjacent stators 1, the second driver follows the first driver and outputs the same driving current. .
  • coil winding 12 and the Hall element 13 are commonly used components and circuit modules in this field.
  • the specific indicators and models are determined according to actual design requirements and will not be described in detail here.
  • Each of the mover units 2 includes a mover 21 that is slidingly connected to the stator unit 1 and can move relative to the frame 11 , and a magnet 22 fixed to the mover 21 .
  • the magnet 22 and the coil winding 12 are arranged facing each other and spaced apart.
  • the coil winding 12 drives the magnet 22 to move the mover 2 .
  • the Hall element 13 is disposed in the transition section 10 of the multiple sections 1 that does not require positioning and only simple transitions.
  • the working process of the Hall element 13 is: when the mover unit 2 moves to a magnetic field range of the coil winding 12, a magnetic field change is generated, and a Hall element 13 located in the magnetic field range changes according to its The detected magnetic field change outputs a voltage signal; the driver corresponding to the Hall element 13 calculates the electrical angle through the received Hall signal, and calculates the electrical angle according to the preset initial speed of the mover unit 2 and the The driving current is calculated from the electrical angle, and one of the coil windings 12 corresponding to the Hall element 13 drives the magnet 22 to move according to the driving current to achieve position correction. Therefore, the Hall element 13 is disposed at a position that does not require positioning but simple transition without arranging work stations, thereby eliminating the need for an expensive encoder array and reducing the number of components compared to the encoder array in the related art.
  • FIG. 6 is a diagram showing the relationship between the Hall signal and the electrical angle in the multi-motor direct-drive transmission system 100 of the present invention.
  • W1 is the Hall signal and W2 is the electrical angle.
  • W1 is the Hall signal and W2 is the electrical angle.
  • the different electrical angles generated by different Hall elements 13 can be used to fine-tune the moving speed of the magnet 22. to achieve position correction.
  • Several approximately the same electrical angles keep the moving speed of the magnet 22 smooth, thereby making the motion control method of the multi-motor direct-drive transmission system 100 simple and easy to implement.
  • the Hall element 13 is spaced apart from the magnet 22 .
  • the height between the Hall element 13 and the magnet 22 is adjustable. This structure allows the installation position of the Hall element 13 to be adjusted according to the actual situation.
  • the Hall element 13 sets the change amount of the magnetic field detected by the Hall element 13 by adjusting the height between the magnets 22 . sensitivity, thereby making the motion control method of the multi-motor direct-drive transmission system 100 simple and easy to implement.
  • the two electrical angles calculated by the two adjacent drivers are compared with the preset electrical angle, and a collaborative control strategy is used to drive the magnet 22 to move based on the comparison results.
  • the collaborative control strategy is a master-slave collaborative control strategy in which the driving currents in two adjacent drivers are the same. This setting is simple and easy to operate compared to the main control mode in which each driver drives independently and does not require complex logic control, making the control logic of the driver simple, thereby making the motion control of the multi-motor direct-drive transmission system 100 The method is simple and easy to implement.
  • the mover 21 is partially received in the receiving space 110 .
  • the mover 21 is connected to the second frame 113 and forms a sliding connection with the second frame 113 .
  • the multi-motor direct drive transmission system 100 also includes a track fixed to the first frame 111. 15.
  • the track 15 is received in the receiving space 110 .
  • the extension direction of the rail 15 is the same as the extension direction of the first frame 111 .
  • the mover 2 also includes a mover body 211 and a pulley 212 fixed to the mover body 211 .
  • the pulley 212 and the magnet 22 are respectively located on opposite sides of the mover body 211 .
  • the pulley 212 matches the rail 15 and forms a sliding connection with the rail 15 .
  • the structure of the pulley 212 and the track 15 can make the mover 2 move smoothly.
  • the stator unit 1 further includes a plurality of displacement sensors (not shown) installed on the feedback section 20 .
  • the displacement feedback unit is located in the feedback section 20 and is used to accurately control the position of the mover 21 .
  • the displacement feedback unit has a one-to-one correspondence with the coil winding 12 to which it is connected. That is, each displacement sensor is provided corresponding to one of the coil windings 12 .
  • the displacement feedback unit and the Hall element 13 are used at the same time, so that precise adjustments can be made when the position of the mover 2 needs to be accurately controlled, without the need for expensive coding in the transition section 10 of a simple transition.
  • the sensor array is implemented using the Hall element 13. This structure makes the motion control method of the multi-motor direct drive transmission system 100 simple and easy to implement.
  • the invention also proposes a control method for a multi-motor direct-drive transmission system. Please refer to FIG. 7 , where the multi-motor direct-drive transmission system control method is applied to the multi-motor direct-drive transmission system 100 .
  • the multi-motor direct-drive transmission system control method includes the following steps:
  • Step S1 The displacement sensor detects the real-time position of the mover unit 2 in the feedback section 20 in real time.
  • Step S2 Determine in real time whether the mover unit 2 enters the boundary area between the feedback section 20 and the transition section 10:
  • the speed of the mover unit 2 is set as the initial speed
  • the Hall element 13 detects and generates the Hall signal in real time
  • the driver calculates the electrical angle through the received Hall signal
  • the driving current is calculated based on the initial speed and the electrical angle
