WO2024000695A1 - 半导体结构及其制备方法 - Google Patents

半导体结构及其制备方法 Download PDF

Info

Publication number
WO2024000695A1
WO2024000695A1 PCT/CN2022/106765 CN2022106765W WO2024000695A1 WO 2024000695 A1 WO2024000695 A1 WO 2024000695A1 CN 2022106765 W CN2022106765 W CN 2022106765W WO 2024000695 A1 WO2024000695 A1 WO 2024000695A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
support layer
support
sub
layers
Prior art date
Application number
PCT/CN2022/106765
Other languages
English (en)
French (fr)
Inventor
孙明
周钜凯
彭英浩
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Publication of WO2024000695A1 publication Critical patent/WO2024000695A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements

Definitions

  • the present disclosure relates to the field of integrated circuit technology, and in particular to a semiconductor structure and a preparation method thereof.
  • the process of forming a capacitor is usually as follows: first, a supporting film layer and a sacrificial film layer are formed, and the sacrificial film layer is formed between the supporting film layers. Capacitor holes are then formed through all supporting film layers and sacrificial film layers. Then a lower electrode is formed in the capacitor hole. Then the sacrificial film layer is removed, and a dielectric layer and an upper electrode are sequentially formed on the surface of the lower electrode.
  • capacitor holes are usually formed by wet etching.
  • the lower part of the capacitor hole has a smaller pore size due to the hard film quality of some supporting film layers.
  • the contact area between the lower electrode and the electrical contact part (such as the metal film layer) below is small, thereby increasing the contact resistance, which is not conducive to reducing power consumption.
  • a semiconductor structure and a method of manufacturing the same are provided.
  • a semiconductor structure including a capacitor support layer, the capacitor support layer including:
  • a plurality of second support layers having a second etching rate, the second etching rate being greater than the first etching rate
  • the first support layer and the second support layer are stacked and arranged alternately.
  • the first support layer includes a silicon nitride layer and the second support layer includes a boron nitride layer.
  • the atomic percent of boron atoms in the capacitor support layer is less than 19%.
  • the first support layer includes a first sub-layer, or the first support layer includes a plurality of first sub-layers arranged in a stack; the first sub-layer includes a silicon nitride layer;
  • the second support layer includes a second sub-layer, or the second support layer includes a plurality of second sub-layers arranged in a stack; the second sub-layer includes a boron nitride layer.
  • the capacitor support layer includes n stacked first-type support layer groups, each of the first-type support layer groups includes the stacked first support layer and the second support layer, n is greater than a positive integer of 1,
  • the number of first sub-layers in the first support layer is the same, and the number of second sub-layers in the second support layer is the same.
  • the capacitor support layer includes m stacked second-type support layer groups.
  • Each of the second-type support layer groups includes a stacked first combination layer and a second combination layer.
  • m is a positive integer greater than 1.
  • the first combination layer and the second combination layer each include the first support layer and the second support layer that are stacked,
  • the number of first sub-layers in the first support layer of the first combination layer and the second combination layer is different, and/or, the number of first sub-layers in the second support layer of the first combination layer and the second combination layer is different.
  • the number of second sub-layers is different.
  • the number of first combined layers of each second type support layer group is the same, and the number of second combined layers of each second type support layer group is the same.
  • the capacitor support layer includes a first support part and a second support part.
  • the first support part and the second support part each independently include the first support layer and the second support layer that are stacked. , the first support part is used to contact the electrical contact part, and the second support part is located on a side of the first support part away from the electrical contact part,
  • the etching rate of the first support part is greater than the etching rate of the second support part.
  • the thickness of the first support portion is less than 1/3 of the thickness of the capacitor support layer.
  • the semiconductor structure further includes:
  • Transistor structure including source and drain
  • An electrical contact portion electrically connected to the source or drain
  • the capacitor support layer is located on the electrical contact.
  • the semiconductor structure further includes a capacitive structure, the capacitive structure includes:
  • the lower electrode is located on the hole wall of the capacitor hole
  • the upper electrode is located on the surface of the dielectric layer.
  • the semiconductor structure includes a memory array including the transistor structure and the capacitor structure.
  • a method for preparing a semiconductor structure including:
  • First support layers and second support layers are alternately formed to form a capacitor support layer.
  • the capacitor support layer includes a plurality of first support layers and a plurality of second support layers, and the first support layer has a first etching rate.
  • the second support layer has a second etching rate, and the second etching rate is greater than the first etching rate.
  • Forming the first support layer includes:
  • the silicon nitride layer is formed by atomic layer deposition
  • Forming the second support layer includes:
  • the boron nitride layer is formed by atomic layer deposition.
  • the atomic percentage of boron atoms in the capacitor support layer is less than 19%.
  • the forming of the silicon nitride layer by atomic layer deposition includes:
  • the layers include silicon nitride layers;
  • the formation of the boron nitride layer by atomic layer deposition includes:
  • BCl 3 and NH 3 are introduced once to form a second sub-layer; alternatively, BCl 3 and NH 3 are introduced multiple times to form multiple second sub-layers arranged in a stack; the second sub-layer includes nitride boron layer.
  • the conditions of the atomic layer deposition method for forming the silicon nitride layer include: the temperature is 620°C-640°C, the flow rate of SiH 2 Cl 2 is 1000 sccm - 3000 sccm, and the flow rate of NH 3 is 4000 sccm - 6000 sccm; and/or
  • the conditions for the atomic layer deposition method to form the boron nitride layer include: the temperature is 620°C-640°C, the flow rate of BCl 3 is 100sccm-300sccm, and the flow rate of NH 3 is 4000sccm-6000sccm.
  • the alternately forming the first support layer and the second support layer to form the capacitor support layer includes:
  • N 1 second sub-layers Pass N 1 times of BCl 3 and NH 3 to form N 1 second sub-layers, and the N 1 second sub-layers constitute the second support layer, N 1 ⁇ 1;
  • N 2 first sub-layers constitute the first support layer
  • the second support layer and the first support layer on the second support layer constitute a first type of support layer group, N 2 ⁇ 1;
  • n-1 Repeat forming the first type support layer group n-1 times again to form a capacitor support layer including n first type support layer groups arranged in a stack, where n is a positive integer greater than 1.
  • the alternately forming the first support layer and the second support layer to form the capacitor support layer includes:
  • the forming the first combination layer includes:
  • N 4 first sub-layers constitute the first support layer
  • the second support layer and the first support layer on the second support layer constitute a first combined layer, N 4 ⁇ 1;
  • the forming the second combination layer on the first combination layer includes:
  • N 6 first sub-layers constitute the first support layer
  • the second support layer and the first support layer on the second support layer constitute a second combined layer, N 6 ⁇ 1;
  • N 3 is not equal to N 5
  • N 4 is not equal to N 6 .
  • the method before alternately forming the first support layer and the second support layer to form the capacitor support layer, the method further includes:
  • the alternately forming the first support layer and the second support layer to form the capacitor support layer includes:
  • the first support part and the second support part each independently include the boron nitride layer and the silicon nitride layer that are stacked, and the atomic percentage of boron atoms in the first support part is greater than Atomic percentage of boron atoms in the second support portion.
  • Embodiments of the present disclosure may/at least have the following advantages:
  • the second support layer has a relatively high etching rate, during the etching process of the capacitor hole, the part of the capacitor hole within the capacitor support layer can be effectively expanded, making the hole diameter of this part larger and reducing the contact resistance.
  • the alternately arranged second support layer and the first support layer can make the etching rate alternate between fast and slow. While the second support layer expands the pore diameter, the first support layer effectively adjusts the pore diameter and morphology in the capacitor support layer, making the hole shape in the capacitor support layer more uniform. At this time, it is possible to effectively prevent the rapid expansion of the aperture from causing leakage and short circuit problems between the lower electrode and the adjacent electrical contact portion. Therefore, this embodiment can achieve good control over the morphology of the capacitor hole.
  • the incorporation of B is effective in improving dangling bonds on the surface of the support layer material, which is beneficial to GIDL (gate induce drain leakage).
  • Figure 1a is a schematic diagram of the structural morphology of capacitor holes formed when silicon nitride is used as a supporting film layer;
  • Figure 1b is a schematic diagram of the structural morphology of the capacitor hole formed in an embodiment
  • Figure 2 is a schematic structural diagram of a capacitor support layer provided in an embodiment
  • Figures 3a and 3b are schematic diagrams of the structural composition of the first support layer and the second support layer provided in different embodiments;
  • Figure 8 is a schematic diagram of a semiconductor structure provided in an embodiment
  • FIG. 9 is a schematic diagram of a semiconductor structure provided in another embodiment.
  • Spatial relational terms such as “under”, “under”, “under”, “under”, “on”, “above”, etc., in This may be used to describe the relationship of one element or feature to other elements or features shown in the figures. It will be understood that the spatially relative terms encompass different orientations of the device in use and operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements or features described as “below” or “under” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary terms “below” and “under” may include both upper and lower orientations. Additionally, the device may be otherwise oriented (eg, rotated 90 degrees or at other orientations) and the spatial descriptors used herein interpreted accordingly.
  • Embodiments of the present disclosure should not be limited to the specific shapes of the regions illustrated in the figures but include deviations in shapes due, for example, to manufacturing techniques.
  • the pore diameter of the lower part of the capacitor hole is smaller, which will affect the contact resistance between the lower electrode of the capacitor and the electrical contact part, thereby affecting the device. power consumption.
  • silicon nitride is often used as a supporting film during capacitor processing.
  • the film quality of silicon nitride is relatively hard, which will lead to a smaller aperture in the lower part of the capacitor hole (see Figure 1a), thus affecting the power consumption of the device.
  • silicon nitride is doped with boron, thereby enlarging the lower aperture of the capacitor hole and increasing the contact area.
  • This method sometimes causes the shape of the capacitor hole in the supporting film layer that is in contact with the electrical contact part (such as the metal film layer) to be too outwardly arched, which can easily lead to leakage between the lower electrode and the adjacent electrical contact part. short circuit.
  • embodiments of the present disclosure also provide a semiconductor structure and a preparation method thereof.
  • a semiconductor structure including a capacitor support layer 100 .
  • the capacitor support layer 100 is used to form a capacitor structure.
  • the supporting film layer forming the capacitor structure may have a plurality of film layers arranged at vertical intervals.
