WO2024000503A1 - 一种注塑磁材料及其制备方法 - Google Patents

一种注塑磁材料及其制备方法 Download PDF

Info

Publication number
WO2024000503A1
WO2024000503A1 PCT/CN2022/103101 CN2022103101W WO2024000503A1 WO 2024000503 A1 WO2024000503 A1 WO 2024000503A1 CN 2022103101 W CN2022103101 W CN 2022103101W WO 2024000503 A1 WO2024000503 A1 WO 2024000503A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection molded
coupling agent
magnetic material
mixture
parts
Prior art date
Application number
PCT/CN2022/103101
Other languages
English (en)
French (fr)
Inventor
胡江平
李玉平
金志洪
Original Assignee
横店集团东磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横店集团东磁股份有限公司 filed Critical 横店集团东磁股份有限公司
Priority to PCT/CN2022/103101 priority Critical patent/WO2024000503A1/zh
Priority to EP22809307.6A priority patent/EP4324881A4/en
Publication of WO2024000503A1 publication Critical patent/WO2024000503A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0533Alloys characterised by their composition containing rare earth metals in a bonding agent

Definitions

  • the present invention relates to the technical field of injection molding magnetic materials, and specifically to an injection molding magnetic material and a preparation method thereof.
  • Injection molded magnetic products are widely used in automobiles, home appliances, power tools and other application fields due to their advantages of high dimensional accuracy, good processing performance, and easy mass production.
  • micro electronic water pumps used in turbochargers and battery pack liquid cooling systems have developed rapidly.
  • the micro electronic water pump mainly uses a permanent magnet DC motor, in which the motor rotor uses injection molded magnets with high dimensional accuracy, high mechanical strength, long working life, and high temperature resistance (above 180°C).
  • the water pump rotor needs to rotate around the central shaft at high speed. Under the high-speed friction of the injection-molded magnet, the inner circle of the rotor is prone to wear. The worn rotor is prone to dynamic balance problems, and eventually motor jitter, abnormal noise, etc. question.
  • the commonly used solution at present is to insert wear-resistant materials into the middle of the rotor magnet, such as composite graphite inserts, PPS+30% GF inserts, etc. to improve the wear resistance of the rotor.
  • this solution requires secondary injection molding.
  • insert materials are generally expensive, especially graphite inserts, which greatly increases the manufacturing cost of the water pump rotor.
  • this solution also has the problem of inconsistent dimensional shrinkage rates between the inserts and the injection-molded magnets, which can easily lead to the magnets being cold when cooled. Cracking occurs after thermal shock.
  • the main purpose of the present invention is to provide an injection molded magnetic material and a preparation method thereof to solve the problems in the prior art that injection molded materials have low wear resistance and are prone to cracking.
  • an injection molded magnetic material is provided.
  • the injection molded magnetic material includes:
  • the magnetic powder is ferrite magnetic powder and/or rare earth injection molded magnetic powder.
  • the ferrite magnetic powder is Sr ferrite and/or Ba ferrite magnetic powder. More preferably, the ferrite magnetic powder is Sr ferrite.
  • the magnetic powder is Sr ferrite.
  • the average particle size D50 is 1.8 to 2.0 ⁇ m.
  • the polymer binder is polyphenylene sulfide; preferably, the melt flow rate of polyphenylene sulfide is 500-3000g/10min.
  • the auxiliary agent is a combination of a fluorine additive and a slip agent, preferably the fluorine additive is polyphthalamide, and the preferred slip agent is erucamide; further preferably, the weight ratio of the fluorine additive to the slip agent is 2 :3 ⁇ 3:2.
  • the wollastonite is ultrafine wollastonite, and more preferably the wollastonite has a particle size of 800 to 1200 mesh.
  • the first coupling agent is a silane coupling agent, preferably the silane coupling agent is KH550 and/or KH560; the preferably second coupling agent is a phosphate coupling agent.
  • the injection molded magnetic material includes:
  • the injection molded magnetic material includes:
  • a method for preparing the above-mentioned injection molded magnetic material includes: step S1, first mixing magnetic powder, a first coupling agent and a polymer binder. , obtain the first mixture; Step S2, perform the first extrusion granulation on the first mixture to obtain the injection magnet masterbatch; Step S3, perform the injection molding magnet masterbatch, the second coupling agent, wollastonite, and auxiliaries in the third step.
  • the second mixture is mixed to obtain a second mixture; in step S4, the second mixture is subjected to a second extrusion granulation to obtain an injection molded magnetic material.
  • temperatures of the first mixing and the second mixing are independently 80-120°C, and the times of the first mixing and the second mixing are independently 30-60 min.
  • a twin-screw extruder is used for both the first extrusion granulation and the second extrusion granulation.
  • the temperatures of the first extrusion granulation and the second extrusion granulation are independently 290 to 310°C.
  • the first coupling agent and the second coupling agent are mixed with an organic solvent before use.
  • the organic solvent is isopropyl alcohol.
  • the weight ratio of the second coupling agent to the organic solvent is 1:5 ⁇ 1:10 mix.
  • the injection magnetic material of the present application can effectively improve the interface bonding effect between the components by filling the surface of the injection magnetic material with wollastonite.
  • the use of additives and wollastonite can ensure that the injection magnetic material The formability and wear resistance are improved.
  • the first coupling agent can improve the compatibility between the magnetic powder and the adhesive.
  • the second coupling agent can improve the adhesion of wollastonite and improve the bond between wollastonite and magnetic powder. Bonding force, thereby improving the wear resistance of injection molded magnetic materials.
  • each component can work synergistically to improve the interface bonding effect between the components, thereby further improving the wear resistance of the injection molded magnetic material.
  • Figure 1 shows a magnetic device used in a specific embodiment of the present invention
  • Figure 2 shows the magnetic device used in Comparative Example 4 of the present invention.
  • injection molding materials in the prior art have problems of low wear resistance and easy cracking.
  • this application provides an injection magnetic material and a preparation method thereof.
  • an injection-molded magnetic material is provided.
  • the injection-molded magnetic material includes:
  • the injection molded magnetic material of this application can effectively improve the interface bonding effect between the components by filling the surface of the injection molded magnetic material with wollastonite.
  • the use of additives and wollastonite can ensure the formability and wear resistance of the injection molded magnetic material.
  • the first coupling agent can improve the compatibility between magnetic powder and adhesive
  • the second coupling agent can improve the adhesion of wollastonite, improve the binding force between wollastonite and magnetic powder, thereby improving the injection molding magnet.
  • the wear resistance of the material Within the above proportion range, each component can work synergistically to improve the interface bonding effect between the components, thereby further improving the wear resistance of the injection molded magnetic material.
  • inconsistent dimensional shrinkage mainly occurs between different materials.
  • a magnet is injected outside a graphite insert, different degrees of shrinkage will occur between the graphite insert and the magnet.
  • multiple components are fully mixed and kneaded. , improves the wear resistance of injection molded magnetic materials, and solves the problem of inconsistent dimensional shrinkage when used to prepare water pump rotors.
  • the injection molded magnetic material of this application can be integrally injection molded into a highly wear-resistant water pump rotor without the need for secondary injection molding with wear-resistant inlays. This can greatly save the manufacturing costs caused by secondary injection molding and inserts, and at the same time reduce the need for simultaneous injection molding of inserts. Risk of product cracking caused by inconsistent dimensional shrinkage of injection molded magnets.
  • the magnetic powder is ferrite magnetic powder or rare earth injection molded magnetic powder.
  • the ferrite magnetic powder is Sr ferrite and/or Ba ferrite magnetic powder. More preferably, the ferrite magnetic powder is Sr ferrite.
