WO2024000446A1 - 极耳图像采集设备、系统和方法 - Google Patents
极耳图像采集设备、系统和方法 Download PDFInfo
- Publication number
- WO2024000446A1 WO2024000446A1 PCT/CN2022/102936 CN2022102936W WO2024000446A1 WO 2024000446 A1 WO2024000446 A1 WO 2024000446A1 CN 2022102936 W CN2022102936 W CN 2022102936W WO 2024000446 A1 WO2024000446 A1 WO 2024000446A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image acquisition
- module
- tab
- image
- offset
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 230000008859 change Effects 0.000 claims abstract description 5
- 238000001514 detection method Methods 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 24
- 238000004140 cleaning Methods 0.000 description 9
- 238000009434 installation Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 7
- 238000003384 imaging method Methods 0.000 description 7
- 238000011161 development Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000010926 purge Methods 0.000 description 4
- 239000011149 active material Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 210000005069 ears Anatomy 0.000 description 2
- 238000004134 energy conservation Methods 0.000 description 2
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0404—Machines for assembling batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/547—Terminals characterised by the disposition of the terminals on the cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
- G01N2021/8835—Adjustable illumination, e.g. software adjustable screen
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/02—Mechanical
- G01N2201/022—Casings
- G01N2201/0225—Part of casing being slidable, telescopic
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/04—Batch operation; multisample devices
- G01N2201/0407—Batch operation; multisample devices with multiple optical units, e.g. one per sample
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/061—Sources
- G01N2201/06146—Multisources for homogeneisation, as well sequential as simultaneous operation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/063—Illuminating optical parts
- G01N2201/0638—Refractive parts
Definitions
- the present application relates to the field of battery technology, and in particular to a pole image acquisition device, system and method.
- Electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy conservation and environmental protection.
- battery technology is an important factor related to their development.
- the battery cell includes tabs. After the battery cell is produced, the folding of the tabs needs to be detected.
- the image of the pole is collected through a pole image acquisition device, and then the folding of the pole is detected through the image of the pole.
- This application aims to solve at least one of the technical problems existing in the background art. To this end, one purpose of this application is to provide a pole image acquisition device, system and method to improve problems in related technologies.
- the embodiment of the first aspect of the present application provides a lug image acquisition device, including an image acquisition device.
- the image acquisition device includes: a first moving module that can move along a first direction A; a second moving module that can move along a second direction. B moves, the second mobile module is installed on the first mobile module, the second direction B intersects the first direction A; the image acquisition module is installed on the second mobile module; the prism module is installed on the first mobile module, the prism
- the module has a reflective surface, and the reflective surface is configured to change the angle of incident light on the tab of the image to be collected, so that the incident light enters the image acquisition module.
- a first moving module and a second moving module are respectively arranged on the image acquisition device.
- the image acquisition module can move in two directions, that is, the first direction A and the second direction B.
- the positions of the image acquisition module and the prism module can be changed according to the deviation of the lugs, thereby broadening the scope of application of the lugs image acquisition equipment.
- the first mobile module includes: a first driving unit; a first track provided on the first driving unit, the first track extending along the first direction A; and a first mounting plate having a first mounting protrusion.
- the first mounting protrusion is movably located in the first track, and the second moving module and the prism module are both mounted on the first mounting plate.
- the first driving unit drives the first mounting plate to move along the first track, thereby driving the second moving module and the prism module to move.
- the second moving module moves to drive the image acquisition module to move along the first direction A.
- the second mobile module includes: a second driving unit installed on the first mounting plate; a second rail provided on the second driving unit, the second rail extending along the second direction B; a second mounting The board has a second mounting protrusion, the second mounting protrusion is movably located in the second track, and the image acquisition module is installed on the second mounting plate.
- the second driving unit drives the second mounting plate to move along the second track, thereby driving the image acquisition module to move along the second direction B.
- the first direction A is perpendicular to the second direction B.
- the image acquisition module can move in two mutually perpendicular directions, making it easier to adjust the position of the image acquisition module.
- the angle between the reflective surface and the first direction A is 45 degrees.
- the image acquisition module collects images from the side of the tab.
- the battery cells are generally placed horizontally.
- the angle between the reflective surface and the first direction A is 45°, the incident light on the side of the tab can be made parallel to the first direction A.
- the reflected incident light is parallel to the second direction B, which makes it easier to arrange the position of the prism module, and at the same time, the incident light of the tab can enter the image acquisition module after being reflected by the reflective surface.
- the prism module includes: a telescopic unit installed on the first mobile module, the telescopic unit's telescopic direction is a third direction C, the third direction C intersects the first direction A, and the third direction C intersects the second direction A.
- Direction B intersects; the prism body is installed on the telescopic unit, and the reflective surface is arranged on the prism body.
- the lug image acquisition equipment works continuously, and the battery cells move continuously. The moving path of the battery cell will pass through the prism body. In order to avoid the collision between the prism body and the lug, the prism body can be controlled in the third direction through the telescopic unit. C moves upward so that the prism body can avoid the battery cell and avoid collision between the prism body and the tab.
- the first direction A, the second direction B and the third direction C are perpendicular to each other.
- it ensures that the image acquisition module can move in two mutually perpendicular directions, making it easier to adjust the position of the image acquisition module; on the other hand, the prism body can also move in two mutually perpendicular directions, making it more convenient to adjust the position of the prism body.
- the prism body is a total reflection prism.
- the inclined direction of the reflective surface can form an included angle of 45° with the first direction A and the second direction B respectively.
- the image acquisition device further includes: a first light source installed on the first mobile module, the light exit surface of the first light source at least partially coincides with the tab. The light emitted by the first light source shines on the tab, so that the image acquisition device can collect a clear image of the tab.
- the first light source is an arc-shaped light source.
- the arc-shaped light source has a wide irradiation area, ensuring that the light emitted by the first light source irradiates the pole ears.
- the tab image collection device further includes an offset detection device, and the offset detection device is used to detect the offset of the tab in the first direction A. The movement of the first moving module and the second moving module is controlled by the offset of the tab.
- the offset detection device includes at least one image acquisition unit.
- the image acquisition unit takes a picture of the battery cell to obtain the image of the battery cell, and determines the offset of the tab through the image of the battery cell.
- the offset detection device further includes at least one second light source.
- the second light source can provide light so that the image acquisition unit can capture a clearer image of the battery cell.
- An embodiment of the second aspect of the present application provides a lug image acquisition system, which includes at least one pair of the lug image acquisition devices of any one of the above embodiments.
- the image acquisition system provided by the embodiments of the present application has a wider application range.
- the embodiment of the third aspect of the present application provides a method for collecting an image of a pole.
- the method of collecting an image of the pole is applied to the device for collecting images of the pole in the above embodiment.
- the method includes: according to the direction of the pole of the image to be collected along the first
- the offset amount in direction A determines the first movement amount of the first mobile module along the first direction A; determines the second movement amount of the second mobile module along the second direction B based on the offset amount; controls the first movement
- the module moves the first movement amount; controls the second movement module to move the second movement amount along the second direction B; and in the process of controlling the second movement module to move the second movement amount along the second direction B, through the image acquisition module Collect at least one image of the pole ear.
- This method can control the movement of the image acquisition module according to the specific offset of the tab to be imaged, making the application range of the tab image acquisition equipment wider.
- the movement of the prism module can be adjusted according to the distance between the tabs, which can also be broadened. The scope of application of Jilu image acquisition equipment.
- determining the second movement amount of the second mobile module along the second direction B according to the offset includes: determining the starting point of movement of the second mobile module according to the offset and the working distance standard value of the image acquisition module. and moving end points. Determine the starting point and end point of movement of the second moving module based on the offset and the standard value of the working distance of the image acquisition module, ensuring that a clear image can be captured every time the image acquisition device moves in the second direction. .
- collecting at least one image of the tab through the image acquisition module includes: every time the second movement module moves a predetermined distance, The image acquisition module collects an image of the pole. Every time the second moving module moves a predetermined distance, the image acquisition module collects an image of the pole. This ensures that the image acquisition module can take multiple photos to obtain multiple images, and a part of each image is clear, so that A clear side image of the polar ear is fused from multiple images.
- the predetermined distance is a fixed value, or the predetermined distance is a value that changes according to the size of the tab.
- the predetermined distance can be used to determine the number of photos taken.
- the tab image acquisition device is the tab image acquisition device according to any one of the above embodiments, and the method includes obtaining the offset through an offset detection device.
- the offset detection device can determine the offset of the tab through an edge extraction algorithm.
- the pole image acquisition device is the pole image acquisition device in the above embodiment, and obtaining the offset through the offset detection device includes: acquiring the positioning image of the battery cell through the image acquisition unit, and the pole setting to the battery cell; and determine the offset by positioning the image. It is more convenient to collect the positioning image of the battery cell through the image acquisition unit, and to determine the offset of the tab through the positioning image.
- the battery cell includes a side edge of the battery cell along the first direction A
- the tab includes a first tab edge and a second tab edge that are oppositely arranged along the first direction A.
- positioning Determining the offset from the image includes: determining the first distance between the side edge of the battery cell and the edge of the first tab through the positioning image, and/or determining the distance between the side edge of the battery cell and the edge of the second tab through the positioning image.
- the offset is determined by the first distance and/or the second distance. The offset can be easily determined by the distance between the side edge of the battery cell and the edge of the first tab and the edge of the second tab respectively.
- Figure 1 is a block diagram of a pole image acquisition device according to some embodiments of the present application.
- Figure 2 is a schematic structural diagram of an image acquisition device according to some embodiments of the present application.
- Figure 3 is an exploded schematic diagram of an image acquisition device according to some embodiments of the present application.
- Figure 4 is an exploded schematic diagram of the first mobile module according to some embodiments of the present application.
- Figure 5 is a schematic diagram of the first mounting plate according to the embodiment of the present application.
- Figure 6 is an exploded schematic diagram of the second movement module and the image acquisition module in some embodiments of the present application.
- Figure 7 is a schematic diagram of the second mounting plate according to the embodiment of the present application.
- Figure 8 is a schematic diagram of a prism module according to an embodiment of the present application.
- Figure 9 is a schematic diagram of the prism module and the first light source according to the embodiment of the present application.
- Figure 10 is a flow chart of the ear image acquisition method according to the embodiment of the present application.
- Figure 11 is a simple schematic diagram of the ear image acquisition method according to the embodiment of the present application.
- Figure 12 is a flow chart of the ear image acquisition method according to the embodiment of the present application.
- Figure 13 is a process diagram of the pole image acquisition method according to the embodiment of the present application.
- Figure 14 is a schematic diagram of a reference battery cell according to an embodiment of the present application.
- an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
- the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
- multiple refers to more than two (including two).
- multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
- Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
- the mobile module on the Jilu image acquisition device moves with the image acquisition module.
- the image acquisition module takes photos of the Jilu during the movement to obtain the Jilu image, and the Jilu image is used to determine the status of the Jilu. Folding condition.
- the pole tabs on different battery cells will be offset, resulting in uncertainty in the location of the pole tabs.
- the image acquisition module needs to adjust the position of the image acquisition module according to the specific situation.