  • one of the coil windings 12 corresponding to the Hall element 13 drives the magnet 22 to move according to the driving current to achieve position correction, and set The main control mode of the coil winding 12.
  • the electrical angle is corrected in real time through the Hall element 13 according to the preset first transition speed to realize operation control, thereby making the motion control method simple and easy to implement.
  • Step S3 Detect the real-time position of the mover unit 2 in the transition section 10 in real time, and set the cooperative control of each coil winding 12 within the transition section 10 according to the real-time position of the mover unit 2 model.
  • the cooperative control mode is any one of master control mode and master-slave control mode switching.
  • step S3 in the boundary area of the two adjacent stator units 1 in the transition section 10, the setting of the cooperative control mode includes:
  • Step S31 The first Hall element 13 of the transition section 10 generates the Hall signal according to the magnetic field change detected by it, and the driver connected to the Hall element 13 receives the Hall signal.
  • the Hall signal calculates the electrical angle, and determines whether the first set value is reached based on the calculated electrical angle:
  • Step S32 The subsequent driver determines whether it reaches the second set value based on the electrical angle calculated by the Hall element 13 connected to it:
  • the main control mode of the subsequent coil winding 12 is set. From the step S31 to the step S32, it is determined whether the first set value and the second set value are reached through the electrical angle, so as to realize operation control and smooth transition.
  • step S3 the driver adopts a collaborative control strategy when transitioning between different stators 1 based on the calculated electrical angle information, preferably a master-slave collaborative control strategy, thereby making the motion control method simple and easy to implement.
  • Step S4 Determine in real time whether the mover unit 2 enters the boundary area between the transition section 10 and the feedback section 20: If so, stop the control of each coil winding 12 within the transition section 10, and The cooperative control mode of each coil winding 12 within the range of the feedback section 20 is set to realize the transition from the transition section 10 to the feedback section 20 .
  • step S4 along the movement direction of the mover unit 2, the feedback signal detected by the displacement feedback unit of the feedback section 20 in the interface area between the transition section 10 and the feedback section 20 is When the preset feedback value is reached, the control of the mover unit 2 is set to the cooperative control mode of each coil winding 12 within the range of the feedback section 20 .
  • control method of the multi-motor direct drive transmission system requires a small number of components, and the motion control method is simple and easy to implement.
  • FIG. 9 is a schematic structural diagram of the computer device provided by an embodiment of the present invention.
  • the computer device 400 includes: a processor 401, a memory 402, and a computer program stored on the memory 402 and executable on the processor 401.
  • the processor 401 calls the computer program stored in the memory 402, and when the computer program is executed, the steps in the multi-motor direct drive transmission system control method in the above embodiment are implemented.
  • the computer device 400 provided by the embodiment of the present invention can implement the steps in the multi-motor direct drive transmission system control method in the above embodiment, and can achieve the same technical effect. Refer to the description in the above embodiment, which will not be repeated here. Repeat.
  • Embodiments of the present invention also provide a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the control of the multi-motor direct-drive transmission system provided by the embodiment of the present invention is implemented.
  • Each process and step in the method can achieve the same technical effect, so to avoid repetition, they will not be described again here.
  • the program can be stored in a computer-readable storage medium.
  • the program can be stored in a computer-readable storage medium.
  • the process may include the processes of the embodiments of each of the above methods.
  • the storage medium may be a magnetic disk, an optical disk, or a read-only memory (Read-Only memory). Memory, ROM) or random access memory (Random Access Memory, referred to as RAM), etc.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present invention can be embodied in the form of a software product in essence or that contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in various embodiments of the present invention.
  • the multi-motor direct-drive transmission system of the present invention is provided with a stator unit and a mover unit.
  • the mover unit moves to a magnetic field range of the coil winding, it generates a magnetic field change, which is located in the One of the Hall elements within the magnetic field range generates a Hall signal according to the magnetic field change detected by it; one of the drivers corresponding to the Hall element calculates the electrical angle by receiving the Hall signal and calculates the electrical angle according to the preset Assuming the initial speed of the mover unit and the electrical angle, the driving current is calculated, and one of the coil windings corresponding to the Hall element drives the magnet to move according to the driving current to achieve position correction.
  • This structure does not require an expensive encoder array in the transition section where a simple transition is made, and can be realized by using the Hall element.
  • the number of components used is small and the structure is simple. More preferably, the Hall element and the magnet are spaced apart at the same time; the Hall element and the coil winding are located on the same side. This structure makes the Hall element, the coil winding and the magnet.
  • the assembly of the steel is simple, so that the multi-motor direct-drive transmission system, the multi-motor direct-drive transmission system control method, the computer equipment and the computer-readable storage medium of the present invention have a simple structure and a low number of components. Few, motion control methods are simple and easy to implement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Linear Motors (AREA)
  • Control Of Linear Motors (AREA)