  • Excessive average particle size of the magnetic powder will reduce the fluidity of the injection molded magnetic material. In order to balance the fluidity and mechanical strength of the injection molded magnetic material, it is preferred that the average particle size D50 of the magnetic powder is 1.8 to 2.0 ⁇ m.
  • the specific type of polymer adhesive is selected according to the needs of injection molded magnetic devices. Considering the cost and in order to maintain the fluidity of the injection molded magnetic material, in some embodiments, the polymer binder is polyphenylene sulfide; preferably the melt flow rate of polyphenylene sulfide is 500-3000g/10min, and more preferably 1100 ⁇ 2500g/10min. The melt flow rate is measured according to ISO1133 at 316°C and 5Kg.
  • the additive is a combination of a fluorine additive and a slip agent.
  • the preferred fluorine additive is polyphthalamide (PPA).
  • PPA polyphthalamide
  • the preferred model of the fluorine additive is For DA310ST, the preferred slip agent is erucamide; further preferably, the weight ratio of fluorine additive and slip agent is 2:3 to 3:2.
  • the wollastonite is ultrafine wollastonite, and more preferably the wollastonite has a particle size of 800 to 1200 mesh.
  • the particle size of wollastonite within this range can effectively improve the wear resistance of injection molded magnetic materials. If the particle size of wollastonite is too high, the powder will be too fine, which will require more binders, thereby reducing the fluidity of injection molded magnetic materials. It affects the wear resistance of injection molded magnetic materials. If it is too low, powder will fall off. .
  • the coupling agent can make the magnetic powder have good dispersion in the system, so that the injection magnetic material has good compatibility and improve the binding force of each component.
  • the first coupling agent is a silane coupling agent, preferably the silane coupling agent is KH550 and/or KH560; preferably the second coupling agent is a phosphate ester coupling agent.
  • the injection molded magnetic material includes:
  • the injection molded magnetic material includes:
  • a method for preparing the above injection molded magnetic material includes: step S1, first mixing magnetic powder, a first coupling agent and a binder to obtain The first mixture; Step S2, perform the first extrusion granulation on the first mixture to obtain the injection magnet masterbatch; Step S3, perform the second mixing of the injection magnet masterbatch, the second coupling agent, wollastonite, and auxiliaries , to obtain a second mixture; step S4, perform a second extrusion granulation on the second mixture to obtain an injection molded magnetic material.
  • the raw materials are weighed according to the proportions of the above components.
  • the compatibility between the magnetic powder and the adhesive can be improved;
  • the adhesion of wollastonite can be improved.
  • Efforts are made to improve the binding force between wollastonite and magnetic powder, thereby improving the wear resistance of injection molded magnetic materials.
  • the injection molded magnetic material prepared by the preparation method of the present application has good wear resistance and is not easy to crack.
  • step S1 in order to couple the magnetic powder, step S1 includes: performing a third mixing of the magnetic powder and the first coupling agent to obtain a third mixture; performing a first mixing of the third mixture and the adhesive, A first mixture is obtained.
  • step S3 in order to couple the injection magnet masterbatch, step S3 includes: performing a fourth mixing of the injection magnet masterbatch and the second coupling agent to obtain a fourth mixture; Stone and auxiliaries are mixed for a second time to obtain a second mixture.
  • the temperatures of the third mixing and the fourth mixing are independently 80 to 120°C, and the times of the first mixing and the second mixing are independently 30 to 60 minutes.
  • the temperatures of the first mixing and the second mixing are independently 80 to 120°C, and the time of the first mixing and the second mixing are independently 30 to 60 minutes.
  • both the first extrusion granulation and the second extrusion granulation use a twin-screw extruder, preferably the first extrusion granulation.
  • the temperatures of the granulation and the second extrusion granulation are independently 290 to 310°C.
  • the first coupling agent and the second coupling agent are mixed with an organic solvent before use.
  • the organic solvent is a different Propanol, preferably the second coupling agent and the organic solvent are mixed in a weight ratio of 1:5 to 1:10.
  • both the above-mentioned first mixing and the second mixing can use a high-speed mixer to perform high-speed mixing, and the speeds of the first mixing and the second mixing are independently 600 to 1000 rpm.
  • the average particle size (Fisher breath method) of permanent magnet Sr ferrite magnetic powder D50 is 1.8 ⁇ 2.0 ⁇ m;
  • melt index (316°C, Kg) is 500g/10min
  • melt index (316°C, Kg) is 1100g/10min
  • melt index (316°C, Kg) is 2500g/10min
  • Wollastonite A particle size 500 mesh
  • Wollastonite B particle size 800 mesh
  • Wollastonite C particle size 1200 mesh
  • Wollastonite D particle size 1500 mesh
  • Additive A 0.5 parts of fluorine additive PPA, 0.5 parts of erucamide;
  • Additive B 0.6 parts of fluorine additive PPA, 0.4 parts of erucamide;
  • Additive C 0.4 parts of fluorine additive PPA, 0.6 parts of erucamide;
  • Additive D 0.05 parts of fluorine additive PPA, 0.05 parts of erucamide.
  • the injection magnetic material of the following examples was injection molded into a magnetic device as shown in Figure 1.
  • the injection magnetic material of Example 4 was injection molded into a magnetic device as shown in Figure 2.
  • the magnetic device was installed into the water pump motor and ran at high speed. , the rotation speed reaches 1000 rpm, the time is 300h, and the change rate of the inner hole size before and after operation is tested.
  • step (5) 3 parts of 800 mesh ultrafine wollastonite were mixed into the third mixture.
  • step (5) 3 parts of 1200 mesh ultrafine wollastonite were mixed into the third mixture.
  • step (5) 3 parts of 1500 mesh ultrafine wollastonite were mixed into the third mixture.
  • step (5) the combined additives are 0.6 parts of fluorine additive PPA and 0.4 parts of erucamide.
  • step (5) the combined additives are 0.4 parts of fluorine additive PPA and 0.6 parts of erucamide.
  • the insert is injection molded using Japanese Toray A673 (PPS+30% GF) material, and then the magnet is secondary injection molded using the material produced in Comparative Example 1, and finally the device shown in Figure 2 is injection molded, where b is the insert and c is the magnet.
  • the combined additive includes 0.5 part of the fluorine additive PPA and 0.5 part of the erucamide, and continue mixing at high speed for 20 minutes to obtain the second mixture;
  • Example 1 67 89 153 1.1
  • Example 2 83 113 120 0.4
  • Example 3 82 115 98 0.6
  • Example 4 85 110 50 1.4
  • Example 5 83 115 156 0.5
  • Example 6 79 115 128 0.7
  • Example 7 80 108 128 0.7
  • Example 8 71 99 145 1.2
  • Example 9 70 102 128 1.1
  • Example 10 62 90 20 2
  • Example 11 80 118 0 1.2
  • Example 12 57 89 180 1.7
  • Example 13 61 82 147 1.3
  • Example 14 60 80 142 1.6 Comparative example 1 78 111 25 2.0
  • Comparative example 2 71 105 90 2.1 Comparative example 3 57 96 170 2.2 Comparative example 4 / / / 0.9 Comparative example 5 48 80 123 2.5 Comparative example 6 / / / / /
  • Example 10 The higher proportion of binder PPS in Example 10 results in worse wear resistance compared to Example 3.
  • Example 11 the fluidity is 0 due to the low binder ratio.
  • the adhesive used in Example 12 has a lower viscosity, which weakens the strength and wear resistance of the magnet.
  • the injection-molded magnetic material of the present application can effectively improve the interface bonding between the components by filling wollastonite on the surface of the injection-molded magnetic material.
  • the effect is that the use of additives and wollastonite at the same time can ensure the formability and wear resistance of injection molded magnetic materials.
  • the first coupling agent can improve the compatibility between magnetic powder and adhesive, and the second coupling agent can improve the silicone
  • the adhesion of gray stone improves the bonding force between wollastonite and magnetic powder, thereby improving the wear resistance of injection molded magnetic materials.
  • each component can work synergistically to improve the interface bonding effect between the components, thereby further improving the wear resistance of the injection molded magnetic material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供了一种注塑磁材料及其制备方法。按重量份计,该注塑磁材料包括:磁粉80~85份;高分子粘合剂10~15份;第一偶联剂0.5~1份;第二偶联剂0.5~1份;硅灰石2~5份;助剂0.1~1份。本申请的注塑磁材料通过在注塑磁材料表面填充硅灰石,可以有效提高各组分之间的界面结合效果,同时采用助剂和硅灰石可以保证注塑磁材料的成形性和耐磨性能,第一偶联剂可以提高磁粉与粘合剂之间的相容性,第二偶联剂可以提高硅灰石的附着力,提高硅灰石与磁粉之间的结合力,从而提高注塑磁材料的耐磨性。各组分在上述配比范围内,各组分可以协同作用,提高各组分之间的界面结合效果,从而进一步提高注塑磁材料的耐磨性能。