  • the capacitor support layer 100 may include a lowermost support film layer.
  • the other support film layers may be in the form of the capacitor support layer 100 or other forms, and there is no limitation on this.
  • the capacitor support layer 100 may be formed on the semiconductor substrate.
  • Electrical contacts 200 may be formed on the semiconductor substrate.
  • the electrical contact part 200 is used to contact the capacitive structure, thereby electrically connecting with the capacitive structure.
  • the capacitor support layer 100 includes a plurality of first support layers 110 and a plurality of second support layers 120 . "Multiple" means two or more.
  • the first support layer 110 has a first etching rate
  • the second support layer 120 has a second etching rate.
  • the second etching rate is greater than the first etching rate. That is, under the same etching conditions, the etching rate of the second support layer 120 is greater than the etching rate of the first support layer 110 .
  • the first support layer 110 may include a silicon nitride layer
  • the second support layer 120 may include a boron nitride layer.
  • the etching rate of the boron nitride layer is greater than the etching rate of the silicon nitride layer.
  • first support layer 110 and/or the second support layer 120 can also be film layers of other materials, and there is no limitation on this.
  • a boron-containing composite capacitor support layer can be formed. Can.
  • first support layer 110 and the second support layer 120 are stacked and alternately arranged.
  • a plurality of first support layers 110 and a plurality of second support layers 120 may be formed by alternately forming the first support layers 110 and the second support layers 120 .
  • a second support layer 120 (such as a boron nitride layer) may be formed first, then a first support layer 110 (such as a silicon nitride layer) may be formed, and then a second support layer 120 may be formed, and then a The first support layer 110, and so on.
  • a first support layer 110 may be formed first, and then a second support layer 120 may be formed, and then a first support layer 110 may be formed, and then a second support layer 120 may be formed, and so on.
  • the second support layer 120 has a relatively high etching rate, during the etching process of the capacitor hole, the part of the capacitor hole in the capacitor support layer 100 can be effectively expanded, so that the hole diameter of this part becomes larger. .
  • the alternately arranged second support layer 120 and the first support layer 110 can make the etching rate alternate between fast and slow. While the second support layer 120 expands the pore diameter, the first support layer 110 effectively adjusts the pore diameter and morphology in the capacitor support layer 100, making the hole shape in the capacitor support layer 100 more uniform. At this time, it can effectively prevent the hole diameter from rapidly expanding, causing leakage and short circuit problems between the lower electrode 310 and the adjacent electrical contact portion 200 . Therefore, this embodiment can achieve good control over the morphology of the capacitor hole.
  • the atomic percentage of boron atoms is less than 19%.
  • the atomic percent of boron atoms in the capacitor support layer is less than 19%.
  • the capacitor support layer is a silicon boron nitride layer, that is, the atomic percentage of boron atoms in the silicon boron nitride layer is less than 19%.
  • the inventor of the present disclosure creatively discovered during research that the greater the atomic percentage of boron atoms, the easier it is for the shape of the capacitor hole in the capacitor support layer 100 to arch outward.
  • This embodiment limits the atomic percentage of boron atoms to less than 19%, so that the shape of the capacitor hole in the capacitor support layer 100 can be further controlled, thereby further preventing leakage and short circuit between the lower electrode 310 of the capacitor structure and the adjacent electrical contact 200.
  • the part of the capacitor hole in the capacitor support layer 100 can be effectively expanded, so that the hole diameter of this part becomes larger and the contact resistance is reduced.
  • the first support layer 110 includes one first sub-layer 111 , or the first support layer 110 includes a plurality of first sub-layers 111 arranged in a stack.
  • the first sub-layer 110 includes a silicon nitride layer.
  • the second support layer 120 includes one second sub-layer 121, or the second support layer 120 includes a plurality of second sub-layers 121 arranged in a stack.
  • the second sub-layer 121 includes a boron nitride layer.
  • the number of the first sub-layers 111 in the first support layer 110 and the number of the second sub-layers 121 in the second support layer 120 can be adjusted according to actual needs, and they can be the same or different.
  • Both the first support layer 110 and the second support layer 120 can be formed by chemical vapor deposition.
  • the chemical vapor deposition method may include, but is not limited to, atomic layer deposition (ALD), for example.
  • a first sub-layer 111 is a layer formed by passing the process gas once to form the first support layer 110 .
  • a second sub-layer 121 is a layer formed by passing the process gas once to form the second support layer 120.
  • the process gas forming the first support layer 110 may include SiH 2 Cl 2 and NH 3 .
  • a first sub-layer 111 can be formed.
  • a plurality of stacked first sub-layers 111 can be formed.
  • the flow rate of SiH 2 Cl 2 can be 1000 sccm-3000 sccm
  • the flow rate of NH 3 can be 4000 sccm-6000 sccm.
  • the process gas forming the second support layer 120 may include BCl 3 and NH 3 .
  • BCl 3 and NH 3 By passing BCl 3 and NH 3 once, a second sub-layer 121 can be formed.
  • BCl 3 and NH 3 By passing BCl 3 and NH 3 multiple times, a plurality of stacked second sub-layers 121 can be formed.
  • the flow rate of BCl 3 can be 100 sccm-300 sccm
  • the flow rate of NH 3 can be 4000 sccm-6000 sccm.
  • both the first support layer 110 and the second support layer 120 are configured to include several sub-layers, so that the number of atomic atomic percentages (such as Adjusted for atomic percentage of boron atoms).
  • the overall etching rate of the capacitor support layer 100 can be controlled according to requirements, thereby effectively adjusting the hole morphology in the capacitor support layer 100 .
  • the capacitor support layer 100 includes n first type support layer groups 10 arranged in a stack.
  • Each first type support layer group 10 includes a first support layer 110 and a second support layer 120 arranged in a stack, and n is a positive integer greater than 1.
  • the first support layer 110 may be formed on the second support layer 120.
  • a second support layer 120 may also be provided on the first support layer 110 .
  • each first type support layer group 10 the number of first sub-layers 111 in the first support layer 110 is the same, and the number of second sub-layers 121 in the second support layer 120 is the same.
  • the capacitor support layer 100 can be etched more uniformly along its depth direction, which is beneficial to making the pore diameter in the capacitor support layer 100 more uniform.
  • the first support layer 110 may be provided to include a silicon nitride layer, and the second support layer 120 may include a boron nitride layer.
  • the first support layer 110 includes four first sub-layers 111, and the second support layer 120 includes one second sub-layer 121.
  • the first support layer 110 is formed on the second support layer 120 .
  • BCl 3 and NH 3 may be introduced once to form a second sub-layer 121.
  • SiH 2 Cl 2 and NH 3 are passed four times to form four first sub-layers 111 on one second sub-layer 121.
  • the first support layer 110 may be configured to include a silicon nitride layer, and the second support layer 120 may include a boron nitride layer.
  • the first support layer 110 includes three first sub-layers 111
  • the second support layer 120 includes two second sub-layers 121 .
  • the first support layer 110 is formed on the second support layer 120 .
  • BCl 3 and NH 3 may be introduced twice to form two second sub-layers 121 .
  • SiH 2 Cl 2 and NH 3 are passed three times to form three first sub-layers 111 on the top second sub-layer 121.
  • first sub-layers arranged in a stack are expressed in the form of first sub-layer*number of first sub-layers.
  • second sub-layers arranged in a stack are expressed in the form of second sub-layer*number of second sub-layers.
  • first sub-layer*4 represents the first sub-layer 111 that is stacked with four layers
  • first sub-layer*3 represents the first sub-layer 111 that is stacked with three layers.
  • “Second sub-layer*2" represents the second sub-layer 121 formed of two layers.
  • “Second sub-layer*1” indicates that the second support layer 120 only includes one second sub-layer 121 .
  • the capacitor support layer 100 includes m second type support layer groups 20 arranged in a stack.
  • Each second type support layer group 20 includes a first combination layer 21 and a second combination layer 22 arranged in a stack, and m is a positive integer greater than 1.
  • the number of the first combination layer 21 and the second combination layer 22 in the second type support layer group 20 can be one or more, and the number of the two can be the same or different.
  • first sub-layers arranged in a stack are also expressed in the form of first sub-layer*number of first sub-layers.
  • second sub-layers arranged in a stack are expressed in the form of second sub-layer*number of second sub-layers.
  • m second-type support layer groups 20 arranged in a stack are represented by second-type support layer group *m.
  • the first type support layer group*n represents n first type support layer groups 10 arranged in a stack.
  • the number of the first combination layer 21 and the second combination layer 22 may be the same or different.
  • the first combination layer 21 can be formed on the second combination layer 22
  • the second combination layer 22 can also be formed on the first combination layer 21 .
  • the first combination layer 21 and the second combination layer 22 each include a stacked first support layer 110 and a second support layer 120,
  • the first support layer 110 may be formed on the second support layer 120.
  • the second support layer 120 may also be provided on the first support layer 110 .
  • the first combination layer 21 and the second combination layer 22 have different numbers of first sub-layers 111 in the first support layer 110 . And/or, the number of second sub-layers 121 in the second support layer 120 of the first combination layer 21 and the second combination layer 22 is different.
  • the number of the first sub-layers 111 in the first support layer 110 is set to a1, and the number of the second sub-layers 121 in the second support layer 120 is set to b1.
  • the number of the first sub-layers 111 in the first support layer 110 is a2, and the number of the second sub-layers 121 in the second support layer 120 is b2. Then a1 is not equal to a2; and/or, b1 is not equal to b2.
  • the second type support layer group 20 may be configured to include a first combination layer 21 and a second combination layer 22 .
  • the second combination layer 22 is formed on the first combination layer 21 .
  • the first support layer 110 is formed on the second support layer 120.
  • the first support layer 110 of the first combination layer 21 includes four first sub-layers 111
  • the second support layer 120 includes one second sub-layer 121 .
  • the first support layer 110 of the second combination layer 22 includes three first sub-layers 111
  • the second support layer 120 includes two second sub-layers 121 .
  • BCl 3 and NH 3 can be introduced once to form a second sub-layer 121. Then SiH 2 Cl 2 and NH 3 are passed four times to form four first sub-layers 111. Then BCl 3 and NH 3 are introduced twice to form two second sub-layers 121. Then SiH 2 Cl 2 and NH 3 are passed three times to form three first sub-layers 111.
  • the second type support layer group 20 may also be provided to include a first combination layer 21 and two second combination layers 22 .
  • the second combination layer 22 is formed on the first combination layer 21 .
  • the first support layer 110 is formed on the second support layer 120.
  • the first support layer 110 of the first combination layer 21 includes four first sub-layers 111
  • the second support layer 120 includes one second sub-layer 121 .
  • the first support layer 110 of the second combination layer 21 includes three first sub-layers 111
  • the second support layer 120 includes two second sub-layers 121 .
  • BCl 3 and NH 3 can be introduced once to form a second sub-layer 121. Then SiH 2 Cl 2 and NH 3 are passed four times to form four first sub-layers 111. Then BCl 3 and NH 3 are introduced twice to form two second sub-layers 121. Then SiH 2 Cl 2 and NH 3 are passed three times to form three first sub-layers 111. Then BCl 3 and NH 3 are introduced twice to form two second sub-layers 121. Then SiH 2 Cl 2 and NH 3 are passed three times to form three first sub-layers 111.
