WO2023286872A1 - Laminate and electronic device provided with laminate - Google Patents

Laminate and electronic device provided with laminate Download PDF

Info

Publication number
WO2023286872A1
WO2023286872A1 PCT/JP2022/027941 JP2022027941W WO2023286872A1 WO 2023286872 A1 WO2023286872 A1 WO 2023286872A1 JP 2022027941 W JP2022027941 W JP 2022027941W WO 2023286872 A1 WO2023286872 A1 WO 2023286872A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
primer layer
layer
laminate
compound
Prior art date
Application number
PCT/JP2022/027941
Other languages
French (fr)
Japanese (ja)
Inventor
雅弘 滝澤
陽祐 広田
亘 冨士川
潤 白髪
Original Assignee
太陽インキ製造株式会社
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社, Dic株式会社 filed Critical 太陽インキ製造株式会社
Priority to JP2023534876A priority Critical patent/JPWO2023286872A1/ja
Priority to KR1020237043520A priority patent/KR20240037880A/en
Priority to CN202280042830.3A priority patent/CN117561164A/en
Publication of WO2023286872A1 publication Critical patent/WO2023286872A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C09D171/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C09D171/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Definitions

  • the present invention relates to laminates, and more particularly to laminates that can be suitably used in electronic devices such as electromagnetic wave shields, printed wiring boards, integrated circuits, and organic transistors, and electronic devices using the laminates.
  • FCCL flexible copper-clad laminate
  • Patent Document 2 discloses that inorganic nanoparticles and a phthalocyanine-based ligand are used as a plating underlayer provided between a support and a metal plating layer. It has been proposed to improve the adhesion between the support and the plating layer by using a composition containing a solvent (dispersion medium). Further, in Patent Document 3, a layer containing a compound having an aminotriazine ring is provided as a primer layer on a support, and a metal nanoparticle layer is provided on the primer layer, whereby the support and the metal plating layer are formed.
  • Patent Document 4 a metal particle layer containing metal particles and a reaction product of a specific epoxy compound and a blocked polyisocyanate is interposed between the support and the plating layer, thereby It has been proposed that the adhesion to is improved.
  • an object of the present invention is to provide a laminate that can maintain the adhesion of the plating layer not only in normal conditions but also after a long-term heat resistance test.
  • the present inventors have found that by using a high-molecular-weight phenoxy resin in the primer layer, the elongation of the primer layer is increased and the elastic modulus is improved, so that the plating immediately after plating (normal state) It has been found that the layer adhesion can be improved.
  • a high-molecular-weight phenoxy resin by using a high-molecular-weight phenoxy resin, deterioration such as decomposition of the polymer in the primer layer is suppressed during the long-term heat resistance test, so that the adhesion of the plating layer can be maintained even after the long-term heat resistance test. I have learned that I can.
  • the present invention has been completed based on such findings. That is, the gist of the present invention is as follows.
  • a laminate comprising a support, a primer layer, a metal particle layer and a metal plating layer on the support in this order, wherein the primer layer has a weight average molecular weight of 10,000 to 100,000.
  • the primer layer further contains an epoxy resin.
  • the primer layer contains the phenoxy resin and the epoxy resin in a mass ratio of 90:10 to 10:90.
  • the present invention in a laminate sequentially comprising a support, a primer layer, a metal particle layer, and a metal plating layer, by using a phenoxy resin having a weight average molecular weight of 10,000 to 100,000 as the primer layer, the adhesion of the metal plating layer can be maintained not only in the normal state but also after the long-term heat resistance test.
  • a laminate according to the present invention comprises a support and, on the support, a primer layer, a metal particle layer and a metal plating layer in this order. Each element constituting the laminate of the present invention will be described below.
  • any material can be used without particular limitation as long as it has mechanical strength that allows successive lamination of a primer layer, a metal particle layer, and a metal plating layer, which will be described later.
  • Examples include polyimide resin and polyamide.
  • Imid resin polyamide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polycarbonate resin, acrylonitrile-butadiene-styrene (ABS) resin, polystyrene, cycloolefin polymer, liquid crystal polymer, polyether ether ketone, polyphenylene sulfide resin , acrylic resins such as polyphenylsulfone, polyphenylene ether, polymethyl(meth)acrylate, polyvinylidene fluoride resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polyethylene resin, polypropylene resin, urethane resin, silicon, Silicon carbide, gallium nitride, sapphire, ceramics, glass, glass epoxy resin, glass polyimide, paper phenol, diamond-like carbon, alumina, polyester fiber, polyamide fiber, synthetic fiber such as polyaramid fiber, inorganic fiber such as
  • a base material made of synthetic fibers such as polyester fibers, polyamide fibers, aramid fibers, etc., natural fibers such as cotton, hemp, etc. can be used.
  • the fibers may be processed in advance.
  • the support is preferably made of a flexible resin material in order to impart flexibility to the laminate and obtain a bendable final product. Specifically, it is preferably in the form of a film or sheet formed by uniaxial or biaxial stretching.
  • film-like or sheet-like supports include polyimide film, polyethylene terephthalate film, polyethylene naphthalate film, polybutylene terephthalate film and the like.
  • the thickness is not particularly limited. More preferably 1 to 200 ⁇ m.
  • the surface of the support may, if necessary, have fine irregularities that do not lose its smoothness, or may have functional groups such as hydroxyl, carbonyl, and carboxyl groups.
  • the primer layer has the function of improving the adhesion between the support and the metal particle layer described later.
  • the primer layer contains, as an essential component, a phenoxy resin having a weight average molecular weight in the range of 10,000 to 100,000.
  • a high-molecular-weight phenoxy resin in the primer layer by using a high-molecular-weight phenoxy resin in the primer layer, the elongation of the polymer is improved, and furthermore the elastic modulus is improved, thereby improving the adhesion between the support and the metal plating layer. can.
  • the use of a high-molecular-weight phenoxy resin can suppress deterioration such as decomposition of the polymer due to heat during the long-term heat resistance test, so the adhesion of the metal plating layer can be maintained even after the long-term heat resistance test.
  • a phenoxy resin is a polyhydroxy polyether obtained by reacting a dihydric phenol compound and epichlorohydrin or by reacting a dihydric epoxy compound and a dihydric phenol compound.
  • dihydric phenol compounds include bisphenols.
  • phenoxy resins include phenoxy resins having a bisphenol A structure (skeleton), phenoxy resins having a bisphenol F structure, phenoxy resins having a bisphenol S structure, phenoxy resins having a bisphenol M structure, phenoxy resins having a bisphenol P structure, Examples include phenoxy resins having a bisphenol Z structure.
  • phenoxy resins having a skeletal structure such as a novolac structure, anthracene structure, fluorene structure, dicyclopentadiene structure, norbornene structure, naphthalene structure, biphenyl structure, and adamantane structure are also included. These phenoxy resins may be used singly or in combination of two or more. Among these, those having a bisphenol structure are preferred, and bisphenol A skeleton, bisphenol F skeleton, and bisphenol S skeleton are more preferred. Moreover, the terminal of the phenoxy resin may be any functional group such as a phenolic hydroxyl group or an epoxy group.
  • the weight average molecular weight of the phenoxy resin used in the present invention is in the range of 10,000 to 100,000. If the molecular weight is 10,000 or more, the plating adhesion after a long-term heat resistance test will be high. Since the viscosity of the working fluid becomes appropriate, the handling is improved.
  • the weight average molecular weight of the phenoxy resin is preferably 20,000-50,000, more preferably 22,000-50,000.
  • the weight average molecular weight of the phenoxy resin can be adjusted by the molar ratio of the epoxy resin and the phenol resin and the reaction time in the above reaction. In addition, in this specification, the weight average molecular weight employ
  • a high-speed GPC device (HLC-8420GPC, manufactured by Tosoh Corporation) is used as a measurement device, and columns TSKgelG5000HxL / G4000HxL / G3000HxL / G2000HxL (manufactured by Tosoh Corporation) are used in series and used for elution. Tetrahydrofuran was used as a liquid, and the measurement was performed using an RI detector.
  • phenoxy resin generally means a high molecular weight epoxy resin. It shall be distinguished from resin.
  • phenoxy resins may be used, for example, Mitsubishi Chemical Corporation 1256, 4250 (both bisphenol A skeleton-containing phenoxy resins), 4275 (bis A/bis F mixed type), YL6794, YL7213, YL7290, YL7482, YL7553, YX8100 (phenoxy resin containing bisphenol S skeleton), X6954 (phenoxy resin containing bisphenolacetophenone skeleton, YX7200 (phenoxy resin containing cyclohexane skeleton), YP-70 (bisphenol F-type phenoxy resin), ZX-1356-2 (phenoxy resin containing bisphenol A and bisphenol F skeleton), YPB-40PXM40 (bromine-containing phenoxy resin), ERF-001M30 (phosphorus-containing phenoxy resin), FX-280, FX-293 , FX-310 (fluorene skeleton-containing phenoxy resin), PKHA, PKHB, PKHB+,
  • the primer layer preferably contains an epoxy resin in combination with the phenoxy resin described above.
  • the combined use of the phenoxy resin and the epoxy resin further improves the adhesion of the metal plating layer under normal conditions and after the long-term heat resistance test.
  • Epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, cresol novolak type epoxy resin, phenol novolak type epoxy resin, bisphenol A novolak type epoxy resin, alcohol ether type epoxy resin, tetrabromobisphenol.
  • epoxy resin to be used in combination with the phenoxy resin bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, cresol novolac type epoxy resin, and phenol novolac type epoxy resin can be used because they can further improve the adhesion of the metal plating layer.
  • Aromatic epoxy resins such as bisphenol A novolac type epoxy resins are preferred, and bisphenol A type epoxy resins are particularly preferred.
  • the epoxy equivalent of the epoxy resin is preferably 100 to 5,000 g/equivalent, more preferably 120 to 2,000 g/equivalent, and 120 to 250 g/equivalent, because it can further improve adhesion. is more preferred.
  • the mixing ratio of the phenoxy resin and the epoxy resin is preferably 90:10 to 10:90, preferably 85:15 to 15:10 by mass. 80 is more preferred.
  • the primer layer preferably contains a compound having an aminotriazine ring.
  • a compound having an aminotriazine ring may be a low molecular weight compound or a higher molecular weight compound such as a resin.
  • Various additives having an aminotriazine ring can be used as the low-molecular-weight compound having an aminotriazine ring.
  • Commercially available products include VT, VD-3 and VD-4 (all of which are from Shikoku Kasei Co., Ltd.), which are compounds having an aminotriazine ring and a hydroxyl group, and VD-5 (which is a compound having an aminotriazine ring and an ethoxysilyl group). Shikoku Kasei Co., Ltd.) and the like. These may be used individually by 1 type, and may be used together 2 or more types.
  • the amount of the low-molecular-weight compound having an aminotriazine ring is preferably 0.1 to 50 parts by mass, more preferably 0.5 to 10 parts by mass, based on 100 parts by mass of the resin component.
  • resins having aminotriazine rings include resins in which aminotriazine rings are covalently introduced into the polymer chain of the resin. Specifically, an aminotriazine-modified novolak resin is preferred.
  • Aminotriazine-modified novolak resin is a novolac resin in which an aminotriazine ring structure and a phenol structure are bonded via a methylene group.
  • Aminotriazine-modified novolak resins are prepared, for example, by combining aminotriazine compounds such as melamine, benzoguanamine and acetoguanamine; In the presence or absence of a weakly alkaline catalyst, a co-condensation reaction is carried out near neutrality, or an alkyl etherified product of an aminotriazine compound such as methyl-etherified melamine is reacted with a phenol compound.
  • the aminotriazine-modified novolac resin preferably has substantially no methylol groups.
  • the aminotriazine-modified novolac resin may also contain molecules in which only the aminotriazine structure is methylene-bonded, molecules in which only the phenol structure is methylene-bonded, and the like, which are produced as by-products during the production of the aminotriazine-modified novolac resin. In addition, it may contain some unreacted raw materials.
  • Phenolic structures include, for example, phenol residues, cresol residues, butylphenol residues, bisphenol A residues, phenylphenol residues, naphthol residues, resorcin residues, and the like.
  • the term "residue” as used herein means a structure in which at least one hydrogen atom bonded to a carbon atom of an aromatic ring is removed.
  • phenol means a hydroxyphenyl group.
  • triazine structures include structures derived from aminotriazine compounds such as melamine, benzoguanamine, and acetoguanamine.
  • the phenol structure and triazine structure may be used singly or in combination of two or more. Further, the phenol structure is preferably a phenol residue, and the triazine structure is preferably a melamine-derived structure, since the adhesion can be further improved.
  • the hydroxyl value of the aminotriazine-modified novolac resin is preferably 50 to 200 mgKOH/g, more preferably 80 to 180 mgKOH/g, because it can further improve adhesion.
  • the aminotriazine-modified novolak resin may be used singly or in combination of two or more.
  • the phenolic hydroxyl group (x) in the aminotriazine-modified novolak resin and the epoxy group (y) in the epoxy resin is preferably in the range of 0.1-5, more preferably in the range of 0.2-3.
  • the primer layer may further contain a cross-linking agent, if necessary, in addition to the epoxy resin and the compound having an aminotriazine ring described above.
  • a cross-linking agent it is preferable to use a polyvalent carboxylic acid.
  • polycarboxylic acids include trimellitic anhydride, pyromellitic anhydride, maleic anhydride, and succinic acid.
  • These crosslinking agents may be used individually by 1 type, and may use 2 or more types together. Among these cross-linking agents, trimellitic anhydride is preferable because it can further improve adhesion.
  • a curing catalyst may also be used to promote the reaction between the epoxy group and various curing agents.
  • the curing catalyst include tertiary amines, imidazole compounds, organic phosphines, and Lewis acid catalysts.