- the mobile module on the pole tab image acquisition device It can only move in one direction, so the image acquisition module can only move in one direction, and cannot adjust its position according to different battery cells, making the application range of the tab image acquisition device narrow.
- the image acquisition module is installed on the second mobile module, and the second mobile module is installed on the first mobile module, so that the image acquisition module can move in two directions, increasing the movement range of the image acquisition module, so that the image acquisition module can Adjusting the position according to different battery cells broadens the applicable scope of the tab image acquisition equipment.
- the tab image acquisition device disclosed in the embodiment of the present application is used to collect tab images on battery cells.
- the battery cells can be, but are not limited to, used in electrical devices such as vehicles, ships, or aircrafts.
- Electric devices can be, but are not limited to, mobile phones, tablets, laptops, electric toys, power tools, battery cars, electric vehicles, ships, spacecraft, etc.
- electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
- spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
- the battery cell is mainly formed by winding or stacking positive electrode sheets and negative electrode sheets, and usually there is a separator between the positive electrode sheets and the negative electrode sheets.
- the portions of the positive electrode sheet and the negative electrode sheet that contain active material constitute the main body of the battery cell, and the portions of the positive electrode sheet and the negative electrode sheet that do not contain active material each constitute the tabs.
- the positive electrode tab and the negative electrode tab can be located together at one end of the main body or respectively located at both ends of the main body.
- the positive active material and negative active material react with the electrolyte, and the tabs are connected to the electrode terminals to form a current loop.
- Each battery cell may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
- the battery cell can be in the shape of cylinder, flat body, rectangular parallelepiped or other shapes.
- FIG. 1 is a block diagram of a pole image acquisition device according to some embodiments of the present application.
- the pole image acquisition device includes an image acquisition device 100.
- Figure 2 is a schematic structural diagram of an image acquisition device according to some embodiments of the present application.
- Figure 3 is an exploded schematic diagram of an image acquisition device according to some embodiments of the present application.
- the image acquisition device 100 includes a first mobile module 10, The second movement module 20, the image acquisition module 30 and the prism module 40.
- the first mobile module 10 can move along the first direction A; the second mobile module 20 can move along the second direction B.
- the second mobile module 20 is installed on the first mobile module 10.
- the second direction B intersects the first direction A.
- the image acquisition module 30 is installed on the second mobile module 20; the prism module 40 is installed on the first mobile module 10, the prism module 40 has a reflective surface 401, and the reflective surface 401 is configured to change the incident light of the tab of the image to be collected An angle such that the incident light enters the image acquisition module 30 .
- the image acquisition device 100 is used to collect images of the tabs.
- the first moving module 10 and the second moving module 20 can move along the first direction A and the second direction B respectively.
- the second moving module 20 is installed On the first mobile module 10, the first mobile module 10 can move along the first direction A with the second mobile module 20.
- the image acquisition module 30 is installed on the second mobile module 20.
- the second mobile module 20 can carry The image acquisition module 30 moves along the second direction B, so that the image acquisition module 30 can move along the first direction A and the second direction B respectively.
- the prism module 40 is installed on the first moving module 10, so the prism module 40 can move along the first direction A.
- the image acquisition module 30 may be a charge coupled device (Charge Coupled Device, CCD) camera.
- CCD Charge Coupled Device
- the CCD camera is small in size, light in weight, not affected by magnetic fields, and resistant to vibration and impact, ensuring the strength and stability of the image acquisition module 30 .
- the reflective surface 401 can reflect light, and the incident light of the tab to be collected enters the image acquisition module 30 after being reflected by the reflective surface 401, so that the image acquisition module 30 can collect the image of the tab. .
- the first moving module 10 and the second moving module 20 are respectively arranged on the image acquisition device 100.
- the image acquisition module 30 can move in two directions, namely the first direction A and the second direction B.
- the positions of the image acquisition module 30 and the prism module 40 can be changed according to the offset of the tab, thereby broadening the applicable scope of the tab image collection device.
- the prism module 40 cannot be moved, and the prism module 40 cannot adjust its position according to the spacing between the tabs. , making the application range of the Jilu image acquisition system narrow.
- the prism module 40 is installed on the first moving module 10 and can move along the first direction A.
- the tab image collection device can adjust the position of the prism module 40 according to the change of the tab distance.
- the applicable scope of the polar image acquisition equipment can be broadened.
- Figure 4 is an exploded schematic diagram of the first mobile module according to some embodiments of the present application.
- the first mobile module 10 includes: a first drive unit 101, a first track 102 and a first installation
- the plate 103 and the first rail 102 are provided on the first driving unit 101, and the first rail 102 extends along the first direction A.
- Figure 5 is a schematic diagram of the first mounting plate according to the embodiment of the present application.
- the first mounting plate 103 has a first mounting protrusion 1031.
- the first mounting protrusion 1031 is movably located at the third Within a track 102.
- the second moving module 20 and the prism module 40 are both installed on the first mounting plate 103 .
- the first driving unit 101 is used to drive the first mounting plate 103 to move, and when the first mounting plate 103 moves, it drives the second moving module 20 and the prism module 40 located on the first mounting plate 103 to move.
- the first driving unit 101 may be a pneumatic driving device, a hydraulic driving device, an electric driving device, or a mechanical driving device.
- the first driving unit 101 is a motor.
- the first rail 102 extends along the first direction A, so that the first mounting plate 103 can move along the first direction A.
- the first rail 102 may be a sliding groove on the first driving unit 101, or the first rail 102 may be fixed on the first driving unit 101 through a connector.
- the first driving unit 101 drives the first mounting plate 103 to move along the first track 102, thereby driving the second moving module 20 and the prism module 40 to move, and the second moving module 20 moves to drive the image acquisition module. 30 moves along the first direction A.
- the pole image acquisition device includes two image acquisition devices 100.
- the pole image acquisition device also includes a mounting motherboard 300.
- the first driving units 101 of the two image capturing devices 100 are installed on the mounting motherboard 300. to ensure the stability of the image acquisition device 100.
- the mounting main board 300 has a plurality of main mounting holes 310
- the first driving unit 101 has mounting holes corresponding to the main mounting holes 310 .
- Bolts can be used to pass through the mounting holes and the mounting holes on the first driving unit 101 in sequence. main hole 310, and then screw a nut on the other end of the bolt to fix the first drive unit 101 on the mounting motherboard 300.
- the first mounting plate 103 has a plurality of first mounting holes 1032, and the second moving module 20 and the prism module 40 respectively have corresponding mounting holes.
- the second moving module 20 and the prism module 40 can also be connected through bolts and nuts.
- the prism module 40 is installed on the first mounting plate 103 .
- FIG. 6 is an exploded schematic diagram of the second mobile module and the image acquisition module in some embodiments of the present application.
- the second mobile module 20 includes a second driving unit 201 , the second rail 202 and the second mounting plate 203, the second driving unit 201 is installed on the first mounting plate 103; the second rail 202 is provided on the second driving unit 201, and the second rail 202 extends along the second direction B.
- FIG. 7 is a schematic diagram of the second mounting plate according to the embodiment of the present application. Referring to FIG. 7 , the second mounting plate 203 has a second mounting protrusion 2031 . Wherein, the second mounting protrusion 2031 is movably located in the second track 202, and the image acquisition module 30 is installed on the second mounting plate 203.
- the second driving unit 201 is used to drive the second installation plate 203 to move, and when the second installation plate 203 moves, it drives the image acquisition module 30 located on the second installation plate 203 to move.
- the second driving unit 201 may be a pneumatic driving device, a hydraulic driving device, an electric driving device, or a mechanical driving device.
- the second driving unit 201 is a motor.
- the second rail 202 extends along the second direction B, so that the second mounting plate 203 can move along the second direction B.
- the second rail 202 may be a sliding groove on the second driving unit 201, or the second rail 202 may be fixed on the second driving unit 201 through a connector.
- the second driving unit 201 drives the second mounting plate 203 to move along the second track 202, thereby driving the image acquisition module 30 to move along the second direction B.
- the second mounting plate 203 has a plurality of second mounting holes 2032, and the image acquisition module 30 has mounting holes corresponding to the second mounting holes 2032.
- the image acquisition module 30 can also be installed on the second mounting plate 2032 through bolts and nuts. 2.
- the first direction A is perpendicular to the second direction B.
- the first direction A is the horizontal direction
- the second direction B is the vertical direction
- the image acquisition module 30 when the first direction A and the second direction B are perpendicular, the image acquisition module 30 can move in two mutually perpendicular directions, making it easier to adjust the position of the image acquisition module.
- the angle between the reflective surface 401 and the first direction A is 45 degrees (°).
- the angle between the reflective surface 401 and the first direction A is 45°
- the angle between the reflective surface 401 and the second direction B is also 45°.
- the incident light of the tab is parallel to the first direction A. After the incident light reaches the reflective surface 401, the incident light is reflected by the reflective surface 401 and becomes parallel to the second direction B, and then enters the In the image acquisition module 30.
- the image acquisition module 30 collects images of the side of the tab.
- the battery cell 1 is generally placed horizontally.
- the angle between the reflective surface 401 and the first direction A is 45°, the side of the tab can be The incident light is parallel to the first direction A, and the reflected incident light is parallel to the second direction B. This makes it easier to arrange the position of the prism module 40, and at the same time, the incident light of the tab can enter the image after being reflected by the reflective surface 401. in the collection module 30.
- FIG. 8 is a schematic diagram of a prism module according to an embodiment of the present application.
- the prism module 40 includes a telescopic unit 402 and a prism body 403 .
- the telescopic unit 402 is installed on the first mobile module 10.
- the telescopic direction of the telescopic unit 402 is the third direction C.
- the third direction C intersects the first direction A, and the third direction C intersects with the first direction A.
- the second direction B intersects.
- the prism body 403 is installed on the telescopic unit 402, and the reflective surface 401 is provided on the prism body 403.
- the telescopic unit 402 is used to control the prism body 403 to move in the third direction C.
- the prism module 40 will follow the first moving module 10 to move, so the prism body 403 can move in the first direction A and the third direction C. Move in direction C.
- the telescopic unit 402 is a telescopic cylinder.
- the pole image acquisition device works continuously, and the battery cell 1 moves continuously.
- the moving path of the battery cell 1 will pass through the prism body 403.
- the prism body 403 can be controlled to move in the third direction C through the telescopic unit 402, so that the prism body 403 can avoid the battery cell 1 and avoid collision between the prism body 403 and the tab.
- the telescopic unit 402 has a mounting hole corresponding to the first mounting hole 1032 on the first mounting plate 103.
- the telescopic unit 402 can also be installed on the first mounting plate 103 through bolts and nuts.
- the mounting motherboard 300 has a hole 320 for the telescopic unit 402 to telescope.
- the prism body 403 can also be installed on the telescopic unit 402 through bolts and nuts.
- the prism module 40 also includes a cleaning unit 404.
- the cleaning unit 404 is installed on the telescopic unit 402.
- the cleaning unit 404 is used to clean the mirror surface of the reflective surface 401 to ensure the cleanness of the mirror surface and avoid stains or dust on the mirror surface from affecting the extreme. The clarity of the ear image.
