WO2023123749A1 - 钕铁硼粘结磁体、其制备方法和电机 - Google Patents

钕铁硼粘结磁体、其制备方法和电机 Download PDF

Info

Publication number
WO2023123749A1
WO2023123749A1 PCT/CN2022/087462 CN2022087462W WO2023123749A1 WO 2023123749 A1 WO2023123749 A1 WO 2023123749A1 CN 2022087462 W CN2022087462 W CN 2022087462W WO 2023123749 A1 WO2023123749 A1 WO 2023123749A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
ndfeb
curing
magnetic powder
minutes
Prior art date
Application number
PCT/CN2022/087462
Other languages
English (en)
French (fr)
Inventor
何峰
仝成利
罗玉亮
孙宝利
Original Assignee
麦格昆磁(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 麦格昆磁(天津)有限公司 filed Critical 麦格昆磁(天津)有限公司
Publication of WO2023123749A1 publication Critical patent/WO2023123749A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Definitions

  • the invention relates to the technical field of preparation of bonded magnets, in particular to a neodymium-iron-boron bonded magnet, its preparation method and a motor.
  • the rare earth bonded magnet is pressed into a rare earth bonded magnet by a mixture of rare earth iron boron magnetic powder, thermosetting epoxy resin and lubricant in a press mold, and then it is cured and coated, and finally applied to the motor.
  • a mixture of rare earth iron boron magnetic powder, thermosetting epoxy resin and lubricant in a press mold, and then it is cured and coated, and finally applied to the motor.
  • the dry mixing process is generally to mix the rare earth magnetic powder and thermosetting epoxy resin first, and then put the obtained mixed rubber powder and powder lubricant into the mixer for mechanical mixing to make them uniform. Mixing, followed by magnet forming, curing, chamfering and coating treatment.
  • the rare earth magnetic powder and lubricant are mixed by dry mixing, because there are factors such as vibration during the feeding process, and the bonding force between the lubricant and the rare earth magnetic powder is very small, it is easy to cause the lubricant to separate from the rare earth magnetic powder during the feeding process.
  • the distribution of the lubricant in the bonded magnetic powder is uneven, which increases the release force when the magnet is released from the mold, and easily scratches the molding surface of the concave mold.
  • the wet mixing process is the production process adopted by most bonded magnet factories. Usually, the thermosetting epoxy resin is firstly dissolved in an organic solvent, and then the organic solution of the epoxy resin is mixed with the rare earth magnetic powder evenly, and the mixed rubber powder is obtained after the organic solvent volatilizes. ; Then add a lubricant to obtain the rare earth bonded magnetic powder; finally press the rare earth bonded magnetic powder to obtain a rare earth bonded magnet.
  • the types of lubricants used in dry and wet blends generally include zinc stearate, lithium stearate, boron nitride, and Teflon.
  • the resins used in both the dry-blending process and the wet-blending process cannot meet high-temperature applications (applications above 120°C), and the resin content is generally 1.0-3.0 wt%, which makes it impossible to prepare mixed powders with high resin content.
  • the strength of the magnet after pressing is mostly below 120MPa, especially at 120°C, the magnet strength is less than 100MPa, which cannot meet the high temperature application requirements of the motor.
  • the speed cannot pass the 80,000 speed test.
  • the main purpose of the present invention is to provide a NdFeB bonded magnet, its preparation method and motor to solve the problem that the strength of the NdFeB bonded magnet in the prior art cannot meet the high-speed use requirements of the motor.
  • a method for preparing an NdFeB bonded magnet includes: step S1, making phenolic resin, curing agent and NdFeB magnetic powder under heating conditions kneading to obtain the mixed rubber powder; step S2, mixing the rubber mixed powder with a lubricant and then pressing to obtain a magnet compact, the content of the phenolic resin in the magnet compact is 2.5-6.0 wt%, and the content of the curing agent is 0.25- 0.6wt%, the content of NdFeB magnetic powder is 93.3-97.15wt%, and the content of lubricant is 0.1-0.2wt%; and step S3, heating and curing the magnet compact in sections to obtain a NdFeB bonded magnet,
  • the stepwise heating and curing is a total of 2 to 4 stages of step-by-step heating and curing, the temperature of the stepwise heating and curing is 105-195°C, and the time is 30
  • the segmental heating and curing of the above step S3 includes: heat curing at 105-115°C for 5-15 minutes, heat curing at 125-135°C for 5-15 minutes, heat curing at 155-165°C for 5-15 minutes and 185-195°C Thermal curing takes 5 to 15 minutes, preferably, the temperature rise rate between each temperature section is 5 to 10° C./min.
  • the above-mentioned phenolic resin is dicyclopentadiene phenol epoxy resin.
  • step S1 the phenolic resin, curing agent and NdFeB magnetic powder are smelted at 70-130°C for 10-40 minutes, and step S1 is preferably smelted at 95-105°C for the phenolic resin, curing agent and NdFeB magnetic powder combine.
  • the above-mentioned curing agent is a dicyandiamide curing agent.
  • the above-mentioned lubricant is a synthetic wax, preferably a polyamide wax.
  • the pressing pressure in the above step S2 is 8 ton/cm 2 -15 ton/cm 2 .
  • a bonded NdFeB magnet which is prepared by any one of the above preparation methods, and preferably the strength of the bonded NdFeB magnet is 120-220 MPa.
  • a kind of NdFeB bonded magnet comprises phenolic resin cured product and NdFeB magnetic powder, the content of NdFeB magnetic powder is 93.2-96.15%, NdFeB magnetic powder The strength of the iron-boron bonded magnet is 120-220MPa.
  • a motor including a magnet, which is any one of the above-mentioned NdFeB bonded magnets.