  • the atoms in the second type support layer group 20 can be adjusted. percentage (such as the atomic percentage of boron atoms), so that the second type of support layer group 20 has a different etching rate than the first type of support layer group 10 .
  • the capacitor support layer 100 may include only m second type support layer groups 20 .
  • the capacitor support layer 100 may also include m second-type support layer groups 20 and n first-type support layer groups 10 .
  • n first-type support layer groups 10 may be formed first, and then m second-type support layer groups 20 may be formed.
  • n first-type support layer groups 10 and m second-type support layer groups 20 may also be formed cyclically to form the capacitor support layer 100 .
  • the number of first combination layers 21 of each second type support layer group 20 is the same, and the number of second combination layers 22 of each second type support layer group 20 is the same.
  • each second-type support layer group 20 has the same structure, so that the apertures in the m second-type support layer groups 20 arranged in a stack are relatively more uniform.
  • the number of first combination layers 21 and/or the number of second combination layers 22 of each second type support layer group 20 may also be different, thereby facilitating adjustment of the atomic percentage of atoms in the capacitor support layer 100 .
  • the capacitor support layer 100 includes a first support part and a second support part.
  • the first support part and the second support part each independently include a stacked first support layer 110 and a second support layer 120 .
  • the first support part is used to contact the electrical contact part 200
  • the second support part is located on a side of the first support part away from the electrical contact part 200 .
  • the etching rate of the first support part is greater than the etching rate of the second support part, so that the part close to the electrical contact part 200 has a larger aperture.
  • the lower electrode formed in the capacitor hole can have a larger contact area with the electrical contact portion 200 and reduce the contact resistance.
  • n first type support layer groups 10 as shown in FIG. 7 may serve as the first support part.
  • the m second type support layer groups 10 as shown in the figure can be used as the second support part.
  • the thickness of the first support portion is less than 1/3 of the thickness of the capacitor support layer.
  • the semiconductor structure further includes a transistor structure (not shown) and an electrical contact 200 .
  • a transistor structure and electrical contacts 200 may be formed on a semiconductor substrate, thereby forming a semiconductor substrate.
  • Capacitor support layer 10 is then formed on electrical contact 200 .
  • the semiconductor substrate may include a silicon (Si) substrate, a silicon germanium (SiGe) substrate, a silicon germanium carbon (SiGeC) substrate, a silicon carbide (SiC) substrate, a gallium arsenide (GaAs) substrate, an indium arsenide ( InAs) substrate, indium phosphide (InP) substrate or other III/V semiconductor substrate or II/VI semiconductor substrate.
  • the semiconductor substrate may also be a layered substrate including, for example, Si/SiGe, Si/SiC, silicon on insulator (SOI) or silicon germanium on insulator.
  • the semiconductor substrate may first form a shallow trench isolation structure. Shallow trench isolation structures can separate a semiconductor substrate into multiple active regions. Transistor structures may be formed on the active area.
  • the transistor structure may include a source and a drain.
  • the source electrode and the drain electrode can be formed by heavily doping the semiconductor substrate.
  • the semiconductor substrate between the source and drain electrodes forms a channel region.
  • the channel region forms a conductive channel when the transistor is turned on.
  • the source or drain of the transistor structure is electrically connected to the electrical contact 200 on which the capacitor support layer 100 is located.
  • the electrical contact 200 material may include cobalt (Co), nickel (Ni), titanium (Ti), tungsten (W), tantalum (Ta), tantalum titanium (TaTi), tungsten nitride (WN), copper (Cu) and aluminum (Al) and other metal materials.
  • the semiconductor structure further includes a capacitor structure.
  • the capacitor structure includes a capacitor hole 300a, a lower electrode 310, a dielectric layer and an upper electrode.
  • the capacitor hole 300a penetrates the capacitor support layer 100.
  • the lower electrode 310 is located on the hole wall of the capacitor hole 300a.
  • the dielectric layer is located on the surface of the lower electrode 310 .
  • the upper electrode is located on the surface of the dielectric layer.
  • multiple support film layers and multiple sacrificial film layers 400 may be formed.
  • the sacrificial film layer 400 is located between the two support film layers.
  • the lowest support film layer among the plurality of support film layers takes the form of the capacitor support layer 100 of this embodiment.
  • a capacitor hole 300a is formed that penetrates all the supporting film layers and the sacrificial film layer.
  • the capacitor support layer 100 is penetrated by the capacitor hole 300a to expose the electrical contact portion 200 underneath.
  • One electrical contact 200 corresponds to one capacitor hole 300a.
  • a lower electrode 310 is formed in the capacitor hole. Afterwards, the sacrificial film layer 400 is removed, and a dielectric layer and an upper electrode are sequentially formed on the surface of the lower electrode.
  • the source or drain of the transistor structure can be electrically connected to the lower electrode 310 of the capacitor structure.
  • the transistor structure and the capacitor structure are electrically connected to form a 1T1C circuit structure.
  • a capacitor structure is formed in the semiconductor structure in this embodiment.
  • the semiconductor structure may also refer to a structure before the capacitor support layer 100 is formed, but before the capacitor hole or the like is formed.
  • the semiconductor structure includes a memory array
  • the memory array includes a transistor structure and a capacitor structure.
  • the memory array includes a plurality of memory cells, and each memory cell is connected to a word line and a bit line.
  • a memory cell may include a transistor structure and a capacitor structure. One of the source and drain of the transistor structure is connected to the capacitor structure, and the other is connected to the bit line. The gate of the transistor structure is connected to the word line.
  • the capacitor structure serves as the memory structure of the memory array and is used for the memory device.
  • the capacitor structure can also be used in other devices, and the comparison here is not limited.
  • Each semiconductor structure provided by the present disclosure has been experimentally proven to effectively expand the part of the capacitor hole in the capacitor support layer during the etching process of the capacitor hole, making the hole diameter of this part larger and reducing the contact resistance.
  • the shape of the holes in the capacitor support layer can be made more uniform. At this time, it is possible to effectively prevent the rapid expansion of the aperture from causing leakage and short circuit problems between the lower electrode and the adjacent electrical contact portion.
  • the incorporation of B is effective in improving dangling bonds on the surface of the support layer material, which is beneficial to GIDL (gate induce drain leakage).
  • a method for preparing a semiconductor structure including:
  • the first support layer 110 and the second support layer 120 are alternately formed to form the capacitor support layer 100 .
  • the capacitor support layer 100 includes a plurality of first support layers 110 and a plurality of second support layers 120 .
  • the first support layer 110 has a first etching rate
  • the second support layer 120 has a second etching rate
  • the second etching rate is greater than the first etching rate
  • forming the first support layer 110 includes forming a silicon nitride layer by atomic layer deposition.
  • the first support layer 110 includes a silicon nitride layer.
  • Forming the second support layer 120 includes forming a boron nitride layer through atomic layer deposition.
  • the second support layer 120 includes a boron nitride layer.
  • the conditions of the atomic layer deposition method for forming the silicon nitride layer include: the temperature is 620°C-640°C, the flow rate of SiH 2 Cl 2 is 1000 sccm - 3000 sccm, and the flow rate of NH 3 is 4000 sccm - 6000 sccm.
  • the conditions of the atomic layer deposition method for forming the boron nitride layer include: the temperature is 620°C-640°C, the flow rate of BCl 3 is 100sccm-300sccm, and the flow rate of NH 3 is 4000sccm-6000sccm.
  • the atomic percent of boron atoms in the capacitor support layer 100 is less than 19%.
  • the boron atoms in the capacitor support layer 100 can be detected and controlled through various known and conventional B atomic percentage detection methods (such as XPS, X-ray photoelectron spectroscopy/X-ray photoelectron spectrometer). The percentage is less than 19%, so the number of layers of each material layer stacked/the number of cycles in the deposition process can also be preset.
  • forming the silicon nitride layer by atomic layer deposition includes: passing SiH 2 Cl 2 and NH 3 once to form a first sub-layer 111 .
  • the first sub-layer 111 includes a silicon nitride layer.
  • the flow rate of SiH 2 Cl 2 can be 1000 sccm-3000 sccm, and the flow rate of NH 3 can be 4000 sccm-6000 sccm.
  • the boron nitride layer is formed by atomic layer deposition, including passing BCl 3 and NH 3 once to form a second sub-layer 121 . Or, pass BCl 3 and NH 3 multiple times to form multiple second sub-layers 121 arranged in a stack.
  • the second sub-layer 121 includes a boron nitride layer.
  • the flow rate of BCl 3 can be 100 sccm-300 sccm, and the flow rate of NH 3 can be 4000 sccm-6000 sccm.
  • alternately forming the first support layer 110 and the second support layer 120 to form the capacitor support layer 100 includes:
  • N 1 second sub-layers 121 Pass N 1 times of BCl 3 and NH 3 to form N 1 second sub-layers 121, and N 1 second sub-layers constitute the second support layer 120, N 1 ⁇ 1;
  • N 2 first sub-layers 111 constitute the first support layer 110 and the second support layer 120 and the first support layer 110 on the second support layer 120 constitute the first type of support layer group, N 2 ⁇ 1;
  • the formation of the first type support layer group is repeated n-1 times again to form the capacitor support layer 100 including n first type support layer groups arranged in a stack, where n is a positive integer greater than 1.
  • alternately forming the first support layer 110 and the second support layer 120 to form the capacitor support layer 100 includes:
  • a second combination layer 22 is formed on the first combination layer 21, and the second combination layer 22 and the first combination layer 21 form a second type of support layer group 20;
  • Forming the first combined layer includes:
  • N 3 second sub-layers 121 constitute the second support layer 120, N 3 ⁇ 1;
  • N 4 first sub-layers 111 constitute the first support layer 110 and the second support layer 120 and the first support layer 110 on the second support layer 120 constitute the first combined layer 21, N 4 ⁇ 1;
  • Forming the second combination layer 22 on the first combination layer 21 includes:
  • N 5 second sub-layers 121 Pass N 5 times of BCl 3 and NH 3 to form N 5 second sub-layers 121, and N 5 second sub-layers 121 constitute the second support layer 120, N 5 ⁇ 1;
  • N 6 first sub-layers 111 constitute the first support layer 110 and the second support layer 120 and the first support layer 110 on the second support layer 120 constitute the second combined layer 22, N 6 ⁇ 1;
  • N 3 is not equal to N 5
  • N 4 is not equal to N 6 .
  • the method before forming the first support layer 110 and the second support layer 120 alternately to form the capacitor support layer 100, the method further includes:
  • Electrical contacts 200 are formed.
  • the first support layer 110 and the second support layer 120 are alternately formed to form the capacitor support layer 100, including:
  • Each of the first supporting part and the second supporting part independently includes a stacked boron nitride layer and a silicon nitride layer. Furthermore, the atomic percentage of boron atoms in the first supporting part is greater than the atomic percentage of boron atoms in the second supporting part, so that the etching rate of the first supporting part is greater than the etching rate of the second supporting part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本公开涉及一种半导体结构及其制备方法,半导体结构,包括电容器支撑层,电容器支撑层包括:多个第一支撑层,具有第一刻蚀速率;多个第二支撑层,具有第二刻蚀速率,第二刻蚀速率大于第一刻蚀速率;第一支撑层与第二支撑层层叠且交替排布。本公开实施例可以对电容孔的形貌进行良好控制。