- the battery cell 1 is located on a carrying device, and the carrying device may be a transfer belt to facilitate a battery cell 1 .
- the cleaning unit 404 is a purge tube, and the nozzle of the purge tube is facing the reflective surface 401.
- the air blown out from the purge tube can blow away the stains or dust on the mirror surface of the reflective surface 401, ensuring that the mirror surface is clean. clean.
- the cleaning unit 404 can also be installed on the telescopic unit 402 through bolts and nuts.
- the first direction A, the second direction B and the third direction C are perpendicular to each other.
- the first direction A and the third direction C are two mutually perpendicular horizontal directions, and the second direction B is the numerical direction.
- the first direction A, the second direction B and the third direction C are perpendicular to each other.
- it ensures that the image acquisition module 30 can move in two mutually perpendicular directions, making it more convenient to adjust the image acquisition module. position; on the other hand, the prism body 403 can also move in two mutually perpendicular directions, which makes the position of the prism body 403 more convenient.
- the prism body 403 is a total reflection prism.
- a total reflection prism is a prism whose cross-section is an isosceles right triangle.
- the inclination direction of the reflection surface 401 can form an included angle of 45° with the first direction A and the second direction B respectively.
- the image collection device 100 further includes a first light source 50.
- the first light source 50 is installed on the first mobile module 10.
- the light-emitting surface of the first light source 50 is at least Partial overlap.
- the first light source 50 is installed on the first moving module 10 , and the first light source 50 can move along with the first moving module 10 , that is, the moving direction of the first light source 50 is also the first direction A.
- the light emitted by the first light source 50 is illuminated on the tab, so that the image acquisition device can collect a clear image of the tab.
- the first light source 50 is an arc-shaped light source.
- the arc-shaped light source is a light source with an arc-shaped light exit surface.
- the arc-shaped light source has a wide irradiation area, ensuring that the light emitted by the first light source 50 is irradiated on the pole ears.
- FIG. 9 is a schematic diagram of a prism module and a first light source according to an embodiment of the present application.
- the first light source 50 includes a first sub-light source 501 and a second sub-light source 502 , wherein the light-emitting surface of the first sub-light source 501 is in contact with the second sub-light source 502 .
- the two directions B are parallel, and the light-emitting surface of the second sub-light source 502 is parallel to the first direction A.
- the first sub-light source 501 and the second sub-light source 502 illuminate the tab from two directions respectively, further improving the clarity of the tab image. Spend.
- the first sub-light source 501 is installed on the telescopic unit 402, and the second sub-light source 502 is installed on the first mounting plate 103.
- the first sub-light source 501 can be installed on the telescopic unit 402 through bolts and nuts
- the second sub-light source 502 can be installed on the first mounting plate 103 through bolts and nuts.
- the second sub-light source 502 has a groove 5021 for the second moving module 20 to move.
- the tab image collection device further includes an offset detection device 200 .
- the offset detection device 200 is used to detect the offset amount of the tab in the first direction A.
- the offset detection device 200 can detect the offset of the tab, and control the movement of the first moving module 10 and the second moving module 20 through the offset of the tab.
- the offset detection device 200 includes at least one image acquisition unit.
- the image acquisition unit takes a picture of the battery cell 1 to obtain a pattern of the battery cell 1 , and determines the offset of the tab through the image of the battery cell 1 .
- the offset detection device 200 may include one image acquisition unit, or more image acquisition units.
- the image acquisition unit may be a CCD camera.
- the offset detection device 200 further includes at least one second light source.
- the second light source may be a fox-shaped light source.
- the offset detection device 200 may include one second light source, or more second light sources.
- the second light source can provide light so that the image acquisition unit can capture a clearer image of the battery cell.
- the embodiment of the present application provides a lug image acquisition device.
- the lug image acquisition device includes two lug image acquisition devices 100 and an installation mainboard 300 .
- the two lug image acquisition devices 100 are both installed on the installation mainboard 300 .
- the tab image collecting device 100 includes a first moving module 10 , a second moving module 20 , an image collecting module 30 , a prism module 40 and a first light source 50 .
- the first mobile module 10 includes: a first driving unit 101, a first rail 102 and a first mounting plate 103.
- the first rail 102 is provided on the first driving unit 101, and the first rail 102 extends along the first direction A.
- a mounting plate 103 has a first mounting protrusion 1031, which is movably located in the first track 102.
- the second mobile module 20, the prism module 40 and the first light source 50 are all mounted on the first mounting plate 103.
- the first driving unit 101 is a motor.
- the second mobile module 20 includes a second driving unit 201, a second rail 202 and a second mounting plate 203.
- the second driving unit 201 is installed on the first mounting plate 103; the second rail 202 is provided on the second driving unit 201.
- the second rail 202 extends along the second direction B, the second mounting plate 203 has a second mounting protrusion 2031, the second mounting protrusion 2031 is movably located in the second rail 202, and the image acquisition module 30 is installed on the second mounting plate.
- the second driving unit 201 is a motor.
- the image acquisition module 30 is a CCD camera.
- the prism module 40 includes a telescopic unit 402, a prism body 403 and a cleaning unit 404.
- the telescopic unit 402 is installed on the first mobile module 10.
- the telescopic unit 402 telescopically extends in the third direction C.
- the third direction C, the first direction A and the second direction B are perpendicular to each other.
- the prism body 403 and the cleaning unit 404 are both installed on the telescopic unit 402, and the reflective surface 401 is provided on the prism body 403.
- the reflective surface 401 is located on the prism body 403.
- the prism body 403 is a total reflection prism
- the telescopic unit 402 is a telescopic cylinder
- the cleaning unit 404 is a purge pipe.
- the light-emitting surface of the first light source 50 at least partially coincides with the tab.
- the first light source 50 is an arc-shaped light source.
- the first light source 50 includes a first sub-light source 501 and a second sub-light source 502.
- the light-emitting surface of the first sub-light source 501 is The second direction B is parallel, the light emitting surface of the second sub-light source 502 is parallel to the first direction A, the first sub-light source 501 is installed on the telescopic unit 402, the second sub-light source 502 is installed on the first mounting plate 103, and the second sub-light source 502 is installed on the first mounting plate 103.
- the light source 502 has a groove 5021 for the second moving module 20 to move.
- Embodiments of the present application provide a pole image acquisition system.
- the pole image acquisition system includes at least one pair of pole image acquisition devices in the above embodiments.
- a tab image acquisition device includes one offset detection device 200 and two image acquisition devices 100.
- the inclination angles of the reflection surfaces 401 of the two image acquisition devices 100 are the same.
- the pole image acquisition system includes two pole image acquisition devices, and the inclination angles of the reflective surfaces in the two pole image acquisition devices intersect.
- the pole image acquisition system is used to collect images of the pole.
- a tab image acquisition device includes two image acquisition devices 100.
- One of the two image acquisition devices 100 acquires an image of the first side of the positive tab on the battery cell.
- Another image capturing device 100 among the image capturing devices 100 captures an image of the second side of the negative electrode tab on the battery cell.
- the two image acquisition devices 100 respectively acquire images of the same side of the positive electrode lug and the negative electrode lug.
- a pole image acquisition system includes two pole image acquisition devices, and the two pole image acquisition devices respectively collect images of opposite sides of the same pole.
- FIG. 10 is a flow chart of the method for collecting images of the ear according to the embodiment of the present application. Figure, see Figure 10, the method includes:
- Step S601 Determine the first movement amount of the first movement module along the first direction A based on the offset amount of the tab of the image to be collected along the first direction A.
- Step S602 Determine the second movement amount of the second movement module along the second direction B according to the offset amount.
- Step S603 Control the first movement module to move a first movement amount.
- Step S604 Control the second movement module to move along the second direction B by the second movement amount.
- Step S605 During the process of controlling the second movement module to move the second movement amount along the second direction B, at least one image of the tab is collected through the image acquisition module.
- FIG 11 is a simple schematic diagram of the tab image acquisition method according to the embodiment of the present application.
- the battery cell includes a plurality of stacked tabs, and the plurality of tabs constitute the tab 11.
- the stacked tabs Different offsets will occur in the first direction A so that the side surface of the tab 11 appears as a curved surface.
- the clear imaging focal length (working distance standard value d) of the image acquisition module 30 is a fixed value. Only when the distance from the side of the tab 11 to the image acquisition module 30 is equal to the imaging focal length can a clear image be obtained. Since the side of the tab 11 is a curved surface, the distance from each position on the side of the tab 11 to the image acquisition module 30 is not exactly equal, and the position of the image acquisition module 30 needs to be changed according to the offset of each tab. .
- the offset of the tab is determined based on the reference battery cell.
- the tabs on the reference battery cell are not offset.
- the tab to be imaged is relative to the tab on the reference battery cell.
- the pole lug is offset, and the offset distance is the offset amount.
- the first movement amount of the first moving module needs to be determined based on the maximum offset of the tab 11 in the first direction A.
- the second movement amount of the second movement module needs to be determined according to the offset range in the first direction A.
- the first mobile module is first controlled to move in the first direction A by a first movement amount according to the maximum offset of the tab 11 in the first direction A.
- the first mobile module carries the second The movement module, the image acquisition module and the prism module all moved by the first movement amount.
- the second moving module is controlled to move in the second direction B by a second moving amount according to the offset range of the tab 11 in the first direction A.
- the second moving module moves the image acquisition module by the second moving amount.
- the image acquisition module acquires at least one image of the tab.
- This method can control the movement of the image acquisition module according to the specific offset of the tab to be imaged, making the application range of the tab image acquisition equipment wider.
- the movement of the prism module can be adjusted according to the distance between the tabs, which can also be broadened. The scope of application of Jilu image acquisition equipment.
- step S604 includes: determining the movement starting point and movement end point of the second movement module according to the offset and the working distance standard value of the image acquisition module.
- the standard value of the working distance of the image acquisition module is the clear imaging focal length of the image acquisition module. Only when the actual imaging distance is equal to the clear imaging focal length can the image acquisition device be able to collect clear tab images.
- the starting point and end point of movement of the second moving module are determined based on the offset and the standard value of the working distance of the image acquisition module to ensure that the image acquisition device takes pictures each time during the movement in the second direction. All can capture clear images.
- step S605 includes: every time the second moving module moves a predetermined distance, the image collecting module collects an image of the tab.
- the imaging distance of only one position at a time is equal to the clear imaging focal length, that is, each time the image acquisition module takes a Only part of the image is clear, so the second mobile module takes the image acquisition device to move the image acquisition module in the second direction B and needs to take multiple photos to ensure that the multiple images obtained can be fused into a clear side image of the pole ear.
- the image acquisition module collects an image of the pole. This ensures that the image acquisition module can take multiple photos to obtain multiple images, and each image contains One part is clear, allowing a clear image of the side of the pole ear to be fused from multiple images.
- the predetermined distance is a fixed value, or the predetermined distance is a value that changes according to the size of the tab.
- the predetermined distance may be a fixed value obtained based on experience, or a value that changes according to the size of the tab.
- the predetermined distances for the same tab are equal.
- the method includes:
- Step S606 Obtain the offset amount through the offset detection device.