  • the method of heating and kneading is adopted when mixing the phenolic resin, curing agent and NdFeB magnetic powder.
  • This method is different from the wet mixing and dry mixing of the prior art.
  • the phenolic resin and the curing agent are in the molten state, and the aforementioned melt is mixed with the NdFeB magnetic powder by using the shearing and kneading force generated during the mixing process, so as to realize the uniform mixing of the three; and because the The phenolic resin melts, so the phenolic resin can be mixed evenly with NdFeB magnetic powder under the premise of high dosage.
  • the NdFeB magnetic powder can still maintain good dispersion uniformity during the pressing process.
  • the obtained magnet compacts are heated and cured in sections, so that the phenolic resin forms a denser three-dimensional network structure, which can ensure the strength of the formed NdFeB bonded magnets and make the magnetic properties stable.
  • the strength of the NdFeB bonded magnet obtained by the above preparation method of this application is greater than 120MPa, and can still maintain a strength of more than 100MPa even at 120°C, and can pass the continuous operation test of an 80,000-speed motor, so it can meet the requirements of the motor. high-speed use requirements.
  • Figure 1 shows a schematic diagram of the resin distribution of the magnet according to Example 2 of the present invention under a scanning electron microscope magnified 1000 times;
  • Fig. 2 shows the elemental distribution schematic diagram that the magnet of embodiment 2 tests with energy spectrometer
  • Fig. 3 shows the schematic diagram of the resin distribution of the magnet of Comparative Example 2 under a scanning electron microscope with a magnification of 1000 times;
  • FIG. 4 shows a schematic diagram of the element distribution of the magnet of Comparative Example 2 tested by an energy spectrometer.
  • the present application provides an NdFeB bonded magnet, its preparation method and a motor.
  • a method for preparing an NdFeB bonded magnet includes: step S1, refining the phenolic resin, the curing agent, and the NdFeB magnetic powder under heating conditions. combined to obtain the mixed rubber powder; step S2, after mixing the rubber mixed powder and the lubricant, press to obtain a magnet compact, the content of the phenolic resin in the magnet compact is 2.5-6.0wt%, and the content of the curing agent is 0.25-0.6 wt%, the content of NdFeB magnetic powder is 93.3-97.15wt%, and the content of lubricant is 0.1-0.2wt%; step S3, the magnet compact is subjected to segmental heating and curing to obtain NdFeB bonded magnets, segmented
  • the heat curing consists of 2 to 4 stages of heating and curing step by step, the temperature of stage heating and curing is 105-195°C, and the time is 30-60 minutes.
  • This application adopts the method of heating and kneading when mixing the phenolic resin, curing agent and NdFeB magnetic powder.
  • This method is different from the wet mixing and dry mixing of the prior art. and curing agent in the melting state, using the shear and kneading force generated during the mixing process to mix the aforementioned melt with NdFeB magnetic powder to achieve uniform mixing of the three; and because the phenolic resin can be melted , so phenolic resin can be mixed evenly with NdFeB magnetic powder under the premise of high dosage.
  • a lubricant is used when pressing the rubber mixture, so that the NdFeB magnetic powder can still maintain good dispersion uniformity during the pressing process.
  • the obtained magnet compacts are heated and cured in sections, so that the phenolic resin forms a denser three-dimensional network structure, which can ensure the strength of the formed NdFeB bonded magnets and make the magnetic properties stable. .
  • the strength of the NdFeB bonded magnet obtained by the above preparation method of this application is greater than 120MPa, and can still maintain a strength of more than 100MPa even at 120°C, and can pass the continuous operation test of an 80,000-speed motor, so it can meet the requirements of the motor. high-speed use requirements.
  • the components forming the magnet compact in this application do not contain wetting agent, but are composed of phenolic resin, curing agent, NdFeB magnetic powder and lubricant.
  • the segmented heating and curing of the above step S3 include sequentially: 105-115°C heat-curing for 5-15min, 125-135°C heat-curing for 5-15min, 155°C Heat curing at ⁇ 165°C for 5 to 15 minutes and heat curing at 185 to 195°C for 5 to 15 minutes.
  • the temperature rise rate between each temperature range is 5 to 10°C/min.
  • the present application has screened the resins, and found that the strength of the bonded magnets formed by phenolic resins is better than that of epoxy resins. high temperature strength), preferably the above-mentioned phenolic resin is dicyclopentadiene phenol epoxy resin.
  • the above-mentioned step S1 refines the phenolic resin, curing agent and NdFeB magnetic powder at 70-130°C. Together for 10-40 minutes.
  • the preferred step S1 is to knead the phenolic resin, curing agent and NdFeB magnetic powder at 95-105°C, and the time can be 10min, 20min, 30min or 40min.
  • the curing agent used in this application can be a common curing agent capable of curing the phenolic resin.
  • the above-mentioned curing agent is preferably a dicyandiamide curing agent.
  • this application has carried out a lot of research on lubricants, and found that the effect of commonly used stearate lubricants in this preparation method is not as good as expected.
  • the lubricating and dispersing properties of the wax are particularly prominent, so the preferred lubricant is synthetic wax, and more preferably polyamide synthetic wax.
  • the pressing pressure in the above step S2 is 8 ton/cm 2 to 15 ton/cm 2 .
  • a bonded NdFeB magnet is provided, which is prepared by any one of the above-mentioned preparation methods.