Description

一种注塑磁材料及其制备方法 技术领域
本发明涉及注塑磁性材料技术领域,具体而言,涉及一种注塑磁材料及其制备方法。
背景技术
注塑磁产品由于具有尺寸精度高、加工性能好、易于大规模化生产等优点被广泛的应用于汽车、家电、电动工具等应用领域。近年来,随着涡轮增压汽车的大力发展以及新能源动力汽车的不断普及,作为涡轮增压器、电池包液冷系统用的微型电子水泵得到了迅速的发展。现阶段,该微型电子水泵主要采用永磁直流电机,其中电机转子采用了尺寸精度高、机械强度大、工作寿命长、耐高温(180℃以上)的注塑磁体。水泵类转子在工作过程中,需要围绕中心轴件进行高速运转,注塑磁体在高速的摩擦下,转子内圆容易出现磨损,磨损后的转子容易出现动平衡问题,最终出现电机抖动、异响等问题。
目前常用的解决方法通常是采用在转子磁体中间镶嵌入耐磨材料,如复合石墨镶件、PPS+30%GF镶件等来提高转子的耐磨性,但是采用该方案则需要二次注塑,同时镶件材料价格普遍昂贵,尤其是石墨类镶件,这极大的增加了水泵转子的制造成本,同时由于该方案还存在镶件同注塑磁体尺寸收缩率不一致的问题,容易导致磁体在冷热冲击后出现开裂现象。
发明内容
本发明的主要目的在于提供一种注塑磁材料及其制备方法,以解决现有技术中注塑材料耐磨性低、容易开裂的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种注塑磁材料,按重量份计,该注塑磁材料包括:
Figure PCTCN2022103101-appb-000001
进一步地,磁粉为铁氧体磁粉和/或稀土注塑磁粉,优选铁氧体磁粉为Sr铁氧体和/或Ba铁氧体磁粉,更优选铁氧体磁粉为Sr铁氧体,优选磁粉的平均粒径D50为1.8~2.0μm。
进一步地,高分子粘合剂为聚苯硫醚;优选聚苯硫醚的熔体流动速率为500~3000g/10min。
进一步地,助剂为氟添加剂和爽滑剂的组合物,优选氟添加剂为聚邻苯二酰胺,优选爽滑剂为芥酸酰胺;进一步优选氟添加剂和爽滑剂的重量份数比为2:3~3:2。
进一步地,硅灰石为超细硅灰石,更优选硅灰石的粒度为800~1200目。
进一步地,第一偶联剂为硅烷偶联剂,优选硅烷偶联剂为KH550和/或KH560;优选第二偶联剂为磷酸酯偶联剂。
进一步地,按重量份计,注塑磁材料包括:
Figure PCTCN2022103101-appb-000002
Figure PCTCN2022103101-appb-000003
更优选地,按重量份计,注塑磁材料包括:
Figure PCTCN2022103101-appb-000004
为了实现上述目的,根据本发明的一个方面,提供了一种上述注塑磁材料的制备方法,该制备方法包括:步骤S1,将磁粉、第一偶联剂和高分子粘合剂进行第一混合,得到第一混合物;步骤S2,对第一混合物进行第一挤出造粒,得到注塑磁母料;步骤S3,将注塑磁母料、第二偶联剂、硅灰石、助剂进行第二混合,得到第二混合物;步骤S4,将第二混合物进行第二挤出造粒,得到注塑磁材料。
进一步地,第一混合和第二混合的温度独立地为80~120℃,第一混合和第二混合的时间独立地为30~60min。
进一步地,第一挤出造粒和第二挤出造粒均使用双螺杆挤出机,优选第一挤出造粒和第二挤出造粒的温度独立地为290~310℃。
进一步地,步骤S3中,第一偶联剂和第二偶联剂在使用前与有机溶剂混合,优选有机溶剂为异丙醇,优选第二偶联剂与有机溶剂按重量比1:5~1:10混合。
应用本发明的技术方案,本申请的注塑磁材料通过在注塑磁材料表面填充硅灰石,可以有效提高各组分之间的界面结合效果,同时采用助剂和硅灰石可以保证注塑磁材料的成形性和耐磨性能,第一偶联剂可以提高磁粉与粘合剂之间的相容性,第二偶联剂可以提高硅灰石的附着力,提高硅灰石与磁粉之间的结合力,从而提高注塑磁材料 的耐磨性。各组分在上述配比范围内,各组分可以协同作用,提高各组分之间的界面结合效果,从而进一步提高注塑磁材料的耐磨性能。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明一个具体实施方式所用的磁器件;
图2示出了本发明对比例4所用的磁器件。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
如背景技术所分析的,现有技术中注塑材料存在耐磨性低、容易开裂的问题。为了解决这一问题,本申请提供了一种注塑磁材料及其制备方法。
在本申请一种典型的实施方式中,提供了一种注塑磁材料,按重量份计,注塑磁材料包括:
Figure PCTCN2022103101-appb-000005
本申请的注塑磁材料通过在注塑磁材料表面填充硅灰石,可以有效提高各组分之间的界面结合效果,同时采用助剂和硅灰石可以保证注塑磁材料的成形性和耐磨性能, 第一偶联剂可以提高磁粉与粘合剂之间的相容性,第二偶联剂可以提高硅灰石的附着力,提高硅灰石与磁粉之间的结合力,从而提高注塑磁材料的耐磨性。各组分在上述配比范围内,各组分可以协同作用,提高各组分之间的界面结合效果,从而进一步提高注塑磁材料的耐磨性能。
上述各组分中,高分子粘合剂和硅灰石含量越高,注塑磁材料的粘度越低,流动性越差,从而导致注塑磁材料的性能下降。
现有技术中尺寸收缩不一致主要会出现在不同材料间,比如在石墨镶件外注塑磁体,石墨镶件和磁体间会出现不同程度的收缩;而本申请通过将多种组分充分混合混炼,提高了注塑磁材料的耐磨性,在用于制备水泵转子时,解决了尺寸收缩不一致的问题。
本申请的注塑磁材料可以一体注塑成高耐磨性的水泵转子,不需要采用耐磨镶嵌二次注塑,可以极大节省二次注塑及镶件带来的制造成本,同时减少由于镶件同注塑磁体尺寸收缩率不一致导致的产品开裂风险。
本申请对磁粉的种类没有特别的限制,本领域中常用的磁粉均可以应用至本申请。在一些实施例中,磁粉为铁氧体磁粉或稀土注塑磁粉,优选铁氧体磁粉为Sr铁氧体和/或Ba铁氧体磁粉,更优选铁氧体磁粉为Sr铁氧体。磁粉的平均粒径过大会降低注塑磁材料的流动性,为了平衡注塑磁材料的流动性和机械强度,优选磁粉的平均粒径D50为1.8~2.0μm。
根据注塑磁器件的需求选择高分子粘合剂的具体种类。考虑到成本并为了保持注塑磁材料的流动性,在一些实施例中,高分子粘合剂为聚苯硫醚;优选聚苯硫醚的熔体流动速率为500~3000g/10min,更优选为1100~2500g/10min。熔体流动速率根据ISO1133规定,在316℃,5Kg下测定。