- the offset detection device can determine the offset of the tab through an edge extraction algorithm.
- Figure 12 is a flow chart of the tab image acquisition method according to the embodiment of the present application.
- step S606 includes:
- Step S661 The image acquisition unit collects the positioning image of the battery cell, and the tab is arranged on the battery cell.
- Step S662 Determine the offset by positioning the image.
- the battery cell includes a side edge of the battery cell along the first direction A
- the tab includes a first tab edge and a second tab edge that are oppositely arranged along the first direction A
- Determining the offset amount through the positioning image includes: determining the first distance between the battery cell side edge and the first tab edge through the positioning image, and/or determining the battery cell side edge and the second tab edge through the positioning image. The offset is determined by the first distance and/or the second distance.
- the first distance between the side edge of the battery cell and the edge of the first tab is the maximum offset of the tab, and the difference between the first distance and the second distance is the offset range of the tab. .
- Figure 13 is a process diagram of the tab image acquisition method according to the embodiment of the present application.
- the embodiment of the present application takes the right side of the left positive tab as an example.
- the prism module is located on the right side of the tab.
- Step 1 Obtain the parameters of the reference battery cell and determine the reference tab width D, the reference first distance E between the side edge of the reference battery cell and the edge of the first tab, and the side edge of the reference battery cell and the edge of the second tab.
- the reference second distance F, the second mobile module starts at the reference photographing start position S in the second direction, the predetermined distance G and the number of reference photographing triggers N.
- FIG. 14 is a schematic diagram of a reference battery cell in the embodiment of the present application.
- the reference tab width D, the reference first distance E, and the reference second distance F are all known quantities and can be stored in the tab image acquisition system. , extracted directly from the polar image acquisition system when used.
- the reference photographing end position S of the second mobile module in the second direction is determined based on the reference starting position S of photographing, the reference predetermined distance E and the number of reference photographing triggers N.
- the reference photographing end position S ends S0+G*N.
- Step 3 Collect the battery cell image through the image acquisition unit on the offset detection device, and determine the offset of the tab through the battery cell image.
- the edge extraction algorithm is used to determine the tab width D1 of the image to be collected, the first distance E1 between the battery cell side edge and the first tab edge, and the battery cell side edge and the second tab edge.
- the second distance is F1.
- Step 4 Determine the first movement amount of the first moving device and the second movement amount of the second moving device through the offset amount of the pole tab.
- Step 5 Control the first moving device to move the first movement amount in the first direction.
- the first mobile device is in a reference position before starting, and the reference position has been determined based on the reference battery cell and stored in the tab image acquisition system.
- Step 6 Determine the photographing start bit S start 1 and the photographing end bit S end 1 of the second mobile device.
- Step 7 Determine the number of photos taken by the image acquisition module N1.
- N1 (S end 1 -S start 1 )/G.
- Step 8 Control the second mobile device to move from the photographing start position S1 to the photographing end position S1 , and during the movement, the image acquisition module takes a picture every time it moves a predetermined distance G to obtain the number of poles. images.
- the Jilu image acquisition system when the second mobile device moves to the photographing end position S1 , the Jilu image acquisition system sends the photographing end signal to the computer system. After receiving the signal, the computer system switches the image acquisition module from photographing to The N1 images taken from the starting position S starting 1 to the photographing end position S ending 1 are sent to the AI system.
- the AI system uses feature extraction and image fusion algorithms to fuse the N1 images into one image that can clearly reflect each layer of the electrode. The photos of the edge contour are then processed by the tab folding algorithm of the AI system to identify tab folding defects.
- the embodiment of this application takes the right side of the left pole as an example. When it is necessary to collect the left side of the left pole or the right pole, the same method can be used to collect it. This application will not go into details here. .
- the battery cell includes two tabs, and one tab image acquisition device includes two image acquisition devices.
- the two image acquisition devices respectively capture the sides of the two tabs located on the same side. For example, first capture On the right side, after the collection of the right side of the two tabs is completed, the battery cell moves to the next image acquisition device.
- the image acquisition device also includes two image acquisition devices. The two image acquisition devices capture two images respectively.
- the tab is located on the same side of the profile, for example, the left profile is collected. This enables one pole image acquisition device to capture the two sides of two poles respectively.