  • the bonded NdFeB magnet has a strength of 130-220 MPa.
  • the strength of the NdFeB bonded magnet obtained by the above preparation method of the present application is greater than 120MPa, and can still maintain a strength of more than 100MPa even at 120°C, and can pass the 100,000-speed test, so it can meet the requirements of high-speed use of motors.
  • a bonded NdFeB magnet in another typical embodiment of the present application, includes cured phenolic resin and NdFeB magnetic powder.
  • the content of the NdFeB magnetic powder is 93.2- 96.6%
  • the strength of NdFeB bonded magnets is 120-220MPa.
  • the NdFeB bonded magnet can still maintain a strength of more than 100MPa at 120°C, and can pass the 100,000-speed test, so it can meet the requirements of high-speed use of the motor.
  • a motor including a magnet, and the magnet is any one of the above-mentioned NdFeB bonded magnets. Since the NdFeB bonded magnet of the present application has high strength and stable magnetism, the motor using it can meet the requirement of high-speed rotation and improve the quality of the motor.
  • Table 1 describes the raw material composition of the bonded magnets of the respective examples and comparative examples.
  • Table 2 shows some parameters in the preparation process of the bonded magnets of the various examples and comparative examples.
  • Example 2 and Comparative Example 2 were analyzed with a scanning electron microscope and an energy spectrometer.
  • the test conditions of the energy spectrometer were: scanning voltage 20V, scanning distance 15mm, and beam spot size 50.
  • the magnetic powder particles in the bonded magnet of Example 2 are well bonded by resin, and almost no fresh sections are produced; it can also be seen from Figure 2 that the bonding of Example 2
  • the magnetic powder and resin in the magnet are more uniformly dispersed; as can be seen from Figure 3, there are gaps without resin between part of the magnetic powder in the bonded magnet of Comparative Example 2, and the magnetic powder particles have fresh sections and are not covered by resin; from Figure 4 It can be seen that the dispersion of magnetic powder and resin in the bonded magnet of Comparative Example 2 is not very good.
  • the NdFeB bonded magnets obtained in each embodiment and comparative example were prepared into a ring with a specification of OD27.3*ID24.3*Ht20mm, and the crushing strength, demoulding strength, bulk density, and flow rate of each ring were tested at room temperature. and carbon content are reported in Table 3.
  • the test method of crushing strength at room temperature refers to the national standard GB/T6804-2008 for the determination of the radial crush strength of sintered metal bushings;
  • the test method for bulk density refers to the general method for the determination of tap density of powder products in GB-T 21354-2008;
  • the performance test method refers to GB/T 1482-2010 metal powder fluidity determination standard funnel method (Hall flow meter);
  • the release strength test method is: compress the quantitative mixed magnetic powder in the metal mold at a fixed pressure value , and then release the compressed magnetic column from the mold, record the ejection force, and calculate the ratio of the ejection force to the magnetic column, which is the release strength.
  • the NdFeB bonded magnets obtained in the various examples and comparative examples were prepared into magnets with a specification of OD10*ID5*Ht20mm, and the motor speed test was carried out.
  • the rotational speeds are all recorded in Table 4.
  • the test method of high-temperature crushing strength and room-temperature crushing strength is basically the same, only the magnet is placed in the heating medium and reaches the set temperature during the test; the motor speed test is to assemble the magnet into the motor for maximum speed test, and the test time is different. 100 hours less.
  • Example 1 108 10.5
  • Example 2 155 14.2
  • Example 3 176 16.2
  • Example 4 198 20.6
  • Example 5 135 12.9
  • Example 6 115 10.8
  • Example 7 128 12.2
  • Example 8 120 11.7
  • Example 9 105 10.2
  • Example 10 109 10.7
  • Example 11 110 10.6
  • Example 12 120 11.5
  • Example 13 138 12.9
  • Example 14 130 12.7
  • Example 15 129 12.3
  • Example 16 152 15.3
  • Example 17 155 13.9
  • Example 18 155 14.0 Comparative example 1 15 1.5 Comparative example 2 twenty one 1.9 Comparative example 3 67 1.2 Comparative example 4 95 1.6 Comparative example 5 13 1.8 Comparative example 6 19.5 1.7 Comparative example 7 twenty two 1.9
  • This application adopts the method of heating and kneading when mixing the phenolic resin, curing agent and NdFeB magnetic powder.
  • This method is different from the wet mixing and dry mixing of the prior art. and curing agent in the melting state, using the shear and kneading force generated during the mixing process to mix the aforementioned melt with NdFeB magnetic powder to achieve uniform mixing of the three; and because the phenolic resin can be melted , so phenolic resin can be mixed evenly with NdFeB magnetic powder under the premise of high dosage.
  • a lubricant is used when pressing the rubber mixture, so that the NdFeB magnetic powder can still maintain good dispersion uniformity during the pressing process.
  • the obtained magnet compacts are heated and cured in sections, so that the phenolic resin forms a denser three-dimensional network structure, which can ensure the strength of the formed NdFeB bonded magnets and make the magnetic properties stable. .
  • the strength of the NdFeB bonded magnet obtained by the above preparation method of this application is greater than 120MPa, and can still maintain a strength of more than 100MPa even at 120°C, and can pass the continuous operation test of an 80,000-speed motor, so it can meet the requirements of the motor. high-speed use requirements.