  • Tertiary amines include, for example, trimethylamine, triethylamine, tripropylamine, tributylamine, triamylamine, trihexylamine, trioctylamine, trilaurylamine, dimethylethylamine, dimethylpropylamine, dimethylbutylamine, dimethylamylamine, dimethylhexylamine, dimethylcyclohexylamine, dimethyloctylamine, dimethyllaurylamine, triallylamine, tetramethylethylenediamine, triethylenediamine (triethylenetetramine: TETA), N-methylmorpholine, 4,4'-(oxydi-2,1 -ethanediyl)bis-morpholine, N,N-dimethylbenzylamine, pyridine, picoline, dimethylaminomethylphenol, trisdimethylaminomethylphenol, triethanolamine, N,N'-dimethylpiperazine, tetramethylbutanediamine
  • imidazole compounds include 1-benzyl-2-imidazole (1B2MZ), 2-ethyl-4-imidazole, 2-undelimidazole, 1,2-dimethylimidazole, 1-benzyl-2-phenylimidazole, 2- Methylimidazole, 2-ethyl-4-methylimidazole (2E4MZ), 2-phenyl-4-methyl-5-hydroxymethylimidazole (2P4MHZ), 2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole (TBZ) and the like.
  • organic phosphines examples include triphenylphosphine (TPP), triphenylphosphine-triphenylborate, tris(p-methoxyphenyl)phosphine, tetraphenylphosphonium/tetraphenylborate, and the like.
  • Lewis acid catalysts include Lewis acid catalysts such as boron trifluoride amine complexes, boron trichloride amine complexes, and boron trifluoride ethylamine complexes.
  • these curing catalysts it is preferable to use tertiary amines and imidazole compounds, and more preferably to use imidazole compounds, because the adhesion can be further improved.
  • these curing catalysts can be used alone or in combination of two or more.
  • the preferred amount of the curing catalyst is 0.3 to 20 parts by mass, preferably 0.5 to 15 parts by mass, based on the total amount of 100 parts by mass of all the resins contained in the primer layer, in terms of solid content. part is more preferred.
  • the primer layer may contain other resins as components other than those described above, if necessary.
  • Other resins include, for example, urethane resins, acrylic resins, imide resins, amide resins, melamine resins, phenol resins, urea-formaldehyde resins, blocked polyisocyanates using phenol as a blocking agent, polyvinyl alcohol, polyvinylpyrrolidone, and the like. be done.
  • These binder resins may be used individually by 1 type, and may use 2 or more types together.
  • organic solvent examples include toluene, ethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and isopropyl alcohol.
  • the amount of the organic solvent used can be appropriately adjusted according to the coating method used when coating the support and the desired thickness of the primer layer.
  • the coating solution for forming the primer layer may contain known additives such as film-forming aids, leveling agents, thickeners, water repellents, antifoaming agents, antioxidants, etc., as necessary. You may add and use it.
  • the primer layer can be formed by applying a coating liquid containing the above-described components to part or all of the surface of the support, and removing the organic solvent contained in the coating liquid by heating or drying. .
  • the coating method is not particularly limited, and conventionally known coating methods can be applied. Examples thereof include gravure, coating, screen, roller, rotary, spray, and capillary methods. .
  • the method for removing the organic solvent contained in the coating film is generally, for example, drying with a dryer to volatilize the organic solvent.
  • the drying temperature may be set within a range in which the organic solvent used can be volatilized and the support is not adversely affected by heat deformation or the like.
  • the thickness of the primer layer may be appropriately adjusted depending on the use of the laminate of the present invention, but it is preferably within a range that further improves the adhesion between the support and the metal particle layer described later, and the thickness of the primer layer is 10 nm. It is preferably ⁇ 1 ⁇ m, more preferably 10 nm to 500 nm. The thickness of the primer layer can be adjusted by the amount of the coating liquid applied to the support.
  • the surface of the primer layer may be treated, if necessary, by a plasma discharge treatment method such as a corona discharge treatment method, a dry treatment method such as an ultraviolet treatment method, water or an acidic or alkaline chemical solution.
  • a plasma discharge treatment method such as a corona discharge treatment method, a dry treatment method such as an ultraviolet treatment method, water or an acidic or alkaline chemical solution.
  • the surface treatment may be performed by a wet treatment method using an organic solvent or the like.
  • the metal particle layer is provided on the primer layer described above, and is a layer provided for forming the metal plating layer described later.
  • the metal particle layer is preferably a layer containing a composite of metal particles and an organic compound.
  • the metal particle layer more preferably contains metal particles and a compound having a cationic group.
  • the metals that make up the metal particles include transition metals and their compounds, and among these, ionic transition metals are preferred.
  • ionic transition metals include copper, silver, gold, nickel, palladium, platinum, cobalt, etc. From the viewpoint of formability of the metal plating layer described later, silver is preferable.
  • the term "metal particles" refers to particulate or fibrous particles made of the metals described above.
  • the average particle diameter is preferably 1 to 100 nm, more preferably 1 to 50 nm, from the viewpoint of further reducing the resistance value.
  • the average particle diameter means the volume average value (D50) measured by the dynamic light scattering method after diluting the metal particles with a good dispersion solvent.
  • the fiber diameter is preferably 5 to 100 nm, more preferably 5 to 50 nm, from the viewpoint of further reducing the resistance value.
  • the fiber length is preferably 0.1 to 100 ⁇ m, more preferably 0.1 to 30 ⁇ m.
  • a compound having a cationic group can be preferably used as the organic compound used in combination with the metal particles.
  • the compound having a cationic group disperses the metal particles satisfactorily, and reacts with the functional groups contained in the components of the primer layer, such as the epoxy groups contained in the epoxy resin, to form the primer layer and the metal particle layer. It is preferable in that it has a function of further improving the adhesion of the interface.
  • the compound having a cationic group may be a surface-treated metal particle contained in the metal particle layer.
  • a compound having a basic nitrogen atom-containing group can be preferably used.
  • polyalkyleneimine such as polyethyleneimine and polypropyleneimine, a compound obtained by adding polyoxyalkylene to polyalkyleneimine, and the like are used. can do.
  • a compound in which polyoxyalkylene is added to polyalkyleneimine is preferable because it can improve the water dispersion stability of metal particles.
  • polyoxyalkylene for example, a random structure or block structure such as polyoxyethylene and poly(oxyethylene-oxypropylene) can be used.
  • polyoxyalkylene it is preferable to use one having an oxyethylene unit from the viewpoint of the water dispersion stability of the metal particles. It is preferred to use the one with
  • polyoxyalkylene for example, a compound having a structure composed of polyethyleneimine and a polyoxyalkylene structure such as a polyethylene oxide structure can be used.
  • the polyethyleneimine and the polyoxyalkylene may be linearly bonded, or may be a main chain composed of polyethyleneimine and a side chain grafted with the polyoxyalkylene.
  • polyalkyleneimine examples include a copolymer of polyethyleneimine and polyoxyethylene, a part of the imino groups present in the main chain, and ethylene oxide.
  • a compound or the like obtained by the reaction can be used. They preferably have a block structure.
  • polyoxyalkylene As the compound in which polyoxyalkylene is added to polyalkyleneimine, those obtained by reacting the amino group of polyalkyleneimine, the hydroxyl group of polyoxyethylene glycol, and the epoxy group of epoxy resin are used. You can also
  • polyalkyleneimine commercially available products may be used. 1000 (above, Nippon Shokubai Co., Ltd.) can be used.
  • the metal particle layer may contain an epoxy resin in addition to the metal particles described above.
  • the epoxy resin the same one as described in the primer layer can be used.
  • the epoxy resin Aliphatic epoxy resins are preferably used, and alicyclic epoxy resins are more preferably used, from the viewpoint of suppressing reaction with a compound having a basic nitrogen atom-containing group.
  • aliphatic epoxy resins include neopentyl glycol diglycidyl ether, dimethylolcyclohexanediglycidyl ether, 1,4-cyclohexanediglycidyl ether, 1,3-cyclohexanediglycidyl ether, 1,2-cyclohexanediglycidyl ether, Acyclic fatty acids such as dimethylol dicyclopentadiene diglycidyl ether, hexahydrophthalic acid diglycidyl ester, hexahydroterephthalic acid diglycidyl ester, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether group epoxy resins, 3′,4′-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate, ⁇ -caprolactone-modified 3′,4′-epoxycyclohexy
  • alicyclic epoxy resins are preferred, particularly from the viewpoint of the suppression of reaction with compounds having basic nitrogen atom-containing groups in the metal particle layer-forming coating solution and the compatibility with solvents described later.
  • 3′,4′-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and ⁇ -caprolactone-modified 3′,4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate can be preferably used.
  • the metal particle layer is formed by dissolving or dispersing the above components in an appropriate solvent to prepare a coating solution, coating the primer layer to form a coating film, and drying the coating film to remove the solvent. can be formed.
  • Solvents used in the coating solution for forming the metal particle layer include aqueous media such as distilled water, ion-exchanged water, pure water, and ultrapure water, as well as organic solvents such as alcohols, ethers, esters, and ketones. can do.
  • alcohols examples include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol.
  • pentadecanol stearyl alcohol, allyl alcohol, cyclohexanol, terpineol, terpineol, dihydroterpineol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, Tetraethylene glycol monobutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, tripropylene glycol Monobutyl ether and the like can be used.
  • the coating liquid can be used in combination with ketone solvents such as acetone, cyclohexanone, and methyl ethyl ketone to adjust physical properties.
  • ketone solvents such as acetone, cyclohexanone, and methyl ethyl ketone to adjust physical properties.
  • ester solvents such as ethyl acetate, butyl acetate, 3-methoxybutyl acetate, 3-methoxy-3-methyl-butyl acetate, etc.
  • hydrocarbon solvents such as toluene, especially hydrocarbon solvents having 8 or more carbon atoms can be used. can be done.
  • Hydrocarbon solvents having 8 or more carbon atoms include nonpolar solvents such as octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetralin, and trimethylbenzenecyclohexane. can also be used in combination depending on the Furthermore, mixed solvents such as mineral spirit and solvent naphtha can be used together.
  • nonpolar solvents such as octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetralin, and trimethylbenzenecyclohexane.
  • mixed solvents such as mineral spirit and solvent naphtha can be used together.
  • solvents include, for example, 2-ethyl 1,3-hexanediol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,2-butanediol, 1,4-butanediol, 2,3-butanediol, glycerin, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl Ether acetate, diethylene glycol monobutyl ether acetate and the like can be used.
  • the coating solution for forming the metal particle layer may contain surfactants, antifoaming agents, rheology modifiers, and the like as necessary from the viewpoint of improving the wettability and the like when applied to the primer layer. good.
  • the content of the metal particles contained in the coating solution for forming the metal particle layer is preferably 1 to 90% by mass, more preferably 5 to 60% by mass, more preferably 10% by mass, based on the total coating solution. More preferably, it is up to 40% by mass.
  • the content of the compound having a cationic group is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, relative to the entire coating liquid.
  • the epoxy resin is preferably contained in the metal particle layer in an amount of 0.01 to 10% by mass. , more preferably 0.05 to 5% by mass.
  • the metal particle layer may be a layer provided on the entire surface of the primer layer, or may be a layer provided on part of the surface of the primer layer.
  • a fine line-shaped layer formed by drawing lines on the surface of the primer layer can be mentioned.
  • the fine line-shaped layer is suitable when the laminate according to the present invention is used for a printed wiring board or the like.
  • the width (line width) of the fine line-shaped layer (pattern) is generally about 0.01 to 200 ⁇ m, preferably about 0.01 to 150 ⁇ m.
  • the metal particle layer preferably has a thickness of 0.01 to 100 ⁇ m in order to form a conductive pattern with low resistance and excellent conductivity. Further, when the metal particle layer is in the form of thin wires, its thickness (height) is preferably in the range of 0.05 to 50 ⁇ m. The thickness of the metal particle layer can be adjusted by the amount of the coating liquid applied to the primer layer.
  • Examples of methods for applying the metal particle layer-forming coating solution to the primer layer include reverse printing such as letterpress reverse printing, inkjet printing, screen printing, offset printing, gravure printing, and spin coating. , a spray coating method, a bar coating method, a die coating method, a slit coating method, a roll coating method, a dip coating method, and the like.
  • reverse printing such as letterpress reverse printing, inkjet printing, screen printing, offset printing, gravure printing, and spin coating.
  • a spray coating method a bar coating method, a die coating method, a slit coating method, a roll coating method, a dip coating method, and the like.
  • inkjet printing method In the case of applying (printing) thin lines of approximately 0.01 to 100 ⁇ m, which is required when realizing high density electronic circuits, it is preferable to adopt an inkjet printing method.
  • the metal plating layer constituting the laminate of the present invention has a reliability that can maintain good conductivity without causing disconnection or the like for a long period of time, for example, when the laminate is used for a printed wiring board, an electromagnetic wave shield, or the like. This layer is provided for the purpose of forming a wiring pattern with a high density.
  • the metal plating layer is a layer formed on the metal particle layer described above, and the method of forming it is preferably a method of forming by plating.
  • the plating treatment include wet plating methods such as electroplating and electroless plating, which can easily form a metal plating layer. Also, two or more of these plating methods may be combined. For example, after performing electroless plating, electroplating may be performed to form a metal plating layer.
  • electroless plating method for example, by bringing an electroless plating solution into contact with the metal that constitutes the metal particle layer, a metal such as copper contained in the electroless plating solution is deposited to form an electroless plating layer consisting of a metal coating.
  • electroless plating solutions include those containing metals such as copper, silver, gold, nickel, chromium, cobalt and tin, reducing agents, and solvents such as aqueous media and organic solvents.
  • reducing agents include dimethylaminoborane, hypophosphorous acid, sodium hypophosphite, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, and phenol.
  • monocarboxylic acids such as acetic acid and formic acid
  • dicarboxylic acid compounds such as malonic acid, succinic acid, adipic acid, maleic acid and fumaric acid
  • malic acid lactic acid, glycolic acid and gluconate hydroxycarboxylic acid compounds such as acid and citric acid
  • amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid, and glutamic acid
  • Organic acids such as carboxylic acid compounds, soluble salts of these organic acids (sodium salts, potassium salts, ammonium salts, etc.), complexing agents such as amine compounds such as ethylenediamine, diethylenetriamine, and triethylenetetramine are used. be able to.