Abstract

一种多动子直驱传输系统(100),其包括定子单元(1)和动子单元(2),驱动器;定子单元(1)包括框架(11)、线圈绕组(12)、霍尔元件(13),直驱传输系统(100)由多段直线段和圆弧段组成;动子单元(2)包括动子(21)和磁钢(22);框架(11)包括反馈段(20)和过渡段(10);动子单元(2)移动至一个线圈绕组(13)的磁场范围时产生磁场变化量,霍尔元件(13)根据其检测到的磁场变化量输出电压信号;驱动器通过接收的霍尔信号计算出电角度,并根据预设的动子单元(2)的初始速度和电角度计算出驱动电流,线圈绕组(13)根据驱动电流驱动磁钢(22)移动以实现位置校正。这种多动子直驱传输系统控制方法、计算机设备和计算机可读存储介质,结构简单,元器件数量少,运动控制方法简单且易于实施。

Description

多动子直驱传输系统及相关控制方法、设备和存储介质 技术领域
本发明涉及传输系统控制技术领域,尤其涉及一种多动子直驱传输系统、多动子直驱传输系统控制方法、计算机设备和计算机可读存储介质。
背景技术
随着生产组装线上流水作业的应用越来越重要,多动子直驱传输系统成为生产组装线上重要的生产设备。
相关技术的多动子直驱传输系统包括多段和安装于所述定子的多个动子;所述定子包括线圈绕组,多段所述定子由直线段和圆弧段组成;所述动子包括磁钢,所述磁钢与所述线圈绕组正对间隔设置,所述线圈绕组驱动所述磁钢以使所述动子移动。所述多动子直驱传输系统中的多段中的线圈绕组结构分有直线段与圆弧段两大类。相关技术中的多动子直驱传输系统在直线段和圆弧段布置位移传感器来识别动子的位置。其中,位移传感器一般采用编码器阵列实现。
然而,相关技术中的每个所述定子均需要采用编码器阵列,造成结构复杂,组装工艺难度大且成本较高。其中,在部分定子上不安排工位无需定位只进行简单过渡,则无需昂贵的编码器阵列。如何在不安排工位无需定位只进行简单过渡的部分定子进行控制是一个需要解决的技术问题。
因此,实有必要提供一种新的多动子直驱传输系统和控制方法解决上述技术问题。
技术问题
本发明的目的是克服上述技术问题,提供一种结构简单,元器件数量少,运动控制方法简单且易于实施的多动子直驱传输系统、多动子直驱传输系统控制方法、计算机设备和计算机可读存储介质。
技术解决方案
为了实现上述目的,第一方面,本发明实施例提供一种多动子直驱传输系统,其包括由多段依次连接呈整体的定子单元和多个相对于定子单元移动的动子单元,多个驱动器;所述定子单元包括框架和安装于所述框架且沿所述框架的延伸方向依次排列的多个线圈绕组,每一个所述动子单元包括与所述定子单元形成滑动连接并可相对于所述框架移动的动子以及固定于所述动子的磁钢,所述磁钢与所述线圈绕组正对间隔设置,所述线圈绕组驱动所述磁钢以使所述动子移动;所述框架包括相互交替的反馈段和过渡段;
所述定子单元还包括安装于所述过渡段且间隔固定于所述框架的多个霍尔元件,每一所述驱动器对应多个所述线圈绕组,每个所述霍尔元件和一个所述线圈绕组设置,每一所述驱动器分别与所述霍尔元件和所述线圈绕组电连接;所述霍尔元件与所述磁钢间隔设置;所述霍尔元件与所述线圈绕组位于同一侧;所述动子单元移动至一个所述线圈绕组的磁场范围时产生磁场变化量,位于所述磁场范围内的一个所述霍尔元件根据其检测到的磁场变化量产生霍尔信号;所述驱动器通过接收的所述霍尔信号计算出电角度,并根据预设的所述动子单元的初始速度和所述电角度计算出驱动电流,与该霍尔元件对应的一个所述线圈绕组根据所述驱动电流驱动所述磁钢移动以实现位置校正。
更优的,所述霍尔元件与所述磁钢之间的高度可调。
更优的,所述框架包括第一框架、由所述第一框架弯折延伸的支撑架以及由所述支撑架远离所述第一框架一端弯折延伸的第二框架;所述第一框架、所述支撑架以及第二框架共同围成收容空间,所述霍尔元件和所述线圈绕组收容于所述收容空间内,所述霍尔元件位于所述第二框架靠近所述支撑架一侧,所述线圈绕组位于所述第二框架远离所述支撑架一侧;所述动子部分收容于所述收容空间,所述动子连接于所述第二框架并与所述第二框架形成滑动连接。
更优的,所述定子单元还包括固定于所述第一框架的轨道,所述轨道收容于所述收容空间内;所述动子还包括动子本体和固定于所述动子本体的滑轮,所述滑轮与所述磁钢分别位于所述动子本体的相对两侧,所述滑轮与所述轨道匹配并与所述轨道形成滑动连接。
第二方面,本发明实施例还提供一种多动子直驱传输系统控制方法,所述多动子直驱传输系统控制方法应用于如本发明实施例提供上述的多动子直驱传输系统,所述定子单元还包括安装于所述反馈段的多个位移传感器,每一所述位移传感器对应一所述定子单元;该方法包括如下步骤:
步骤S1、所述位移传感器实时检测所述动子单元在所述反馈段运动的实时位置。
步骤S2、实时判断所述动子单元是否进入所述反馈段与所述过渡段交界的区域:
若是,则将所述动子单元的速度设为所述初始速度,所述霍尔元件实时检测产生所述霍尔信号,所述驱动器通过接收的所述霍尔信号计算出电角度,并根据所述初始速度和所述电角度计算出驱动电流,与该霍尔元件对应的一个所述线圈绕组根据所述驱动电流驱动所述磁钢移动以实现位置校正,并设定所述线圈绕组的主控制模式;