Description

半导体结构及其制备方法
相关申请的交叉引用
本公开要求于2022年06月27日提交中国专利局、申请号为2022107360892、发明名称为“半导体结构及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及集成电路技术领域,特别是涉及一种半导体结构及其制备方法。
背景技术
在目前的半导体器件生产工艺中,形成电容器的过程通常为,首先形成支撑膜层与牺牲膜层,牺牲膜层形成在支撑膜层之间。然后形成贯穿所有支撑膜层与牺牲膜层的电容孔。之后在电容孔内形成下电极。之后去除牺牲膜层,并在下电极表面依次形成介质层与上电极。
在此过程中,电容孔通常是通过湿法刻蚀形成。在湿法刻蚀成形电容孔时,由于一些支撑膜层的膜质较硬,导致电容孔下部孔径较小。此时,电容孔内形成下电极后,下电极与其下方的电接触部(如金属膜层)接触面积较小,从而增大了接触电阻,不利于降低功耗。
发明内容
根据本公开的各种实施例,提供一种半导体结构及其制备方法。
根据本公开的各种实施例,提供一种半导体结构,包括电容器支撑层,所述电容器支撑层包括:
多个第一支撑层,具有第一刻蚀速率;
多个第二支撑层,具有第二刻蚀速率,所述第二刻蚀速率大于所述第一刻蚀速率;
所述第一支撑层与所述第二支撑层层叠且交替排布。
根据一些实施例,所述第一支撑层包括氮化硅层,所述第二支撑层包括氮化硼层。
根据一些实施例,所述电容器支撑层中的硼原子的原子百分比小于19%。
根据一些实施例,所述第一支撑层包括一个第一子层,或者所述第一支撑层包括层叠设置的多个第一子层;所述第一子层包括氮化硅层;
所述第二支撑层包括一个第二子层,或者所述第二支撑层包括层叠设置的多个第二子层;所述第二子层包括氮化硼层。
根据一些实施例,
所述电容器支撑层包括n个层叠设置的第一类支撑层组,每个所述第一类支撑层组均包括层叠设置的所述第一支撑层与所述第二支撑层,n为大于1的正整数,
每个所述第一类支撑层组中,第一支撑层内的第一子层数量相同,且第二支撑层内的第二子层数量相同。
根据一些实施例,
所述电容器支撑层包括m个层叠设置的第二类支撑层组,每个所述第二类支撑层组均包括层叠设置的第一组合层与第二组合层,m为大于1的正整数,
所述第一组合层与所述第二组合层均包括层叠设置的所述第一支撑层与所述第二支撑层,
所述第一组合层与所述第二组合层的第一支撑层内的第一子层数量不同,和/或,所述第一组合层与所述第二组合层的第二支撑层内的第二子层数量不同。
根据一些实施例,每个所述第二类支撑层组的第一组合层数量相同,且每个所述第二类支撑层组的第二组合层数量相同。
根据一些实施例,
所述电容器支撑层包括第一支撑部分与第二支撑部分,所述第一支撑部分与所述第二支撑部分均各自独立地包括层叠设置的所述第一支撑层与所述第二支撑层,所述第一支撑部分用于与电接触部接触,所述第二支撑部分位于所述第一支撑部分的远离所述电接触部的一侧,
所述第一支撑部分的刻蚀速率大于所述第二支撑部分的刻蚀速率。
根据一些实施例,所述第一支撑部分的厚度小于所述电容器支撑层厚度的1/3。
根据一些实施例,所述半导体结构还包括:
晶体管结构,包括源极以及漏极;
电接触部,电连接所述源极或漏极;
所述电容器支撑层位于所述电接触部上。
根据一些实施例,所述半导体结构还包括电容结构,所述电容结构包括:
电容孔,所述电容孔贯穿所述电容器支撑层;
下电极,位于所述电容孔的孔壁;
介质层,位于所述下电极表面;
上电极,位于所述介质层表面。
根据一些实施例,所述半导体结构包括存储阵列,所述存储阵列包括所述晶体管结构与所述电容结构。
根据本公开的各种实施例,还提供一种半导体结构的制备方法,包括:
交替形成第一支撑层与第二支撑层,以形成电容器支撑层,所述电容器支撑层包括多个第一支撑层以及多个第二支撑层,所述第一支撑层具有第一刻蚀速率,所述第二支撑层具有第二刻蚀速率,所述第二刻蚀速率大于所述第一刻蚀速率。
根据一些实施例,
形成所述第一支撑层包括:
通过原子层沉积方式形成氮化硅层;
形成所述第二支撑层包括:
通过原子层沉积方式形成氮化硼层。
根据一些实施例,
所述电容器支撑层中的硼原子的原子百分比小于19%。
根据一些实施例,
所述通过原子层沉积方式形成氮化硅层,包括:
通入一次SiH 2Cl 2与NH 3,以形成一个第一子层;或者,通入多次SiH 2Cl 2与NH 3,以形成层叠设置的多个第一子层;所述第一子层包括氮化硅层;
所述通过原子层沉积方式形成氮化硼层,包括:
通入一次BCl 3与NH 3,以形成一个第二子层;或者,通入多次BCl 3与NH 3,以形成层叠设置的多个第二子层;所述第二子层包括氮化硼层。
根据一些实施例,形成氮化硅层的原子层沉积方式的条件包括:温度为620℃-640℃,SiH 2Cl 2的流量为1000sccm-3000sccm,NH 3的流量为4000sccm-6000sccm;和/或
形成氮化硼层的原子层沉积方式的条件包括:温度为620℃-640℃,BCl 3的流量为100sccm-300sccm,NH 3的流量为4000sccm-6000sccm。
根据一些实施例,所述交替形成第一支撑层与第二支撑层,以形成电容器支撑层包括:
通入N 1次BCl 3与NH 3,以形成N 1个所述第二子层,所述N 1个所述第二子层构成所述第二支撑层,N 1≥1;
通入N 2次SiH 2Cl 2与NH 3,以于所述第二支撑层上形成N 2个所述第一子层,所述N 2个所述第一子层构成所述第一支撑层,所述第二支撑层以及所述第二支撑层上的所述第一支撑层构成第一类支撑层组,N 2≥1;
再次重复形成所述第一类支撑层组n-1次,以形成包括n个层叠设置的第一类支撑层组的电容器支撑层,n为大于1的正整数。
根据一些实施例,所述交替形成第一支撑层与第二支撑层,以形成电容器支撑层包括:
形成第一组合层;
于所述第一组合层上形成第二组合层,所述第二组合层与所述第一组合层构成第二类支撑层组;
再次重复形成所述第二类支撑层组m-1次,以形成包括m个层叠设置的第二类支撑层组的电容器支撑层,m为大于1的正整数;
所述形成第一组合层包括:
通入N 3次BCl 3与NH 3,以形成N 3个所述第二子层,所述N 3个所述第二子层构成所述第二支撑层,N 3≥1;
通入N 4次SiH 2Cl 2与NH 3,以于所述第二支撑层上形成N 4个所述第一子层,所述N 4个所述第一子层构成所述第一支撑层,所述第二支撑层以及所述第二支撑层上的所述第一支撑层构成第一组合层,N 4≥1;
所述于所述第一组合层上形成第二组合层包括:
通入N 5次BCl 3与NH 3,以形成N 5个所述第二子层,所述N 5个所述第二子层构成所述第二支撑层,N 5≥1;
通入N 6次SiH 2Cl 2与NH 3,以于所述第二支撑层上形成N 6个所述第一子层,所述N 6个所述第一子层构成所述第一支撑层,所述第二支撑层以及所述第二支撑层上的所述第一支撑层构成第二组合层,N 6≥1;
其中,N 3不等于N 5,和/或N 4不等于N 6
根据一些实施例,所述交替形成第一支撑层与第二支撑层,以形成电容器支撑层之前,还包括:
形成电接触部;
所述交替形成第一支撑层与第二支撑层,以形成电容器支撑层,包括:
于所述电接触部上形成第一支撑部分;
于所述第一支撑部分上形成第二支撑部分;
所述第一支撑部分与所述第二支撑部分均各自独立地包括层叠设置的所述氮化硼层与所述氮化硅层,且所述第一支撑部分中的硼原子的原子百分比大于所述第二支撑部分中的硼原子的原子百分比。
本公开实施例可以/至少具有以下优点:
一方面由于第二支撑层具有较大的刻蚀速率,因此在进行电容孔的刻蚀过程中,可以有效扩张电容孔在电容器支撑层内的部分,使得该部分孔径变大,降低接触电阻。
同时,另一方面交替排布的第二支撑层与第一支撑层,可以使得刻蚀速率快慢交替进行。在第二支撑层扩大孔径的同时,第一支撑层对电容器支撑层内的孔径、形貌进行有效调整,使得电容器支撑层内的孔形状更加匀称。此时,可以有效防止孔径快速扩大而导致下电极与邻近电接触部之间发生漏电、短路的问题。因此,本实施例可以对电容孔的形貌进行良好控制。
而且,在一些实施例中,B的掺入对于改善支撑层材料表面的悬挂键有效,这样对于GIDL(gate induce drain leakage,栅极感应漏极漏电)有好处。
本公开的一个或多个实施例的细节在下面的附图和描述中提出。本公开的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本公开实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a为氮化硅作为支撑膜层时形成的电容孔相关结构形貌示意图;
图1b为一实施例中形成的电容孔相关结构形貌示意图;
图2为一实施例中提供的电容器支撑层的结构示意图;
图3a、图3b为不同实施例中提供的第一支撑层以及第二支撑层的结构组成示意图;
图4至图7为不同实施例中提供的电容器支撑层的结构示意图;
图8为一实施例中提供的半导体结构示意图;
图9为另一实施例中提供的半导体结构示意图。
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
附图标记说明:
100-电容器支撑层,110-第一支撑层,111-第一子层,120-第二支撑层,121-第二子层,200-电接触部,310-下电极,300a-电容孔,10-第一类支撑层组,20-第二类支撑层组。
具体实施方式
为了便于理解本公开,下面将参照相关附图对本公开进行更全面的描述。附图中给出了本公开的首选实施例。但是,本公开可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本公开的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本公开的技术领域的技术人员通常理解的含义相同。本文中在本公开的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本公开。
应当明白,当元件或层被称为“在...上”、“与...相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在...上”、“与...直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层、掺杂类型和/或部分,这些元件、部件、区、层、掺杂类型和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层、掺杂类型或部分与另一个元件、部件、区、层、掺杂类型或部分。因此,在不脱离本公开教导之下,下面讨论的第一元件、部件、区、层、掺杂类型或部分可表示为第二元件、部件、区、层或部分。
空间关系术语例如“在...下”、“在...下面”、“下面的”、“在...之下”、“在...之上”、“上面的”等,在这里可以用于描述图中所示的一个元件或特征与其它元件或特征的关系。应 当明白,除了图中所示的取向以外,空间关系术语还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在...下面”和“在...下”可包括上和下两个取向。此外,器件也可以包括另外地取向(譬如,旋转90度或其它取向),并且在此使用的空间描述语相应地被解释。