  • the metal forming the metal particle layer or the surface of the electroless plated layer (coating) formed by the electroless treatment is energized while the electrolytic plating solution is in contact with the electroplating.
  • a metal such as copper contained in a liquid is deposited on the surface of the metal particles constituting the metal particle layer placed on the cathode or on the surface of the electroless plated layer formed by electroless treatment to form an electrolytic plated layer.
  • electrolytic plating solutions examples include those containing sulfides of metals such as copper, nickel, chromium, cobalt, and tin, sulfuric acid, and an aqueous medium. Specific examples include those containing copper sulfate, sulfuric acid, and an aqueous medium.
  • the method of electroplating after electroless plating is preferable because it is easy to control the thickness of the metal plating layer to a desired thickness from a thin film to a thick film.
  • the film thickness of the metal plating layer is preferably 1 to 50 ⁇ m.
  • the film thickness of the metal plating layer can be adjusted by controlling the treatment time, current density, amount of plating additive used, etc. in the plating process for forming the metal plating layer.
  • the metal plating layer formed on the surface does not peel off under normal conditions, and even when placed at a high temperature of 150 ° C. for a long time, the adhesion of the metal plating layer is maintained. maintained. Therefore, formation of circuit forming substrates used for electronic circuits, integrated circuits, etc., formation of peripheral wiring constituting organic solar cells, electronic book terminals, organic EL, organic transistors, flexible printed circuit boards, RFID, etc., plasma display It can be suitably used for applications in which durability is particularly required, such as wiring for electromagnetic shielding.
  • the conductive pattern subjected to the plating treatment can form a highly reliable wiring pattern that can maintain good conductivity without causing disconnection or the like for a long period of time. It can be used for electronic equipment applications such as FPC) and electromagnetic wave shielding.
  • a laminate in which a primer layer, a metal particle layer and a metal plating layer are sequentially provided on one surface of a support has been described as an example.
  • a layered product may also be formed in which a primer layer, a metal particle layer and a metal plating layer are sequentially provided on the opposite side of the body.
  • Phenoxy Resin (P-1) 100 mass of bisphenol A type epoxy resin (Epiclon EXA-850CRP manufactured by DIC Corporation, solid content 100%, epoxy equivalent 173 g/eq) was placed in a reactor equipped with a stirrer, thermometer, nitrogen blowing tube, and cooling tube.
  • Preparation Example 1 Preparation of Primer Layer Forming Coating Solution (1)
  • the phenoxy resin (P-1) obtained in Synthesis Example 1 was diluted with cyclohexanone so that the nonvolatile content was 2% by mass, and mixed uniformly to obtain a primer layer forming coating solution (1). got
  • Novolak resin B (DIC Corporation "PHENOLITE TD-2131", hydroxyl equivalent 104 g / equivalent) 3 parts by mass, and Shikoku Kasei Co., Ltd. as a curing catalyst 1 "TBZ" 0.5 parts by mass were mixed, and cyclohexanone was mixed. was used to dilute the non-volatile matter to 2% by mass, and mixed uniformly to obtain a primer layer-forming coating liquid (4).
  • Preparation Example 5 Preparation of primer layer-forming coating liquid (5)] 267 parts by mass of the phenoxy resin (P-2) obtained in Synthesis Example 2, and 60 parts by mass of epoxy resin A ("EPICLON 850-S" manufactured by DIC Corporation; bisphenol A type epoxy resin, epoxy group equivalent: 188 g/equivalent). , And, as a curing catalyst 1, 0.5 parts by mass of “TBZ” manufactured by Shikoku Kasei Co., Ltd. is mixed, diluted with cyclohexanone so that the nonvolatile content is 2% by mass, and mixed uniformly to form a primer layer. A forming coating liquid (5) was obtained.
  • Preparation Example 6 Preparation of primer layer-forming coating solution (6)] 133 parts by mass of the phenoxy resin (P-2) obtained in Synthesis Example 1, and 70 parts by mass of epoxy resin A ("EPICLON 850-S" manufactured by DIC Corporation; bisphenol A type epoxy resin, epoxy group equivalent: 188 g/equivalent). , 10 parts by mass of the modified novolak resin C obtained in Synthesis Example 4, and 5 parts by mass of "2E4MZ" manufactured by Shikoku Kasei Co., Ltd. as a curing catalyst 2, are mixed, and cyclohexanone is used so that the nonvolatile content is 2% by mass. By diluting and mixing uniformly, a primer layer-forming coating liquid (6) was obtained.
  • Preparation Example 7 Preparation of primer layer-forming coating liquid (7)] 67 parts by mass of the phenoxy resin (P-3) obtained in Synthesis Example 3, and 76 parts by mass of epoxy resin A ("EPICLON 850-S" manufactured by DIC Corporation; bisphenol A type epoxy resin, epoxy group equivalent: 188 g/equivalent). , Novolak resin B (DIC Corporation "PHENOLITE TD-2131", hydroxyl equivalent 104 g / equivalent) 14 parts by weight, and Shikoku Kasei Co., Ltd. as curing catalyst 1 "TBZ" 0.5 parts by weight were mixed, and cyclohexanone was mixed. was used to dilute the non-volatile matter to 2% by mass, and mixed uniformly to obtain a primer layer-forming coating liquid (7).
  • Preparation Example 8 Preparation of Primer Layer Forming Coating Solution (8)
  • modified novolak resin C obtained in Synthesis Example 4
  • epoxy resin A (“EPICLON 850-S” manufactured by DIC Corporation; bisphenol A type epoxy resin, epoxy group equivalent weight: 188 g/equivalent)
  • the mixed resin solution of the aminotriazine-modified novolac resin and the epoxy resin was obtained by diluting with methyl ethyl ketone so that the non-volatile content was 2% by mass and mixing uniformly.
  • chloroform (30 ml) containing 9.6 parts by weight of p-toluenesulfonyl chloride was added to a mixture containing 20 parts by weight of methoxypolyethylene glycol (number average molecular weight of 2,000), 8.0 parts by weight of pyridine and 20 ml of chloroform.
  • the solution was added dropwise for 30 minutes with ice-cooling and stirring, then stirred at a bath temperature of 40° C. for 4 hours, and mixed with 50 ml of chloroform.
  • the obtained product is washed with 100 ml of 5% by mass hydrochloric acid aqueous solution, then with 100 ml of saturated sodium bicarbonate aqueous solution, then with 100 ml of saturated saline solution, dried with anhydrous magnesium sulfate, and filtered. , concentrated under reduced pressure, washed several times with hexane, filtered and dried at 80° C. under reduced pressure to obtain methoxypolyethylene glycol having a p-toluenesulfonyloxy group.
  • a mixed solvent of 200 ml of isopropyl alcohol and 200 ml of hexane was added to the resulting silver dispersion, and after stirring for 2 minutes, centrifugal concentration was performed at 3000 rpm for 5 minutes. After removing the supernatant, a mixed solvent of 50 ml of isopropyl alcohol and 50 ml of hexane was added to the precipitate, stirred for 2 minutes, and concentrated by centrifugation at 3000 rpm for 5 minutes. After removing the supernatant, 20 parts by mass of water was added to the precipitate, and the mixture was stirred for 2 minutes to remove the organic solvent under reduced pressure.
  • the obtained powder of cationic silver particles is dispersed in a mixed solvent of 45 parts by mass of ethylene glycol and 55 parts by mass of deionized water to form a metal particle layer containing 5% by mass of cationic silver particles.
  • a coating solution was prepared.
  • each primer layer forming coating solution (1) to (8) obtained above is applied to a desktop small coater ( Using a K printing prober (RK Print Coat Instrument Co., Ltd.), coating was performed so that the coating thickness after drying was 300 nm. Then, a primer layer was formed on the surface of the polyimide film by drying at 155° C. for 5 minutes using a hot air dryer.
  • the coating solution for forming a metal particle layer obtained above was applied to the surface of the primer layer using a bar coater so that the coating thickness after drying was 100 nm.
  • a metal particle layer was then formed by drying at 140° C. for 5 minutes.
  • the metal particle layer formed as described above is set on the cathode side, the phosphorous copper is set on the anode side, and electrolytic plating is performed for 18 minutes at a current density of 2 A/dm 2 using an electrolytic plating solution containing copper sulfate.
  • a copper plating layer (film thickness: 8 ⁇ m) was formed on the metal particle layer.
  • As an electrolytic plating solution 70 g/L of copper sulfate, 200 g/L of sulfuric acid, 50 mg/L of chloride ion, and 5 ml/L of additive (Top Lucina SF-M, Okuno Chemical Industry Co., Ltd.) were used.
  • laminates (1) to (8) were obtained in which the support, the primer layer, the metal particle layer, and the metal plating layer were sequentially laminated.
  • the number of the primer layer forming coating liquid corresponds to the number of the laminate, for example, the primer layer forming coating liquid (1) corresponds to the laminate (1).
  • Adhesion evaluation (under normal conditions)> For each laminate obtained above, the peel strength was measured using 4000Plus manufactured by Nordson DAGE in a room temperature environment. The lead width used for measurement was 5 mm, and the peel angle was 90°. In addition, the peel strength tends to show a higher value as the thickness of the metal plating layer increases. In this specification, the peel strength was measured based on the measurement value at a thickness of 8 ⁇ m of the metal plating layer. Adhesion was evaluated according to the following criteria from the measured peel strength before heating. A: The value of peel strength is 600 N/m or more. B: The peel strength value is 450 N/m or more and less than 600 N/m. C: The peel strength value is 250 N/m or more and less than 450 N/m. D: The peel strength value is less than 250 N/m. The evaluation results were as shown in Table 1 below.
  • the laminates (laminates (1) to (7)) using a phenoxy resin having a specific molecular weight as the primer layer are all good at normal conditions.
  • the peel strength is 450 N/m or more, and even after the long-term heat resistance test, it has a retention rate of 80% or more of the peel strength in the normal state. In other words, it can be seen that the adhesion evaluation is excellent both in the normal state and after the long-term heat resistance test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a laminate in which adhesion of a plating layer can be maintained not only when in a normal state, but even after a long heat resistance test. A laminate comprising a support and a primer layer, a metal particle layer, and a metal plating layer provided in the stated order on the support, wherein the primer layer includes a phenoxy resin having a weight-average molecular weight of 10,000 to 100,000.

Description

積層体および積層体を備えた電子機器Laminates and electronic devices with laminates
 本発明は積層体に関し、より詳細には、電磁波シールド、プリント配線板、集積回路、有機トランジスタ等の電子機器に好適に使用できる積層体、およびそれを用いた電子機器に関する。 The present invention relates to laminates, and more particularly to laminates that can be suitably used in electronic devices such as electromagnetic wave shields, printed wiring boards, integrated circuits, and organic transistors, and electronic devices using the laminates.
 電子機器の小型化、高速化により、プリント配線板の高速化、高性能化が要求されており、この要求に応えるため、表面が平滑で十分薄い導電層(金属層)を有するプリント配線板が求められている。また、このプリント配線板を構成するのものとしてフレキシブル銅張積層板(以下、「FCCL」と略記する。)が知られている。FCCLは、主に耐熱性高分子フィルムと銅箔とをエポキシ樹脂系接着剤で貼り合わせる方法で製造されている。 Due to the miniaturization and speeding up of electronic devices, printed wiring boards are required to be faster and have higher performance. In order to meet this demand, printed wiring boards with smooth surfaces and sufficiently thin conductive layers (metal layers) are being developed. It has been demanded. A flexible copper-clad laminate (hereinafter abbreviated as "FCCL") is known as a component of this printed wiring board. FCCL is mainly manufactured by bonding a heat-resistant polymer film and a copper foil together with an epoxy resin adhesive.
 銅箔を用いたFCCLでは、ロール状に巻かれた銅箔を引き出しながら表面にエポキシ樹脂系接着剤を塗工し、さらに銅箔を高分子フィルムに貼り合わせることから、取り扱い上、銅箔を十分に薄くすることができない。さらに、高分子フィルムとの密着性を高めるために銅箔表面を粗化する必要があり、プリント配線板の高密度化、高性能化を図るために必要な周波数(GHz帯域)、高伝送速度(数十Gbps)領域で伝送損失を生じるという問題があった。 In FCCL using copper foil, an epoxy resin-based adhesive is applied to the surface of the rolled copper foil while it is pulled out, and then the copper foil is attached to a polymer film. cannot be thin enough. Furthermore, it is necessary to roughen the surface of the copper foil in order to improve the adhesion with the polymer film. (several tens of Gbps), there is a problem of transmission loss.
 一方、FCCLの銅層を薄膜化する方法として、高分子フィルムの表面に金属薄膜を蒸着またはスパッタ法により形成した後、その金属薄膜上に電解銅めっき法、無電解めっき法もしくは、両者を組み合わせた方法で銅を形成する方法が、従来から提案されている(例えば、特許文献1)。しかしながら、この方法では、金属薄膜を形成するために、蒸着法またはスパッタ法を用いるため、大掛かりな真空設備が必要となり、設備上、基材サイズが限定されるなどの問題があった。 On the other hand, as a method for thinning the copper layer of FCCL, after forming a metal thin film on the surface of the polymer film by vapor deposition or sputtering, electrolytic copper plating, electroless plating, or a combination of both is applied on the metal thin film. Conventionally, a method of forming copper by a method has been proposed (for example, Patent Document 1). However, in this method, since vapor deposition or sputtering is used to form the metal thin film, large-scale vacuum equipment is required, and the size of the base material is limited due to the equipment.