Landscapes
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Facsimile Scanning Arrangements (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
提供一种极耳图像采集设备、系统和方法,极耳图像采集设备包括图像采集装置(100),图像采集装置(100)包括:第一移动模块(10),可沿第一方向A移动;第二移动模块(20),可沿第二方向B移动,第二移动模块(20)安装于第一移动模块(10)上,第二方向B与第一方向A相交;图像采集模块(30),安装于第二移动模块(20)上;棱镜模块(40),安装于第一移动模块(10)上,棱镜模块(40)具有反射面(401),反射面(401)被配置为改变待采集图像的极耳的入射光的角度,使得入射光进入图像采集模块(30)中。
Description
本申请涉及电池技术领域,尤其涉及一种极耳图像采集设备、系统和方法。
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
电池单体包括极耳,在电池单体制作完成后,需检测极耳的翻折情况。相关技术中,是通过极耳图像采集设备采集极耳的图像,然后通过极耳的图像检测极耳的翻折。
因此,获得极耳的清晰图像是非常重要的。
发明内容
本申请旨在至少解决背景技术中存在的技术问题之一。为此,本申请的一个目的在于提供一种极耳图像采集设备、系统和方法,以改善相关技术中的问题。
本申请第一方面的实施例提供一种极耳图像采集设备,包括图像采集装置,图像采集装置包括:第一移动模块,可沿第一方向A移动;第二移动模块,可沿第二方向B移动,第二移动模块安装于第一移动模块上,第二方向B与第一方向A相交;图像采集模块,安装于第二移动模块上;棱镜模块,安装于第一移动模块上,棱镜模块具有反射面,反射面被配置为改变待采集图像的极耳的入射光的角度,使得入射光进入图像采集模块中。
本申请实施例的技术方案中,像采集装置上分别布置第一移动模块和第二移动模块,图像采集模块分别能够沿两个方向移动,也即第一方向A和第二方向B,在极耳存在偏移时,可以根据极耳的偏移情况改变图像采集模块和棱镜模块的位置,从而拓宽极耳图像采集设备的适用范围。
在一些实施例中,第一移动模块包括:第一驱动单元;第一轨道,设置在第一驱动单元上,第一轨道沿第一方向A延伸;第一安装板,具有第一安装凸起,第一安装凸起可移动地位于第一轨道内,第二移动模块和棱镜模块均安装于第一安装板上。第一驱动 单元驱动第一安装板沿着第一轨道移动,从而带动第二移动模块和棱镜模块移动,第二移动模块移动从而带动图像采集模块沿第一方向A移动。
在一些实施例中,第二移动模块包括:第二驱动单元,安装于第一安装板上;第二轨道,设置于第二驱动单元上,第二轨道沿第二方向B延伸;第二安装板,具有第二安装凸起,第二安装凸起可移动地位于第二轨道内,图像采集模块安装于第二安装板上。第二驱动单元驱动第二安装板沿着第二轨道移动,从而带动图像采集模块沿第二方向B移动。
在一些实施例中,第一方向A与第二方向B垂直。图像采集模块可以延两个相互垂直的方向移动,更加方便调节图像采集模块的位置。
在一些实施例中,反射面与第一方向A的夹角为45度。图像采集模块是采集极耳侧面的图像,电池单体一般是水平放置的,当反射面与第一方向A的夹角为45°,可以使得极耳侧面的入射光与第一方向A平行,并且被反射后的入射光与第二方向B平行,这样更易布置棱镜模块的位置,同时使得极耳的入射光经过反射面反射后能够进入到图像采集模块中。
在一些实施例中,棱镜模块包括:伸缩单元,安装于第一移动模块上,伸缩单元的伸缩方向为第三方向C,第三方向C与第一方向A相交,第三方向C与第二方向B相交;棱镜本体,安装于伸缩单元上,反射面设置在棱镜本体上。极耳图像采集设备是连续工作的,电池单体是连续移动的,电池单体的移动路径会经过棱镜本体,为了避免棱镜本体与极耳发生碰撞,可以通过伸缩单元控制棱镜本体在第三方向C上移动,从而使得棱镜本体能够躲开电池单体,避免棱镜本体与极耳发生碰撞。
在一些实施例中,第一方向A、第二方向B和第三方向C两两相互垂直。一方面保证了图像采集模块可以延两个相互垂直的方向移动,更加方便调节图像采集模块的位置;另一方面棱镜本体也可以延两个相互垂直的方向移动,更加方便棱镜本体的位置。
在一些实施例中,棱镜本体为全反射棱镜。使得反射面的倾斜方向能够分别与第一方向A和第二方向B成45°的夹角。
在一些实施例中,图像采集装置还包括:第一光源,安装于第一移动模块上,第一光源的出光面与极耳至少部分重合。第一光源发出的光照射在极耳上,使得图像采集装置能够采集到清晰的极耳图像。
在一些实施例中,第一光源为弧状光源。弧状光源照射面积广,保证第一光源发出的光照射在极耳上。
在一些实施例中,极耳图像采集设备还包括偏移检测装置,偏移检测装置用于检测极耳在第一方向A上的偏移量。通过极耳的偏移量来控制第一移动模块和第二移动模块的移动。
在一些实施例中,偏移检测装置包括至少一个图像采集单元。图像采集单元对电池单体进行拍照获得电池单体的图形,通过电池单体的图像确定极耳的偏移量。
在一些实施例中,偏移检测装置还包括至少一个第二光源。第二光源可以提供光亮,使得图像采集单元可以拍摄在更加清晰的电池单体图像。
本申请第二方面的实施例提供一种极耳图像采集系统,其中,包括至少一对上述实施例中任一项的极耳图像采集设备。本申请实施例提供的图像采集系统的使用范围更广。
本申请第三方面的实施例提供一种极耳图像采集方法,极耳图像采集方法应用于上述实施例中的极耳图像采集设备,方法包括:根据待采集图像的极耳的沿着第一方向A的偏移量,确定第一移动模块的沿着第一方向A的第一移动量;根据偏移量确定第二移动模块沿着第二方向B的第二移动量;控制第一移动模块移动第一移动量;控制第二移动模块沿着第二方向B移动第二移动量;和在控制第二移动模块沿着第二方向B移动第二移动量的过程中,通过图像采集模块采集极耳的至少一幅图像。该方法可以根据待图像采集极耳的具体偏移情况来控制图像采集模块移动,使得极耳图像采集设备的适用范围更广,同时可以根据极耳的间距来调整棱镜模块的移动,同样可以拓宽极耳图像采集设备的适用范围。
在一些实施例中,根据偏移量确定第二移动模块沿着第二方向B的第二移动量包括:根据偏移量和图像采集模块的工作距离标准值来确定第二移动模块的移动起点和移动终点。根据偏移量和图像采集模块的工作距离标准值来确定第二移动模块的移动起点和移动终点,保证图像采集设备在沿第二方向移动的过程中,每次拍照都可以拍摄到清晰的图像。
在一些实施例中,在控制第二移动模块沿着第二方向B移动第二移动量的过程中,通过图像采集模块采集极耳的至少一幅图像包括:第二移动模块每移动预定距离,图像采集模块采集极耳的一幅图像。第二移动模块每移动预定距离,图像采集模块采集极耳的一幅图像,这样可以保证图像采集模块可以多次拍照得到多张图像,且每一张图像中均有一部分是清晰的,从而可以根据多张图像融合出清晰的极耳侧面图像。
在一些实施例中,预定距离为固定值,或者,预定距离为根据的极耳的尺寸而变化的值。预定距离可用于确定拍照次数。
在一些实施例中,极耳图像采集设备为根据上述实施例中任一项的极耳图像采集设备,并且,方法包括通过偏移检测装置获取偏移量。偏移检测装置可以通过边缘提取算法确定极耳的偏移量。
在一些实施例中,极耳图像采集设备为上述实施例中的极耳图像采集设备,并且通过偏移检测装置获取偏移量包括:通过图像采集单元采集电池单体的定位图像,极耳设置于电池单体;和通过定位图像确定偏移量。通过图像采集单元采集电池单体的定位图像,并通过定位图像确定极耳的偏移量更加方便。
在一些实施例中,电池单体包括沿着第一方向A的电池单体侧边缘,并且极耳包括沿着第一方向A相对设置的第一极耳边缘和第二极耳边缘,通过定位图像确定偏移量包括:通过定位图像确定电池单体侧边缘与第一极耳边缘之间的第一距离,并且/或者,通过定位图像确定电池单体侧边缘与第二极耳边缘之间的第二距离,通过第一距离和/或第二距离,确定偏移量。通过电池单体侧边缘分别与第一极耳边缘和第二极耳边缘的距离可以很方便的确定出偏移量。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
在附图中,除非另外规定,否则贯穿多个附图相同的附图标记表示相同或相似的部件或元素。这些附图不一定是按照比例绘制的。应该理解,这些附图仅描绘了根据本申请公开的一些实施方式,而不应将其视为是对本申请范围的限制。
图1为本申请一些实施例的极耳图像采集设备的框图;
图2为本申请一些实施例的图像采集装置的结构示意图;
图3为本申请一些实施例的图像采集装置的分解示意图;
图4为本申请一些实施例的第一移动模块的分解示意图;
图5为本申请实施例的第一安装板的示意图;
图6为本申请一些实施例的第二移动模块与图像采集模块的分解示意图;
图7为本申请实施例的第二安装板的示意图;
图8为本申请实施例的棱镜模块的示意图;
图9为本申请实施例的棱镜模块与第一光源的示意图;
图10为本申请实施例的极耳图像采集方法的流程图;
图11为本申请实施例的极耳图像采集方法时的简易示意图;
图12为本申请实施例的极耳图像采集方法的流程图;
图13为本申请实施例的极耳图像采集方法的过程图;
图14为本申请实施例的基准电池单体的示意图。
附图标记说明:
1、电池单体;11、极耳;100、图像采集装置;10、第一移动模块;101、第一驱动单元;102、第一轨道;103、第一安装板;1031、第一安装凸起;1032、第一安装孔;20、第二移动模块;201、第二驱动单元;202、第二轨道;203、第二安装板;2031、第二安装凸起;2032、第二安装孔;30、图像采集模块;40、棱镜模块;401、反射面;402、伸缩单元;403、棱镜本体;404、清洁单元;50、第一光源;501、第一子光源;502、第二子光源;5021、凹槽;200、偏移检测装置;300、安装主板;310、安装主孔;320、孔洞。
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本申请人注意到,电池单体在制作完成后需要检测电池单体上极耳的翻折,来确定电池单体的合格率。在相关技术中,极耳图像采集设备上的移动模块带着图像采集模块移动,图像采集模块在移动的过程中对极耳进行拍照得到极耳的图像,通过极耳的图像来判断极耳的翻折情况。不同的电池单体上的极耳偏会有偏移,导致极耳的位置不确定,需要图像采集模块根据具体情况调整图像采集模块的位置,但是相关技术中极耳图像采集设备上的移动模块只能沿一个方向移动,那么图像采集模块也只能沿一个方向移动,不能根据不同的电池单体调整位置,使得极耳图像采集设备的适用范围较窄。
为了解决极耳图像采集设备的适用范围较窄的问题,申请人研究发现,可以在极耳图像采集设备上增加另一套移动模块,总共有两套移动模块,分别为第一移动模块和第二移动模块,且第一移动模块的移动方向和第二移动模块的移动方向相交。图像采集模块安装在第二移动模块上,第二移动模块安装在第一移动模块上,这样图像采集模块就可以在两个方向上移动,增加了图像采集模块的移动范围,使得图像采集模块可以根据不同的电池单体调整位置,拓宽了极耳图像采集设备的适用范围。
本申请实施例公开的极耳图像采集设备用于采集电池单体上的极耳图像,该电池单体可以但不限用于车辆、船舶或飞行器等用电装置中。用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
电池单体主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电池单体的主体部,正极片和负极片不具有活性物质的部分各自构成极耳。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳连接电极端子以形成电流回路。
其中,每个电池单体可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体可呈圆柱体、扁平体、长方体或其它形状等。
本申请的一些实施例提供了一种极耳图像采集设备,图1为本申请一些实施例的极耳图像采集设备的框图,参见图1,极耳图像采集设备包括图像采集装置100。图2为本申请一些实施例的图像采集装置的结构示意图,图3为本申请一些实施例的图像采集装置的分解示意图,参见图2和图3,图像采集装置100包括第一移动模块10、第二移动模块20、图像采集模块30和棱镜模块40。第一移动模块10可沿第一方向A移动;第二移动模块20可沿第二方向B移动,第二移动模块20安装于第一移动模块10上,第二方向B与第一方向A相交;图像采集模块30安装于第二移动模块20上;棱镜模块40安装于第一移动模块10上,棱镜模块40具有反射面401,反射面401被配置为改变待采集图像的极耳的入射光的角度,使得入射光进入图像采集模块30中。
在本申请实施例中,图像采集装置100用于采集极耳的图像,第一移动模块10和第二移动模块20可以分别沿第一方向A和第二方向B移动,第二移动模块20安装在第一移动模块10上,那么第一移动模块10可以带着第二移动模块20沿第一方向A移动,图像采集模块30安装在第二移动模块20上,第二移动模块20可以带着图像采集模块30沿第二方向B移动,从而使得图像采集模块30可以分别沿着第一方向A和第二方向B移动。棱镜模块40是安装在第一移动模块10上,那么棱镜模块40能够沿第一方向A移动。