为了保证注塑磁材料的成形性和耐磨性,在一些实施例中助剂为氟添加剂和爽滑剂的组合物,优选氟添加剂为聚邻苯二酰胺(PPA),优选氟添加剂的型号为DA310ST,优选爽滑剂为芥酸酰胺;进一步优选氟添加剂和爽滑剂的重量份数比为2:3~3:2。
在一些实施例中,硅灰石为超细硅灰石,更优选硅灰石的粒度为800~1200目。硅灰石的粒度在此范围内可以有效提高注塑磁材料的耐磨性,硅灰石粒度过高,会导致粉末过细,从而需要更多的粘合剂,进而降低注塑磁材料的流动性,影响注塑磁材料的耐磨性能,过低会出现掉粉的情况。.
偶联剂可以使磁粉在体系中具有良好的分散性,从而使注塑磁材料具有良好的相容性,提高各组分的结合力。为了获得更好的偶联化处理的效果,在一些实施例中,第一偶联剂为硅烷偶联剂,优选硅烷偶联剂为KH550和/或KH560;优选第二偶联剂为磷酸酯偶联剂。
为了进一步提高各组分之间的协同作用,进而提高注塑磁材料的耐磨性能,在一些实施例中,按重量份计,注塑磁材料包括:
Figure PCTCN2022103101-appb-000006
更优选地,按重量份计,注塑磁材料包括:
Figure PCTCN2022103101-appb-000007
在本申请另一种典型的实施方式中,提供了一种上述注塑磁材料的制备方法,该制备方法包括:步骤S1,将磁粉、第一偶联剂和粘合剂进行第一混合,得到第一混合物;步骤S2,对第一混合物进行第一挤出造粒,得到注塑磁母料;步骤S3,将注塑磁母料、第二偶联剂、硅灰石、助剂进行第二混合,得到第二混合物;步骤S4,将第二混合物进行第二挤出造粒,得到注塑磁材料。
本申请按照上述各组分的比例称取原料,通过第一偶联化处理,可以提高磁粉与粘合剂之间的相容性;通过第二偶联化处理,可以提高硅灰石的附着力,提高硅灰石与磁粉的结合力,从而提高注塑磁材料的耐磨性能。采用本申请制备方法制备得到的注塑磁材料具有良好的耐磨性且不易开裂。
在一些实施例中,为了对磁粉进行偶联化处理,步骤S1包括:将磁粉、第一偶联剂进行第三混合,得到第三混合物;将第三混合物和粘合剂进行第一混合,得到第一混合物。
在一些实施例中,为了对注塑磁母料进行偶联化处理,步骤S3包括:将注塑磁母料、第二偶联剂进行第四混合,得到第四混合物;将第四混合物、硅灰石、助剂进行第二混合,得到第二混合物。
上述第三混合和第四混合的温度独立地为80~120℃,第一混合和第二混合的时间独立地为30~60min。
本申请对混合的条件没有特别的限制,在一些实施例中,第一混合和第二混合的温度独立地为80~120℃,第一混合和第二混合的时间独立地为30~60min。
本领域中常用的挤出造粒条件均可以应用至本申请,在一些实施例中,第一挤出造粒和第二挤出造粒均使用双螺杆挤出机,优选第一挤出造粒和第二挤出造粒的温度独立地为290~310℃。
为了使注塑磁母料与第二偶联剂更均匀混合,在一些实施例中,步骤S3中,第一偶联剂和第二偶联剂在使用前与有机溶剂混合,优选有机溶剂为异丙醇,优选第二偶联剂与有机溶剂按重量比1:5~1:10混合。
在一些实施例中,上述第一混合和第二混合均可以采用高混机进行高速混合,第一混合和第二混合的速度独立地为600~1000rpm。
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。
在本发明中,若非特指,所有设备和原料均可从市场购得或是本行业常用的,下述实施例中的方法,如无特别说明,均为本领域常规方法。
永磁Sr铁氧体磁粉平均粒径(费氏透气法)D50为1.8~2.0μm;
聚苯硫醚I:熔融指数(316℃、Kg)为500g/10min;
聚苯硫醚II:熔融指数(316℃、Kg)为1100g/10min;
聚苯硫醚III:熔融指数(316℃、Kg)为2500g/10min;
硅灰石A:粒度500目;
硅灰石B:粒度800目;
硅灰石C:粒度1200目;
硅灰石D:粒度1500目;
助剂A:0.5份氟添加剂PPA,0.5份芥酸酰胺;
助剂B:0.6份氟添加剂PPA,0.4份芥酸酰胺;
助剂C:0.4份氟添加剂PPA,0.6份芥酸酰胺;
助剂D:0.05份氟添加剂PPA,0.05份芥酸酰胺。
测试方法:
在330℃温度下注塑成哑铃状强度样条及短条,然后采用英斯特朗万能6633试验机测评材料的拉伸强度及弯曲强度。
将以下各实施例的注塑磁材料注塑成如图1所示的磁器件,将对比例4的注塑磁材料注塑成如图2所示的磁器件,将磁器件安装入水泵电机中,高速运转,转速达到1000转/分,时间300h,测试运转前后内孔尺寸变化率。
根据ISO 1133,在330℃,10Kg压力下测试每组实施例和对比例的流动性。
实施例1
(1)将83份Sr铁氧体磁粉(D50为1.8μm)、0.5份KH550偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下以800rpm的转速高速共混40min,得到第四混合物;
(2)在第四混合物中加入12份的熔融指数(316℃、Kg)为500g/10min的聚苯硫醚继续以800rpm的转速共混30min,得到第一混合物;
(3)将上述第一混合物在双螺杆挤出机中挤出造粒,造粒温度为300℃,得到注塑磁母料;
(4)在上述注塑磁母料颗粒中混入0.5份磷酸酯偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下以800rpm的转速高速共混40min,得到第三混合物;
(5)向第三混合物中混入3份500目的超细硅灰石,同时添加1份组合助剂,组合助剂包括0.5份的氟添加剂PPA和0.5份的芥酸酰胺,以800rpm的转速继续进行高速混合20min,得到第二混合物;
(6)将第二混合物加入双螺杆挤出机造粒,造粒温度为310℃,得到注塑磁材料;
(7)将上述注塑磁材料颗粒料在335℃下注塑成如图1所示的磁器件,其中,a为磁铁。
实施例2
与实施例1不同的是,在步骤(5)中,向第三混合物中混入3份800目的超细硅灰石。
实施例3
与实施例1不同的是,在步骤(5)中,向第三混合物中混入3份1200目的超细硅灰石。
实施例4
与实施例1不同的是,在步骤(5)中,向第三混合物中混入3份1500目的超细硅灰石。
实施例5
与实施例2不同的是,在步骤(5)中,组合助剂为0.6份的氟添加剂PPA和0.4份的芥酸酰胺。