Abstract

本发明提供了一种钕铁硼粘结磁体、其制备方法和电机。该制备方法包括:步骤S1,将酚醛树脂、固化剂和钕铁硼磁粉在加热条件下进行炼合,得到混胶粉;步骤S2,将混胶粉与润滑剂混合后进行压制,得到磁体压坯,磁体压坯中酚醛树脂的含量为2.5~6.0wt%、固化剂的含量为0.25~0.6wt%、钕铁硼磁粉的含量为93.3~97.15wt%,润滑剂的含量为0.1~0.2wt%;步骤S3,将磁体压坯进行分段加热固化,得到钕铁硼粘结磁体,分段加热固化共为2至4段逐级升温热固化,分段加热固化的温度为105~195℃,时间为30~60min。所得到钕铁硼粘结磁体的强度大于120MPa,可通过8万转速电机连续运行测试。

Description

钕铁硼粘结磁体、其制备方法和电机 技术领域
本发明涉及粘结磁体的制备技术领域,具体而言,涉及一种钕铁硼粘结磁体、其制备方法和电机。
背景技术
稀土粘结磁体是通过稀土铁硼磁粉、热固性环氧树脂和润滑剂的混合物在压机模具中压制成稀土粘结磁体,然后再进行固化和涂层等工序,最后被应用到电机中。现有粘结磁粉的混合方式有干混和湿混两种方式。
干混工艺一般是先将稀土磁粉与热固性环氧树脂混胶处理,然后将得到的混胶粉与粉末润滑剂放入混料机内进行机械混合使之均匀,即将稀土磁粉与润滑剂采用干混,之后依次磁体成型、固化、倒角以及涂层处理。采用干混的方式混合稀土磁粉与润滑剂,因为加料过程中有振动等因素,加上润滑剂与稀土磁粉的结合力很小,在加料过程中很容易导致润滑剂从稀土磁粉中分离出来,最终导致润滑剂在粘结磁粉中的分布不均匀,增加了磁体脱模时的脱模力,并且容易划伤凹模成型表面。
湿混工艺是大多数粘结磁体厂采用的生产工艺,通常首先将热固性环氧树脂溶解在有机溶剂中,然后将环氧树脂有机溶液与稀土磁粉混合均匀,待有机溶剂挥发后得到混胶粉;然后添加润滑剂,得到稀土粘结磁粉;最后将稀土粘结磁粉压制成型,得到稀土粘结磁体。干混和湿混采用的润滑剂的类型一般包括硬脂酸锌、硬脂酸锂、氮化硼和特氟龙等。
但是,无论是干混工艺还是湿混工艺所使用的树脂都无法满足高温应用(120℃以上应用),且树脂含量一般都在1.0~3.0wt%,无法制备高树脂含量的混合粉。压制后的磁体强度大都在120MPa以下,尤其是在120℃下,磁体强度小于100MPa,不能满足电机的高温应用要求。目前的磁体在应用至电机时,转速无法通过8万转速测试。
发明内容
本发明的主要目的在于提供一种钕铁硼粘结磁体、其制备方法和电机,以解决现有技术中的钕铁硼粘结磁体的强度不能满足电机高速使用要求的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种钕铁硼粘结磁体的制备方法,该制备方法包括:步骤S1,将酚醛树脂、固化剂和钕铁硼磁粉在加热条件下进行炼合,得到混胶粉;步骤S2,将混胶粉与润滑剂混合后进行压制,得到磁体压坯,磁体压坯中酚醛树脂的含量为2.5~6.0wt%、固化剂的含量为0.25~0.6wt%、钕铁硼磁粉的含量为93.3~97.15wt%,润滑剂的含量为0.1~0.2wt%;以及步骤S3,将磁体压坯进行分段加热固化,得到钕铁硼粘结 磁体,分段加热固化共为2至4段逐级升温热固化,分段加热固化的温度为105~195℃,时间为30~60min。
进一步地,上述步骤S3的分段加热固化包括依次进行的:105~115℃热固化5~15min、125~135℃热固化5~15min、155~165℃热固化5~15min以及185~195℃热固化5~15min,优选各温度段之间的升温速度为5~10℃/min。
进一步地,上述酚醛树脂为双环戊二烯苯酚环氧树脂。
进一步地,上述步骤S1在70~130℃下对酚醛树脂、固化剂和钕铁硼磁粉炼合10~40min,优选步骤S1在95~105℃下对酚醛树脂、固化剂和钕铁硼磁粉炼合。
进一步地,上述固化剂为双氰胺固化剂。
进一步地,上述润滑剂为合成蜡,优选为聚酰胺蜡。
进一步地,上述步骤S2中的压制压力为8吨/cm 2~15吨/cm 2
根据本发明的另一方面,提供了一种钕铁硼粘结磁体,采用上述任一种的制备方法制备而成,优选钕铁硼粘结磁体的强度为120~220MPa。
根据本发明的另一方面,提供了一种钕铁硼粘结磁体,该钕铁硼粘结磁体包括酚醛树脂固化物和钕铁硼磁粉,钕铁硼磁粉的含量为93.2~96.15%,钕铁硼粘结磁体的强度为120~220MPa。
根据本发明的另一方面,提供了一种电机,包括磁体,该磁体为上述任一种的钕铁硼粘结磁体。
应用本发明的技术方案,在将酚醛树脂、固化剂和钕铁硼磁粉进行混合时采用加热炼合的方式,该方式不同于现有技术的湿混和干混,在不使用润湿剂的情况下,将酚醛树脂和固化剂在熔融化的状态下,利用炼合过程中产生的剪切和捏合力将前述熔体与钕铁硼磁粉混合,实现了三者的均匀混合;而且由于可以将酚醛树脂熔体化,因此酚醛树脂可以在高用量的前提下与钕铁硼磁粉混合均匀。同时,在压制混胶粉时使用了润滑剂,使得压制过程中钕铁硼磁粉仍然能保持较好的分散均匀性。最后,对所得到的磁体压坯进行分段加热固化,使酚醛树脂形成更为致密的立体网络结构,进而能够保证所形成的钕铁硼粘结磁体的强度,并且使得磁性也得到了稳定发挥。经过试验测试,本申请上述制备方法得到的钕铁硼粘结磁体的强度大于120MPa,即使是在120℃下仍可以保持100MPa以上的强度,能够通过8万转速电机连续运行测试,因此可以满足电机高速使用的要求。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的实施例2的磁体在放大1000倍的扫描电镜下的树脂分布示意图;
图2示出了实施例2的磁体用能谱仪测试的元素分布示意图;
图3示出了对比例2的磁体在放大1000倍的扫描电镜下的树脂分布示意图;
图4示出了对比例2的磁体用能谱仪测试的元素分布示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
如本申请背景技术所分析的,现有技术无论是湿混工艺还是干混工艺,最终得到的磁体强度难以满足电机的8万转速测试,进而不能满足电机高速环境的使用要求。为了解决该问题,本申请提供了一种钕铁硼粘结磁体、其制备方法和电机。