步骤S3、实时检测所述动子单元在所述过渡段运动的实时位置,根据所述动子单元的实时位置设定所述过渡段范围内各所述线圈绕组的协同控制模式;所述协同控制模式为主控制模式和主从控制模式切换中的任意一种;
步骤S4、实时判断所述动子单元是否进入所述过渡段与所述反馈段交界的区域:若是,则将所述过渡段范围内各所述线圈绕组的控制停止,并设定所述反馈段范围内各所述线圈绕组的协同控制模式,以实现所述过渡段向所述反馈段过度。
更优的,所述步骤S3中,在所述过渡段中的两段相邻的所述定子单元的交界区域内,所述协同控制模式的设定包括:
步骤S31、所述过渡段的第一个所述霍尔元件根据其检测到的磁场变化量产生所述霍尔信号,所述驱动器通过接收的所述霍尔信号计算出电角度,并根据计算出的所述电角度判断是否达到第一设定值:
若否,则返回所述步骤S2;
若是,则设定相邻的两个所述线圈绕组的所述主从控制模式;
步骤S32、后续一个所述驱动器根据与其对应的所述霍尔元件计算出的所述电角度判断是否达到第二设定值:
若否,则返回所述步骤S31;
若是,则设定后续一个所述线圈绕组的所述主控制模式。
更优的,所述步骤S4中,沿所述动子单元的运动方向,根据所述过渡段与所述反馈段交界的区域内的所述反馈段的所述位移反馈单元检测到的反馈信号达到预设的反馈值时,则将所述动子单元的控制设定所述反馈段范围内各所述线圈绕组的协同控制模式。
第三方面,本发明实施例还提供一种计算机设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如本发明实施例提供上述的多动子直驱传输系统控制方法中的步骤。
第四方面,本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如本发明实施例提供上述的多动子直驱传输系统控制方法中的步骤。
有益效果
与现有技术相比,本发明的多动子直驱传输系统通过设置定子单元和动子单元,所述动子单元移动至一个所述线圈绕组的磁场范围时产生磁场变化量,位于所述磁场范围内的一个所述霍尔元件根据其检测到的磁场变化量产生霍尔信号;与该霍尔元件对应的一个所述驱动器通过接收的所述霍尔信号计算出电角度,并根据预设的所述动子单元的初始速度和所述电角度计算出驱动电流,与该霍尔元件对应的一个所述线圈绕组根据所述驱动电流驱动所述磁钢移动以实现位置校正。该结构在进行简单过渡的所述过渡段内无需昂贵的编码器阵列,采用所述霍尔元件可实现,使用的元器件数量少且结构简单。更优的,同时将所述霍尔元件与所述磁钢间隔设置;所述霍尔元件与所述线圈绕组位于同一侧,该结构使得所述霍尔元件、所述线圈绕组以及所述磁钢的组装简单,从而使得本发明的多动子直驱传输系统多动子直驱传输系统、多动子直驱传输系统控制方法、计算机设备和计算机可读存储介质的结构简单,元器件数量少,运动控制方法简单且易于实施。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本发明多动子直驱传输系统的部分立体结构示意图;
图2为本发明多动子直驱传输系统另一角度的部分立体结构示意图;
图3为本发明多动子直驱传输系统的部分立体结构分解图;
图4为沿图1中A-A线剖视图
图5为本发明多动子直驱传输系统另一部分的立体结构示意图;
图6为本发明多动子直驱传输系统中霍尔信号与电角度的关系图;
图7为本发明多动子直驱传输系统控制方法的流程框图;
图8为本发明多动子直驱传输系统控制方法的步骤S3的流程框图;
图9为本发明实施例提供的计算机设备的结构示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明实施例提供一种多动子直驱传输系统100。请同时参阅图1-5。所述多动子直驱传输系统100包括由多段依次连接呈整体的定子单元1和多个相对于定子单元1移动的动子单元2。
所述定子单元1包括框架11、多个线圈绕组12、霍尔元件13和霍尔元件的安装固定板14。
所述框架11用于支撑所述定子1和所述动子单元2。具体的,所述框架11包括第一框架111、由所述第一框架111弯折延伸的支撑架112以及由所述支撑架112远离所述第一框架111一端弯折延伸的第二框架113。所述第一框架111、所述支撑架112以及第二框架113共同围成收容空间110。
其中,从沿动子单元2移动方向,所述框架11呈环状结构且包括相互交替的反馈段20和过渡段10。
所述线圈绕组12用于驱动所述动子单元2移动。
所述线圈绕组12收容于所述收容空间110内。多个所述线圈绕组12安装于所述框架11。多个所述线圈绕组12沿所述框架11的延伸方向依次排列。所述线圈绕组12位于所述第二框架113远离所述支撑架112一侧。
所述霍尔元件13用于检测到的磁场变化量产生霍尔信号。所述霍尔元件13收容于所述收容空间110内,所述霍尔元件13位于所述第二框架113靠近所述支撑架112一侧。所述霍尔元件13与所述线圈绕组12位于同一侧。