实施例6
与实施例2不同的是,在步骤(5)中,组合助剂为0.4份的氟添加剂PPA和0.6份的芥酸酰胺。
实施例7
(1)将83份Sr铁氧体磁粉(D50为1.8μm)、0.5份KH550偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到第四混合物;
(2)在第四混合物中加入12份的熔融指数(316℃、Kg)为1100g/10min的聚苯硫醚继续共混30min,得到第一混合物;
(3)将上述第一混合物在双螺杆挤出机中挤出造粒,造粒温度为300℃,得到注塑磁母料;
(4)在上述注塑磁母料颗粒中混入0.5份磷酸酯偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到第三混合物;
(5)向第三混合物中混入3份1200目的超细硅灰石,同时添加1份组合助剂,组合助剂包括0.6份的氟添加剂PPA和0.4份的芥酸酰胺,继续进行高速混合20min,得到第二混合物;
(6)将第二混合物加入双螺杆挤出机造粒,造粒温度为310℃,得到注塑磁材料;
(7)将上述注塑磁材料颗粒料在335℃下注塑成如图1所示的磁器件。
实施例8
(1)将85份Sr铁氧体磁粉(D50为1.8μm)、0.5份KH550偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到第四混合物;
(2)在第四混合物中加入12份的熔融指数(316℃、Kg)为1100g/10min的聚苯硫醚继续共混30min,得到第一混合物;
(3)将上述第一混合物在双螺杆挤出机中挤出造粒,造粒温度为300℃,得到注塑磁母料;
(4)在上述注塑磁母料颗粒中混入0.5份磷酸酯偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到第三混合物;
(5)向第三混合物中混入1份1200目的超细硅灰石,同时添加1份组合助剂,组合助剂包括0.6份的氟添加剂PPA和0.4份的芥酸酰胺,继续进行高速混合20min,得到第二混合物;
(6)将第二混合物加入双螺杆挤出机造粒,造粒温度为310℃,得到注塑磁材料;
(7)将上述注塑磁材料颗粒料在335℃下注塑成如图1所示的磁器件。
实施例9
(1)将81份Sr铁氧体磁粉(D50为1.8μm)、0.5份KH550偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到第四混合物;
(2)在第四混合物中加入12份的熔融指数(316℃、Kg)为1100g/10min的聚苯硫醚继续共混30min,得到第一混合物;
(3)将上述第一混合物在双螺杆挤出机中挤出造粒,造粒温度为300℃,得到注塑磁母料;
(4)在上述注塑磁母料颗粒中混入0.5份磷酸酯偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到第三混合物;
(5)向第三混合物中混入5份1200目的超细硅灰石,同时添加1份组合助剂,组合助剂包括0.6份的氟添加剂PPA和0.4份的芥酸酰胺,继续进行高速混合20min,得到第二混合物;
(6)将第二混合物加入双螺杆挤出机造粒,造粒温度为310℃,得到注塑磁材料;
(7)将上述注塑磁材料颗粒料在335℃下注塑成如图1所示的磁器件。
实施例10
(1)将81份Sr铁氧体磁粉(D50为1.8μm)、0.5份KH550偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到第四混合物;
(2)在第四混合物中加入14份的熔融指数(316℃、Kg)为1100g/10min的聚苯硫醚继续共混30min,得到第一混合物;
(3)将上述第一混合物在双螺杆挤出机中挤出造粒,造粒温度为300℃,得到注塑磁母料;
(4)在上述注塑磁母料颗粒中混入0.5份磷酸酯偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到第三混合物;
(5)向第三混合物中混入3份1200目的超细硅灰石,同时添加1份组合助剂,组合助剂包括0.6份的氟添加剂PPA和0.4份的芥酸酰胺,继续进行高速混合20min,得到第二混合物;
(6)将第二混合物加入双螺杆挤出机造粒,造粒温度为310℃,得到注塑磁材料;
(7)将上述注塑磁材料颗粒料在335℃下注塑成如图1所示的磁器件。
实施例11
(1)将85份Sr铁氧体磁粉(D50为1.8μm)、0.5份KH550偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到第四混合物;
(2)在第四混合物中加入10份的熔融指数(316℃、Kg)为1100g/10min的聚苯硫醚继续共混30min,得到第一混合物;
(3)将上述第一混合物在双螺杆挤出机中挤出造粒,造粒温度为300℃,得到注塑磁母料;
(4)在上述注塑磁母料颗粒中混入0.5份磷酸酯偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到第三混合物;
(5)向第三混合物中混入3份1200目的超细硅灰石,同时添加1份组合助剂,组合助剂包括0.6份的氟添加剂PPA和0.4份的芥酸酰胺,继续进行高速混合20min,得到第二混合物;
(6)将第二混合物加入双螺杆挤出机造粒,造粒温度为310℃,得到注塑磁材料;
(7)将上述注塑磁材料颗粒料在335℃下注塑成如图1所示的磁器件。
实施例12
(1)将83份Sr铁氧体磁粉(D50为1.8μm)、0.5份KH550偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到第四混合物;
(2)在第四混合物中加入12份的熔融指数(316℃、Kg)为2500g/10min的聚苯硫醚继续共混30min,得到第一混合物;
(3)将上述第一混合物在双螺杆挤出机中挤出造粒,造粒温度为300℃,得到注塑磁母料;
(4)在上述注塑磁母料颗粒中混入0.5份磷酸酯偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到第三混合物;
(5)向第三混合物中混入3份1200目的超细硅灰石,同时添加1份组合助剂,组合助剂包括0.6份的氟添加剂PPA和0.4份的芥酸酰胺,继续进行高速混合20min,得到第二混合物;