 さらに、FCCLの銅層を薄膜化する他の方法として、例えば、特許文献2には、支持体と金属めっき層との間に設けるめっき下地層として、無機ナノ粒子とフタロシアニン系の配位子と溶媒(分散媒)とを含む組成物を用いて、支持体とめっき層との密着性を向上させることが提案されている。また、特許文献3には、支持体上に、プライマー層としてアミノトリアジン環を有する化合物を含有する層を設け、該プライマー層上に金属ナノ粒子層を設けることにより、支持体と金属めっき層との密着性が向上することが提案されている。さらに、特許文献4には、支持体とめっき層との間に、金属粒子および特定のエポキシ化合物とブロックポリイソシアネートとの反応物を含有する金属粒子層を介在させることにより、支持体とめっき層との密着性が向上することが提案されている。 Furthermore, as another method for thinning the copper layer of FCCL, for example, Patent Document 2 discloses that inorganic nanoparticles and a phthalocyanine-based ligand are used as a plating underlayer provided between a support and a metal plating layer. It has been proposed to improve the adhesion between the support and the plating layer by using a composition containing a solvent (dispersion medium). Further, in Patent Document 3, a layer containing a compound having an aminotriazine ring is provided as a primer layer on a support, and a metal nanoparticle layer is provided on the primer layer, whereby the support and the metal plating layer are formed. It has been proposed that the adhesion of Furthermore, in Patent Document 4, a metal particle layer containing metal particles and a reaction product of a specific epoxy compound and a blocked polyisocyanate is interposed between the support and the plating layer, thereby It has been proposed that the adhesion to is improved.
特開2015-118044号公報JP 2015-118044 A 特開2017-218664号公報JP 2017-218664 A 国際公開第2019/013038号パンフレットWO2019/013038 pamphlet 特開2020-59185号公報Japanese Patent Application Laid-Open No. 2020-59185
 上記した特許文献1~4において提案されている積層構造はいずれも、常態時、即ちめっき層の形成後に常温環境下において支持体とめっき層との密着性を向上させるものである。しかしながら、今般、本発明者らが、例えば150℃で300時間といった長期耐熱試験を行ったところ、常態時には優れた密着性を有していても長期耐熱試験後においては著しく密着性が低下するという新たな課題が存在することが判明した。 All of the laminated structures proposed in Patent Documents 1 to 4 mentioned above improve the adhesion between the support and the plating layer in a normal state, that is, after the formation of the plating layer, in a room temperature environment. However, when the inventors of the present invention conducted a long-term heat resistance test, for example, at 150 ° C. for 300 hours, it was found that even if the adhesiveness was excellent in the normal state, the adhesion was significantly reduced after the long-term heat resistance test. It turned out that a new problem existed.
 したがって、本発明の目的は、常態時のみならず、長期耐熱試験後においてもめっき層の密着性を維持することができる積層体を提供することである。 Therefore, an object of the present invention is to provide a laminate that can maintain the adhesion of the plating layer not only in normal conditions but also after a long-term heat resistance test.
 上記課題に対して、本発明者らは、プライマー層に高分子量のフェノキシ樹脂を用いることにより、プライマー層の伸度を上げ、さらに弾性率を向上させることにより、めっき実施直後(常態)のめっき層の密着性を改善することができるとの知見を得た。また、高分子量のフェノキシ樹脂を用いることにより、長期耐熱試験中にプライマー層中のポリマーの分解などの劣化が抑制されることにより、長期耐熱試験後においてもめっき層の密着性を維持することができるとの知見を得た。本発明は、かかる知見に基づいて完成されたものである。即ち、本発明の要旨は以下のとおりである。 In order to solve the above problems, the present inventors have found that by using a high-molecular-weight phenoxy resin in the primer layer, the elongation of the primer layer is increased and the elastic modulus is improved, so that the plating immediately after plating (normal state) It has been found that the layer adhesion can be improved. In addition, by using a high-molecular-weight phenoxy resin, deterioration such as decomposition of the polymer in the primer layer is suppressed during the long-term heat resistance test, so that the adhesion of the plating layer can be maintained even after the long-term heat resistance test. I have learned that I can. The present invention has been completed based on such findings. That is, the gist of the present invention is as follows.
[1] 支持体と、前記支持体上に、プライマー層、金属粒子層および金属めっき層とを順次備えた積層体であって、前記プライマー層が、重量平均分子量が10,000~100,000のフェノキシ樹脂を含む、積層体。
[2] 前記プライマー層が、エポキシ樹脂をさらに含む、[1]に記載の積層体。
[3] 前記プライマー層が、前記フェノキシ樹脂と前記エポキシ樹脂とを、質量基準において90:10~10:90の割合で含む、[2]に記載の積層体。
[4] 前記プライマー層が、さらにアミノトリアジン環を有する化合物を含む、[1]~[3]のいずれかに記載の積層体。
[5] 前記アミノトリアジン環を有する化合物が、アミノトリアジン変性ノボラック樹脂である、[4]に記載の積層体。
[6] 前記金属粒子層が、金属粒子とカチオン性基を有する化合物とを含む、[1]~[5]のいずれかに記載の積層体。
[7] 前記カチオン性基を有する化合物は、塩基性窒素原子含有基を有する化合物である、[6]に記載の積層体。
[8] 前記支持体が可撓性樹脂材料からなる、[1]~[7]のいずれかに記載の積層体。
[9] 電子機器に使用される[1]~[8]のいずれかに記載の積層体。
[10] 電子機器がプリント配線板および電磁波シールドから選択される、[9]に記載の積層体。
[11] [1]~[10]のいずれかに記載の積層体を備えた電子機器。
[1] A laminate comprising a support, a primer layer, a metal particle layer and a metal plating layer on the support in this order, wherein the primer layer has a weight average molecular weight of 10,000 to 100,000. A laminate containing a phenoxy resin.
[2] The laminate according to [1], wherein the primer layer further contains an epoxy resin.
[3] The laminate according to [2], wherein the primer layer contains the phenoxy resin and the epoxy resin in a mass ratio of 90:10 to 10:90.
[4] The laminate according to any one of [1] to [3], wherein the primer layer further contains a compound having an aminotriazine ring.
[5] The laminate according to [4], wherein the compound having an aminotriazine ring is an aminotriazine-modified novolak resin.
[6] The laminate according to any one of [1] to [5], wherein the metal particle layer contains metal particles and a compound having a cationic group.
[7] The laminate according to [6], wherein the compound having a cationic group is a compound having a basic nitrogen atom-containing group.
[8] The laminate according to any one of [1] to [7], wherein the support is made of a flexible resin material.
[9] The laminate according to any one of [1] to [8], which is used for electronic equipment.
[10] The laminate according to [9], wherein the electronic device is selected from printed wiring boards and electromagnetic wave shields.
[11] An electronic device comprising the laminate according to any one of [1] to [10].
 本発明によれば、支持体とプライマー層と金属粒子層と金属めっき層とを順次備えた積層体において、プライマー層として重量平均分子量が10,000~100,000のフェノキシ樹脂を用いることにより、常態時のみならず、長期耐熱試験後においても金属めっき層の密着性を維持することができる。 According to the present invention, in a laminate sequentially comprising a support, a primer layer, a metal particle layer, and a metal plating layer, by using a phenoxy resin having a weight average molecular weight of 10,000 to 100,000 as the primer layer, The adhesion of the metal plating layer can be maintained not only in the normal state but also after the long-term heat resistance test.
[積層体]
 本発明による積層体は、支持体と、前記支持体上に、プライマー層、金属粒子層および金属めっき層とを順次備えている。以下、本発明の積層体を構成する各要素について説明する。
[Laminate]
A laminate according to the present invention comprises a support and, on the support, a primer layer, a metal particle layer and a metal plating layer in this order. Each element constituting the laminate of the present invention will be described below.
<支持体>
 支持体としては、後記するプライマー層、金属粒子層、金属めっき層を順次積層し得る機械的強度を備えている材料であれば特に制限なく使用することができ、例えば、例えば、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリカーボネート樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリスチレン、シクロオレフィンポリマー、液晶ポリマー、ポリエーテルエーテルケトン、ポリフェニレンスルフィド樹脂、ポリフェニルスルホン、ポリフェニレンエーテル、ポリ(メタ)アクリル酸メチル等のアクリル樹脂、ポリフッ化ビニリデン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ウレタン樹脂、シリコン、シリコンカーバイド、窒化ガリウム、サファイア、セラミックス、ガラス、ガラスエポキシ樹脂、ガラスポリイミド、紙フェノール、ダイアモンドライクカーボン、アルミナ、ポリエステル繊維、ポリアミド繊維、ポリアラミド繊維等の合成繊維、カーボンファイバー等の無機繊維、セルロースナノファイバー等の天然繊維等が挙げられる。これらの支持体は、絶縁性のものが好ましく、多孔質のものを用いることができる。また、支持体は単一材料からなるものであってもよく、複数材料を積層したものであってもよい。
<Support>
As the support, any material can be used without particular limitation as long as it has mechanical strength that allows successive lamination of a primer layer, a metal particle layer, and a metal plating layer, which will be described later. Examples include polyimide resin and polyamide. Imid resin, polyamide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polycarbonate resin, acrylonitrile-butadiene-styrene (ABS) resin, polystyrene, cycloolefin polymer, liquid crystal polymer, polyether ether ketone, polyphenylene sulfide resin , acrylic resins such as polyphenylsulfone, polyphenylene ether, polymethyl(meth)acrylate, polyvinylidene fluoride resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polyethylene resin, polypropylene resin, urethane resin, silicon, Silicon carbide, gallium nitride, sapphire, ceramics, glass, glass epoxy resin, glass polyimide, paper phenol, diamond-like carbon, alumina, polyester fiber, polyamide fiber, synthetic fiber such as polyaramid fiber, inorganic fiber such as carbon fiber, cellulose nano Examples include natural fibers such as fibers. These supports are preferably insulating ones, and porous ones can be used. Moreover, the support may be made of a single material, or may be a laminate of a plurality of materials.
 また、支持体としては、例えば、ポリエステル繊維、ポリアミド繊維、アラミド繊維等の合成繊維、綿、麻等の天然繊維等からなる基材を用いることもできる。前記繊維には、予め加工が施されていてもよい。 Also, as the support, for example, a base material made of synthetic fibers such as polyester fibers, polyamide fibers, aramid fibers, etc., natural fibers such as cotton, hemp, etc. can be used. The fibers may be processed in advance.
 支持体としては、一般に、電気回路等の導電性パターンを形成する際の支持体として使用されることの多い、ポリイミド樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ガラス、セルロースナノファイバー等からなる支持体が好ましい。 As the support, a support made of polyimide resin, polyethylene terephthalate, polyethylene naphthalate, glass, cellulose nanofiber, etc., which is often used as a support for forming a conductive pattern such as an electric circuit, is generally used. preferable.
 支持体は、上記のなかでも、積層体に柔軟性を付与し、折り曲げ可能な最終製品を得るうえで可撓性樹脂材料からなることが好ましい。具体的には、一軸または二軸延伸等することによって形成されたフィルム状またはシート状の形態であることが好ましい。フィルム状またはシート状の支持体としては、例えば、ポリイミドフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム等が挙げられる。 Among the above, the support is preferably made of a flexible resin material in order to impart flexibility to the laminate and obtain a bendable final product. Specifically, it is preferably in the form of a film or sheet formed by uniaxial or biaxial stretching. Examples of film-like or sheet-like supports include polyimide film, polyethylene terephthalate film, polyethylene naphthalate film, polybutylene terephthalate film and the like.
 支持体の形状がフィルム状またはシート状である場合、特に厚さは限定されるものではないが、柔軟性や折り曲げ性を考慮すると、通常、1~5,000μm程度であり、1~500μmであることがより好ましく、1~200μmであることがより好ましい。 When the support is in the form of a film or a sheet, the thickness is not particularly limited. more preferably 1 to 200 μm.
 支持体表面は、後記するプライマー層との密着性をより高めるため、必要に応じて、平滑性を失わない程度の微細な凹凸を形成したり、ヒドロキシル基、カルボニル基、カルボキシル基等の官能基の導入のために表面処理されていてもよい。例えば、コロナ放電処理等のプラズマ放電処理、紫外線処理等の乾式処理、水、酸・アルカリ等の水溶液または有機溶剤等を用いる湿式処理等の方法が挙げられる。 In order to further enhance the adhesion to the primer layer described later, the surface of the support may, if necessary, have fine irregularities that do not lose its smoothness, or may have functional groups such as hydroxyl, carbonyl, and carboxyl groups. may be surface treated for the introduction of Examples thereof include plasma discharge treatment such as corona discharge treatment, dry treatment such as ultraviolet treatment, and wet treatment using an aqueous solution of water, an acid or an alkali, or an organic solvent.
<プライマー層>
 プライマー層は、上記した支持体と後記する金属粒子層との密着性を向上させる機能を有するものである。本発明において、プライマー層は、重量平均分子量が10,000~100,000の範囲にあるフェノキシ樹脂を必須成分として含む。本発明においては、プライマー層に高分子量のフェノキシ樹脂を用いることにより、ポリマーの伸度を向上させ、さらに弾性率を向上させることにより、支持体と金属めっき層との密着性を向上させることができる。さらに、高分子量のフェノキシ樹脂の使用により、長期耐熱試験中の熱によるポリマーの分解などの劣化を抑制できることから、長期耐熱試験後においても、金属めっき層の密着性を維持することができる。
<Primer layer>
The primer layer has the function of improving the adhesion between the support and the metal particle layer described later. In the present invention, the primer layer contains, as an essential component, a phenoxy resin having a weight average molecular weight in the range of 10,000 to 100,000. In the present invention, by using a high-molecular-weight phenoxy resin in the primer layer, the elongation of the polymer is improved, and furthermore the elastic modulus is improved, thereby improving the adhesion between the support and the metal plating layer. can. Furthermore, the use of a high-molecular-weight phenoxy resin can suppress deterioration such as decomposition of the polymer due to heat during the long-term heat resistance test, so the adhesion of the metal plating layer can be maintained even after the long-term heat resistance test.