每一所述驱动器对应多个所述线圈绕组13,每个所述霍尔元件13对应一个所述线圈绕组12设置。每一所述驱动器分别与所述霍尔元件13和所述线圈绕组12电连接。
本实施例中,每一个所述驱动器与相邻的所述驱动器通过所述霍尔元件的反馈情况实施协同控制策略。其中,所述协同控制策略包括主从协同控制策略。具体的,所述主从协同控制策略为当所述动子单元2运动到相邻两个所述定子1的交界区,第二个所述驱动器跟随第一个所述驱动器输出相同的驱动电流。
需要指出的是,所述线圈绕组12、所述霍尔元件13均为本领域常用的元器件和电路模块,具体的指标和型号根据实际设计需求进行确定,在此,不作详细赘述。
每一个所述动子单元2包括与所述定子单元1形成滑动连接并可相对于所述框架11移动的动子21以及固定于所述动子21的磁钢22。所述磁钢22与所述线圈绕组12正对间隔设置。
所述线圈绕组12驱动所述磁钢22以使所述动子2移动。
本实施例中,所述霍尔元件13设置于不安排工位无需定位只进行简单过渡的多段1中的过渡段10。所述霍尔元件13的工作过程为:所述动子单元2移动至一个所述线圈绕组12的磁场范围时产生磁场变化量,位于所述磁场范围内的一个所述霍尔元件13根据其检测到的磁场变化量输出电压信号;与该霍尔元件13对应的所述驱动器通过接收的所述霍尔信号计算出电角度,并根据预设的所述动子单元2的初始速度和所述电角度计算出驱动电流,与该霍尔元件13对应的一个所述线圈绕组12根据所述驱动电流驱动所述磁钢22移动以实现位置校正。因此,不安排工位无需定位只进行简单过渡的位置上设置所述霍尔元件13,从而不需要昂贵的编码器阵列,并使得元器件相对于相关技术的编码器阵列数量少。
请参考图6所示,图6为本发明多动子直驱传输系统100中霍尔信号与电角度的关系图。图6中W1为霍尔信号,W2为电角度。其中多个连续的所述霍尔元件13产生霍尔信号为多个,而电角度基本相同,不同的所述霍尔元件13产生的不同的电角度可以用于微调所述磁钢22移动速度以实现位置校正。几个大致相同的电角度,使得所述磁钢22移动速度保持顺滑,从而使得所述多动子直驱传输系统100的运动控制方法简单且易于实施。
本实施例中,所述霍尔元件13与所述磁钢22间隔设置。其中,所述霍尔元件13与所述磁钢22之间的高度可调。该结构使得,所述霍尔元件13安装位置可以根据实际情况进行调整,所述霍尔元件13通过调整所述磁钢22之间的高度来设置所述霍尔元件13检测到的磁场变化量的灵敏度,从而使得所述多动子直驱传输系统100的运动控制方法简单且易于实施。
为更好通过所述驱动器通过所述线圈绕组12驱动所述磁钢22,达到所述磁钢22位置校正的目的。本实施例中,相邻的两个所述驱动器计算出的两个电角度与预设的电角度进行比较,并根据比较得出的结果采用协同控制策略驱动所述磁钢22移动。其中,所述协同控制策略为相邻的两个所述驱动器中的驱动电流相同的主从协同控制策略。该设置相对每一个所述驱动器单独进驱动的主控模式简单易操作,并不需要复杂逻辑控制,使得所述驱动器的控制逻辑简单,从而使得所述多动子直驱传输系统100的运动控制方法简单且易于实施。
所述动子21部分收容于所述收容空间110,所述动子21连接于所述第二框架113并与所述第二框架113形成滑动连接。
为了更好实施所述动子21进行移动并与所述第二框架113形成滑动连接,本实施例中,所述多动子直驱传输系统100还包括固定于所述第一框架111的轨道15。所述轨道15收容于所述收容空间110内。所述轨道15的延伸方向与所述第一框架111的延伸方向相同。所述动子2还包括动子本体211和固定于所述动子本体211的滑轮212。所述滑轮212与所述磁钢22分别位于所述动子本体211的相对两侧。所述滑轮212与所述轨道15匹配并与所述轨道15形成滑动连接。所述滑轮212与所述轨道15的结构可以使得所述动子2移动平稳顺畅。
请参阅图5,所述定子单元1还包括安装于所述反馈段20的多个位移传感器(图未示)。
所述位移反馈单元位于所述反馈段20,所述位移反馈单元用于精准控制所述动子21的位置。所述位移反馈单元与其连接的所述线圈绕组12一一对应。即每一所述位移传感器对应一所述线圈绕组12设置。
所述位移反馈单元与所述霍尔元件13同时使用,可以使得需要精准控制所述动子2的位置的情况可以实施精准调整,而在进行简单过渡的所述过渡段10内无需昂贵的编码器阵列,采用所述霍尔元件13实现。该结构使得所述多动子直驱传输系统100的运动控制方法简单且易于实施。
本发明还提出一种多动子直驱传输系统控制方法。请参考图7所示,所述多动子直驱传输系统控制方法应用于所述多动子直驱传输系统100。
具体的,所述多动子直驱传输系统控制方法包括如下步骤:
步骤S1、所述位移传感器实时检测所述动子单元2在所述反馈段20运动的实时位置。
步骤S2、实时判断所述动子单元2是否进入所述反馈段20与所述过渡段10交界的区域:
若是,则将所述动子单元2的速度设为所述初始速度,所述霍尔元件13实时检测产生所述霍尔信号,所述驱动器通过接收的所述霍尔信号计算出电角度,并根据所述初始速度和所述电角度计算出驱动电流,与该霍尔元件13对应的一个所述线圈绕组12根据所述驱动电流驱动所述磁钢22移动以实现位置校正,并设定所述线圈绕组12的主控制模式。
本实施例中,沿所述动子单元2的运动方向,根据所述反馈段20内的最后一个所述位移反馈单元检测所述动子单元2的达到预设的第一过渡速度时,则判断为所述动子单元2进入所述反馈段20与所述过渡段10交界的区域。所述步骤S2中根据预设的第一过渡速度通过所述霍尔元件13实时进行电角度校正,实现运行控制,从而使得运动控制方法简单且易于实施。
步骤S3、实时检测所述动子单元2在所述过渡段10运动的实时位置,根据所述动子单元2的实时位置设定所述过渡段10范围内各所述线圈绕组12的协同控制模式。所述协同控制模式为主控制模式和主从控制模式切换中的任意一种。
请参阅图8,具体的,所述步骤S3中,在所述过渡段10中的两段相邻的所述定子单元1的交界区域内,所述协同控制模式的设定包括:
步骤S31、所述过渡段10的第一个所述霍尔元件13根据其检测到的磁场变化量产生所述霍尔信号,与该霍尔元件13相连接的所述驱动器通过接收的所述霍尔信号计算出电角度,并根据计算出的所述电角度判断是否达到第一设定值:
若否,则返回所述步骤S2;
若是,则设定相邻的两个所述线圈绕组12的所述主从控制模式;
步骤S32、后续一个所述驱动器根据与其连接的所述霍尔元件13计算出的所述电角度判断是否达到第二设定值:
若否,则返回所述步骤S31;
若是,则设定后续一个所述线圈绕组12的所述主控制模式。所述步骤S31 至所述步骤S32,通过所述电角度判断是否达到第一设定值和第二设定值,实现运行控制,并实现顺利过渡。
所述步骤S3中,所述驱动器依据计算的电角度信息,不同所述定子1之间过渡时采用协同控制策略,优选主从协同控制策略,从而使得运动控制方法简单且易于实施。
步骤S4、实时判断所述动子单元2是否进入所述过渡段10与所述反馈段20交界的区域:若是,则将所述过渡段10范围内各所述线圈绕组12的控制停止,并设定所述反馈段20范围内各所述线圈绕组12的协同控制模式,以实现所述过渡段10向所述反馈段20过度。
所述步骤S4中,沿所述动子单元2的运动方向,根据所述过渡段10与所述反馈段20交界的区域内的所述反馈段20的所述位移反馈单元检测到的反馈信号达到预设的反馈值时,则将所述动子单元2的控制设定所述反馈段20范围内各所述线圈绕组12的协同控制模式。
实施上述步骤,所述多动子直驱传输系统控制方法的元器件数量少,运动控制方法简单且易于实施。
本发明实施例还提供一种计算机设备,请参图9所示,为本发明实施例提供的计算机设备的结构示意图。所述计算机设备400包括:处理器401、存储器402及存储在所述存储器402上并可在所述处理器401上运行的计算机程序。
所述处理器401调用所述存储器402存储的计算机程序,执行所述计算机程序时实现上述实施例中的所述多动子直驱传输系统控制方法中的步骤。
本发明实施例提供的计算机设备400能够实现如上述实施例中的多动子直驱传输系统控制方法中的步骤,且能实现同样的技术效果,参上述实施例中的描述,此处不再赘述。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本发明实施例提供的多动子直驱传输系统控制方法中的各个过程及步骤,且能实现相同的技术效果,为避免重复,这里不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存取存储器(Random Access Memory,简称RAM)等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
与现有技术相比,本发明的多动子直驱传输系统通过设置定子单元和动子单元,所述动子单元移动至一个所述线圈绕组的磁场范围时产生磁场变化量,位于所述磁场范围内的一个所述霍尔元件根据其检测到的磁场变化量产生霍尔信号;与该霍尔元件对应的一个所述驱动器通过接收的所述霍尔信号计算出电角度,并根据预设的所述动子单元的初始速度和所述电角度计算出驱动电流,与该霍尔元件对应的一个所述线圈绕组根据所述驱动电流驱动所述磁钢移动以实现位置校正。该结构在进行简单过渡的所述过渡段内无需昂贵的编码器阵列,采用所述霍尔元件可实现,使用的元器件数量少且结构简单。更优的,同时将所述霍尔元件与所述磁钢间隔设置;所述霍尔元件与所述线圈绕组位于同一侧,该结构使得所述霍尔元件、所述线圈绕组以及所述磁钢的组装简单,从而使得本发明的多动子直驱传输系统多动子直驱传输系统、多动子直驱传输系统控制方法、计算机设备和计算机可读存储介质的结构简单,元器件数量少,运动控制方法简单且易于实施。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (9)