(6)将第二混合物加入双螺杆挤出机造粒,造粒温度为310℃,得到注塑磁材料;
(7)将上述注塑磁材料颗粒料在335℃下注塑成如图1所示的磁器件。
实施例13
(1)将80份Ba铁氧体磁粉(D50为2.0μm)、1份KH560偶联剂(偶联剂与异丙醇以重量比1:10混合)在120℃下以600rpm的转速高速共混30min,得到第四混合物;
(2)在第四混合物中加入10份的熔融指数(316℃、Kg)为500g/10min的聚苯硫醚继续共混30min,得到第一混合物;
(3)将上述第一混合物在双螺杆挤出机中挤出造粒,造粒温度为290℃,得到注塑磁母料;
(4)在上述注塑磁母料颗粒中混入1份磷酸酯偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下以800rpm的转速高速共混40min,得到第三混合物;
(5)向第三混合物中混入2份1200目的超细硅灰石,同时添加0.1份组合助剂,组合助剂包括0.05份的氟添加剂PPA和0.05份的芥酸酰胺,继续进行高速混合20min,得到第二混合物;
(6)将第二混合物加入双螺杆挤出机造粒,造粒温度为290℃,得到注塑磁材料;
(7)将上述注塑磁材料颗粒料在335℃下注塑成如图1磁器件。
实施例14
(1)将83份Sr铁氧体磁粉(D50为1.8μm)、0.5份KH550偶联剂(偶联剂与异丙醇以重量比1:6混合)在80℃下以1000rpm的转速高速共混60min,得到第四混合物;
(2)在第四混合物中加入15份的熔融指数(316℃、Kg)为500g/10min的聚苯硫醚继续共混60min,得到第一混合物;
(3)将上述第一混合物在双螺杆挤出机中挤出造粒,造粒温度为310℃,得到注塑磁母料;
(4)在上述注塑磁母料颗粒中混入0.5份磷酸酯偶联剂(偶联剂与异丙醇以重量比1:6混合)在80℃下高速共混60min,得到第三混合物;
(5)向第三混合物中混入3份1200目的超细硅灰石,同时添加1份组合助剂,组合助剂包括0.5份的氟添加剂PPA和0.5份的芥酸酰胺,以1000rpm的转速继续进行高速混合20min,得到第二混合物;
(6)将第二混合物加入双螺杆挤出机造粒,造粒温度为310℃,得到注塑磁材料;
(7)将上述注塑磁材料颗粒料在335℃下注塑成如图1所示的磁器件。
对比例1
(1)将87份Sr铁氧体磁粉(D50为1.8μm)、1份KH550偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到混合物;
(2)在混合物中加入12份的熔融指数(316℃、Kg)为500g/10min的聚苯硫醚继续共混30min,得到高混物;
(3)将上述高混物在双螺杆挤出机中挤出造粒,造粒温度为300℃,得到注塑磁材料;
(4)将上述注塑磁材料在335℃下注塑成如图1所示的磁器件。
对比例2
(1)将87份Sr铁氧体磁粉(D50为1.8μm)、1份KH550偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到混合物;
(2)在混合物中加入12份的熔融指数(316℃、Kg)为1100g/10min的聚苯硫醚继续共混30min,得到高混物;
(3)将上述高混物在双螺杆挤出机中挤出造粒,造粒温度为300℃,得到注塑磁材料;
(4)将上述注塑磁材料在335℃下注塑成如图1所示的磁器件。
对比例3
(1)将87份Sr铁氧体磁粉(D50为1.8μm)、1份KH550偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到混合物;
(2)在混合物中加入12份的熔融指数(316℃、Kg)为2500g/10min的聚苯硫醚继续共混30min,得到高混物;
(3)将上述高混物在双螺杆挤出机中挤出造粒,造粒温度为300℃,得到注塑磁材料;
(4)将上述注塑磁材料在335℃下注塑成如图1所示的磁器件。
对比例4
采用日本东丽A673(PPS+30%GF)材料注塑镶件,然后采用对比例1生产的材料二次注塑磁铁,最终注塑成图2所示的器件,其中b为镶件,c为磁铁。
对比例5
(1)将83份Sr铁氧体磁粉(D50为1.8μm)、0.5份KH550偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到第四混合物;
(2)在第四混合物中加入12份的熔融指数(316℃、Kg)为500g/10min的聚苯硫醚继续共混30min,得到第一混合物;
(3)将上述第一混合物在双螺杆挤出机中挤出造粒,造粒温度为300℃,得到注塑磁母料;
(4)在上述注塑磁母料颗粒中混入0.5份磷酸酯偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到第三混合物;
(5)向第三混合物中添加1份组合助剂,组合助剂包括0.5份的氟添加剂PPA和0.5份的芥酸酰胺,继续进行高速混合20min,得到第二混合物;
(6)将第二混合物加入双螺杆挤出机造粒,造粒温度为310℃,得到注塑磁材料;
(7)将上述注塑磁材料颗粒料在335℃下注塑成如图1所示的磁器件。
对比例6
(1)将83份Sr铁氧体磁粉(D50为1.8μm)、0.5份KH550偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到第四混合物;
(2)在第四混合物中加入12份的熔融指数(316℃、Kg)为500g/10min的聚苯硫醚继续共混30min,得到第一混合物;
(3)将上述第一混合物在双螺杆挤出机中挤出造粒,造粒温度为300℃,得到注塑磁母料;
(4)在上述注塑磁母料颗粒中混入0.5份磷酸酯偶联剂(偶联剂与异丙醇以重量比1:6混合)在100℃下高速共混40min,得到第三混合物;
(5)向第三混合物中混入7份500目的超细硅灰石,同时添加1份组合助剂,组合助剂包括0.5份的氟添加剂PPA和0.5份的芥酸酰胺,继续进行高速混合20min,得到第二混合物;
(6)将第二混合物加入双螺杆挤出机造粒,造粒温度为310℃,得到注塑磁材料;
(7)将上述注塑磁材料颗粒料在335℃下注塑成如图1所示的磁器件。
上述各实施例和对比例的组分和比例如表1所示,上述各实施例和对比例的测试结果如表2所示。