在本申请一种典型的实施方式中,提供了一种钕铁硼粘结磁体的制备方法,该制备方法包括:步骤S1,将酚醛树脂、固化剂和钕铁硼磁粉在加热条件下进行炼合,得到混胶粉;步骤S2,将混胶粉与润滑剂混合后进行压制,得到磁体压坯,磁体压坯中酚醛树脂的含量为2.5~6.0wt%、固化剂的含量为0.25~0.6wt%、钕铁硼磁粉的含量为93.3~97.15wt%,润滑剂的含量为0.1~0.2wt%;步骤S3,将磁体压坯进行分段加热固化,得到钕铁硼粘结磁体,分段加热固化共为2至4段逐级升温热固化,分段加热固化的温度为105~195℃,时间为30~60min。
本申请在将酚醛树脂、固化剂和钕铁硼磁粉进行混合时采用加热炼合的方式,该方式不同于现有技术的湿混和干混,在不使用润湿剂的情况下,将酚醛树脂和固化剂在熔融化的状态下,利用炼合过程中产生的剪切和捏合力将前述熔体与钕铁硼磁粉混合,实现了三者的均匀混合;而且由于可以将酚醛树脂熔体化,因此酚醛树脂可以在高用量的前提下与钕铁硼磁粉混合均匀。同时,在压制混胶粉时使用了润滑剂,使得压制过程中钕铁硼磁粉仍然能保持较好的分散均匀性。最后,对所得到的磁体压坯进行分段加热固化,使酚醛树脂形成更为致密的立体网络结构,进而能够保证所形成的钕铁硼粘结磁体的强度,并且使得磁性也得到了稳定发挥。经过试验测试,本申请上述制备方法得到的钕铁硼粘结磁体的强度大于120MPa,即使是在120℃下仍可以保持100MPa以上的强度,能够通过8万转速电机连续运行测试,因此可以满足电机高速使用的要求。
可以说,本申请形成磁体压坯的组分不包含润湿剂,而是由酚醛树脂、固化剂、钕铁硼磁粉和润滑剂组成。
为了进一步提高所形成的钕铁硼粘结磁体的强度,优选上述步骤S3的分段加热固化包括依次进行的:105~115℃热固化5~15min、125~135℃热固化5~15min、155~165℃热固化5~15min以及185~195℃热固化5~15min,优选各温度段之间的升温速度为5~10℃/min。
本申请为了提高钕铁硼粘结磁体的强度,对树脂进行了筛选,发现酚醛树脂相对于环氧树脂所形成的粘结磁体的强度更好,为了进一步提高粘结磁体的强度(还有好的高温强度),优选上述酚醛树脂为双环戊二烯苯酚环氧树脂。
上述步骤S1的炼合一方面为了保证酚醛树脂的流动性,另一方面为了避免温度过高酚醛树脂固化,优选上述步骤S1在70~130℃下对酚醛树脂、固化剂和钕铁硼磁粉炼合10~40min。优选步骤S1在95~105℃下对酚醛树脂、固化剂和钕铁硼磁粉炼合,时间可以为10min,20min,30min或40min。
用于本申请的固化剂可以为能够使酚醛树脂固化的常用固化剂,为了进一步提高固化效率,优选上述固化剂为双氰胺固化剂。
本申请为了提高压制过程中钕铁硼磁粉的分散性,对润滑剂进行了大量的研究,发现常用的硬脂酸盐类的润滑剂在本制备方法中的效果并不如预想的好,反而合成蜡的润滑分散性能尤为突出,因此优选润滑剂为合成蜡,进一步优选为聚酰胺合成蜡。
为了进一步提高磁体压坯的压坯密度和磁粉分散的均匀性,优选上述步骤S2中的压制压力为8吨/cm 2~15吨/cm 2
在本申请另一种典型的实施方式中,提供了一种钕铁硼粘结磁体,采用上述任一种的制备方法制备而成,优选钕铁硼粘结磁体的强度为130~220MPa。
本申请上述制备方法得到的钕铁硼粘结磁体的强度大于120MPa,即使是在120℃下仍可以保持100MPa以上的强度,能够通过10万转速测试,因此可以满足电机高速使用的要求。
在本申请另一种典型的实施方式中,提供了一种钕铁硼粘结磁体,该钕铁硼粘结磁体包括酚醛树脂固化物和钕铁硼磁粉,钕铁硼磁粉的含量为93.2~96.6%,钕铁硼粘结磁体的强度为120~220MPa。该钕铁硼粘结磁体在120℃下仍可以保持100MPa以上的强度,能够通过10万转速测试,因此可以满足电机高速使用的要求。
在本申请又一种典型的实施方式中,提供了一种电机,包括磁体,该磁体为上述任一种的钕铁硼粘结磁体。由于本申请的钕铁硼粘结磁体具有较高的强度和稳定的磁性,因此,应用其的电机可以满足高速转动的要求,提升了电机品质。
以下将结合实施例和对比例,进一步说明本申请的有益效果。
表1记载了各实施例和对比例的粘结磁体的原料组成。
表1
Figure PCTCN2022087462-appb-000001
Figure PCTCN2022087462-appb-000002
表2示出了各实施例和对比例的粘结磁体的制备过程中部分参数。
表2
Figure PCTCN2022087462-appb-000003
实施例1
将酚醛树脂、固化剂和钕铁硼磁粉在95~105℃下在往复式炼合机中炼合30min,得到混胶;将混胶与润滑剂混合压制,得到磁体压坯,压制压力为10吨/cm 2,磁体压坯中酚醛树脂、固化剂、钕铁硼磁粉和润滑剂的种类和含量记载在表1中,密炼工艺及磁体制造工艺记在表2中;将磁体压坯进行分段加热固化,得到钕铁硼粘结磁体,分段加热固化依次为:110℃固化10min、130℃固化10min、160℃固化10min和190℃固化10min,升温速度为8℃/min。聚酰胺蜡购自安徽森拓。
实施例2至8的流程和工艺条件与实施例1相同。
实施例9
将酚醛树脂、固化剂和钕铁硼磁粉在70~80℃下在往复式炼合机中炼合30min,得到混胶粉;将混胶粉与润滑剂混合压制,得到磁体压坯,压制压力为10吨/cm 2,磁体压坯的组成与实施例2相同;将磁体压坯进行分段加热固化,得到钕铁硼粘结磁体,分段加热固化依次为:110℃固化10min、130℃固化10min、160℃固化10min和190℃固化10min,升温速度为8℃/min。
实施例10
将酚醛树脂、固化剂和钕铁硼磁粉在80~90℃下在往复式炼合机中炼合40min,得到混胶粉;将混胶粉与润滑剂混合压制,得到磁体压坯,压制压力为10吨/cm 2,磁体压坯的组成与实施例2相同;将磁体压坯进行分段加热固化,得到钕铁硼粘结磁体,分段加热固化依次为:110℃固化10min、130℃固化10min、160℃固化10min和190℃固化10min,升温速度为8℃/min。