 フェノキシ樹脂は、2価のフェノール化合物とエピクロロヒドリンとの反応、または、2価のエポキシ化合物と2価のフェノール化合物とを反応させて得られる、ポリヒドロキシポリエーテルである。2価のフェノール化合物としてはビスフェノール類が挙げられる。フェノキシ樹脂としては、例えば、ビスフェノールA構造(骨格)を有するフェノキシ樹脂、ビスフェノールF構造を有するフェノキシ樹脂、ビスフェノールS構造を有するフェノキシ樹脂、ビスフェノールM構造を有するフェノキシ樹脂、ビスフェノールP構造を有するフェノキシ樹脂、ビスフェノールZ構造を有するフェノキシ樹脂等が挙げられる。その他、ノボラック構造、アントラセン構造、フルオレン構造、ジシクロペンタジエン構造、ノルボルネン構造、ナフタレン構造、ビフェニル構造、アダマンタン構造等の骨格構造を有するフェノキシ樹脂等が挙げられる。これらフェノキシ樹脂は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらのなかでも、ビスフェノール構造を有するものが好ましく、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格がより好ましい。また、フェノキシ樹脂の末端は、フェノール性水酸基、エポキシ基等のいずれの官能基であってもよい。 A phenoxy resin is a polyhydroxy polyether obtained by reacting a dihydric phenol compound and epichlorohydrin or by reacting a dihydric epoxy compound and a dihydric phenol compound. Examples of dihydric phenol compounds include bisphenols. Examples of phenoxy resins include phenoxy resins having a bisphenol A structure (skeleton), phenoxy resins having a bisphenol F structure, phenoxy resins having a bisphenol S structure, phenoxy resins having a bisphenol M structure, phenoxy resins having a bisphenol P structure, Examples include phenoxy resins having a bisphenol Z structure. In addition, phenoxy resins having a skeletal structure such as a novolac structure, anthracene structure, fluorene structure, dicyclopentadiene structure, norbornene structure, naphthalene structure, biphenyl structure, and adamantane structure are also included. These phenoxy resins may be used singly or in combination of two or more. Among these, those having a bisphenol structure are preferred, and bisphenol A skeleton, bisphenol F skeleton, and bisphenol S skeleton are more preferred. Moreover, the terminal of the phenoxy resin may be any functional group such as a phenolic hydroxyl group or an epoxy group.
 本発明において、使用するフェノキシ樹脂の重量平均分子量は10,000~100,000の範囲である。分子量が10,000以上であると長期耐熱試験後のめっき密着力が高くなり、また、分子量が100,000以下であると有機溶剤への溶解性が向上し、プライマー層を形成する際の塗工液の粘度が適当になるため、ハンドリングが良好となる。フェノキシ樹脂の好ましい重量平均分子量は20,000~50,000であり、より好ましくは22,000~50,000である。なお、フェノキシ樹脂の重量平均分子量は上記反応において、エポキシ樹脂とフェノール樹脂とのモル比や反応時間により調整することができる。なお、本明細書において、重量平均分子量は、後述するゲルパーミエーションクロマトグラフィー(GPC)で測定した、標準ポリスチレンで換算した値を採用した。GPCの測定には、測定装置として高速GPC装置(HLC-8420GPC、東ソー株式会社製)を用い、カラムはTSKgelG5000HxL/G4000HxL/G3000HxL/G2000HxL(東ソー株式会社製)を直列に連結して使用し、溶離液としてテトラヒドロフランを用い、RI検出器を用いて測定した。また、フェノキシ樹脂とは、一般的に高分子量のエポキシ樹脂を意味するが、本明細書において「エポキシ樹脂」とは、重量平均分子量が10,000未満のものを意味するものとし、上記したフェノキシ樹脂とは区別するものとする。 The weight average molecular weight of the phenoxy resin used in the present invention is in the range of 10,000 to 100,000. If the molecular weight is 10,000 or more, the plating adhesion after a long-term heat resistance test will be high. Since the viscosity of the working fluid becomes appropriate, the handling is improved. The weight average molecular weight of the phenoxy resin is preferably 20,000-50,000, more preferably 22,000-50,000. The weight average molecular weight of the phenoxy resin can be adjusted by the molar ratio of the epoxy resin and the phenol resin and the reaction time in the above reaction. In addition, in this specification, the weight average molecular weight employ|adopted the value converted into standard polystyrene measured by the gel permeation chromatography (GPC) mentioned later. For GPC measurement, a high-speed GPC device (HLC-8420GPC, manufactured by Tosoh Corporation) is used as a measurement device, and columns TSKgelG5000HxL / G4000HxL / G3000HxL / G2000HxL (manufactured by Tosoh Corporation) are used in series and used for elution. Tetrahydrofuran was used as a liquid, and the measurement was performed using an RI detector. In addition, phenoxy resin generally means a high molecular weight epoxy resin. It shall be distinguished from resin.
 上記したフェノキシ樹脂として市販のものを使用してもよく、例えば、三菱ケミカル株式会社製の1256、4250(いずれもビスフェノールA骨格含有フェノキシ樹脂)、4275(ビスA/ビスF混合タイプ)、YL6794、YL7213、YL7290、YL7482、YL7553、YX8100(ビスフェノールS骨格含有フェノキシ樹脂)、X6954(ビスフェノールアセトフェノン骨格含有フェノキシ樹脂、YX7200(シクロヘキサン骨格含有フェノキシ樹脂)、日鉄ケミカル&マテリアル株式会社製のYP-70(ビスフェノールF型フェノキシ樹脂)、ZX-1356-2(ビスフェノールAおよびビスフェノールF骨格含有フェノキシ樹脂)、YPB-40PXM40(臭素含有フェノキシ樹脂)、ERF-001M30(リン含有フェノキシ樹脂)、FX―280、FX―293、FX-310(フルオレン骨格含有フェノキシ樹脂)、Gabriel Phenoxies社製のPKHA、PKHB、PKHB+、PKHC、PKHH、PKHJ、PKFE等が挙げられる。 Commercially available phenoxy resins may be used, for example, Mitsubishi Chemical Corporation 1256, 4250 (both bisphenol A skeleton-containing phenoxy resins), 4275 (bis A/bis F mixed type), YL6794, YL7213, YL7290, YL7482, YL7553, YX8100 (phenoxy resin containing bisphenol S skeleton), X6954 (phenoxy resin containing bisphenolacetophenone skeleton, YX7200 (phenoxy resin containing cyclohexane skeleton), YP-70 (bisphenol F-type phenoxy resin), ZX-1356-2 (phenoxy resin containing bisphenol A and bisphenol F skeleton), YPB-40PXM40 (bromine-containing phenoxy resin), ERF-001M30 (phosphorus-containing phenoxy resin), FX-280, FX-293 , FX-310 (fluorene skeleton-containing phenoxy resin), PKHA, PKHB, PKHB+, PKHC, PKHH, PKHJ, PKFE manufactured by Gabriel Phenoxies.
 本発明において、プライマー層には、上記したフェノキシ樹脂と併用してエポキシ樹脂が含まれていることが好ましい。フェノキシ樹脂とエポキシ樹脂とを併用することにより、より一層、常態時および長期耐熱試験後の金属めっき層密着性が向上する。 In the present invention, the primer layer preferably contains an epoxy resin in combination with the phenoxy resin described above. The combined use of the phenoxy resin and the epoxy resin further improves the adhesion of the metal plating layer under normal conditions and after the long-term heat resistance test.
 エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、アルコールエーテル型エポキシ樹脂、テトラブロムビスフェノールA型エポキシ樹脂、ナフタレン型エポキシ樹脂、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド誘導体由来の構造を有するリン含有エポキシ化合物、ジシクロペンタジエン誘導体由来の構造を有するエポキシ樹脂、エポキシ化大豆油等の油脂のエポキシ化物等が挙げられる。これらエポキシ樹脂は、1種単独で使用してもよく、2種以上を併用してもよい。 Epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, cresol novolak type epoxy resin, phenol novolak type epoxy resin, bisphenol A novolak type epoxy resin, alcohol ether type epoxy resin, tetrabromobisphenol. A-type epoxy resin, naphthalene-type epoxy resin, phosphorus-containing epoxy compound having a structure derived from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative, epoxy having a structure derived from dicyclopentadiene derivative Examples thereof include resins and epoxidized oils and fats such as epoxidized soybean oil. These epoxy resins may be used individually by 1 type, and may use 2 or more types together.
 フェノキシ樹脂と併用するエポキシ樹脂としては、金属めっき層の密着性をより向上できることから、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂等の芳香族エポキシ樹脂が好ましく、特に、ビスフェノールA型エポキシ樹脂が好ましい。 As the epoxy resin to be used in combination with the phenoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, cresol novolac type epoxy resin, and phenol novolac type epoxy resin can be used because they can further improve the adhesion of the metal plating layer. Aromatic epoxy resins such as bisphenol A novolac type epoxy resins are preferred, and bisphenol A type epoxy resins are particularly preferred.
 エポキシ樹脂のエポキシ当量は、密着性をより向上できることから、100~5,000g/当量であることが好ましく、120~2,000g/当量であることがより好ましく、120~250g/当量であることがさらに好ましい。 The epoxy equivalent of the epoxy resin is preferably 100 to 5,000 g/equivalent, more preferably 120 to 2,000 g/equivalent, and 120 to 250 g/equivalent, because it can further improve adhesion. is more preferred.
 プライマー層中のフェノキシ樹脂に加えてエポキシ樹脂がさらに含まれる場合、フェノキシ樹脂とエポキシ樹脂との配合割合は、質量基準において90:10~10:90であることが好ましく、85:15~15:80であることがより好ましい。 When an epoxy resin is further included in addition to the phenoxy resin in the primer layer, the mixing ratio of the phenoxy resin and the epoxy resin is preferably 90:10 to 10:90, preferably 85:15 to 15:10 by mass. 80 is more preferred.
 また、本発明において、プライマー層は、アミノトリアジン環を有する化合物を含むことが好ましい。アミノトリアジン環を有する化合物は、低分子量の化合物であっても、より高分子量の樹脂等の化合物であってもよい。 Also, in the present invention, the primer layer preferably contains a compound having an aminotriazine ring. A compound having an aminotriazine ring may be a low molecular weight compound or a higher molecular weight compound such as a resin.
 アミノトリアジン環を有する低分子量の化合物としては、アミノトリアジン環を有する各種添加剤を用いることができる。市販品としては、アミノトリアジン環と水酸基を有する化合物であるVT、VD-3、VD-4(いずれも四国化成株式会社)や、アミノトリアジン環とエトキシシリル基を有する化合物であるVD-5(四国化成株式会社)等が挙げられる。これらは、1種単独で使用してもよく、2種以上併用してもよい。 Various additives having an aminotriazine ring can be used as the low-molecular-weight compound having an aminotriazine ring. Commercially available products include VT, VD-3 and VD-4 (all of which are from Shikoku Kasei Co., Ltd.), which are compounds having an aminotriazine ring and a hydroxyl group, and VD-5 (which is a compound having an aminotriazine ring and an ethoxysilyl group). Shikoku Kasei Co., Ltd.) and the like. These may be used individually by 1 type, and may be used together 2 or more types.
 アミノトリアジン環を有する低分子量の化合物の使用量としては、上記した樹脂成分100質量部に対して、0.1~50質量部が好ましく、0.5~10質量部がより好ましい。 The amount of the low-molecular-weight compound having an aminotriazine ring is preferably 0.1 to 50 parts by mass, more preferably 0.5 to 10 parts by mass, based on 100 parts by mass of the resin component.
 アミノトリアジン環を有する樹脂としては、樹脂のポリマー鎖中にアミノトリアジン環が共有結合で導入されているものが挙げられる。具体的には、アミノトリアジン変性ノボラック樹脂が好ましい。 Examples of resins having aminotriazine rings include resins in which aminotriazine rings are covalently introduced into the polymer chain of the resin. Specifically, an aminotriazine-modified novolak resin is preferred.
 アミノトリアジン変性ノボラック樹脂は、アミノトリアジン環構造とフェノール構造とがメチレン基を介して結合したノボラック樹脂である。アミノトリアジン変性ノボラック樹脂は、例えば、メラミン、ベンゾグアナミン、アセトグアナミン等のアミノトリアジン化合物と、フェノール、クレゾール、ブチルフェノール、ビスフェノールA、フェニルフェノール、ナフトール、レゾルシン等のフェノール化合物と、ホルムアルデヒドとを、アルキルアミン等の弱アルカリ性触媒の存在下または無触媒で、中性付近で共縮合反応させるか、メチルエーテル化メラミン等のアミノトリアジン化合物のアルキルエーテル化物と、フェノール化合物とを反応させることにより得ることができる。 Aminotriazine-modified novolak resin is a novolac resin in which an aminotriazine ring structure and a phenol structure are bonded via a methylene group. Aminotriazine-modified novolak resins are prepared, for example, by combining aminotriazine compounds such as melamine, benzoguanamine and acetoguanamine; In the presence or absence of a weakly alkaline catalyst, a co-condensation reaction is carried out near neutrality, or an alkyl etherified product of an aminotriazine compound such as methyl-etherified melamine is reacted with a phenol compound.
 アミノトリアジン変性ノボラック樹脂は、メチロール基を実質的に有していないものが好ましい。また、アミノトリアジン変性ノボラック樹脂には、その製造時に副生成物として生じるアミノトリアジン構造のみがメチレン結合した分子、フェノール構造のみがメチレン結合した分子等が含まれていても構わない。さらに、若干量の未反応原料が含まれていてもよい。 The aminotriazine-modified novolac resin preferably has substantially no methylol groups. The aminotriazine-modified novolac resin may also contain molecules in which only the aminotriazine structure is methylene-bonded, molecules in which only the phenol structure is methylene-bonded, and the like, which are produced as by-products during the production of the aminotriazine-modified novolac resin. In addition, it may contain some unreacted raw materials.