表1
Figure PCTCN2022103101-appb-000008
Figure PCTCN2022103101-appb-000009
Figure PCTCN2022103101-appb-000010
Figure PCTCN2022103101-appb-000011
表2
  拉伸强度MPa 弯曲强度MPa 流动性g/10min 内控尺寸变化%
实施例1 67 89 153 1.1
实施例2 83 113 120 0.4
实施例3 82 115 98 0.6
实施例4 85 110 50 1.4
实施例5 83 115 156 0.5
实施例6 79 115 128 0.7
实施例7 80 108 128 0.7
实施例8 71 99 145 1.2
实施例9 70 102 128 1.1
实施例10 62 90 20 2
实施例11 80 118 0 1.2
实施例12 57 89 180 1.7
实施例13 61 82 147 1.3
实施例14 60 80 142 1.6
对比例1 78 111 25 2.0
对比例2 71 105 90 2.1
对比例3 57 96 170 2.2
对比例4 / / / 0.9
对比例5 48 80 123 2.5
对比例6 / / / /
实施例10中粘合剂PPS比例较高导致耐磨性相比实施例3变差。
实施例11中由于粘合剂比例较低,导致流动性为0。
实施例12中使用的粘合剂粘度较低,减弱磁体强度及耐磨性。
对比例6中硅灰石比例过高,导致硅灰石不能重复被粘合剂包覆,因此出现轻微掉粉现象。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:本申请的注塑磁材料通过在注塑磁材料表面填充硅灰石,可以有效提高各组分之间的界面结合效果,同时采用助剂和硅灰石可以保证注塑磁材料的成形性和耐磨性能,第一偶联剂可以提高磁粉与粘合剂之间的相容性,第二偶联剂可以提高硅灰石的附着力,提高硅灰石与磁粉之间的结合力,从而提高注塑磁材料的耐磨性。各组分在上述配比范围内,各组分可以协同作用,提高各组分之间的界面结合效果,从而进一步提高注塑磁材料的耐磨性能。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种注塑磁材料,其特征在于,按重量份计,所述注塑磁材料包括:
    Figure PCTCN2022103101-appb-100001
  2. 根据权利要求1所述的注塑磁材料,其特征在于,所述磁粉为铁氧体磁粉和/或稀土注塑磁粉,优选所述铁氧体磁粉为Sr铁氧体和/或Ba铁氧体磁粉,更优选所述铁氧体磁粉为Sr铁氧体,优选所述磁粉的平均粒径D50为1.8~2.0μm。
  3. 根据权利要求1所述的注塑磁材料,其特征在于,所述高分子粘合剂为聚苯硫醚;
    进一步优选所述聚苯硫醚的熔体流动速率为500~3000g/10min。
  4. 根据权利要求1至3中任一项所述的注塑磁材料,其特征在于,所述助剂为氟添加剂和爽滑剂的组合物,优选所述氟添加剂为聚邻苯二酰胺,优选所述爽滑剂为芥酸酰胺;
    进一步优选所述氟添加剂和所述爽滑剂的重量份数比为2:3~3:2。
  5. 根据权利要求1至4中任一项所述的注塑磁材料,其特征在于,所述硅灰石为超细硅灰石,更优选所述硅灰石的粒度为800~1200目。
  6. 根据权利要求1至5中任一项所述的注塑磁材料,其特征在于,所述第一偶联剂为硅烷偶联剂,优选所述硅烷偶联剂为KH550和/或KH560;优选所述第二偶联剂为磷酸酯偶联剂。
  7. 根据权利要求1所述的注塑磁材料,其特征在于,按重量份计,所述注塑磁材料包括:
    Figure PCTCN2022103101-appb-100002
    更优选地,按重量份计,所述注塑磁材料包括:
    Figure PCTCN2022103101-appb-100003
  8. 一种权利要求1至7任一项所述的注塑磁材料的制备方法,其特征在于,所述制备方法包括:
    步骤S1,将磁粉、第一偶联剂和高分子粘合剂进行第一混合,得到第一混合物;
    步骤S2,对所述第一混合物进行第一挤出造粒,得到注塑磁母料;
    步骤S3,将所述注塑磁母料、第二偶联剂、硅灰石、助剂进行第二混合,得到第二混合物;
    步骤S4,将所述第二混合物进行第二挤出造粒,得到所述注塑磁材料。
  9. 根据权利要求8所述的制备方法,其特征在于,所述第一混合和第二混合的温度独立地为80~120℃,所述第一混合和所述第二混合的时间独立地为30~60min。
  10. 根据权利要求8或9所述的制备方法,其特征在于,所述第一挤出造粒和所述第二挤出造粒均使用双螺杆挤出机,优选所述第一挤出造粒和所述第二挤出造粒的温度独立地为290~310℃。
  11. 根据权利要求8至10中任一项所述的制备方法,其特征在于,所述步骤S3中,所述第一偶联剂和所述第二偶联剂在使用前与有机溶剂混合,优选所述有机溶剂为异丙醇,优选所述第二偶联剂与所述有机溶剂按重量比1:5~1:10混合。
PCT/CN2022/103101 2022-06-30 2022-06-30 一种注塑磁材料及其制备方法 WO2024000503A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/103101 WO2024000503A1 (zh) 2022-06-30 2022-06-30 一种注塑磁材料及其制备方法
EP22809307.6A EP4324881A4 (en) 2022-06-30 2022-06-30 INJECTION MOLDED MAGNETIC MATERIAL AND PROCESS FOR PRODUCTION THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/103101 WO2024000503A1 (zh) 2022-06-30 2022-06-30 一种注塑磁材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2024000503A1 true WO2024000503A1 (zh) 2024-01-04