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应明白,当术语“组成”和/或“包括”在该说明书中使用时,可以确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。同时,在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
本公开的实施例不应当局限于附图所示的区的特定形状,而是包括由于例如制造技术导致的形状偏差。
如背景技术所言,目前电容器的制备过程中,由于一些支撑膜层的膜质较硬,导致电容孔下部孔径较小,从而会影响电容器的下电极与电接触部的接触电阻,进而影响器件功耗。
例如,在电容器加工过程中,经常采用氮化硅作为支撑膜层。而氮化硅的膜质较硬,从而就会导致电容孔下部孔径较小(请参阅图1a),进而影响器件功耗。
在一实施例中,请参阅图1b,采用向氮化硅里掺杂硼的方式,从而扩大电容孔下部孔径,增大接触面积。此种方式,有时会导致电容孔在支撑膜层中的、与电接触部(如金属膜层)接触的部分,形状过于向外拱,容易导致下电极与邻近电接触部之间发生漏电、短路。
基于此,本公开实施例还提供了一种半导体结构及其制备方法。
在一个实施例中,请参阅图2,提供一种半导体结构,包括电容器支撑层100。
具体地,电容器支撑层100用于形成电容结构。形成电容结构的支撑膜层可以有多个竖直间隔设置的膜层。这里,电容器支撑层100可以包括最下层的支撑膜层。而其他的支撑膜层可以采用电容器支撑层100的形式,也可以采用其他形式,这里对此并没有限制。
电容器支撑层100可以形成在半导体基底上。半导体基底上可以形成有电接触部200。电接触部200用于与电容结构接触,从而与电容结构电性连接。
电容器支撑层100包括多个第一支撑层110以及多个第二支撑层120。“多个”为两个或者两个以上。
第一支撑层110具有第一刻蚀速率,第二支撑层120具有第二刻蚀速率。第二刻蚀速率大于第一刻蚀速率。即在相同的刻蚀条件下,第二支撑层120的刻蚀速率大于第一支撑层110的刻蚀速率。
作为示例,第一支撑层110可以包括氮化硅层,而第二支撑层120可以包括氮化硼层。 在相同的刻蚀条件下,氮化硼层的刻蚀速率大于氮化硅层的刻蚀速率。
当然,第一支撑层110和/或第二支撑层120也可以为其他材料的膜层,这里对此并没有限制,例如,在一些实施例中,只要能形成含硼的复合电容器支撑层即可。
同时,第一支撑层110与第二支撑层120层叠且交替排布。
可以通过交替形成第一支撑层110与第二支撑层120,来形成多个第一支撑层110与多个第二支撑层120。
具体地,可以先形成一个第二支撑层120(如氮化硼层),然后形成一个第一支撑层110(如氮化硅层),然后再形成一个第二支撑层120,然后再形成一个第一支撑层110,以此类推。或者,可以先形成一个第一支撑层110,然后形成一个第二支撑层120,然后再形成一个第一支撑层110,然后再形成一个第二支撑层120,以此类推。
此时,一方面由于第二支撑层120具有较大的刻蚀速率,因此在进行电容孔的刻蚀过程中,可以有效扩张电容孔在电容器支撑层100内的部分,使得该部分孔径变大。
同时,另一方面交替排布的第二支撑层120与第一支撑层110,可以使得刻蚀速率快慢交替进行。在第二支撑层120扩大孔径的同时,第一支撑层110对电容器支撑层100内的孔径、形貌进行有效调整,使得容器支撑层100内的孔形状更加匀称。此时,可以有效防止孔径快速扩大而导致下电极310与邻近电接触部200之间发生漏电、短路的问题。因此,本实施例可以对电容孔的形貌进行良好控制。
在一个实施例,当第一支撑层包括氮化硅层,第二支撑层包括氮化硼层时,硼原子的原子百分比小于19%。
在一个实施例,电容器支撑层中的硼原子的原子百分比小于19%。电容器支撑层即为氮化硅硼层,即氮化硅硼层中的硼原子的原子百分比小于19%。
经本公开的发明人在研究中创造性发现,硼原子的原子百分比越大,电容孔在电容器支撑层100内的形状越容易向外拱。本实施例限制硼原子的原子百分比小于19%,从而可以进一步控制电容孔在电容器支撑层100内的形状,从而进一步防止电容结构的下电极310与邻近电接触部200之间发生漏电、短路,同时可以有效扩张电容孔在电容器支撑层100内的部分,使得该部分孔径变大,降低接触电阻。
在一个实施例中,请参阅图3a以及图3b,第一支撑层110包括一个第一子层111,或者第一支撑层110包括层叠设置的多个第一子层111。所述第一子层110包括氮化硅层。第二支撑层120包括一个第二子层121,或者第二支撑层120包括层叠设置的多个第二子层121。第二子层121包括氮化硼层。
第一支撑层110中第一子层111的数量,以及第二支撑层120中第二子层121的数量可以根据实际需求调整,二者可以相同,也可以不同。
第一支撑层110以及第二支撑层120均可以通过化学气相沉积方式形成。化学气相沉积方式例如可以包括但不限于为原子层沉积(ALD)方式。
一个第一子层111为通入一次形成第一支撑层110的工艺气体而形成的层。一个第二 子层121为通入一次形成第二支撑层120的工艺气体而形成的层。
具体地,当第一支撑层110包括氮化硅层时,形成第一支撑层110的工艺气体可以包括SiH 2Cl 2以及NH 3。通入一次SiH 2Cl 2与NH 3,可以形成一个第一子层111。通入多次SiH 2Cl 2与NH 3,可以形成层叠设置的多个第一子层111。每次通入SiH 2Cl 2与NH 3时,SiH 2Cl 2的流量可以为1000sccm-3000sccm,NH 3的流量可以为4000sccm-6000sccm。
当第二支撑层120包括氮化硼层时,形成第二支撑层120的工艺气体可以包括BCl 3以及NH 3。通入一次BCl 3与NH 3,可以形成一个第二子层121。通入多次BCl 3与NH 3,可以形成层叠设置的多个第二子层121。每次通入BCl 3与NH 3时,BCl 3的流量可以为100sccm-300sccm,NH 3的流量可以为4000sccm-6000sccm。
本实施例将第一支撑层110与第二支撑层120均设置为包括若干子层的形式,从而便于通过第一子层111以及第二子层121的层数,而对原子原子百分比(如对硼原子的原子百分比)进行调整。此时,可以根据需求控制电容器支撑层100的整体刻蚀速率,进而对电容器支撑层100内的孔形貌进行有效调整。
在一个实施例中,请参阅图4或图5,电容器支撑层100包括n个层叠设置的第一类支撑层组10。每个第一类支撑层组10均包括层叠设置的第一支撑层110与第二支撑层120,n为大于1的正整数。
具体地,每个第一类支撑层组10中,第一支撑层110可以形成在第二支撑层120之上。或者,每个第一类支撑层组10中,也可以设置第二支撑层120形成在第一支撑层110之上。
每个第一类支撑层组10中,第一支撑层110内的第一子层111数量相同,且第二支撑层120内的第二子层121数量相同。
此时,电容器支撑层100在沿其深度方向可以被更加均匀的刻蚀,从而有利于使得电容器支撑层100内的孔径更加均匀。
作为一示例,请参阅图4,可以设置第一支撑层110包括氮化硅层,第二支撑层120包括氮化硼层。同时,每个第一类支撑层组10中,第一支撑层110均包括四个第一子层111,第二支撑层120均包括一个第二子层121。同时,第一支撑层110形成在第二支撑层120之上。具体地,在第一类支撑层组10制备过程中,可以首先通入一次BCl 3与NH 3,以形成一层第二子层121。然后再通入四次SiH 2Cl 2与NH 3,以在一层第二子层121上形成四层第一子层111。
作为另一示例,请参阅图5,可以设置第一支撑层110包括氮化硅层,第二支撑层120包括氮化硼层。同时,每个第一类支撑层组10中,第一支撑层110均包括三个第一子层111,第二支撑层120均包括两个第二子层121。同时,第一支撑层110形成在第二支撑层120之上。具体地,在第一类支撑层组10制备过程中,可以首先通入两次BCl 3与NH 3,以形成两层第二子层121。然后再通入三次SiH 2Cl 2与NH 3,以在顶层第二子层121上形成三层第一子层111。
可以理解的是,图4以及图5中为了图形清晰且便于理解,以第一子层*第一子层数量的形式表示一个或者层叠设置的多个第一子层。以第二子层*第二子层数量的形式表示一个或者层叠设置的多个第二子层。具体地,“第一子层*4”表示四层层叠设置的第一子层111,“第一子层*3”表示三层层叠设置的第一子层111。“第二子层*2”表示两层层叠设置的第二子层121。“第二子层*1”表示第二支撑层120只包括一层第二子层121。
在一个实施例中,请参阅图6或图7,电容器支撑层100包括m个层叠设置的第二类支撑层组20。每个第二类支撑层组20均包括层叠设置的第一组合层21与第二组合层22,m为大于1的正整数。这里,第二类支撑层组20内的第一组合层21以及第二组合层22的数量均可以为一个或者多个,且二者数量可以相同,也可以不同。
可以理解的是,图6以及图7中为了图形清晰且便于理解,同样以第一子层*第一子层数量的形式表示一个或者层叠设置的多个第一子层。以第二子层*第二子层数量的形式表示一个或者层叠设置的多个第二子层。同时,以第二类支撑层组*m表示m个层叠设置的第二类支撑层组20。以第一类支撑层组*n表示n个层叠设置的第一类支撑层组10。
第一组合层21与第二组合层22的数量可以相同,也可以不同。
具体地,可以设置第一组合层21形成在第二组合层22上,也可以设置第二组合层22形成在第一组合层21上。
第一组合层21与第二组合层22均包括层叠设置的第一支撑层110与第二支撑层120,
具体地,第一组合层21与第二组合层22中,第一支撑层110可以形成在第二支撑层120之上。或者,第一组合层21与第二组合层22中,也可以设置第二支撑层120形成在第一支撑层110之上。
第一组合层21与第二组合层22的第一支撑层110内的第一子层111数量不同。和/或,第一组合层21与第二组合层22的第二支撑层120内的第二子层121数量不同。
具体地,设定第一组合层21中,第一支撑层110内的第一子层111数量为a1,第二支撑层120内的第二子层121数量为b1。第二组合层22中,第一支撑层110内的第一子层111数量为a2,第二支撑层120内的第二子层121数量为b2。则a1不等于a2;和/或,b1不等于b2。
作为一示例,请参阅图6,可以设置第二类支撑层组20包括一个第一组合层21与一个第二组合层22。第二组合层22形成在第一组合层21上。第一组合层21与第二组合层22中,第一支撑层110形成在第二支撑层120上。同时,第一组合层21的第一支撑层110包括四个第一子层111,第二支撑层120包括一个第二子层121。第二组合层22的第一支撑层110包括三个第一子层111,第二支撑层120包括两个第二子层121。
此时,在第二类支撑层组20的制备过程中,可以首先通入一次BCl 3与NH 3,以形成一层第二子层121。然后再通入四次SiH 2Cl 2与NH 3,以形成四层第一子层111。然后再通入两次BCl 3与NH 3,以形成两层第二子层121。然后再通入三次SiH 2Cl 2与NH 3,以形成三层第一子层111。
作为另一示例,请参阅图7,也可以设置第二类支撑层组20包括一个第一组合层21与两个第二组合层22。第二组合层22形成在第一组合层21上。第一组合层21与第二组合层22中,第一支撑层110形成在第二支撑层120上。同时,第一组合层21的第一支撑层110包括四个第一子层111,第二支撑层120包括一个第二子层121。第二组合层21的第一支撑层110包括三个第一子层111,第二支撑层120包括两个第二子层121。