实施例11
将酚醛树脂、固化剂和钕铁硼磁粉在115~130℃下在往复式炼合机中炼合30min,得到混胶粉;将混胶粉与润滑剂混合压制,得到磁体压坯,压制压力为10吨/cm 2,磁体压坯的组成与实施例2相同;将磁体压坯进行分段加热固化,得到钕铁硼粘结磁体,分段加热固化依次为:110℃固化10min、130℃固化10min、160℃固化10min和190℃固化10min,升温速度为8℃/min。
实施例12
将酚醛树脂、固化剂和钕铁硼磁粉在95~105℃下在往复式炼合机中炼合30min,得到混胶粉;将混胶粉与润滑剂混合压制,得到磁体压坯,压制压力为10吨/cm 2,磁体压坯的组成与实施例2相同;将磁体压坯进行分段加热固化,得到钕铁硼粘结磁体,分段加热固化依次为:105℃固化15min、135℃固化5min、155℃固化15min和195℃固化5min,升温速度为10℃/min。
实施例13
将酚醛树脂、固化剂和钕铁硼磁粉在95~105℃下在往复式炼合机中炼合30min,得到混胶粉;将混胶粉与润滑剂混合压制,得到磁体压坯,压制压力为10吨/cm 2,磁体压坯的组成与实施例2相同;将磁体压坯进行分段加热固化,得到钕铁硼粘结磁体,分段加热固化依次为:115℃固化5min、125℃固化15min、165℃固化5min和185℃固化15min,升温速度为5℃/min。
实施例14
将酚醛树脂、固化剂和钕铁硼磁粉在95~105℃下在往复式炼合机中炼合30min,得到混胶粉;将混胶粉与润滑剂混合压制,得到磁体压坯,压制压力为10吨/cm 2,磁体压坯的组成与实施例2相同;将磁体压坯进行分段加热固化,得到钕铁硼粘结磁体,分段加热固化依次为:120℃固化15min、140℃固化15min和180℃固化15min,升温速度为8℃/min。
实施例15
将酚醛树脂、固化剂和钕铁硼磁粉在95~105℃下在往复式炼合机中炼合30min,得到混胶粉;将混胶粉与润滑剂混合压制,得到磁体压坯,压制压力为5吨/cm 2,磁体压坯的组成与实施例2相同;将磁体压坯进行分段加热固化,得到钕铁硼粘结磁体,分段加热固化依次为:110℃固化10min、130℃固化10min、160℃固化10min和190℃固化10min,升温速度为8℃/min。
实施例16
将酚醛树脂、固化剂和钕铁硼磁粉在95~105℃下在往复式炼合机中炼合30min,得到混胶粉;将混胶粉与润滑剂混合压制,得到磁体压坯,压制压力为8吨/cm 2,磁体压坯的组成与实施例2相同;将磁体压坯进行分段加热固化,得到钕铁硼粘结磁体,分段加热固化依次为:110℃固化10min、130℃固化10min、160℃固化10min和190℃固化10min,升温速度为8℃/min。
实施例17
将酚醛树脂、固化剂和钕铁硼磁粉在95~105℃下在往复式炼合机中炼合30min,得到混胶粉;将混胶粉与润滑剂混合压制,得到磁体压坯,压制压力为12吨/cm 2,磁体压坯的组成与实施例2相同;将磁体压坯进行分段加热固化,得到钕铁硼粘结磁体,分段加热固化依次为:110℃固化10min、130℃固化10min、160℃固化10min和190℃固化10min,升温速度为8℃/min。
实施例18
将酚醛树脂、固化剂和钕铁硼磁粉在95~105℃下在往复式炼合机中炼合30min,得到混胶粉;将混胶粉与润滑剂混合压制,得到磁体压坯,压制压力为15吨/cm 2,磁体压坯的组成与实施例2相同;将磁体压坯进行分段加热固化,得到钕铁硼粘结磁体,分段加热固化依次为:110℃固化10min、130℃固化10min、160℃固化10min和190℃固化10min,升温速度为8℃/min。
对比例1
采用1.55%的902树脂,0.16%双氰胺和丙酮混合成溶液,然后再跟钕铁硼磁粉混合,待丙酮挥发后,然后混合0.1wt%的硬脂酸锌,在100吨先进油压机压制成型和固化,固化工艺为175℃固化60min,得到钕铁硼粘结磁体。
对比例2、5至7的流程和工艺参数同对比例1。
采用扫描电镜和能谱仪对实施例2和对比例2的得到的磁体进行分析,能谱仪的测试条件为:扫描电压20V、扫描距离15mm,束斑尺寸50。由图1可以看出,实施例2的粘结磁体中磁粉颗粒之间被树脂很好的粘结起来,且几乎没有新鲜的断面产生;由图2也可以看出,实施例2的粘结磁体中磁粉和树脂分散得更均匀;由图3可以看出,对比例2的粘结磁体中部分磁粉之间存在没有树脂的空隙以及磁粉颗粒存在新鲜断面且没有被树脂包覆;由图4可以看出,对比例2的粘结磁体中磁粉和树脂的分散不是很好。
将各实施例和对比例得到的钕铁硼粘结磁体制备成规格为OD27.3*ID24.3*Ht20mm圆环,测试各圆环的室温下破碎强度、脱模强度、松装密度、流动性和碳含量,记录在表3中。其中,室温破碎强度测试方法参照国标GB/T6804-2008烧结金属衬套径向压溃强度的测定执行;松装密度测试方法参照GB-T 21354-2008粉末产品振实密度测定通用方法执行;流动性测试方法参照GB/T 1482-2010金属粉末流动性的测定标准漏斗法(霍尔流速计)执行;脱模强度测试方法是:将定量的混胶磁粉在金属模具中在固定压力值进行压缩,然后将压缩的磁柱从模具中脱出,记录脱出力,计算脱出力与磁柱的比值即为脱模强度。
表3
  室温破碎强度 脱模力 松装密度 流动性
  (MPa) (MPa) (g/cc) (s)
实施例1 131 6.20 3.10 33.5
实施例2 170 6.30 3.01 34.1
实施例3 196 6.12 2.98 32.1
实施例4 220 6.03 2.96 33.2
实施例5 154 6.09 3.01 34.1
实施例6 122 5.80 3.10 33.5
实施例7 150 6.56 2.98 32.1
实施例8 145 6.60 2.96 33.2
实施例9 123 6.30 3.01 35.0
实施例10 128 6.04 2.99 32.0