在本申请实施例的一种实现方式中,图像采集模块30可以为电荷耦合器件(Charge Coupled Device,CCD)相机。CCD相机的体积小、重量轻、不受磁场影响且具有抗震动和撞击的特性,保证了图像采集模块30的强度和稳固性。
在本申请实施例中,反射面401能够反射光线,待采集图像的极耳的入射光通过反射面401的反射后进入到图像采集模块30中,使得图像采集模块30能够采集到极耳的图像。
在本申请实施例中,图像采集装置100上分别布置第一移动模块10和第二移动模块20,图像采集模块30分别能够沿两个方向移动,也即第一方向A和第二方向B,在极耳存在偏移时,可以根据极耳的偏移情况改变图像采集模块30和棱镜模块40的位置,从而拓宽极耳图像采集设备的适用范围。
由于电池单体1上极耳有偏移,所以不同电池单体上的极耳间距是不一样的,相关技术中,棱镜模块40是无法移动的,棱镜模块40无法根据极耳的间距调整位置,使得极耳图像采集系统的适用范围较窄。在本申请实施例中,棱镜模块40是安装在第一移动模块10上的,能够沿第一方向A移动,极耳图像采集设备可以根据极耳的间距变化来调整棱镜模块40的位置,同样可以拓宽极耳图像采集设备的适用范围。
根据本申请的一些实施例,图4为本申请一些实施例的第一移动模块的分解示意图,参加图4,第一移动模块10包括:第一驱动单元101、第一轨道102和第一安装板103,第一轨道102设置在第一驱动单元101上,且第一轨道102沿第一方向A延伸。图5为本申请实施例的第一安装板的示意图,参见图5,第一安装板103具有第一安装凸起1031,结合图4和图5,第一安装凸起1031可移动地位于第一轨道102内。其中,第二移动模块20和棱镜模块40均安装于第一安装板103上。
在本申请实施例中,第一驱动单元101用于驱动第一安装板103移动,在第一安装板103移动时带动位于第一安装板103上的第二移动模块20和棱镜模块40移动。
在本申请实施例的一种实现方式中,第一驱动单元101可以为气动驱动装置,或者液压驱动装置,或者电力驱动装置,或者机械驱动装置。
示例性地,第一驱动单元101为电机。
在本申请实施例中,第一轨道102沿第一方向A延伸,使得第一安装板103能够沿第一方向A移动。
在本申请实施例的一种实现方式中,第一轨道102可以为第一驱动单元101上的滑动凹槽,或者第一轨道102通过连接件固定在第一驱动单元101上。
在本申请实施例中,第一驱动单元101驱动第一安装板103沿着第一轨道102移动,从而带动第二移动模块20和棱镜模块40移动,第二移动模块20移动从而带动图像采集模块30沿第一方向A移动。
再次参见图3和图4,极耳图像采集设备包括两个图像采集装置100,极耳图像采集设备还包括安装主板300,两个图像采集装置100的第一驱动单元101均安装在安装主板300上,保证图像采集装置100的稳固性。
示例性地,安装主板300上具有多个安装主孔310,第一驱动单元101上具有与安装主孔310对应的安装孔,可以使用螺栓依次穿过第一驱动单元101上的安装孔和安装主孔310,然后在螺栓的另一端拧上螺母,从而将第一驱动单元101固定在安装主板300上。
再次参见图4,第一安装板103上具有多个第一安装孔1032,第二移动模块20和棱镜模块40上分别具有对应的安装孔,同样可以通过螺栓和螺母将第二移动模块20和棱镜模块40安装于第一安装板103上。
根据本申请的一些实施例,图6为本申请一些实施例的第二移动模块与图像采集模块的分解示意图,结合图2、图3和图6,第二移动模块20包括第二驱动单元201、第二轨道202和第二安装板203,第二驱动单元201安装于第一安装板103上;第二轨道202设置于第二驱动单元201上,第二轨道202沿第二方向B延伸。图7为本申请实施例的第二安装板的示意图,参见图7,第二安装板203具有第二安装凸起2031。其中,第二安装凸起2031可移动地位于第二轨道202内,图像采集模块30安装在第二安装板203上。
在本申请实施例中,第二驱动单元201用于驱动第二安装板203移动,在第二安装板203移动时带动位于第二安装板203上的图像采集模块30移动。
在本申请实施例的一种实现方式中,第二驱动单元201可以为气动驱动装置,或者液压驱动装置,或者电力驱动装置,或者机械驱动装置。
示例性地,第二驱动单元201为电机。
在本申请实施例中,第二轨道202沿第二方向B延伸,使得第二安装板203能够沿第二方向B移动。
在本申请实施例的一种实现方式中,第二轨道202可以为第二驱动单元201上的滑动凹槽,或者第二轨道202通过连接件固定在第二驱动单元201上。
在本申请实施例中,第二驱动单元201驱动第二安装板203沿着第二轨道202移动,从而带动图像采集模块30沿第二方向B移动。
再次参见图6,第二安装板203上具有多个第二安装孔2032,图像采集模块30具有与第二安装孔2032对应的安装孔,同样可以通过螺栓和螺母将图像采集模块30安装在第二安装板203上。
根据本申请的一些实施例,第一方向A与第二方向B垂直。
示例性地,当极耳图像采集设备正放时,第一方向A为水平方向,第二方向B为竖直方向。
在本申请实施例中,第一方向A与第二方向B垂直时,图像采集模块30可以延两个相互垂直的方向移动,更加方便调节图像采集模块的位置。
根据本申请的一些实施例,反射面401与第一方向A的夹角为45度(°)。
在本申请实施例中,当第一方向A与第二方向B垂直,反射面401与第一方向A的夹角为45°,那反射面401与第二方向B的夹角也为45°。
在本申请实施例的一种实现方式中,极耳的入射光与第一方向A平行,入射光到达反射面401后,入射光被反射面401反射后与第二方向B平行,然后进入到图像采集模块30中。
在本申请实施例中,图像采集模块30是采集极耳侧面的图像,电池单体1一般是水平放置的,当反射面401与第一方向A的夹角为45°,可以使得极耳侧面的入射光与第一方向A平行,并且被反射后的入射光与第二方向B平行,这样更易布置棱镜模块40的位置,同时使得极耳的入射光经过反射面401反射后能够进入到图像采集模块30中。
根据本申请的一些实施例,图8为本申请实施例的棱镜模块的示意图,参见图8,棱镜模块40包括伸缩单元402和棱镜本体403。结合图2、图3和图8,伸缩单元402安装于第一移动模块10上,伸缩单元402的伸缩方向为第三方向C,第三方向C与第一方向A相交,第三方向C与第二方向B相交。棱镜本体403安装于伸缩单元402上,反射面401设置在棱镜本体403上。
在本申请实施例中,伸缩单元402用于控制棱镜本体403在第三方向C上移动,同时棱镜模块40会跟随第一移动模块10移动,所以棱镜本体403可以在第一方向A和第三方向C上移动。
示例性地,伸缩单元402为伸缩气缸。
在本申请实施例中,极耳图像采集设备是连续工作的,电池单体1是连续移动的,电池单体1的移动路径会经过棱镜本体403,为了避免棱镜本体403与极耳发生碰撞,可以通过伸缩单元402控制棱镜本体403在第三方向C上移动,从而使得棱镜本体403能够躲开电池单体1,避免棱镜本体403与极耳发生碰撞。
示例性地,伸缩单元402上具有与第一安装板103上第一安装孔1032对应的安装孔,可以同样通过螺栓和螺母将伸缩单元402安装在第一安装板103上。
再次参见图3,安装主板300上具有供伸缩单元402伸缩的孔洞320。
示例性地,棱镜本体403也可以通过螺栓和螺母安装在伸缩单元402上。
再次参见图8,棱镜模块40还包括清洁单元404,清洁单元404安装于伸缩单元402上,清洁单元404用于清洁反射面401的镜面,保证镜面的干净,避免镜面上的污渍或者灰尘影响极耳图像的清晰度。
在本申请实施例的一种实现方式中,电池单体1位于承载装置上,承载装置可以为转运皮带,便于一种电池单体1。
示例性地,清洁单元404为吹扫管,吹扫管的管口正对反射面401,可以通过吹扫管中吹出的空气将反射面401的镜面上的污渍或者灰尘吹走,保证镜面的干净。
示例性地,清洁单元404也可以通过螺栓和螺母安装在伸缩单元402上。
根据本申请的一些实施例,第一方向A、第二方向B和第三方向C两两相互垂直。
在本申请实施例的一种实现方式上,当极耳图像采集设备正放时,第一方向A和第三方向C为两个相互垂直的水平方向,第二方向B为数值方向。
在本申请实施例中,第一方向A、第二方向B和第三方向C两两相互垂直,一方面保证了图像采集模块30可以延两个相互垂直的方向移动,更加方便调节图像采集模块的位置;另一方面棱镜本体403也可以延两个相互垂直的方向移动,更加方便棱镜本体403的位置。
根据本申请的一些实施例,棱镜本体403为全反射棱镜。
全反射棱镜是横截面为等腰直角三角形的棱镜。
在本申请实施例中,当棱镜本体403为全反射棱镜时,使得反射面401的倾斜方向能够分别与第一方向A和第二方向B成45°的夹角。
根据本申请的一些实施例,参见图2和图3,图像采集装置100还包括第一光源50,第一光源50安装于第一移动模块10上,第一光源50的出光面与极耳至少部分重合。
在本申请实施例中,第一光源50安装于第一移动模块10上,第一光源50能够跟随第一移动模块10移动,也即第一光源50的移动方向也为第一方向A。
在本申请实施例中,第一光源50发出的光照射在极耳上,使得图像采集装置能够采集到清晰的极耳图像。
根据本申请的一些实施例,第一光源50为弧状光源。
在本申请实施例中,弧状光源为出光面为弧形的光源。
弧状光源照射面积广,保证第一光源50发出的光照射在极耳上。
图9为本申请实施例的棱镜模块与第一光源的示意图,参见图9,第一光源50包括第一子光源501和第二子光源502,其中,第一子光源501的出光面与第二方向B平行,第二子光源502的出光面与第一方向A平行,第一子光源501和第二子光源502分别从两个方向对极耳进行打光,进一步提高极耳图像的清晰度。
结合图2、图3和图9,第一子光源501安装在伸缩单元402上,第二子光源502安装在第一安装板103上。示例性地,第一子光源501可以通过螺栓和螺母安装在伸缩单元402上,第二子光源502可以通过螺栓和螺母安装在第一安装板103上。
参见图9,为避免第二子光源502影响第二移动模块20的移动,第二子光源502上具有供第二移动模块20移动的凹槽5021。
根据本申请的一些实施例,再次参见图1,极耳图像采集设备还包括偏移检测装置200,偏移检测装置200用于检测极耳在第一方向A上的偏移量。
在本申请实施例中,偏移检测装置200可以检测极耳的偏移量,通过极耳的偏移量来控制第一移动模块10和第二移动模块20的移动。
根据本申请的一些实施例,偏移检测装置200包括至少一个图像采集单元。
在本申请实施例中,图像采集单元对电池单体1进行拍照获得电池单体1的图形,通过电池单体1的图像确定极耳的偏移量。
示例性地,偏移检测装置200可以包括一个图像采集单元,或者更多个图像采集单元。
示例性地,图像采集单元可以为CCD相机。
根据本申请的一些实施例,偏移检测装置200还包括至少一个第二光源。
示例性地,第二光源可以为狐状光源。
示例性地,偏移检测装置200可以包括一个第二光源,或者更多个第二光源。
在本申请实施例中,第二光源可以提供光亮,使得图像采集单元可以拍摄在更加清晰的电池单体图像。
本申请实施例提供了一种极耳图像采集设备,该极耳图像采集设备包括两个极耳图像采集装置100和一个安装主板300,两个极耳图像采集装置100均安装在安装主板300上。极耳图像采集装置100包括第一移动模块10、第二移动模块20、图像采集模块30、棱镜模块40和第一光源50。
第一移动模块10包括:第一驱动单元101、第一轨道102和第一安装板103,第一轨道102设置在第一驱动单元101上,且第一轨道102沿第一方向A延伸,第一安装板103具有第一安装凸起1031,第一安装凸起1031可移动地位于第一轨道102内,第二移动模块20、棱镜模块40和第一光源50均安装于第一安装板103上,第一驱动单元101为电机。
第二移动模块20包括第二驱动单元201、第二轨道202和第二安装板203,第二驱动单元201安装于第一安装板103上;第二轨道202设置于第二驱动单元201上,第二轨道202沿第二方向B延伸,第二安装板203具有第二安装凸起2031,第二安装凸起2031可移动地位于第二轨道202内,图像采集模块30安装在第二安装板203上,第二驱动单元201为电机。
图像采集模块30为CCD相机。
棱镜模块40包括伸缩单元402、棱镜本体403和清洁单元404。伸缩单元402安装于第一移动模块10上,伸缩单元402的伸缩方向为第三方向C,第三方向C、第一方向A和第二方向B两两相互垂直。棱镜本体403和清洁单元404均安装于伸缩单元402上,反射面401设置在棱镜本体403上。反射面401位于棱镜本体403上,棱镜本体403为全反射棱镜,伸缩单元402为伸缩气缸,清洁单元404为吹扫管。
第一光源50的出光面与极耳至少部分重合,第一光源50为弧状光源,第一光源50包括第一子光源501和第二子光源502,其中,第一子光源501的出光面与第二方向B平行,第二子光源502的出光面与第一方向A平行,第一子光源501安装在伸缩单元402上,第二子光源502安装在第一安装板103上,第二子光源502上具有供第二移动模块20移动的凹槽5021。
本申请实施例提供了一种极耳图像采集系统,极耳图像采集系统包括至少一对上述实施例中的极耳图像采集设备。
示例性地,一个极耳图像采集设备包括一个偏移检测装置200和两个图像采集装置100,同一个极耳图像采集设备中两个图像采集装置100的反射面401的倾斜角度相同。极耳图像采集系统包括两个极耳图像采集设备,两个极耳图像采集设备中的反射面的倾斜角度相交。
在本申请实施例中,极耳图像采集系统用于采集极耳的图像。