此时,在第二类支撑层组20的制备过程中,可以首先通入一次BCl 3与NH 3,以形成一层第二子层121。然后再通入四次SiH 2Cl 2与NH 3,以形成四层第一子层111。然后再通入两次BCl 3与NH 3,以形成两层第二子层121。然后再通入三次SiH 2Cl 2与NH 3,以形成三层第一子层111。然后再通入两次BCl 3与NH 3,以形成两层第二子层121。然后再通入三次SiH 2Cl 2与NH 3,以形成三层第一子层111。
在本实施例中,通过设置第一组合层21与第二组合层22内第一子层111和/或第二子层121数量不同,从而可以调整第二类支撑层组20中原子的原子百分比(如硼原子的原子百分比),从而使得第二类支撑层组20具有与第一类支撑层组10不同的刻蚀速率。
在一些示例中,电容器支撑层100可以只包括m个第二类支撑层组20。
在另一些示例中,电容器支撑层100也可以既包括m个第二类支撑层组20,又包括n个第一类支撑层组10。
此时,电容器支撑层100制备时,可以先形成n个第一类支撑层组10,再形成m个第二类支撑层组20。或者,也可以循环形成n个第一类支撑层组10与m个第二类支撑层组20,从而形成电容器支撑层100。
在一个实施例中,每个第二类支撑层组20的第一组合层21数量相同,且每个第二类支撑层组20的第二组合层22数量相同。
即m个第二类支撑层组20中,各个第二类支撑层组20结构相同,从而使得m个层叠设置的第二类支撑层组20内的孔径相对更加均匀。
当然,在其他实施例中,各个第二类支撑层组20的第一组合层21数量和/或第二组合层22数量也可以不同,从而便于调整电容器支撑层100内的原子的原子百分比。
在一个实施例中,电容器支撑层100包括第一支撑部分与第二支撑部分。第一支撑部分与第二支撑部分均各自独立地包括层叠设置的第一支撑层110与第二支撑层120。第一支撑部分用于与电接触部200接触,第二支撑部分位于第一支撑部分的远离电接触部200的一侧。
第一支撑部分的刻蚀速率大于第二支撑部分的刻蚀速率,从而使得靠近电接触部200的部分具有较大孔径。此时,电容孔内形成的下电极可以与电接触部200具有更大的接触面积,降低接触电阻。
具体地,例如,当第一支撑层110包括氮化硅层,第二支撑层120包括氮化硼层时,如图7所示的n个第一类支撑层组10可以作为第一支撑部分,而如图所示的m个第二类支撑层组10可以作为第二支撑部分。
在一个实施例中,第一支撑部分的厚度小于电容器支撑层厚度的1/3。此时,可以在增大与电接触部200接触面积的同时,防止具有较大刻蚀速率的第一支撑部分内的孔过大过拱,从而防止其与相邻的电接触部200之间发生漏电。
在一个实施例中,请参阅图8,半导体结构还包括晶体管结构(未图示)与电接触部200。
具体地,可以在半导体衬底上形成晶体管结构以及电接触部200,从而形成半导体基底。然后,电容器支撑层10形成在电接触部200上。
半导体衬底可以包括硅(Si)衬底、硅锗(SiGe)衬底、硅锗碳(SiGeC)衬底、碳化硅(SiC)衬底、砷化镓(GaAs)衬底、砷化铟(InAs)衬底、磷化铟(InP)衬底或其它的III/V半导体衬底或II/VI半导体衬底。或者,半导体衬底也可以是包括诸如Si/SiGe、Si/SiC、绝缘体上硅(SOI)或绝缘体上硅锗的层状衬底。
半导体衬底可以首先形成浅沟槽隔离结构。浅沟槽隔离结构可以将半导体衬底分隔成多个有源区。晶体管结构可以形成在有源区上。
具体地,晶体管结构可以包括源极以及漏极。源极以及漏极可以通过半导体衬底进行重掺杂而形成。源极以及漏极之间的半导体衬底形成沟道区。沟道区在晶体管打开时形成导电沟道。
晶体管结构的源极或漏极电连接电接触部200,电容器支撑层100位于电接触部100上。
电接触部200材料可以包括钴(Co)、镍(Ni)、钛(Ti)、钨(W)、钽(Ta)、钛化钽(TaTi)、氮化钨(WN)、铜(Cu)及铝(Al)等金属材料。
电接触部200可以有多个,不同的电接触部200与不同的晶体管结构电连接。
在一个实施例中,请参阅图9,半导体结构还包括电容结构。电容结构包括电容孔300a、下电极310、介质层以及上电极。
电容孔300a贯穿电容器支撑层100。下电极310位于电容孔300a的孔壁。介质层位于下电极310表面。上电极位于介质层表面。
具体地,请参阅图8,在半导体结构的制备过程中,可以形成多个支撑膜层与多个牺牲膜层400。牺牲膜层400位于两个支撑膜层之间。多个支撑膜层中的最底层的支撑膜层采用本实施例的电容器支撑层100的形式。然后形成贯穿所有支撑膜层与牺牲膜层的电容孔300a。电容器支撑层100被电容孔300a穿透而暴露其下方的电接触部200。一个电接触部200对应一个电容孔300a。
然后,请参阅图9,再于电容孔内形成下电极310。之后去除牺牲膜层400,并在下电极表面依次形成介质层与上电极。
通过电接触部200,可以将晶体管结构源极或漏极与电容结构的下电极310与电连接。此时,晶体管结构与电容结构电连,而形成1T1C的电路结构。
在本实施例中的半导体结构中形成了电容结构。当然,在一些实施例中,半导体结构 也可以指形成了电容器支撑层100,但是还未形成电容孔等之前的结构。
在一个实施例中,半导体结构包括存储阵列,存储阵列包括晶体管结构与电容结构。
具体地,存储阵列包括多个存储单元,每个存储单元均连接一条字线与一条位线。通过一个存储单元可以包括一个晶体管结构与一个电容结构。晶体管结构的源极与漏极中的其中一者连接电容结构,另一者连接位线。晶体管结构的栅极连接字线。
在本实施例中,电容结构作为了存储阵列的存储结构,用于存储器件。当然,在其他实施例中,电容结构也可以用于其他器件,这里对比并不做限制。
本公开提供的各半导体结构,经实验证明,在进行电容孔的刻蚀过程中,可以有效扩张电容孔在电容器支撑层内的部分,使得该部分孔径变大,降低接触电阻。同时能够使得电容器支撑层内的孔形状更加匀称。此时,可以有效防止孔径快速扩大而导致下电极与邻近电接触部之间发生漏电、短路的问题。
而且,在一些实施例中,B的掺入对于改善支撑层材料表面的悬挂键有效,这样对于GIDL(gate induce drain leakage,栅极感应漏极漏电)有好处。
在一个实施例中,提供一种半导体结构的制备方法,包括:
交替形成第一支撑层110与第二支撑层120,以形成电容器支撑层100。电容器支撑层100包括多个第一支撑层110以及多个第二支撑层120。
第一支撑层110具有第一刻蚀速率,第二支撑层120具有第二刻蚀速率,第二刻蚀速率大于第一刻蚀速率。
在一个实施例中,形成第一支撑层110包括:通过原子层沉积方式形成氮化硅层。
此时,第一支撑层110包括氮化硅层。
形成第二支撑层120包括:通过原子层沉积方式形成氮化硼层。
此时,第二支撑层120包括氮化硼层。
在一个实施例中,形成氮化硅层的原子层沉积方式的条件包括:温度为620℃-640℃,SiH 2Cl 2的流量为1000sccm-3000sccm,NH 3的流量为4000sccm-6000sccm。
在一个实施例中,形成氮化硼层的原子层沉积方式的条件包括:温度为620℃-640℃,BCl 3的流量为100sccm-300sccm,NH 3的流量为4000sccm-6000sccm。
在一个实施例中,电容器支撑层100中的硼原子的原子百分比小于19%。在制备过程中可以通过各种已知、常规的B的原子百分比检测方法(如XPS,X-ray photoelectron spectroscopy/X射线光电子能谱仪)来检测和控制电容器支撑层100中的硼原子的原子百分比小于19%,从而也可以对层叠设置的各材料层的层数/沉积过程中的循环次数进行预先设定。
在一个实施例中,通过原子层沉积方式形成氮化硅层,包括:通入一次SiH 2Cl 2与NH 3,以形成一个第一子层111。或者,通入多次SiH 2Cl 2与NH 3,以形成层叠设置的多个第一子层111。第一子层111包括氮化硅层。
具体地,每次通入SiH 2Cl 2与NH 3时,SiH 2Cl 2的流量可以为1000sccm-3000sccm,NH 3 的流量可以为4000sccm-6000sccm。通入一次SiH 2Cl 2与NH 3,可以形成一层第一子层111。
通过原子层沉积方式形成氮化硼层,包括:通入一次BCl 3与NH 3,以形成一个第二子层121。或者,通入多次BCl 3与NH 3,以形成层叠设置的多个第二子层121。第二子层121包括氮化硼层。
具体地,每次通入BCl 3与NH 3时,通入BCl 3的流量可以为100sccm—300sccm,NH 3的流量可以为4000sccm-6000sccm。通入一次BCl 3与NH 3,可以形成一层第二子层121。
在一个实施例中,交替形成第一支撑层110与第二支撑层120,以形成电容器支撑层100包括:
通入N 1次BCl 3与NH 3,以形成N 1个第二子层121,N 1个第二子层构成第二支撑层120,N 1≥1;
通入N 2次SiH 2Cl 2与NH 3,以于第二支撑层120上形成N 2个第一子层111,N 2个第一子层111构成第一支撑层110,第二支撑层120以及第二支撑层120上的第一支撑层110构成第一类支撑层组,N 2≥1;
再次重复形成第一类支撑层组n-1次,以形成包括n个层叠设置的第一类支撑层组的电容器支撑层100,n为大于1的正整数。
在一个实施例中,交替形成第一支撑层110与第二支撑层120,以形成电容器支撑层100包括:
形成第一组合层21;
于第一组合层21上形成第二组合层22,第二组合层22与第一组合层21构成第二类支撑层组20;
再次重复形成第二类支撑层组m-1次,以形成包括m个层叠设置的第二类支撑层组的电容器支撑层,m为大于1的正整数。
形成第一组合层包括:
通入N 3次BCl 3与NH 3,以形成N 3个第二子层121,N 3个第二子层121构成第二支撑层120,N 3≥1;
通入N 4次SiH 2Cl 2与NH 3,以于第二支撑层120上形成N 4个第一子层111,N 4个第一子层111构成第一支撑层110,第二支撑层120以及第二支撑层120上的第一支撑层110构成第一组合层21,N 4≥1;
于第一组合层21上形成第二组合层22包括:
通入N 5次BCl 3与NH 3,以形成N 5个第二子层121,N 5个第二子层121构成第二支撑层120,N 5≥1;
通入N 6次SiH 2Cl 2与NH 3,以于第二支撑层120上形成N 6个第一子层111,N 6个第一子层111构成第一支撑层110,第二支撑层120以及第二支撑层120上的第一支撑层110构成第二组合层22,N 6≥1;
其中,N 3不等于N 5,和/或N 4不等于N 6
在一个实施例中,交替形成第一支撑层110与第二支撑层120,以形成电容器支撑层100之前,还包括:
形成电接触部200。
交替形成第一支撑层110与第二支撑层120,以形成电容器支撑层100,包括:
于电接触部200上形成第一支撑部分;
于第一支撑部分上形成第二支撑部分;
第一支撑部分与第二支撑部分均各自独立地包括层叠设置的氮化硼层与氮化硅层。并且,第一支撑部分中的硼原子的原子百分比大于第二支撑部分中的硼原子的原子百分比,从而使得第一支撑部分的刻蚀速率大于第二支撑部分的刻蚀速率。
半导体结构的制备方法的限定,可以参见上文中对于半导体结构的限定,在此不再过多赘述。
上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开专利的保护范围应以所附权利要求为准。