实施例11 135 6.01 2.96 33.2
实施例12 149 6.15 2.99 31.3
实施例13 159 6.04 2.92 32.0
实施例14 142 6.05 2.97 33.4
实施例15 141 6.02 2.94 34.1
实施例16 167 6.28 3.00 34.2
实施例17 172 6.31 3.04 33.7
实施例18 175 6.36 3.08 33.5
对比例1 88 6.93 3.30 37.8
对比例2 106 6.86 3.18 37.5
对比例3 89 6.87 3.21 38.9
对比例4 120 6.20 3.10 33.5
对比例5 68 6.30 3.01 34.1
对比例6 90 6.12 2.98 32.1
对比例7 103 6.03 2.96 33.2
将各实施例和对比例得到的钕铁硼粘结磁体制备成规格为OD10*ID5*Ht20mm的磁体,进行电机转速测试,其中磁体的室温破碎强度、120℃的破碎强度以及能达到的最大电机转速均记载在表4中。其中,高温破碎强度与室温破碎强度的测试方法基本相同,仅使磁体在测试过程中处于加热介质中且达到设定温度;电机转速测试是将磁体装配到电机中进行最大转速测试,测试时间不少100小时。
表4
  120℃破碎强度/MPa 能达到的最大电机转速(万转/分钟)
实施例1 108 10.5
实施例2 155 14.2
实施例3 176 16.2
实施例4 198 20.6
实施例5 135 12.9
实施例6 115 10.8
实施例7 128 12.2
实施例8 120 11.7
实施例9 105 10.2
实施例10 109 10.7
实施例11 110 10.6
实施例12 120 11.5
实施例13 138 12.9
实施例14 130 12.7
实施例15 129 12.3
实施例16 152 15.3
实施例17 155 13.9
实施例18 155 14.0
对比例1 15 1.5
对比例2 21 1.9
对比例3 67 1.2
对比例4 95 1.6
对比例5 13 1.8
对比例6 19.5 1.7
对比例7 22 1.9
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
本申请在将酚醛树脂、固化剂和钕铁硼磁粉进行混合时采用加热炼合的方式,该方式不同于现有技术的湿混和干混,在不使用润湿剂的情况下,将酚醛树脂和固化剂在熔融化的状态下,利用炼合过程中产生的剪切和捏合力将前述熔体与钕铁硼磁粉混合,实现了三者的均匀混合;而且由于可以将酚醛树脂熔体化,因此酚醛树脂可以在高用量的前提下与钕铁硼磁粉混合均匀。同时,在压制混胶粉时使用了润滑剂,使得压制过程中钕铁硼磁粉仍然能保持较好的分散均匀性。最后,对所得到的磁体压坯进行分段加热固化,使酚醛树脂形成更为致 密的立体网络结构,进而能够保证所形成的钕铁硼粘结磁体的强度,并且使得磁性也得到了稳定发挥。经过试验测试,本申请上述制备方法得到的钕铁硼粘结磁体的强度大于120MPa,即使是在120℃下仍可以保持100MPa以上的强度,能够通过8万转速电机连续运行测试,因此可以满足电机高速使用的要求。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种钕铁硼粘结磁体的制备方法,其特征在于,所述制备方法包括:
    步骤S1,将酚醛树脂、固化剂和钕铁硼磁粉在加热条件下进行炼合,得到混胶粉;
    步骤S2,将所述混胶粉与润滑剂混合后进行压制,得到磁体压坯,所述磁体压坯中所述酚醛树脂的含量为2.5~6.0wt%、所述固化剂的含量为0.25~0.6wt%、所述钕铁硼磁粉的含量为93.3~97.15wt%,所述润滑剂的含量为0.1~0.2wt%;以及
    步骤S3,将所述磁体压坯进行分段加热固化,得到钕铁硼粘结磁体,所述分段加热固化共为2至4段逐级升温热固化,所述分段加热固化的温度为105~195℃,时间为30~60min。
  2. 根据权利要求1所述的制备方法,其特征在于,所述步骤S3的所述分段加热固化包括依次进行的:105~115℃热固化5~15min、125~135℃热固化5~15min、155~165℃热固化5~15min以及185~195℃热固化5~15min,优选各温度段之间的升温速度为5~10℃/min。
  3. 根据权利要求1所述的制备方法,其特征在于,所述酚醛树脂为双环戊二烯苯酚环氧树脂。
  4. 根据权利要求1所述的制备方法,其特征在于,所述步骤S1在70~130℃下对所述酚醛树脂、固化剂和钕铁硼磁粉炼合10~40min,优选所述步骤S1在95~105℃下对所述酚醛树脂、固化剂和钕铁硼磁粉炼合。
  5. 根据权利要求1所述的制备方法,其特征在于,所述固化剂为双氰胺固化剂。
  6. 根据权利要求1所述的制备方法,其特征在于,所述润滑剂为合成蜡,优选为聚酰胺蜡。
  7. 根据权利要求1所述的制备方法,其特征在于,所述步骤S2中的压制压力为8吨/cm 2~15吨/cm 2
  8. 一种钕铁硼粘结磁体,其特征在于,采用权利要求1至7中任一项所述的制备方法制备而成,优选所述钕铁硼粘结磁体的强度为120~220MPa。
  9. 一种钕铁硼粘结磁体,其特征在于,所述钕铁硼粘结磁体包括酚醛树脂固化物和钕铁硼磁粉,所述钕铁硼磁粉的含量为93.2~96.15%,所述钕铁硼粘结磁体的强度为120~220MPa。
  10. 一种电机,包括磁体,其特征在于,所述磁体为权利要求8或9所述的钕铁硼粘结磁体。
PCT/CN2022/087462 2021-12-28 2022-04-18 钕铁硼粘结磁体、其制备方法和电机 WO2023123749A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111631098.7 2021-12-28
CN202111631098.7A CN114420397A (zh) 2021-12-28 2021-12-28 钕铁硼粘结磁体、其制备方法和电机