Family

ID=89383856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103101 WO2024000503A1 (zh) 2022-06-30 2022-06-30 一种注塑磁材料及其制备方法

Country Status (2)

Country Link
EP (1) EP4324881A4 (zh)
WO (1) WO2024000503A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529603A (en) * 1992-06-26 1996-06-25 Sumitomo Special Metals Company Limited Alloy powders for bond magnet and bond magnet
JPH09186010A (ja) * 1995-08-23 1997-07-15 Hitachi Metals Ltd 高電気抵抗希土類磁石およびその製造方法
CN106409453A (zh) * 2016-08-31 2017-02-15 阮丽丽 一种纳米改性的磁体复合材料及在电感元器件中的应用
US20180218814A1 (en) * 2015-06-02 2018-08-02 Dowa Electronics Materials Co., Ltd. Magnetic compound and antenna
WO2021031852A2 (zh) * 2019-08-21 2021-02-25 南通成泰磁材科技有限公司 高抗压强度的磁性材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717748B2 (ja) * 1986-12-19 1995-03-01 川崎製鉄株式会社 芳香族ポリエステルアミド
JPH08207043A (ja) * 1995-02-01 1996-08-13 Kureha Chem Ind Co Ltd 磁性樹脂組成物ペレットの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529603A (en) * 1992-06-26 1996-06-25 Sumitomo Special Metals Company Limited Alloy powders for bond magnet and bond magnet
JPH09186010A (ja) * 1995-08-23 1997-07-15 Hitachi Metals Ltd 高電気抵抗希土類磁石およびその製造方法
US20180218814A1 (en) * 2015-06-02 2018-08-02 Dowa Electronics Materials Co., Ltd. Magnetic compound and antenna
CN106409453A (zh) * 2016-08-31 2017-02-15 阮丽丽 一种纳米改性的磁体复合材料及在电感元器件中的应用
WO2021031852A2 (zh) * 2019-08-21 2021-02-25 南通成泰磁材科技有限公司 高抗压强度的磁性材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4324881A4 *

Also Published As

Publication number Publication date
EP4324881A4 (en) 2024-02-28
EP4324881A1 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
CN102408703B (zh) 铁氧体/聚酰胺复合材料、其制备方法和应用
CN103772973B (zh) 一种高耐磨氮化硅/尼龙6纳米复合材料及其制备方法
CN101962480A (zh) 一种基于低苯基硅橡胶的宽温高阻尼材料
CN103965616B (zh) 一种导热树脂组合物及其制备方法
CN106531391A (zh) 软磁性粉末组合物及磁性元件的制作方法
WO2024000503A1 (zh) 一种注塑磁材料及其制备方法
CN103862589A (zh) 一种熔融共混制备聚酰胺基导热复合材料的方法
CN105949758A (zh) 一种高流动性聚酰胺磁性复合材料及其制备方法
CN111423723A (zh) 用于5g的增强聚苯硫醚组合物及其制备方法
CN112812432B (zh) 一种聚丙烯磁性复合材料的制备方法
CN105062035B (zh) 一种可耐低温,高cti,高热变形无卤阻燃ppe及其制备方法
JP2004352783A (ja) 封止用樹脂組成物
CN117363016A (zh) 一种注塑磁材料及其制备方法
CN108659282A (zh) 一种宽温域高阻尼耐油减震橡胶复合材料及其制备方法
CN103554662A (zh) 一种高性能导电pp聚合物及其制备方法和应用
CN1232420A (zh) 结晶聚合物的复合材料
WO2023123749A1 (zh) 钕铁硼粘结磁体、其制备方法和电机
JP2011049404A (ja) ボンド磁石の製造方法及びボンド磁石
CN108530859B (zh) 一种颗粒强化橡胶增强复合材料的制备方法
CN114539772B (zh) 一种高耐磨聚苯硫醚磁性材料及其制备方法
CN114507414B (zh) 一种pc/abs复合材料及其制备方法
CN109747065A (zh) 一种移相器用聚苯醚树脂基复合材料的制备方法
CN104497488A (zh) 一种半导体封装用环保型环氧树脂组合物的制备方法
JPH06287445A (ja) ポリアミド系プラスチック磁石用材料
CN115216144B (zh) 一种改性pa66材料及其制备方法和应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022809307

Country of ref document: EP

Effective date: 20221201