Claims (25)

  1. 一种半导体结构,包括电容器支撑层,所述电容器支撑层包括:
    多个第一支撑层,具有第一刻蚀速率;
    多个第二支撑层,具有第二刻蚀速率,所述第二刻蚀速率大于所述第一刻蚀速率;
    所述第一支撑层与所述第二支撑层层叠且交替排布。
  2. 根据权利要求1所述的半导体结构,其中,所述第一支撑层包括氮化硅层,所述第二支撑层包括氮化硼层。
  3. 根据权利要求2所述的半导体结构,其中,所述电容器支撑层中的硼原子的原子百分比小于19%。
  4. 根据权利要求1-3任一项所述的半导体结构,其中,
    所述第一支撑层包括一个第一子层,或者所述第一支撑层包括层叠设置的多个第一子层;所述第一子层包括氮化硅层;
    所述第二支撑层包括一个第二子层,或者所述第二支撑层包括层叠设置的多个第二子层;所述第二子层包括氮化硼层。
  5. 根据权利要求4所述的半导体结构,其中,
    所述电容器支撑层包括n个层叠设置的第一类支撑层组,每个所述第一类支撑层组均包括层叠设置的所述第一支撑层与所述第二支撑层,n为大于1的正整数,
    每个所述第一类支撑层组中,第一支撑层内的第一子层数量相同,且第二支撑层内的第二子层数量相同。
  6. 根据权利要求4所述的半导体结构,其中,
    所述电容器支撑层包括m个层叠设置的第二类支撑层组,每个所述第二类支撑层组均包括层叠设置的第一组合层与第二组合层,m为大于1的正整数,
    所述第一组合层与所述第二组合层均包括层叠设置的所述第一支撑层与所述第二支撑层,
    所述第一组合层与所述第二组合层的第一支撑层内的第一子层数量不同。
  7. 根据权利要求4所述的半导体结构,其中,
    所述电容器支撑层包括m个层叠设置的第二类支撑层组,每个所述第二类支撑层组均包括层叠设置的第一组合层与第二组合层,m为大于1的正整数,
    所述第一组合层与所述第二组合层均包括层叠设置的所述第一支撑层与所述第二支撑层,
    所述第一组合层与所述第二组合层的第二支撑层内的第二子层数量不同。
  8. 根据权利要求4所述的半导体结构,其中,
    所述电容器支撑层包括m个层叠设置的第二类支撑层组,每个所述第二类支撑层组均包括层叠设置的第一组合层与第二组合层,m为大于1的正整数,
    所述第一组合层与所述第二组合层均包括层叠设置的所述第一支撑层与所述第二支 撑层,
    所述第一组合层与所述第二组合层的第一支撑层内的第一子层数量不同,且所述第一组合层与所述第二组合层的第二支撑层内的第二子层数量不同。
  9. 根据权利要求6至8任一项所述的半导体结构,其中,每个所述第二类支撑层组的第一组合层数量相同,且每个所述第二类支撑层组的第二组合层数量相同。
  10. 根据权利要求1至9任一项所述的半导体结构,其中,
    所述电容器支撑层包括第一支撑部分与第二支撑部分,所述第一支撑部分与所述第二支撑部分均各自独立地包括层叠设置的所述第一支撑层与所述第二支撑层,所述第一支撑部分用于与电接触部接触,所述第二支撑部分位于所述第一支撑部分的远离所述电接触部的一侧,
    所述第一支撑部分的刻蚀速率大于所述第二支撑部分的刻蚀速率。
  11. 根据权利要求10所述的半导体结构,其中,所述第一支撑部分的厚度小于所述电容器支撑层厚度的1/3。
  12. 根据权利要求1至11任一项所述的半导体结构,其中,所述半导体结构还包括:
    晶体管结构,包括源极以及漏极;
    电接触部,电连接所述源极或漏极;
    所述电容器支撑层位于所述电接触部上。
  13. 根据权利要求12所述的半导体结构,其中,所述半导体结构还包括电容结构,所述电容结构包括:
    电容孔,所述电容孔贯穿所述电容器支撑层;
    下电极,位于所述电容孔的孔壁;
    介质层,位于所述下电极表面;
    上电极,位于所述介质层表面。
  14. 根据权利要求13所述的半导体结构,其中,所述半导体结构包括存储阵列,所述存储阵列包括所述晶体管结构与所述电容结构。
  15. 一种半导体结构的制备方法,包括:
    交替形成第一支撑层与第二支撑层,以形成电容器支撑层,所述电容器支撑层包括多个第一支撑层以及多个第二支撑层,所述第一支撑层具有第一刻蚀速率,所述第二支撑层具有第二刻蚀速率,所述第二刻蚀速率大于所述第一刻蚀速率。
  16. 根据权利要求15所述的半导体结构的制备方法,其中,
    形成所述第一支撑层包括:
    通过原子层沉积方式形成氮化硅层;
    形成所述第二支撑层包括:
    通过原子层沉积方式形成氮化硼层。
  17. 根据权利要求16所述的半导体结构的制备方法,其中,
    所述电容器支撑层中的硼原子的原子百分比小于19%。
  18. 根据权利要求16或17所述的半导体结构的制备方法,其中,所述通过原子层沉积方式形成氮化硅层,包括:
    通入一次SiH 2Cl 2与NH 3,以形成一个第一子层;或者,通入多次SiH 2Cl 2与NH 3,以形成层叠设置的多个第一子层;所述第一子层包括氮化硅层;
    所述通过原子层沉积方式形成氮化硼层,包括:
    通入一次BCl 3与NH 3,以形成一个第二子层;或者,通入多次BCl 3与NH 3,以形成层叠设置的多个第二子层;所述第二子层包括氮化硼层。
  19. 根据权利要求18所述的半导体结构的制备方法,其中,形成氮化硅层的原子层沉积方式的条件包括:温度为620℃-640℃,SiH 2Cl 2的流量为1000sccm-3000sccm,NH 3的流量为4000sccm-6000sccm。
  20. 根据权利要求18或19所述的半导体结构的制备方法,其中,
    形成氮化硼层的原子层沉积方式的条件包括:温度为620℃-640℃,BCl 3的流量为100sccm-300sccm,NH 3的流量为4000sccm-6000sccm。
  21. 根据权利要求18至20任一项所述的半导体结构的制备方法,其中,所述交替形成第一支撑层与第二支撑层,以形成电容器支撑层包括:
    通入N 1次BCl 3与NH 3,以形成N 1个所述第二子层,所述N 1个所述第二子层构成所述第二支撑层,N 1≥1;
    通入N 2次SiH 2Cl 2与NH 3,以于所述第二支撑层上形成N 2个所述第一子层,所述N 2个所述第一子层构成所述第一支撑层,所述第二支撑层以及所述第二支撑层上的所述第一支撑层构成第一类支撑层组,N 2≥1;
    再次重复形成所述第一类支撑层组n-1次,以形成包括n个层叠设置的第一类支撑层组的电容器支撑层,n为大于1的正整数。
  22. 根据权利要求18至20任一项所述的半导体结构的制备方法,其中,所述交替形成第一支撑层与第二支撑层,以形成电容器支撑层包括:
    形成第一组合层;
    于所述第一组合层上形成第二组合层,所述第二组合层与所述第一组合层构成第二类支撑层组;
    再次重复形成所述第二类支撑层组m-1次,以形成包括m个层叠设置的第二类支撑层组的电容器支撑层,m为大于1的正整数;
    所述形成第一组合层包括:
    通入N 3次BCl 3与NH 3,以形成N 3个所述第二子层,所述N 3个所述第二子层构成所述第二支撑层,N 3≥1;
    通入N 4次SiH 2Cl 2与NH 3,以于所述第二支撑层上形成N 4个所述第一子层,所述N 4个所述第一子层构成所述第一支撑层,所述第二支撑层以及所述第二支撑层上的所述第一 支撑层构成第一组合层,N 4≥1;
    所述于所述第一组合层上形成第二组合层包括:
    通入N 5次BCl 3与NH 3,以形成N 5个所述第二子层,所述N 5个所述第二子层构成所述第二支撑层,N 5≥1;
    通入N 6次SiH 2Cl 2与NH 3,以于所述第二支撑层上形成N 6个所述第一子层,所述N 6个所述第一子层构成所述第一支撑层,所述第二支撑层以及所述第二支撑层上的所述第一支撑层构成第二组合层,N 6≥1;
    其中,N 3不等于N 5
  23. 根据权利要求18至20任一项所述的半导体结构的制备方法,其中,所述交替形成第一支撑层与第二支撑层,以形成电容器支撑层包括:
    形成第一组合层;
    于所述第一组合层上形成第二组合层,所述第二组合层与所述第一组合层构成第二类支撑层组;
    再次重复形成所述第二类支撑层组m-1次,以形成包括m个层叠设置的第二类支撑层组的电容器支撑层,m为大于1的正整数;
    所述形成第一组合层包括:
    通入N 3次BCl 3与NH 3,以形成N 3个所述第二子层,所述N 3个所述第二子层构成所述第二支撑层,N 3≥1;
    通入N 4次SiH 2Cl 2与NH 3,以于所述第二支撑层上形成N 4个所述第一子层,所述N 4个所述第一子层构成所述第一支撑层,所述第二支撑层以及所述第二支撑层上的所述第一支撑层构成第一组合层,N 4≥1;
    所述于所述第一组合层上形成第二组合层包括:
    通入N 5次BCl 3与NH 3,以形成N 5个所述第二子层,所述N 5个所述第二子层构成所述第二支撑层,N 5≥1;
    通入N 6次SiH 2Cl 2与NH 3,以于所述第二支撑层上形成N 6个所述第一子层,所述N 6个所述第一子层构成所述第一支撑层,所述第二支撑层以及所述第二支撑层上的所述第一支撑层构成第二组合层,N 6≥1;
    其中,N 4不等于N 6
  24. 根据权利要求18至20任一项所述的半导体结构的制备方法,其中,所述交替形成第一支撑层与第二支撑层,以形成电容器支撑层包括:
    形成第一组合层;
    于所述第一组合层上形成第二组合层,所述第二组合层与所述第一组合层构成第二类支撑层组;
    再次重复形成所述第二类支撑层组m-1次,以形成包括m个层叠设置的第二类支撑层组的电容器支撑层,m为大于1的正整数;
    所述形成第一组合层包括:
    通入N 3次BCl 3与NH 3,以形成N 3个所述第二子层,所述N 3个所述第二子层构成所述第二支撑层,N 3≥1;
    通入N 4次SiH 2Cl 2与NH 3,以于所述第二支撑层上形成N 4个所述第一子层,所述N 4个所述第一子层构成所述第一支撑层,所述第二支撑层以及所述第二支撑层上的所述第一支撑层构成第一组合层,N 4≥1;
    所述于所述第一组合层上形成第二组合层包括:
    通入N 5次BCl 3与NH 3,以形成N 5个所述第二子层,所述N 5个所述第二子层构成所述第二支撑层,N 5≥1;
    通入N 6次SiH 2Cl 2与NH 3,以于所述第二支撑层上形成N 6个所述第一子层,所述N 6个所述第一子层构成所述第一支撑层,所述第二支撑层以及所述第二支撑层上的所述第一支撑层构成第二组合层,N 6≥1;
    其中,N 3不等于N 5,且N 4不等于N 6
  25. 根据权利要求18至24任一项所述的半导体结构的制备方法,其中,所述交替形成第一支撑层与第二支撑层,以形成电容器支撑层之前,还包括:
    形成电接触部;
    所述交替形成第一支撑层与第二支撑层,以形成电容器支撑层,包括:
    于所述电接触部上形成第一支撑部分;
    于所述第一支撑部分上形成第二支撑部分;
    所述第一支撑部分与所述第二支撑部分均各自独立地包括层叠设置的所述氮化硼层与所述氮化硅层,且所述第一支撑部分中的硼原子的原子百分比大于所述第二支撑部分中的硼原子的原子百分比。
PCT/CN2022/106765 2022-06-27 2022-07-20 半导体结构及其制备方法 WO2024000695A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210736089.2 2022-06-27
CN202210736089.2A CN117334680A (zh) 2022-06-27 2022-06-27 半导体结构及其制备方法