  1. 一种多动子直驱传输系统,其包括由多段依次连接呈整体的定子单元和多个相对于定子单元移动的动子单元,多个驱动器;所述定子单元包括框架和安装于所述框架且沿所述框架的延伸方向依次排列的多个线圈绕组,每一个所述动子单元包括与所述定子单元形成滑动连接并可相对于所述框架移动的动子以及固定于所述动子的磁钢,所述磁钢与所述线圈绕组正对间隔设置,所述线圈绕组驱动所述磁钢以使所述动子移动;其特征在于,所述框架包括相互交替的反馈段和过渡段;
    所述定子单元还包括安装于所述过渡段且间隔固定于所述框架的多个霍尔元件,每一所述驱动器对应多个所述线圈绕组,每个所述霍尔元件和一个所述线圈绕组设置,每一所述驱动器分别与所述霍尔元件和所述线圈绕组电连接;所述霍尔元件与所述磁钢间隔设置;所述霍尔元件与所述线圈绕组位于同一侧;所述动子单元移动至一个所述线圈绕组的磁场范围时产生磁场变化量,位于所述磁场范围内的一个所述霍尔元件根据其检测到的磁场变化量输出电压信号;与该霍尔元件对应的所述驱动器通过接收的所述霍尔信号计算出电角度,并根据预设的所述动子单元的初始速度和所述电角度计算出驱动电流,与该霍尔元件对应的一个所述线圈绕组根据所述驱动电流驱动所述磁钢移动以实现位置校正。
  2. 根据权利要求1所述的多动子直驱传输系统,其特征在于,所述霍尔元件与所述磁钢之间的高度可调。
  3. 根据权利要求1所述的多动子直驱传输系统,其特征在于,所述框架包括第一框架、由所述第一框架弯折延伸的支撑架以及由所述支撑架远离所述第一框架一端弯折延伸的第二框架;所述第一框架、所述支撑架以及第二框架共同围成收容空间,所述霍尔元件和所述线圈绕组收容于所述收容空间内,所述霍尔元件位于所述第二框架靠近所述支撑架一侧,所述线圈绕组位于所述第二框架远离所述支撑架一侧;所述动子部分收容于所述收容空间,所述动子连接于所述第二框架并与所述第二框架形成滑动连接。
  4. 根据权利要求3所述的多动子直驱传输系统,其特征在于,所述定子单元还包括固定于所述第一框架的轨道,所述轨道收容于所述收容空间内;所述动子还包括动子本体和固定于所述动子本体的滑轮,所述滑轮与所述磁钢分别位于所述动子本体的相对两侧,所述滑轮与所述轨道匹配并与所述轨道形成滑动连接。
  5. 一种多动子直驱传输系统控制方法,其特征在于,所述多动子直驱传输系统控制方法应用于如权利要求1-4中任意一项所述的多动子直驱传输系统,所述定子单元还包括安装于所述反馈段的多个位移传感器,每一所述位移传感器对应一所述定子单元设置;该方法包括如下步骤:
    步骤S1、所述位移传感器实时检测所述动子单元在所述反馈段运动的实时位置。
    步骤S2、根据所述反馈段的位移传感器的反馈位置,实时判断所述动子单元是否进入所述反馈段与所述过渡段交界的区域:
    若是,则将所述动子单元的当前速度设为所述初始速度,所述霍尔元件实时检测产生所述霍尔信号,所述驱动器通过接收的所述霍尔信号计算出电角度,并根据所述初始速度和所述电角度计算出驱动电流,与该霍尔元件对应的一个所述线圈绕组根据所述驱动电流驱动所述磁钢移动以实现位置校正,并设定所述线圈绕组的主控制模式;
    步骤S3、实时检测所述动子单元在所述过渡段运动的实时位置,根据所述动子单元的实时位置设定所述过渡段范围内各所述线圈绕组的协同控制模式;所述协同控制模式为主控制模式和主从控制模式切换中的任意一种;
    步骤S4、实时判断所述动子单元是否进入所述过渡段与所述反馈段交界的区域:若是,则将所述过渡段范围内各所述线圈绕组的控制停止,并设定所述反馈段范围内各所述线圈绕组的协同控制模式,以实现所述过渡段向所述反馈段过渡。
  6. 根据权利要求5所述的多动子直驱传输系统控制方法,其特征在于,所述步骤S3中,在所述过渡段中的两段相邻的所述定子单元的交界区域内,所述协同控制模式的设定包括:
    步骤S31、所述过渡段的第一个所述霍尔元件根据其检测到的磁场变化量产生所述霍尔信号,所述驱动器通过接收的所述霍尔信号计算出电角度,并根据计算出的所述电角度判断是否达到第一设定值:
    若否,则返回所述步骤S2;
    若是,则设定相邻的两个所述线圈绕组的所述主从控制模式;
    步骤S32、后续一个所述驱动器根据与其连接的所述霍尔元件计算出的所述电角度判断是否达到第二设定值:
    若否,则返回所述步骤S31;
    若是,则设定后续一个所述线圈绕组的所述主控制模式。
  7. 根据权利要求5所述的多动子直驱传输系统控制方法,其特征在于,所述步骤S4中,沿所述动子单元的运动方向,根据所述过渡段与所述反馈段交界的区域内的所述反馈段的所述位移反馈单元检测到的反馈信号达到预设的反馈值时,则将所述动子单元的控制设定所述反馈段范围内各所述线圈绕组的协同控制模式。
  8. 一种计算机设备,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求5至7中任意一项所述的多动子直驱传输系统控制方法中的步骤。
  9. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求5至7中任意一项所述的多动子直驱传输系统控制方法中的步骤。
PCT/CN2022/108453 2022-06-30 2022-07-28 多动子直驱传输系统及相关控制方法、设备和存储介质 WO2024000714A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210779127.2A CN115159067B (zh) 2022-06-30 2022-06-30 多动子直驱传输系统及相关控制方法、设备和存储介质
CN202210779127.2 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024000714A1 true WO2024000714A1 (zh) 2024-01-04