 フェノール構造としては、例えば、フェノール残基、クレゾール残基、ブチルフェノール残基、ビスフェノールA残基、フェニルフェノール残基、ナフトール残基、レゾルシン残基等が挙げられる。また、ここでの残基とは、芳香環の炭素に結合している水素原子が少なくとも1つが抜けた構造を意味する。例えば、フェノールの場合は、ヒドロキシフェニル基を意味する。 Phenolic structures include, for example, phenol residues, cresol residues, butylphenol residues, bisphenol A residues, phenylphenol residues, naphthol residues, resorcin residues, and the like. In addition, the term "residue" as used herein means a structure in which at least one hydrogen atom bonded to a carbon atom of an aromatic ring is removed. For example, phenol means a hydroxyphenyl group.
 トリアジン構造としては、例えば、メラミン、ベンゾグアナミン、アセトグアナミン等のアミノトリアジン化合物由来の構造が挙げられる。 Examples of triazine structures include structures derived from aminotriazine compounds such as melamine, benzoguanamine, and acetoguanamine.
 フェノール構造およびトリアジン構造は、1種単独で使用してもよく、2種以上を併用してもよい。また、密着性をより向上できることから、フェノール構造としてはフェノール残基が好ましく、トリアジン構造としてはメラミン由来の構造が好ましい。 The phenol structure and triazine structure may be used singly or in combination of two or more. Further, the phenol structure is preferably a phenol residue, and the triazine structure is preferably a melamine-derived structure, since the adhesion can be further improved.
 また、アミノトリアジン変性ノボラック樹脂の水酸基価は、密着性をより向上できることから、50~200mgKOH/gであることが好ましく、80~180mgKOH/gであることがより好ましい。 In addition, the hydroxyl value of the aminotriazine-modified novolac resin is preferably 50 to 200 mgKOH/g, more preferably 80 to 180 mgKOH/g, because it can further improve adhesion.
 アミノトリアジン変性ノボラック樹脂は、1種単独で使用してもよく、2種以上を併用してもよい。また、エポキシ樹脂とアミノトリアジン変性ノボラック樹脂とを併用して用いる場合は、密着性向上の観点から、アミノトリアジン変性ノボラック樹脂中のフェノール性水酸基(x)とエポキシ樹脂中のエポキシ基(y)とのモル比(y/x)は、0.1~5の範囲であることが好ましく、0.2~3の範囲であることがより好ましい。 The aminotriazine-modified novolak resin may be used singly or in combination of two or more. When an epoxy resin and an aminotriazine-modified novolak resin are used in combination, from the viewpoint of improving adhesion, the phenolic hydroxyl group (x) in the aminotriazine-modified novolak resin and the epoxy group (y) in the epoxy resin is preferably in the range of 0.1-5, more preferably in the range of 0.2-3.
 プライマー層は、上記したエポキシ樹脂やアミノトリアジン環を有する化合物に加えて、必要に応じて、さらに架橋剤が含まれていてもよい。架橋剤としては、多価カルボン酸を用いることが好ましい。多価カルボン酸としては、例えば、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、コハク酸等が挙げられる。これら架橋剤は、1種単独で使用してもよく、2種以上を併用してもよい。また、これらの架橋剤の中でも、密着性をより向上できることから、無水トリメリット酸が好ましい。 The primer layer may further contain a cross-linking agent, if necessary, in addition to the epoxy resin and the compound having an aminotriazine ring described above. As a cross-linking agent, it is preferable to use a polyvalent carboxylic acid. Examples of polycarboxylic acids include trimellitic anhydride, pyromellitic anhydride, maleic anhydride, and succinic acid. These crosslinking agents may be used individually by 1 type, and may use 2 or more types together. Among these cross-linking agents, trimellitic anhydride is preferable because it can further improve adhesion.
 また、エポキシ基と各種硬化剤との反応を促進するため、硬化触媒を用いてもよい。前記硬化触媒としては、第3級アミン、イミダゾール化合物、有機ホスフィン、ルイス酸触媒等が挙げられる。 A curing catalyst may also be used to promote the reaction between the epoxy group and various curing agents. Examples of the curing catalyst include tertiary amines, imidazole compounds, organic phosphines, and Lewis acid catalysts.
 第3級アミンとしては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリアミルアミン、トリヘキシルアミン、トリオクチルアミン、トリラウリルアミン、ジメチルエチルアミン、ジメチルプロピルアミン、ジメチルブチルアミン、ジメチルアミルアミン、ジメチルヘキシルアミン、ジメチルシクロヘキシルアミン、ジメチルオクチルアミン、ジメチルラウリルアミン、トリアリルアミン、テトラメチルエチレンジアミン、トリエチレンジアミン(トリエチレンテトラミン:TETA)、N-メチルモルフォリン、4,4’-(オキシジ-2,1-エタンジイル)ビス-モルフォリン、N,N-ジメチルベンジルアミン、ピリジン、ピコリン、ジメチルアミノメチルフェノール、トリスジメチルアミノメチルフェノール、トリエタノールアミン、N,N’-ジメチルピペラジン、テトラメチルブタンジアミン、ビス(2,2-モルフォリノエチル)エーテル、ビス(ジメチルアミノエチル)エーテル、N,N’,N’’-トリス(ジメチルアミノプロピル)ヘキサヒドロ-s-トリアジン、N,N’,N’’-トリス(ジメチルアミノエチル)ヘキサヒドロ-s-トリアジン、N,N’,N’’-トリス(2-ヒドロキシエチル)ヘキサヒドロ-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、1,8-ジアザビシクロ[5.4.0]ウンデセン-1、1,4-ジアザビシクロ[2.2.2]オクタン、1,8-ジアザビシクロ[5.4.0]ウンデク-7-エン(DBU)等が挙げられる。 Tertiary amines include, for example, trimethylamine, triethylamine, tripropylamine, tributylamine, triamylamine, trihexylamine, trioctylamine, trilaurylamine, dimethylethylamine, dimethylpropylamine, dimethylbutylamine, dimethylamylamine, dimethylhexylamine, dimethylcyclohexylamine, dimethyloctylamine, dimethyllaurylamine, triallylamine, tetramethylethylenediamine, triethylenediamine (triethylenetetramine: TETA), N-methylmorpholine, 4,4'-(oxydi-2,1 -ethanediyl)bis-morpholine, N,N-dimethylbenzylamine, pyridine, picoline, dimethylaminomethylphenol, trisdimethylaminomethylphenol, triethanolamine, N,N'-dimethylpiperazine, tetramethylbutanediamine, bis( 2,2-morpholinoethyl) ether, bis(dimethylaminoethyl) ether, N,N′,N″-tris(dimethylaminopropyl)hexahydro-s-triazine, N,N′,N″-tris( dimethylaminoethyl)hexahydro-s-triazine, N,N',N''-tris(2-hydroxyethyl)hexahydro-s-triazine, 2,4-diamino-6-[2'-methylimidazolyl-(1' )]-ethyl-s-triazine, 1,8-diazabicyclo[5.4.0]undecene-1, 1,4-diazabicyclo[2.2.2]octane, 1,8-diazabicyclo[5.4.0 ] and undec-7-ene (DBU).
 イミダゾール化合物としては、例えば、1-ベンジル-2-イミダゾール(1B2MZ)、2-エチル-4-イミダゾール、2-ウンデルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(2E4MZ)、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(2P4MHZ)、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール(TBZ)等が挙げられる。 Examples of imidazole compounds include 1-benzyl-2-imidazole (1B2MZ), 2-ethyl-4-imidazole, 2-undelimidazole, 1,2-dimethylimidazole, 1-benzyl-2-phenylimidazole, 2- Methylimidazole, 2-ethyl-4-methylimidazole (2E4MZ), 2-phenyl-4-methyl-5-hydroxymethylimidazole (2P4MHZ), 2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole (TBZ) and the like.
 有機ホスフィンとしては、例えば、トリフェニルホスフィン(TPP)、トリフェニルホスフィン-トリフェニルボレート、トリス(p-メトキシフェニル)ホスフィン、テトラフェニルホスフォニウム・テトラフェニルボレート等が挙げられる。 Examples of organic phosphines include triphenylphosphine (TPP), triphenylphosphine-triphenylborate, tris(p-methoxyphenyl)phosphine, tetraphenylphosphonium/tetraphenylborate, and the like.
 ルイス酸触媒としては、例えば、三フッ化ホウ素アミン錯体、三塩化ホウ素アミン錯体、三フッ化ホウ素エチルアミン錯体などのルイス酸触媒等が挙げられる。 Examples of Lewis acid catalysts include Lewis acid catalysts such as boron trifluoride amine complexes, boron trichloride amine complexes, and boron trifluoride ethylamine complexes.
 これらの硬化触媒の中でも、密着性がより向上できることから、第3級アミン、イミダゾール化合物を用いることが好ましく、イミダゾール化合物を用いることがより好ましい。また、これらの硬化触媒は、1種で用いることも2種以上併用することもできる。また、前記硬化触媒の好適な配合量は、固形分換算で、プライマー層に含まれる全樹脂の合計量100質量部に対して、0.3~20質量部が好ましく、0.5~15質量部がより好ましい。 Among these curing catalysts, it is preferable to use tertiary amines and imidazole compounds, and more preferably to use imidazole compounds, because the adhesion can be further improved. Moreover, these curing catalysts can be used alone or in combination of two or more. In addition, the preferred amount of the curing catalyst is 0.3 to 20 parts by mass, preferably 0.5 to 15 parts by mass, based on the total amount of 100 parts by mass of all the resins contained in the primer layer, in terms of solid content. part is more preferred.
 また、プライマー層は、必要に応じて、上記した以外の成分として、その他の樹脂が含まれていてもよい。その他の樹脂としては、例えば、ウレタン樹脂、アクリル樹脂、イミド樹脂、アミド樹脂、メラミン樹脂、フェノール樹脂、尿素ホルムアルデヒド樹脂、フェノールをブロック化剤として用いたブロックポリイソシアネート、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。これらバインダー樹脂は、1種単独で使用してもよく、2種以上を併用してもよい。 In addition, the primer layer may contain other resins as components other than those described above, if necessary. Other resins include, for example, urethane resins, acrylic resins, imide resins, amide resins, melamine resins, phenol resins, urea-formaldehyde resins, blocked polyisocyanates using phenol as a blocking agent, polyvinyl alcohol, polyvinylpyrrolidone, and the like. be done. These binder resins may be used individually by 1 type, and may use 2 or more types together.
 また、前記プライマー層を形成する際には、支持体への塗工時に塗工しやすい粘度とするため、上記成分に加えて有機溶剤を配合することが好ましい。有機溶剤としては、例えば、トルエン、酢酸エチル、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソプロピルアルコール等が挙げられる。 In addition, when forming the primer layer, it is preferable to blend an organic solvent in addition to the above components in order to obtain a viscosity that facilitates coating on the support. Examples of organic solvents include toluene, ethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and isopropyl alcohol.
 有機溶剤の使用量は、支持体へ塗工する際に用いる塗工方法、プライマー層の所望とする厚さにより、適宜調整することができる。 The amount of the organic solvent used can be appropriately adjusted according to the coating method used when coating the support and the desired thickness of the primer layer.
 さらに、プライマー層を形成する塗工液には、必要に応じて、皮膜形成助剤、レベリング剤、増粘剤、撥水剤、消泡剤、酸化防止剤、等の公知の添加剤を適宜添加して使用してもよい。 Further, the coating solution for forming the primer layer may contain known additives such as film-forming aids, leveling agents, thickeners, water repellents, antifoaming agents, antioxidants, etc., as necessary. You may add and use it.
 プライマー層は、支持体の表面の一部または全部に上記した成分を含む塗工液を塗布し、塗工液中に含まれる有機溶剤を加熱ないし乾燥して除去することによって形成することができる。 The primer layer can be formed by applying a coating liquid containing the above-described components to part or all of the surface of the support, and removing the organic solvent contained in the coating liquid by heating or drying. .
 塗工方法としては、特に制限されるものではなく従来公知の塗布法を適用でき、例えば、グラビア方式、コーティング方式、スクリーン方式、ローラー方式、ロータリー方式、スプレー方式、キャピラリー方式等の方法が挙げられる。 The coating method is not particularly limited, and conventionally known coating methods can be applied. Examples thereof include gravure, coating, screen, roller, rotary, spray, and capillary methods. .
 支持体の表面に塗工液を塗布した後、その塗布膜に含まれる有機溶剤を除去する方法としては、例えば、乾燥機を用いて乾燥させ、有機溶剤を揮発させる方法が一般的である。乾燥温度としては、用いた有機溶剤を揮発させることが可能で、かつ支持体に熱変形等の悪影響を与えない範囲の温度に設定すればよい。 After applying the coating liquid to the surface of the support, the method for removing the organic solvent contained in the coating film is generally, for example, drying with a dryer to volatilize the organic solvent. The drying temperature may be set within a range in which the organic solvent used can be volatilized and the support is not adversely affected by heat deformation or the like.
 プライマー層厚さは、本発明の積層体を用いる用途によって適宜調整してよいが、支持体と後述する金属粒子層との密着性をより向上する範囲が好ましく、プライマー層の厚さは、10nm~1μmであることが好ましく、10nm~500nmであることがより好ましい。プライマー層の厚さは、支持体への塗工液の塗布量により調整することができる。 The thickness of the primer layer may be appropriately adjusted depending on the use of the laminate of the present invention, but it is preferably within a range that further improves the adhesion between the support and the metal particle layer described later, and the thickness of the primer layer is 10 nm. It is preferably ˜1 μm, more preferably 10 nm to 500 nm. The thickness of the primer layer can be adjusted by the amount of the coating liquid applied to the support.
 プライマー層の表面は、後記する金属粒子層との密着性の観点から、必要に応じて、コロナ放電処理法等のプラズマ放電処理法、紫外線処理法等の乾式処理法、水や酸性またはアルカリ性薬液、有機溶剤等を用いた湿式処理法によって、表面処理が行われていてもよい。 From the viewpoint of adhesion with the metal particle layer described later, the surface of the primer layer may be treated, if necessary, by a plasma discharge treatment method such as a corona discharge treatment method, a dry treatment method such as an ultraviolet treatment method, water or an acidic or alkaline chemical solution. The surface treatment may be performed by a wet treatment method using an organic solvent or the like.