在本申请实施例中,一个极耳图像采集设备包括两个图像采集装置100,两个图像采集装置100中的一个图像采集装置100采集电池单体上正极耳的第一侧面的图像,两个图像采集装置100中的另一个图像采集装置100采集电池单体上负极耳的第二侧面的图像。其中,当第一侧面属于正极耳的右侧面,则第二侧面属于负极耳的右侧面;当第一侧面属于正极耳的左侧面,则第二侧面属于负极耳的左侧面。也即两个图像采集装置100分别采集正极耳和负极耳同一侧面的图像。
在本申请实施例中,一个极耳图像采集系统包括两个极耳图像采集设备,两个极耳图像采集设备分别采集同一个极耳相对两侧面的图像。
本申请的一些实施例提供了一种极耳图像采集方法,其中,极耳图像采集方法应用于任意实施例中极耳图像采集设备,图10为本申请实施例的极耳图像采集方法的流程图,参见图10,该方法包括:
步骤S601,根据待采集图像的极耳的沿着第一方向A的偏移量,确定第一移动模块的沿着第一方向A的第一移动量。
步骤S602,根据偏移量确定第二移动模块沿着第二方向B的第二移动量。
步骤S603,控制第一移动模块移动第一移动量。
步骤S604,控制第二移动模块沿着第二方向B移动第二移动量。
步骤S605,在控制第二移动模块沿着第二方向B移动第二移动量的过程中,通过图像采集模块采集极耳的至少一幅图像。
图11为本申请实施例的极耳图像采集方法时的简易示意图,参见图11,电池单体上包括多个层叠的极耳片,多个极耳片组成极耳11,层叠的极耳片会在第一方向A上发生不同的偏移使得极耳11的侧面呈现为曲面。而图像采集模块30的清晰成像焦距(工作距离标准值d)是一个定值,只有当极耳11的侧面到图像采集模块30的距离等于成像焦距时才能得到清晰的图像。由于极耳11的侧面为曲面,所以极耳11的侧面上的每一个位置到图像采集模块30的距离不完全相等,需要根据每个极耳片的偏移情况来改变图像采集模块30的位置。
在本申请实施例中,极耳的偏移量是根据基准电池单体判断的,基准电池单体上的极耳片均没有偏移,待图像采集的极耳相对于基准电池单体上的极耳是有偏移的,偏移的距离为偏移量。
其中,对于第一移动模块的第一移动量需要根据极耳11在第一方向A上的最大偏移量来确定。第二移动模块的第二移动量需要根据在第一方向A上的偏移范围来确定。
在本申请实施例中,先根据极耳11在第一方向A上的最大偏移量控制第一移动模块在第一方向A上移动第一移动量,此时第一移动模块带着第二移动模块、图像采集模块和棱镜模块均移动了第一移动量。然后根据极耳11在第一方向A上的偏移范围控制第二移动模块在第二方向B移动第二移动量,此时第二移动模块带着图像采集模块移动了第二移动量。在图像采集模块在第二方向移动的过程中图像采集模块采集极耳的至少一幅图像。该方法可以根据待图像采集极耳的具体偏移情况来控制图像采集模块移动,使得极耳图像采集设备的适用范围更广,同时可以根据极耳的间距来调整棱镜模块的移动,同样可以拓宽极耳图像采集设备的适用范围。
根据本申请的一些实施例,步骤S604包括:根据偏移量和图像采集模块的工作距离标准值来确定第二移动模块的移动起点和移动终点。
在本申请实施例中,图像采集模块的工作距离标准值为图像采集模块的清晰成像焦距,只有实际的成像距离与清晰成像焦距相等才能够保证图像采集装置能够采集到清晰的极耳图像。
在本申请实施例中,根据偏移量和图像采集模块的工作距离标准值来确定第二移动模块的移动起点和移动终点,保证图像采集设备在沿第二方向移动的过程中,每次拍照都可以拍摄到清晰的图像。
根据本申请的一些实施例,步骤S605包括:第二移动模块每移动预定距离,图像采集模块采集极耳的一幅图像。
在本申请实施例中,由于第二移动模块带着图像采集装置在第二方向B上移动时,每次只有一个位置的成像距离为与清晰成像焦距相等,也即每次图像采集模块拍摄的图像只有一部分是清晰的,所以第二移动模块带着图像采集装置在第二方向B上移动图像采集模块需要多次拍照,保证得到的多张图像能够融合出清晰的极耳侧面图像。
在本申请实施例中,第二移动模块每移动预定距离,图像采集模块采集极耳的一幅图像,这样可以保证图像采集模块可以多次拍照得到多张图像,且每一张图像中均有一部分是清晰的,从而可以根据多张图像融合出清晰的极耳侧面图像。
根据本申请的一些实施例,预定距离为固定值,或者,预定距离为根据的极耳的尺寸而变化的值。
在本申请实施例中,预定距离可以为根据经验获得的固定值,或者为根据的极耳的尺寸而变化的值。
在本申请实施例的一种实现方式中,对于同一个极耳预定距离是相等的。
根据本申请的一些实施例,再次参见图10,该方法包括:
步骤S606,通过偏移检测装置获取偏移量。
在本申请实施例中,偏移检测装置可以通过边缘提取算法确定极耳的偏移量。
根据本申请的一些实施例,图12为本申请实施例的极耳图像采集方法的流程图,参见图12,步骤S606包括:
步骤S661,通过图像采集单元采集电池单体的定位图像,极耳设置于电池单体。
步骤S662,通过定位图像确定偏移量。
在本申请实施例中,通过图像采集单元采集电池单体的定位图像,并通过定位图像确定极耳的偏移量更加方便。
根据本申请的一些实施例,电池单体包括沿着第一方向A的电池单体侧边缘,并且极耳包括沿着第一方向A相对设置的第一极耳边缘和第二极耳边缘,通过定位图像确定偏移量包括:通过定位图像确定电池单体侧边缘与第一极耳边缘之间的第一距离,并且/或者,通过定位图像确定电池单体侧边缘与第二极耳边缘之间的第二距离,通过第一距离和/或第二距离,确定偏移量。
在本申请实施例中,电池单体侧边缘与第一极耳边缘之间的第一距离为极耳的最大偏移量,第一距离和第二距离的差值为极耳的偏移范围。
为了更清楚的说明本申请实施例中的极耳图像采集方法,下面结合一个实例对本申请实施例中的极耳图像采集方法。
图13为本申请实施例的极耳图像采集方法的过程图。参见图13,电池单体1上有两个极耳11,分别为正极耳和负极耳,为了叙述简介,本申请实施例以左侧的正极耳的右侧面为例进行介绍。当需要采集右侧面的图像时,如图13所示,棱镜模块位于极耳的右侧。
第一步:获取基准电池单体的参数确定基准极耳宽度D,基准电池单体侧边缘与第一极耳边缘的基准第一距离E,以及基准电池单体侧边缘与第二极耳边缘的基准第二 距离F,第二移动模块在第二方向上的基准拍照开始位置S
开始,预定距离G和基准拍照触发次数N。
在本申请实施例中,图14为本申请实施例的基准电池单体的示意图。参见图14,可以直观地看到基准极耳宽度D、基准第一距离E和基准第二距离F。其中,基准极耳宽度D,基准第一距离E、基准第二距离F、基准拍照开始位置S
开始、预定距离G和基准拍照触发次数N均是已知量,可以存储在极耳图像采集系统中,在使用时直接从极耳图像采集系统中提取。
第二步,根据基准拍照开始位置S
开始、基准预定距离E和基准拍照触发次数N确定第二移动模块在第二方向上的基准拍照结束位置S
结束。
其中,基准拍照结束位置S
结束=S0+G*N。
第三步:通过偏移检测装置上的图像采集单元采集电池单体图像,并通过电池单体图像确定极耳的偏移量。
在本申请实施例中,通过边缘提取算法确定待采集图像的极耳宽度D1,电池单体侧边缘与第一极耳边缘的第一距离E1,以及电池单体侧边缘与第二极耳边缘第二距离F1。极耳的偏移量包括△D=D1-D、△E=E1-E和△F=F1-F。
第四步:通过极耳的偏移量确定第一移动装置的第一移动量和第二移动装置的第二移动量。
其中,第一偏移量为△F=F1-F,第二偏移量包括△D=D1-D和△E=E1-E。
第五步:控制第一移动装置沿第一方向移动第一移动量。
在本申请实施例中,当△F>0,说明极耳右侧整体右偏,需控制第一移动装置向右移动第一移动量;当△F<0,说明极耳右侧整体左偏,需控制第一移动装置向左移动第一移动量的绝对值,也即|△F|;当△F等于0,说明极耳没有偏移,此时第一移动装置可以不移动。
需要说明的是,第一移动装置在开始前是处于基准位置的,该基准位置已经根据基准电池单体确定出并存储在极耳图像采集系统中。
第六步:确定第二移动装置的拍照开始位S
开始1和拍照结束位S
结束1。
其中,S
开始1=S0+△E=S0+E-E1,S
结束1=S1+△F=S1+F1-F。
第七步:确定图像采集模块的拍照次数N1。
其中,N1=(S
结束1-S
开始1)/G。
第八步:控制第二移动装置从拍照开始位S
开始1移动至拍照结束位S
结束1,并且而在移动的过程中,每移动预定距离G图像采集模块就进行一次拍照得到极耳的多张图像。
在本申请实施例中,当第二移动装置移动至拍照结束位S
结束1后,极耳图像采集系统把拍照结束信号发送给计算机系统,计算机系统收到该信号后,把图像采集模块从拍照开始位S
开始1到拍照结束位S
结束1所拍到的N1张图像一起发送到AI系统,AI系统通过特征提取和图像融合算法,把N1张图像融合处理成一张能清晰反映各层极耳边缘轮廓的照片,再交由AI系统的极耳翻折算法处理,从而识别出极耳翻折缺陷。
本申请实施例以左侧极耳的右侧面为例进行介绍的,等需要采集左侧极耳的左侧面或者右侧极耳时可以以同样的方法进行采集,本申请在此不作赘述。
电池单体包括两个极耳,一个极耳图像采集设备包括两个图像采集装置,在一次图像采集的过程中,两个图像采集装置分别采集两个极耳位于同一侧的侧面,例如先采集右侧面,待两个极耳的右侧面采集完成后,电池单体移动至下一个图像采集设备处,该图像采集设备同样包括两个图像采集装置,两个图像采集装置分别采集两个极耳位于同一侧的侧面,例如采集左侧面。使得通过一个极耳图像采集设备能够分别采集两个极耳的两个侧面。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
Claims (21)
- 一种极耳图像采集设备,其中,包括图像采集装置(100),所述图像采集装置(100)包括:第一移动模块(10),可沿第一方向A移动;第二移动模块(20),可沿第二方向B移动,所述第二移动模块(20)安装于所述第一移动模块(10)上,所述第二方向B与所述第一方向A相交;图像采集模块(30),安装于所述第二移动模块(20)上;棱镜模块(40),安装于所述第一移动模块(10)上,所述棱镜模块(40)具有反射面(401),所述反射面(401)被配置为改变待采集图像的极耳的入射光的角度,使得所述入射光进入所述图像采集模块(30)中。
- 根据权利要求1所述的极耳图像采集设备,其中,所述第一移动模块(10)包括:第一驱动单元(101);第一轨道(102),设置在所述第一驱动单元(101)上,所述第一轨道(102)沿所述第一方向A延伸;第一安装板(103),具有第一安装凸起(1031),所述第一安装凸起(1031)可移动地位于所述第一轨道(102)内,所述第二移动模块(20)和所述棱镜模块(40)均安装于所述第一安装板(103)上。
- 根据权利要求2所述的极耳图像采集设备,其中,所述第二移动模块(20)包括:第二驱动单元(201),安装于所述第一安装板(103)上;第二轨道(202),设置于所述第二驱动单元(201)上,所述第二轨道(202)沿所述第二方向B延伸;第二安装板(203),具有第二安装凸起(2031),所述第二安装凸起(2031)可移动地位于所述第二轨道(202)内,所述图像采集模块(30)安装于所述第二安装板(203)上。
- 根据权利要求1至3中任一项所述的极耳图像采集设备,其中,所述第一方向A与所述第二方向B垂直。
- 根据权利要求4所述的极耳图像采集设备,其中,所述反射面(401)与所述第一方向A的夹角为45度。
- 根据权利要求1至3中任一项所述的极耳图像采集设备,其中,所述棱镜模块(40)包括:伸缩单元(402),安装于所述第一移动模块(10)上,所述伸缩单元(402)的伸缩方向为第三方向C,所述第三方向C与第一方向A相交,所述第三方向C与所述第二方向B相交;棱镜本体(403),安装于所述伸缩单元(402)上,所述反射面(401)设置在所述棱镜本体(403)上。
- 根据权利要求6所述的极耳图像采集设备,其中,所述第一方向A、所述第二方向B和所述第三方向C两两相互垂直。
- 根据权利要求6或7所述的极耳图像采集设备,其中,所述棱镜本体(403)为全反射棱镜。
- 根据权利要求1至8中任一项所述的极耳图像采集设备,其中,所述图像采集装置(100)还包括:第一光源(50),安装于所述第一移动模块(10)上,所述第一光源(50)的出光面与所述极耳至少部分重合。
- 根据权利要求9所述的极耳图像采集设备,其中,所述第一光源(50)为弧状光源。
- 根据权利要求1至10中任一项所述的极耳图像采集设备,其中,所述极耳图像采集设备还包括偏移检测装置(200),所述偏移检测装置(200)用于检测所述极耳在所述第一方向A上的偏移量。
- 根据权利要求11所述的极耳图像采集设备,其中,所述偏移检测装置(200)包括至少一个图像采集单元。
- 根据权利要求12所述的极耳图像采集设备,其中,所述偏移检测装置(200)还包括至少一个第二光源。
- 一种极耳图像采集系统,其中,包括至少一对根据权利要求1至13中任一项所述的极耳图像采集设备。
- 一种极耳图像采集方法,其中,所述极耳图像采集方法应用于如权利要求1至13中任一项所述的极耳图像采集设备,所述方法包括:根据待采集图像的极耳的沿着所述第一方向A的偏移量,确定所述第一移动模块的沿着所述第一方向A的第一移动量;根据所述偏移量确定所述第二移动模块沿着所述第二方向B的第二移动量;控制所述第一移动模块移动所述第一移动量;控制所述第二移动模块沿着所述第二方向B移动所述第二移动量;和在控制所述第二移动模块沿着所述第二方向B移动所述第二移动量的过程中,通过所述图像采集模块采集所述极耳的至少一幅图像。