Publications (1)

Publication Number Publication Date
WO2024000695A1 true WO2024000695A1 (zh) 2024-01-04

Family

ID=89277942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106765 WO2024000695A1 (zh) 2022-06-27 2022-07-20 半导体结构及其制备方法

Country Status (2)

Country Link
CN (1) CN117334680A (zh)
WO (1) WO2024000695A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634047A (zh) * 2017-09-14 2018-01-26 睿力集成电路有限公司 电容器阵列结构及其制造方法
CN207165563U (zh) * 2017-09-14 2018-03-30 睿力集成电路有限公司 电容器阵列结构
CN110970402A (zh) * 2018-09-29 2020-04-07 长鑫存储技术有限公司 电容器阵列结构、半导体器件及其制备方法
US20200243528A1 (en) * 2019-01-28 2020-07-30 Micron Technology, Inc. Semiconductor structure formation
CN113517287A (zh) * 2020-04-09 2021-10-19 中国科学院微电子研究所 一种半导体结构及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634047A (zh) * 2017-09-14 2018-01-26 睿力集成电路有限公司 电容器阵列结构及其制造方法
CN207165563U (zh) * 2017-09-14 2018-03-30 睿力集成电路有限公司 电容器阵列结构
CN110970402A (zh) * 2018-09-29 2020-04-07 长鑫存储技术有限公司 电容器阵列结构、半导体器件及其制备方法
US20200243528A1 (en) * 2019-01-28 2020-07-30 Micron Technology, Inc. Semiconductor structure formation
CN111490015A (zh) * 2019-01-28 2020-08-04 美光科技公司 半导体结构的形成方法
CN113517287A (zh) * 2020-04-09 2021-10-19 中国科学院微电子研究所 一种半导体结构及其制备方法

Also Published As

Publication number Publication date
CN117334680A (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
TWI690084B (zh) 用於pmos整合之第iv族電晶體
US10396202B2 (en) Method and structure for incorporating strain in nanosheet devices
TWI692841B (zh) 三維記憶裝置的陣列共通源極結構以及其形成方法
US10840351B2 (en) Transistor with airgap spacer and tight gate pitch
US10797060B2 (en) Three-dimensional memory device having stressed vertical semiconductor channels and method of making the same
JP2021500738A (ja) 半導体デバイスを形成する方法および半導体デバイス
US10797061B2 (en) Three-dimensional memory device having stressed vertical semiconductor channels and method of making the same
WO2020131170A1 (en) Three-dimensional memory device having stressed vertical semiconductor channels and method of making the same
WO2016209379A1 (en) Differential etch of metal oxide blocking dielectric layer for three-dimensional memory devices
US11195911B2 (en) Bottom dielectric isolation structure for nanosheet containing devices
TW201135915A (en) Transistors and methods of manufacturing the same
US20210242209A1 (en) Dynamic random access memory device and manufacturing method thereof
US10344398B2 (en) Source material for electronic device applications
KR20020083770A (ko) 반도체 소자의 콘택 플러그 형성방법
WO2024000695A1 (zh) 半导体结构及其制备方法
WO2023134308A1 (zh) 一种半导体器件及其制备方法
US20200243342A1 (en) Method of forming cavity based on deep trench erosion
KR20110135768A (ko) 반도체 소자의 제조방법
WO2024045629A1 (zh) 一种半导体结构及其制备方法
WO2022142221A1 (zh) 集成电路电容器件及其制备方法
US8975682B2 (en) Integrated circuit comprising a capacitor with HSG metal electrodes
WO2024098686A1 (zh) 半导体结构、半导体结构的形成方法及存储器
US20230209809A1 (en) Methods and apparatuses of controlling cross-layer reactions in semiconductor device
US20210327891A1 (en) Stack for 3d-nand memory cell
WO2022204844A1 (en) Ladder annealing process for increasing polysilicon grain size in semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948790

Country of ref document: EP

Kind code of ref document: A1