<金属粒子層>
 金属粒子層は、上記したプライマー層上に設けられるものであり、後記する金属めっき層を形成するために設けられる層である。金属粒子層は、金属粒子と有機化合物との複合体を含む層であることが好ましい。本発明においては、金属粒子層は、金属粒子とカチオン性基を有する化合物とを含むことがより好ましい。
<Metal particle layer>
The metal particle layer is provided on the primer layer described above, and is a layer provided for forming the metal plating layer described later. The metal particle layer is preferably a layer containing a composite of metal particles and an organic compound. In the present invention, the metal particle layer more preferably contains metal particles and a compound having a cationic group.
 金属粒子を構成する金属としては、遷移金属またはその化合物が挙げられ、これらのなかでもイオン性の遷移金属が好ましい。イオン性の遷移金属としては、銅、銀、金、ニッケル、パラジウム、白金、コバルト等が挙げられ、後記する金属めっき層の形成性の観点からは、銀が好ましい。なお、本発明において金属粒子とは、上記した金属からなる粒子状または繊維状のものをいうものとする。 The metals that make up the metal particles include transition metals and their compounds, and among these, ionic transition metals are preferred. Examples of ionic transition metals include copper, silver, gold, nickel, palladium, platinum, cobalt, etc. From the viewpoint of formability of the metal plating layer described later, silver is preferable. In the present invention, the term "metal particles" refers to particulate or fibrous particles made of the metals described above.
 粒子状の金属を使用する場合は、抵抗値をより低減できる観点から、平均粒子径が1~100nmであることが好ましく、1~50nmであることがより好ましい。なお、本明細書において、平均粒子径は、金属粒子を分散良溶媒にて希釈し、動的光散乱法により測定した体積平均値(D50)を意味する。また、繊維状の金属を使用する場合も、抵抗値をより低減できる観点から、繊維の直径が5~100nmであることが好ましく、5~50nmであることがより好ましい。また、繊維長は、0.1~100μmであることが好ましく、0.1~30μmであることがより好ましい。 When using particulate metal, the average particle diameter is preferably 1 to 100 nm, more preferably 1 to 50 nm, from the viewpoint of further reducing the resistance value. In addition, in this specification, the average particle diameter means the volume average value (D50) measured by the dynamic light scattering method after diluting the metal particles with a good dispersion solvent. Also when fibrous metal is used, the fiber diameter is preferably 5 to 100 nm, more preferably 5 to 50 nm, from the viewpoint of further reducing the resistance value. Also, the fiber length is preferably 0.1 to 100 μm, more preferably 0.1 to 30 μm.
 金属粒子と併用して使用される有機化合物として、カチオン性基を有する化合物を好ましく用いることができる。カチオン性基を有する化合物は、上記した金属粒子を良好に分散させるとともに、プライマー層の構成成分に含まれる官能基、例えばエポキシ樹脂に含まれるエポキシ基と反応して、プライマー層と金属粒子層との界面の密着性をさらに向上させる機能を有する点で好ましい。また、カチオン性基を有する化合物は、同じく金属粒子層中に含まれる金属粒子に表面処理されたものであっても良い。 A compound having a cationic group can be preferably used as the organic compound used in combination with the metal particles. The compound having a cationic group disperses the metal particles satisfactorily, and reacts with the functional groups contained in the components of the primer layer, such as the epoxy groups contained in the epoxy resin, to form the primer layer and the metal particle layer. It is preferable in that it has a function of further improving the adhesion of the interface. Also, the compound having a cationic group may be a surface-treated metal particle contained in the metal particle layer.
 カチオン性基を有する化合物としては、塩基性窒素原子含有基を有する化合物を好ましく使用でき、例えば、ポリエチレンイミン、ポリプロピレンイミン等のポリアルキレンイミン、ポリアルキレンイミンにポリオキシアルキレンが付加した化合物等を使用することができる。ポリアルキレンイミンにポリオキシアルキレンが付加した化合物は、金属粒子の水分散安定性を向上できることから好ましい。 As the compound having a cationic group, a compound having a basic nitrogen atom-containing group can be preferably used. For example, polyalkyleneimine such as polyethyleneimine and polypropyleneimine, a compound obtained by adding polyoxyalkylene to polyalkyleneimine, and the like are used. can do. A compound in which polyoxyalkylene is added to polyalkyleneimine is preferable because it can improve the water dispersion stability of metal particles.
 ポリオキシアルキレンとしては、例えばポリオキシエチレン、ポリ(オキシエチレン-オキシプロピレン)等のランダム構造またはブロック構造を使用することができる。ポリオキシアルキレンとしては、金属粒子の水分散安定性の観点から、オキシエチレン単位を有するものを使用することが好ましく、ポリオキシアルキレン全体に対して、オキシエチレン単位を10~90質量%の範囲で有するものを使用することが好ましい。 As the polyoxyalkylene, for example, a random structure or block structure such as polyoxyethylene and poly(oxyethylene-oxypropylene) can be used. As the polyoxyalkylene, it is preferable to use one having an oxyethylene unit from the viewpoint of the water dispersion stability of the metal particles. It is preferred to use the one with
 ポリアルキレンイミンにポリオキシアルキレンが付加した化合物としては、例えばポリエチレンイミンからなる構造と、ポリエチレンオキサイド構造等のポリオキシアルキレン構造とを有するものを使用することができる。 As a compound in which polyoxyalkylene is added to polyalkyleneimine, for example, a compound having a structure composed of polyethyleneimine and a polyoxyalkylene structure such as a polyethylene oxide structure can be used.
 ポリエチレンイミンおよびポリオキシアルキレンは、直鎖状の結合したものであってもよく、ポリエチレンイミンからなる主鎖に対して、その側鎖にポリオキシアルキレンがグラフトし結合したものであってもよい。 The polyethyleneimine and the polyoxyalkylene may be linearly bonded, or may be a main chain composed of polyethyleneimine and a side chain grafted with the polyoxyalkylene.
 ポリアルキレンイミンにポリオキシアルキレンが付加した化合物としては、具体的には、ポリエチレンイミンとポリオキシエチレンとの共重合体、その主鎖中に存在するイミノ基の一部と、エチレンオキサイドとが付加反応して得られた化合物等を使用することができる。それらはブロック構造を有していることが好ましい。 Specific examples of the compound in which polyoxyalkylene is added to polyalkyleneimine include a copolymer of polyethyleneimine and polyoxyethylene, a part of the imino groups present in the main chain, and ethylene oxide. A compound or the like obtained by the reaction can be used. They preferably have a block structure.
 ポリアルキレンイミンにポリオキシアルキレンが付加した化合物としては、ポリアルキレンイミンが有するアミノ基と、ポリオキシエチレングリコールが有する水酸基と、エポキシ樹脂が有するエポキシ基とを反応させることによって得られたものを使用することもできる。 As the compound in which polyoxyalkylene is added to polyalkyleneimine, those obtained by reacting the amino group of polyalkyleneimine, the hydroxyl group of polyoxyethylene glycol, and the epoxy group of epoxy resin are used. You can also
 ポリアルキレンイミンとしては、市販品を使用してもよく、例えば、エポミン(登録商標)を用いることができ、SP-003、SP-006、SP-012、SP-018、SP-200、P-1000(以上、株式会社日本触媒)を使用することができる。 As the polyalkyleneimine, commercially available products may be used. 1000 (above, Nippon Shokubai Co., Ltd.) can be used.
 金属粒子層には、上記した金属粒子に加えてエポキシ樹脂が含まれていてもよい。エポキシ樹脂としては、上記プライマー層において説明したものと同様のものを使用することができるが、カチオン性基を有する化合物として塩基性窒素原子含有基を有する化合物を使用する場合には、エポキシ樹脂が塩基性窒素原子含有基を有する化合物と反応してしまうことを抑制する観点から、脂肪族エポキシ樹脂を好ましく使用でき、なかでも脂環式エポキシ樹脂をより好ましく使用することができる。 The metal particle layer may contain an epoxy resin in addition to the metal particles described above. As the epoxy resin, the same one as described in the primer layer can be used. However, when a compound having a basic nitrogen atom-containing group is used as the compound having a cationic group, the epoxy resin Aliphatic epoxy resins are preferably used, and alicyclic epoxy resins are more preferably used, from the viewpoint of suppressing reaction with a compound having a basic nitrogen atom-containing group.
 脂肪族エポキシ樹脂としては、例えば、ネオペンチルグリコールジグリシジルエーテル、ジメチロールシクロヘキサンジグリシジルエーテル、1,4-シクロヘキサンジグリシジルエーテル、1,3-シクロヘキサンジグリシジルエーテル、1,2-シクロヘキサンジグリシジルエーテル、ジメチロールジシクロペンタジエンジグリシジルエーテル、ヘキサヒドロフタル酸ジグリシジルエステル、ヘキサヒドロテレフタル酸ジグリシジルエステル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル等の非環式脂肪族エポキシ樹脂や、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、ε-カプロラクトン変性3',4'-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、リモネンジオキシド、ジシクロペンタジエンジオキシド、水添ビスフェノールA型ジグリシジルエーテル等の脂環式エポキシ樹脂が挙げられる。これら脂肪族エポキシ樹脂は、1種単独で使用してもよく、2種以上を併用してもよい。 Examples of aliphatic epoxy resins include neopentyl glycol diglycidyl ether, dimethylolcyclohexanediglycidyl ether, 1,4-cyclohexanediglycidyl ether, 1,3-cyclohexanediglycidyl ether, 1,2-cyclohexanediglycidyl ether, Acyclic fatty acids such as dimethylol dicyclopentadiene diglycidyl ether, hexahydrophthalic acid diglycidyl ester, hexahydroterephthalic acid diglycidyl ester, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether group epoxy resins, 3′,4′-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate, ε-caprolactone-modified 3′,4′-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate, limonene dioxide, Alicyclic epoxy resins such as dicyclopentadiene dioxide and hydrogenated bisphenol A type diglycidyl ether can be mentioned. These aliphatic epoxy resins may be used singly or in combination of two or more.
 本発明においては、金属粒子層形成用塗工液中における塩基性窒素原子含有基を有する化合物との反応抑制や、後記する溶剤との相溶性の観点から、脂環式エポキシ樹脂が好ましく、特に、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、ε-カプロラクトン変性3',4'-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレートを好ましく使用することができる。 In the present invention, alicyclic epoxy resins are preferred, particularly from the viewpoint of the suppression of reaction with compounds having basic nitrogen atom-containing groups in the metal particle layer-forming coating solution and the compatibility with solvents described later. , 3′,4′-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, and ε-caprolactone-modified 3′,4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate can be preferably used.
 上記したエポキシ樹脂として市販のものを使用してもよく、例えば、ADEKA RESIN EP-4080S、同EP-4085S、同EP-4088S(以上、株式会社ADEKA製)、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085、セロキサイド8010、EHPE 3150、EPOLEAD PB 3600、EPOLEAD PB 4700(以上、株式会社ダイセル製)、デナコール EX-121、同EX-211、同EX-212、同EX-212L、同EX-214、同EX-214L、同EX-216、同EX-216L、同EX-252、同EX-252L、同EX-321、同EX-321L、同EX-830、同EX-830L、同EX-850、同EX-850L(以上、ナガセケムテックス株式会社製)、ショウフリーCDMDG、同PETG(以上、昭和電工株式会社製)等である。 Commercially available epoxy resins may be used, for example, ADEKA RESIN EP-4080S, EP-4085S, EP-4088S (manufactured by ADEKA Corporation), Celoxide 2021P, Celoxide 2081, Celoxide 2083, Celoxide 2085, Celoxide 8010, EHPE 3150, EPOLEAD PB 3600, EPOLEAD PB 4700 (manufactured by Daicel Corporation), Denacol EX-121, EX-211, EX-212, EX-212L, EX-214, Same EX-214L, Same as EX-216, Same as EX-216L, Same as EX-252, Same as EX-252L, Same as EX-321, Same as EX-321L, Same as EX-830, Same as EX-830L, Same as EX-850, Showfree EX-850L (manufactured by Nagase ChemteX Corporation), Showfree CDMDG, Showfree PETG (manufactured by Showa Denko KK), and the like.
 金属粒子層は、上記した成分を適当な溶剤に溶解ないし分散させて塗工液を調製し、プライマー層上に塗布して塗膜を形成し、塗膜を乾燥して溶剤を除去することにより形成することができる。 The metal particle layer is formed by dissolving or dispersing the above components in an appropriate solvent to prepare a coating solution, coating the primer layer to form a coating film, and drying the coating film to remove the solvent. can be formed.
 金属粒子層形成用塗工液に使用される溶剤としては、例えば蒸留水、イオン交換水、純水、超純水等の水性媒体のほか、アルコール、エーテル、エステルおよびケトン等の有機溶剤を使用することができる。 Solvents used in the coating solution for forming the metal particle layer include aqueous media such as distilled water, ion-exchanged water, pure water, and ultrapure water, as well as organic solvents such as alcohols, ethers, esters, and ketones. can do.
 アルコールとしては、例えばメタノール、エタノール、n-プロパノール、イソプロピルアルコール、n-ブタノール、イソブチルアルコール、sec-ブタノール、tert-ブタノール、ヘプタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ステアリルアルコール、アリルアルコール、シクロヘキサノール、テルピネオール、ターピネオール、ジヒドロターピネオール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル等を使用することができる。 Examples of alcohols include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol. , pentadecanol, stearyl alcohol, allyl alcohol, cyclohexanol, terpineol, terpineol, dihydroterpineol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, Tetraethylene glycol monobutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, tripropylene glycol Monobutyl ether and the like can be used.
 塗工液には、物性調整のため、アセトン、シクロヘキサノン、メチルエチルケトン等のケトン溶剤を組み合わせ使用することができる。その他、酢酸エチル、酢酸ブチル、3-メトキシブチルアセテート、3-メトキシ-3-メチル-ブチルアセテート等のエステル溶剤、トルエン等の炭化水素溶剤、特に炭素数が8以上の炭化水素溶剤を使用することができる。 The coating liquid can be used in combination with ketone solvents such as acetone, cyclohexanone, and methyl ethyl ketone to adjust physical properties. In addition, ester solvents such as ethyl acetate, butyl acetate, 3-methoxybutyl acetate, 3-methoxy-3-methyl-butyl acetate, etc., hydrocarbon solvents such as toluene, especially hydrocarbon solvents having 8 or more carbon atoms can be used. can be done.