- 根据权利要求15所述的极耳图像采集方法,其中,根据所述偏移量确定所述第二移动模块沿着所述第二方向B的第二移动量包括:根据所述偏移量和所述图像采集模块的工作距离标准值来确定所述第二移动模块的移动起点和移动终点。
- 根据权利要求16所述的极耳图像采集方法,其中,在控制所述第二移动模块沿着所述第二方向B移动所述第二移动量的过程中,通过所述图像采集模块采集所述极耳的至少一幅图像包括:所述第二移动模块每移动预定距离,所述图像采集模块采集所述极耳的一幅图像。
- 根据权利要求17所述的极耳图像采集方法,其中,所述预定距离为固定值,或者,所述预定距离为根据所述的极耳的尺寸而变化的值。
- 根据权利要求15至18中任一项所述的极耳图像采集方法,其中,所述极耳图像采集设备为根据权利要求11至13中任一项所述的极耳图像采集设备,并且,所述方法包括通过所述偏移检测装置获取所述偏移量。
- 根据权利要求19所述的极耳图像采集方法,其中,所述极耳图像采集设备为根据权利要求12或13所述的极耳图像采集设备,并且通过所述偏移检测装置获取所述偏移量包括:通过所述图像采集单元采集电池单体的定位图像,所述极耳设置于所述电池单体;和通过所述定位图像确定所述偏移量。
- 根据权利要求20所述的极耳图像采集方法,其中,所述电池单体包括沿着所述第一方向A的电池单体侧边缘,并且所述极耳包括沿着所述第一方向A相对设置的第一极耳边缘和第二极耳边缘,通过所述定位图像确定所述偏移量包括:通过所述定位图像确定所述电池单体侧边缘与所述第一极耳边缘之间的第一距离,并且/或者,通过所述定位图像确定所述电池单体侧边缘与所述第二极耳边缘之间的第二距离,通过所述第一距离和/或所述第二距离,确定所述偏移量。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22871150.3A EP4322107A4 (en) | 2022-06-30 | 2022-06-30 | DEVICE, SYSTEM AND METHOD FOR ACQUIRING TONGUE IMAGE |
PCT/CN2022/102936 WO2024000446A1 (zh) | 2022-06-30 | 2022-06-30 | 极耳图像采集设备、系统和方法 |
US18/312,264 US12092583B2 (en) | 2022-06-30 | 2023-05-04 | Tab image acquisition device, system, and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/102936 WO2024000446A1 (zh) | 2022-06-30 | 2022-06-30 | 极耳图像采集设备、系统和方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/312,264 Continuation US12092583B2 (en) | 2022-06-30 | 2023-05-04 | Tab image acquisition device, system, and method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024000446A1 true WO2024000446A1 (zh) | 2024-01-04 |
Family
ID=89383823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/102936 WO2024000446A1 (zh) | 2022-06-30 | 2022-06-30 | 极耳图像采集设备、系统和方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US12092583B2 (zh) |
EP (1) | EP4322107A4 (zh) |
WO (1) | WO2024000446A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117782994B (zh) * | 2024-02-23 | 2024-07-02 | 宁德时代新能源科技股份有限公司 | 极耳检测系统和极耳检测方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120300053A1 (en) * | 2011-05-27 | 2012-11-29 | Olympus Corporation | Image acquisition device |
CN203464905U (zh) * | 2013-06-15 | 2014-03-05 | 东莞市鸿宝锂电科技有限公司 | 一种检测电芯极耳中心距及边距的机构 |
CN108426524A (zh) * | 2018-03-12 | 2018-08-21 | 广东新宇智能装备有限公司 | 一种极耳检测装置 |
CN109738454A (zh) * | 2019-03-18 | 2019-05-10 | 福建工程学院 | 一种软包电池极耳焊缝检测装置及方法 |
CN111965192A (zh) * | 2020-09-18 | 2020-11-20 | 桂林电子科技大学 | 一种多面成像的视觉检测系统及检测方法 |
CN113376177A (zh) * | 2021-06-21 | 2021-09-10 | 上海商汤科技开发有限公司 | 极耳检测方法、装置及电子设备 |
CN114609153A (zh) * | 2022-04-15 | 2022-06-10 | 荣旗工业科技(苏州)股份有限公司 | 一种电池极耳缺陷检测设备及方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1027086A (en) * | 1911-06-20 | 1912-05-21 | John S Tyler | Track-inspecting device. |
US5283668A (en) * | 1990-08-28 | 1994-02-01 | Canon Kabushiki Kaisha | Image reading apparatus with image sensor having selectively readable segments |
JP4349934B2 (ja) * | 2003-03-31 | 2009-10-21 | 株式会社ニデック | 眼科装置 |
US20070102478A1 (en) * | 2005-11-10 | 2007-05-10 | Speedline Technologies, Inc. | Optimal imaging system and method for a stencil printer |
JP6171970B2 (ja) * | 2014-02-10 | 2017-08-02 | ソニー株式会社 | レーザ走査型顕微鏡装置および制御方法 |
-
2022
- 2022-06-30 EP EP22871150.3A patent/EP4322107A4/en active Pending
- 2022-06-30 WO PCT/CN2022/102936 patent/WO2024000446A1/zh unknown
-
2023
- 2023-05-04 US US18/312,264 patent/US12092583B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120300053A1 (en) * | 2011-05-27 | 2012-11-29 | Olympus Corporation | Image acquisition device |
CN203464905U (zh) * | 2013-06-15 | 2014-03-05 | 东莞市鸿宝锂电科技有限公司 | 一种检测电芯极耳中心距及边距的机构 |
CN108426524A (zh) * | 2018-03-12 | 2018-08-21 | 广东新宇智能装备有限公司 | 一种极耳检测装置 |
CN109738454A (zh) * | 2019-03-18 | 2019-05-10 | 福建工程学院 | 一种软包电池极耳焊缝检测装置及方法 |
CN111965192A (zh) * | 2020-09-18 | 2020-11-20 | 桂林电子科技大学 | 一种多面成像的视觉检测系统及检测方法 |
CN113376177A (zh) * | 2021-06-21 | 2021-09-10 | 上海商汤科技开发有限公司 | 极耳检测方法、装置及电子设备 |
CN114609153A (zh) * | 2022-04-15 | 2022-06-10 | 荣旗工业科技(苏州)股份有限公司 | 一种电池极耳缺陷检测设备及方法 |
Non-Patent Citations (2)
Title |
---|
LIU, XUESHAN ET AL.: "Research on Battery Checkup System Based on Intelligent Camera", MACHINERY DESIGN & MANUFACTURE, 28 February 2011 (2011-02-28), pages 5 - 7, ISSN: 1001-3997 * |
See also references of EP4322107A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20240003822A1 (en) | 2024-01-04 |
US12092583B2 (en) | 2024-09-17 |
EP4322107A4 (en) | 2024-04-10 |
EP4322107A1 (en) | 2024-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3565052B1 (en) | Electrode plate aligned state inspection system and method | |
WO2024000446A1 (zh) | 极耳图像采集设备、系统和方法 | |
CN111050979B (zh) | 用于使用激光束在弯曲的表面上分开带形的电极材料和分离器材料的方法 | |
US20200144089A1 (en) | Unit cell alignment apparatus and electrode assembly manufacturing method using the same | |
WO2012119424A1 (zh) | 电动汽车电池更换站的电池更换系统及其更换方法 | |
CN107219852A (zh) | 一种大型光伏发电站智能巡线装置及其实现方法 | |
CN115656197A (zh) | 光学检测装置、检测方法及装置、电子设备和存储介质 | |
US20240150149A1 (en) | Electrode plate wrinkling detection apparatus and cell production equipment | |
US20230140944A1 (en) | Battery Cell Exterior Inspection System | |
EP4443527A1 (en) | Measurement method and apparatus for tab | |
CN116908197A (zh) | 电池密封钉焊接检测系统及方法 | |
WO2023028897A1 (zh) | 电池卷绕方法、电池卷绕系统、电池和用电装置 | |
US20230128999A1 (en) | Electrode Drying System and Electrode Drying Method | |
CN115824037A (zh) | 一种叠片型电极组件的检测方法及检测装置 | |
CN220708307U (zh) | 电池检测装置和制造设备 | |
US20240171840A1 (en) | Tab detection mechanism and tab detection device | |
CN207232760U (zh) | 一种大型光伏发电站智能巡线装置 | |
CN117607727B (zh) | 检测设备、电池生产系统及电池的检测控制方法 | |
CN217521027U (zh) | 一种极片叠片检测装置 | |
CN214470638U (zh) | 一种金属电池点胶系统的胶条尺寸检测系统 | |
WO2024158150A1 (ko) | 전극 조립체 정렬 장치 및 전극 조립체 정렬 방법 | |
CN210120204U (zh) | 一种新型动力圆形电池卷芯的入壳装置 | |
CN214954064U (zh) | 一种激光雷达扫描装置及搭载装置 | |
KR20220109117A (ko) | 전극 제조용 압연장치의 제어 방법 | |
CN218848209U (zh) | 一种电池检测定位机构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022871150 Country of ref document: EP Effective date: 20230331 |