Publications (1)

Publication Number Publication Date
WO2023123749A1 true WO2023123749A1 (zh) 2023-07-06

Family

ID=81269221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087462 WO2023123749A1 (zh) 2021-12-28 2022-04-18 钕铁硼粘结磁体、其制备方法和电机

Country Status (2)

Country Link
CN (1) CN114420397A (zh)
WO (1) WO2023123749A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373805A (ja) * 2001-06-13 2002-12-26 Daido Electronics Co Ltd ネオジゥム系ボンド磁石およびその成形方法
CN102568730A (zh) * 2010-12-31 2012-07-11 上海爱普生磁性器件有限公司 一种高机械强度粘结钕铁硼永磁体及其制备方法
CN112927880A (zh) * 2021-03-26 2021-06-08 成都银磁材料有限公司 一种注塑永磁铁氧体材料、注塑磁体及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373805A (ja) * 2001-06-13 2002-12-26 Daido Electronics Co Ltd ネオジゥム系ボンド磁石およびその成形方法
CN102568730A (zh) * 2010-12-31 2012-07-11 上海爱普生磁性器件有限公司 一种高机械强度粘结钕铁硼永磁体及其制备方法
CN112927880A (zh) * 2021-03-26 2021-06-08 成都银磁材料有限公司 一种注塑永磁铁氧体材料、注塑磁体及其制备方法

Also Published As

Publication number Publication date
CN114420397A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
EP2682431B1 (en) Electrically conductive, fully vulcanized, thermoplastic elastomer and preparation method thereof
CN106349686A (zh) 一种高性能聚酰胺/钐铁氮磁性复合材料及其制备方法
CN106189225A (zh) 纳米陶瓷粉改性氰酸酯树脂制备复合材料的方法
WO2023123749A1 (zh) 钕铁硼粘结磁体、其制备方法和电机
CN106589820A (zh) 一种具有隔离结构的多相高介电常数复合材料及其制备方法
KR102454806B1 (ko) 이방성 본드 자석 및 그 제조 방법
CN106832753B (zh) 一种酚醛塑料废料回收方法
CN107459820B (zh) 一种微纳米粒子协同层间增韧双马/碳纤维复合材料的制备方法
CN106816248A (zh) 混胶磁粉及其制备方法
WO2023197885A1 (zh) 一种全集成式电压调节模块电感的磁性浆料及其制备方法
CN115232443A (zh) 一种用石墨烯和聚合物制备导热复合材料的方法
CN115433458A (zh) 石墨烯/碳纤维增强尼龙66组合物及其制备方法
CN110648812B (zh) 一种耐高温注射磁体制备用料和耐高温注射磁体的制备方法
CN108538561A (zh) 一种粘结钕铁硼磁体及制备方法
CN109747065A (zh) 一种移相器用聚苯醚树脂基复合材料的制备方法
JP5041312B2 (ja) 炭素材料の製造方法
CN114178522A (zh) 一种铁基预混合粉的制作方法
JP6370494B2 (ja) レドックスフロー電池用バイポーラプレートの製造方法
CN112574697A (zh) 高导电率导电胶水及其制备方法
US20060208384A1 (en) Method for producing an electroconductive composite material
WO2024000503A1 (zh) 一种注塑磁材料及其制备方法
KR102487771B1 (ko) 이방성 본드 자석 및 그 제조 방법
CN112143208B (zh) 一种高填充聚合物复合材料及其制备方法和应用
WO2023077778A1 (zh) 磁性复合材料组合物、电感磁芯及其制备方法
CN113004658B (zh) 具有可磁控转换导电导热特性的热固性复合材料及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913051

Country of ref document: EP

Kind code of ref document: A1