Family

ID=83491505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108453 WO2024000714A1 (zh) 2022-06-30 2022-07-28 多动子直驱传输系统及相关控制方法、设备和存储介质

Country Status (2)

Country Link
CN (1) CN115159067B (zh)
WO (1) WO2024000714A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218473012U (zh) * 2022-06-30 2023-02-10 瑞声光电科技(常州)有限公司 一种直驱系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064850A (ja) * 2002-07-26 2004-02-26 Denso Corp ブラシレスモータ
JP2018068048A (ja) * 2016-10-20 2018-04-26 村田機械株式会社 リニアモータシステム、移動体システム、及び電気角の推定方法
CN109217767A (zh) * 2017-07-06 2019-01-15 上海合栗智能科技有限公司 线性传输系统及其控制装置和多动子协同控制系统
CN111969797A (zh) * 2020-09-18 2020-11-20 张鹏鹏 直线电机的双线性霍尔检测系统
CN112335161A (zh) * 2018-06-18 2021-02-05 三菱电机株式会社 线性电动机的固定件、线性电动机及线性电动机系统
CN214626766U (zh) * 2021-01-08 2021-11-05 杭州辰控智能控制技术有限公司 一种直线电机

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365257B1 (ko) * 1999-12-10 2002-12-18 엘지전자 주식회사 로터리 리니어 전동기
SE532617C2 (sv) * 2007-11-13 2010-03-02 Lifeassays Ab Publ Spolmekanism för magnetisk detektor
CN103222168B (zh) * 2011-09-27 2016-05-04 浙江博望科技发展有限公司 一种伺服电机和伺服控制系统
CN105591588B (zh) * 2015-12-31 2020-07-14 中国科学院宁波材料技术与工程研究所 永磁同步直线电机及其控制装置和控制方法
CN106208539B (zh) * 2016-08-29 2018-10-16 华中科技大学 一种磁电式编码器
KR102164594B1 (ko) * 2018-11-15 2020-10-12 한국기계연구원 리니어 모터 및 그 제어 시스템
CN109672317B (zh) * 2018-11-27 2020-09-25 江苏大学 一种模块化平移电动门驱动装置及其驱动控制方法
CN111750903B (zh) * 2020-07-07 2022-02-01 哈尔滨理工大学 一种绕组集成磁电编码器及其独立标定方法
CN111769715A (zh) * 2020-07-29 2020-10-13 中科微至智能制造科技江苏股份有限公司 基于开关霍尔传感器的永磁体分段同步直线电机及矢量控制方法
CN213386565U (zh) * 2020-09-24 2021-06-08 佛山德玛特智能装备科技有限公司 线性搬运装置
CN112141109B (zh) * 2020-09-25 2021-09-07 闽江学院 一种横移运输无人自动驾驶车辆引导装置及其控制方法
CN215796531U (zh) * 2021-07-23 2022-02-11 上海纵苇自动化有限公司 一种环形磁浮多动子输送系统
CN113859892A (zh) * 2021-10-09 2021-12-31 上海果栗自动化科技有限公司 一种线性传输系统
CN114123879B (zh) * 2021-11-25 2023-12-12 深圳众为兴技术股份有限公司 相位检测方法、装置、电子设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064850A (ja) * 2002-07-26 2004-02-26 Denso Corp ブラシレスモータ
JP2018068048A (ja) * 2016-10-20 2018-04-26 村田機械株式会社 リニアモータシステム、移動体システム、及び電気角の推定方法
CN109217767A (zh) * 2017-07-06 2019-01-15 上海合栗智能科技有限公司 线性传输系统及其控制装置和多动子协同控制系统
CN112335161A (zh) * 2018-06-18 2021-02-05 三菱电机株式会社 线性电动机的固定件、线性电动机及线性电动机系统
CN111969797A (zh) * 2020-09-18 2020-11-20 张鹏鹏 直线电机的双线性霍尔检测系统
CN214626766U (zh) * 2021-01-08 2021-11-05 杭州辰控智能控制技术有限公司 一种直线电机

Also Published As

Publication number Publication date
CN115159067A (zh) 2022-10-11
CN115159067B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
JP5648722B1 (ja) リニアモータシステム
CN103825518B (zh) 三相永磁同步电动机相序检测和转子初始位置定位系统及方法
JP5590137B2 (ja) 離散配置リニアモータシステム
WO2024000714A1 (zh) 多动子直驱传输系统及相关控制方法、设备和存储介质
US10118774B2 (en) Transfer system
CN106395524B (zh) 用于电梯控制的多传动装置推力管理器
KR101345278B1 (ko) 이동체 시스템 및 이동체의 제어 방법
US20210213984A1 (en) Independent Cart System And Method Of Operating The Same
CN102246401A (zh) 推力产生机构、驱动装置、xy工作台以及xyz工作台
KR20010092738A (ko) 스테핑 모터 제어 장치
JP6733170B2 (ja) リニアモータシステム
CN114070138B (zh) 永磁同步直线电机的绕组切换控制系统、方法及装置
CN102510202B (zh) 永磁直线同步电机
US9948218B2 (en) Linear motor apparatus and control method
JP2018068048A (ja) リニアモータシステム、移動体システム、及び電気角の推定方法
CN103672103B (zh) 一种调节阀控制方法、装置及智能阀门定位器
US9812939B2 (en) Linear motor system
CN102918762A (zh) 电压控制的步进电动机驱动器
CN102790474B (zh) 一种平面电机初始位置探测方法
CN113211435A (zh) 一种多机械臂焊接机器人
JP2013176280A (ja) リニアモータの制御方法
WO2024000712A1 (zh) 直驱系统的控制方法及相关设备
CN103762915A (zh) 一种步进电机控制方法
CN107093973A (zh) 一种音圈马达驱动方法
US20220173675A1 (en) Method for the vibration-reduced operation of a bldc motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17918552

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948809

Country of ref document: EP

Kind code of ref document: A1