 炭素数が8以上の炭化水素溶剤は、例えば、オクタン、ノナン、デカン、ドデカン、トリデカン、テトラデカン、シクロオクタン、キシレン、メシチレン、エチルベンゼン、ドデシルベンゼン、テトラリン、トリメチルベンゼンシクロヘキサン等の非極性溶剤を、必要に応じて組み合わせ使用することもできる。さらに、混合溶剤であるミネラルスピリットおよびソルベントナフサ等を併用することもできる。 Hydrocarbon solvents having 8 or more carbon atoms include nonpolar solvents such as octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetralin, and trimethylbenzenecyclohexane. can also be used in combination depending on the Furthermore, mixed solvents such as mineral spirit and solvent naphtha can be used together.
 その他の溶媒としては、例えば2-エチル1,3-ヘキサンジオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,2-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、グリセリン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等を使用することができる。 Other solvents include, for example, 2-ethyl 1,3-hexanediol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,2-butanediol, 1,4-butanediol, 2,3-butanediol, glycerin, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl Ether acetate, diethylene glycol monobutyl ether acetate and the like can be used.
 金属粒子層形成用塗工液には、プライマー層に塗布する際の濡れ性等を向上する観点から、必要に応じて、界面活性剤、消泡剤、レオロジー調整剤等が含まれていてもよい。 The coating solution for forming the metal particle layer may contain surfactants, antifoaming agents, rheology modifiers, and the like as necessary from the viewpoint of improving the wettability and the like when applied to the primer layer. good.
 金属粒子層形成用塗工液中に含まれる金属粒子の含有量は、塗工液全体に対して1~90質量%であることが好ましく、5~60質量%であることがより好ましく、10~40質量%であることがさらに好ましい。また、カチオン性基を有する化合物の含有量は、塗工液全体に対して0.01~10質量%であることが好ましく、0.05~5質量%であることがより好ましい。また、塗工液を塗布乾燥して金属粒子層を形成した場合(即ち、溶剤を除去した場合)において、エポキシ樹脂は金属粒子層中に0.01~10質量%含まれていることが好ましく、0.05~5質量%含まれていることがより好ましい。 The content of the metal particles contained in the coating solution for forming the metal particle layer is preferably 1 to 90% by mass, more preferably 5 to 60% by mass, more preferably 10% by mass, based on the total coating solution. More preferably, it is up to 40% by mass. Moreover, the content of the compound having a cationic group is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, relative to the entire coating liquid. In addition, when the metal particle layer is formed by coating and drying the coating liquid (that is, when the solvent is removed), the epoxy resin is preferably contained in the metal particle layer in an amount of 0.01 to 10% by mass. , more preferably 0.05 to 5% by mass.
 金属粒子層は、プライマー層の表面全体に設けられた層であってもよく、プライマー層の表面の一部に設けられた層であってもよい。プライマー層の表面の一部に金属粒子層を形成する場合としては、具体的には、プライマー層の表面に画線され形成された細線状の層が挙げられる。前記細線状の層は、本発明による積層体をプリント配線板等に使用する場合に好適である。この場合、細線状の層(パターン)の幅(線幅)は、概ね0.01~200μm程度、好ましくは0.01~150μm程度である。 The metal particle layer may be a layer provided on the entire surface of the primer layer, or may be a layer provided on part of the surface of the primer layer. In the case of forming the metal particle layer on a part of the surface of the primer layer, specifically, a fine line-shaped layer formed by drawing lines on the surface of the primer layer can be mentioned. The fine line-shaped layer is suitable when the laminate according to the present invention is used for a printed wiring board or the like. In this case, the width (line width) of the fine line-shaped layer (pattern) is generally about 0.01 to 200 μm, preferably about 0.01 to 150 μm.
 金属粒子層は、低抵抗で導電性に優れた導電性パターンを形成するうえで、0.01~100μmの厚さを有するものであることが好ましい。また、金属粒子層が細線状のものである場合、その厚さ(高さ)は0.05~50μmの範囲であることが好ましい。金属粒子層の厚さは、プライマー層への塗工液の塗布量により調整することができる。 The metal particle layer preferably has a thickness of 0.01 to 100 μm in order to form a conductive pattern with low resistance and excellent conductivity. Further, when the metal particle layer is in the form of thin wires, its thickness (height) is preferably in the range of 0.05 to 50 μm. The thickness of the metal particle layer can be adjusted by the amount of the coating liquid applied to the primer layer.
 金属粒子層形成用塗工液をプライマー層に塗布する方法としては、例えば凸版反転印刷法等の反転印刷法をはじめ、インクジェット印刷法、スクリーン印刷法、オフセット印刷法、グラビア印刷法、スピンコート法、スプレーコート法、バーコート法、ダイコート法、スリットコート法、ロールコート法、ディップコート法等が挙げられる。なお、電子回路等の高密度化を実現する際に求められる概ね0.01~100μm程度の細線状に塗布(印刷)する場合には、インクジェット印刷法を採用することが好ましい。 Examples of methods for applying the metal particle layer-forming coating solution to the primer layer include reverse printing such as letterpress reverse printing, inkjet printing, screen printing, offset printing, gravure printing, and spin coating. , a spray coating method, a bar coating method, a die coating method, a slit coating method, a roll coating method, a dip coating method, and the like. In the case of applying (printing) thin lines of approximately 0.01 to 100 μm, which is required when realizing high density electronic circuits, it is preferable to adopt an inkjet printing method.
<金属めっき層>
 本発明の積層体を構成する金属めっき層は、例えば、積層体をプリント配線板や電磁波シールド等に用いる場合に、長期間にわたり断線等を生じることなく、良好な通電性を維持可能な信頼性の高い配線パターンを形成することを目的として設けられる層である。
<Metal plating layer>
The metal plating layer constituting the laminate of the present invention has a reliability that can maintain good conductivity without causing disconnection or the like for a long period of time, for example, when the laminate is used for a printed wiring board, an electromagnetic wave shield, or the like. This layer is provided for the purpose of forming a wiring pattern with a high density.
 金属めっき層は、上記した金属粒子層の上に形成される層であるが、その形成方法としては、めっき処理によって形成する方法が好ましい。このめっき処理としては、簡便に金属めっき層を形成できる電解めっき法、無電解めっき法等の湿式めっき法が挙げられる。また、これらのめっき法を2つ以上組み合わせてもよい。例えば、無電解めっきを施した後、電解めっきを施して、金属めっき層を形成してもよい。 The metal plating layer is a layer formed on the metal particle layer described above, and the method of forming it is preferably a method of forming by plating. Examples of the plating treatment include wet plating methods such as electroplating and electroless plating, which can easily form a metal plating layer. Also, two or more of these plating methods may be combined. For example, after performing electroless plating, electroplating may be performed to form a metal plating layer.
 無電解めっき法は、例えば、金属粒子層を構成する金属に、無電解めっき液を接触させることで、無電解めっき液中に含まれる銅等の金属を析出させ金属被膜からなる無電解めっき層を形成する方法である。無電解めっき液としては、例えば、銅、銀、金、ニッケル、クロム、コバルト、スズ等の金属と、還元剤と、水性媒体、有機溶剤等の溶媒とを含有するものが挙げられる。 In the electroless plating method, for example, by bringing an electroless plating solution into contact with the metal that constitutes the metal particle layer, a metal such as copper contained in the electroless plating solution is deposited to form an electroless plating layer consisting of a metal coating. is a method of forming Examples of electroless plating solutions include those containing metals such as copper, silver, gold, nickel, chromium, cobalt and tin, reducing agents, and solvents such as aqueous media and organic solvents.
 還元剤としては、例えば、ジメチルアミノボラン、次亜燐酸、次亜燐酸ナトリウム、ジメチルアミンボラン、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、フェノール等が挙げられる。 Examples of reducing agents include dimethylaminoborane, hypophosphorous acid, sodium hypophosphite, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, and phenol.
 無電解めっき液としては、必要に応じて、酢酸、蟻酸等のモノカルボン酸;マロン酸、コハク酸、アジピン酸、マレイン酸、フマール酸等のジカルボン酸化合物;リンゴ酸、乳酸、グリコール酸、グルコン酸、クエン酸等のヒドロキシカルボン酸化合物;グリシン、アラニン、イミノジ酢酸、アルギニン、アスパラギン酸、グルタミン酸等のアミノ酸化合物;イミノジ酢酸、ニトリロトリ酢酸、エチレンジアミンジ酢酸、エチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸等のアミノポリカルボン酸化合物などの有機酸、またはこれらの有機酸の可溶性塩(ナトリウム塩、カリウム塩、アンモニウム塩等)、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等のアミン化合物等の錯化剤を含有するものを用いることができる。 As the electroless plating solution, monocarboxylic acids such as acetic acid and formic acid; dicarboxylic acid compounds such as malonic acid, succinic acid, adipic acid, maleic acid and fumaric acid; malic acid, lactic acid, glycolic acid and gluconate hydroxycarboxylic acid compounds such as acid and citric acid; amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid, and glutamic acid; Organic acids such as carboxylic acid compounds, soluble salts of these organic acids (sodium salts, potassium salts, ammonium salts, etc.), complexing agents such as amine compounds such as ethylenediamine, diethylenetriamine, and triethylenetetramine are used. be able to.
 電解めっき法は、例えば、金属粒子層を構成する金属、または、無電解処理によって形成された無電解めっき層(被膜)の表面に、電解めっき液を接触した状態で通電することにより、電解めっき液中に含まれる銅等の金属を、カソードに設置した金属粒子層を構成する金属粒子または無電解処理によって形成された無電解めっき層の表面に析出させ、電解めっき層を形成する方法である。 In the electrolytic plating method, for example, the metal forming the metal particle layer or the surface of the electroless plated layer (coating) formed by the electroless treatment is energized while the electrolytic plating solution is in contact with the electroplating. In this method, a metal such as copper contained in a liquid is deposited on the surface of the metal particles constituting the metal particle layer placed on the cathode or on the surface of the electroless plated layer formed by electroless treatment to form an electrolytic plated layer. .
 電解めっき液としては、例えば、銅、ニッケル、クロム、コバルト、スズ等の金属の硫化物と、硫酸と、水性媒体とを含有するもの等が挙げられる。具体的には、硫酸銅と硫酸と水性媒体とを含有するものが挙げられる。 Examples of electrolytic plating solutions include those containing sulfides of metals such as copper, nickel, chromium, cobalt, and tin, sulfuric acid, and an aqueous medium. Specific examples include those containing copper sulfate, sulfuric acid, and an aqueous medium.
 金属めっき層の形成方法としては、金属めっき層の膜厚を、薄膜から厚膜まで所望とする膜厚に制御しやすいことから、無電解めっきを施した後、電解めっきを施す方法が好ましい。 As for the method of forming the metal plating layer, the method of electroplating after electroless plating is preferable because it is easy to control the thickness of the metal plating layer to a desired thickness from a thin film to a thick film.
 金属めっき層の膜厚は、1~50μmであることが好ましい。金属めっき層の膜厚は、金属めっき層の形成する際のめっき処理工程における処理時間、電流密度、めっき用添加剤の使用量等を制御することによって調整することができる。 The film thickness of the metal plating layer is preferably 1 to 50 μm. The film thickness of the metal plating layer can be adjusted by controlling the treatment time, current density, amount of plating additive used, etc. in the plating process for forming the metal plating layer.
<積層体の用途>
 本発明による積層体は、表面に形成された金属めっき層が常態下で剥離することがないばかりか、150℃といった高温下に長時間置かれた場合であっても金属めっき層の密着性が維持される。そのため、電子回路、集積回路等に使用される回路形成用基板の形成、有機太陽電池、電子書籍端末、有機EL、有機トランジスタ、フレキシブルプリント基板、RFID等を構成する周辺配線の形成、プラズマディスプレイの電磁波シールドの配線等のうち、特に耐久性の求められる用途に好適に使用することができる。特に、前記めっき処理の施された導電性パターンは、長期間にわたり断線等を引き起こすことなく、良好な通電性を維持可能な信頼性の高い配線パターンを形成できることから、例えば、フレキシブルプリント配線板(FPC)や電磁波シールド等の電子機器用途に使用することが可能である。
<Application of laminate>
In the laminate according to the present invention, the metal plating layer formed on the surface does not peel off under normal conditions, and even when placed at a high temperature of 150 ° C. for a long time, the adhesion of the metal plating layer is maintained. maintained. Therefore, formation of circuit forming substrates used for electronic circuits, integrated circuits, etc., formation of peripheral wiring constituting organic solar cells, electronic book terminals, organic EL, organic transistors, flexible printed circuit boards, RFID, etc., plasma display It can be suitably used for applications in which durability is particularly required, such as wiring for electromagnetic shielding. In particular, the conductive pattern subjected to the plating treatment can form a highly reliable wiring pattern that can maintain good conductivity without causing disconnection or the like for a long period of time. It can be used for electronic equipment applications such as FPC) and electromagnetic wave shielding.
 本発明の実施形態として、支持体の一方の面に、プライマー層、金属粒子層および金属めっき層とを順次備えた積層体を例示して説明したが、本発明の他の実施形態として、支持体の反対側の面にも、プライマー層、金属粒子層および金属めっき層とを順次備えた積層体としてもよい。 As an embodiment of the present invention, a laminate in which a primer layer, a metal particle layer and a metal plating layer are sequentially provided on one surface of a support has been described as an example. A layered product may also be formed in which a primer layer, a metal particle layer and a metal plating layer are sequentially provided on the opposite side of the body.
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the examples. In the following description, "parts" and "%" are based on mass unless otherwise specified.
<フェノキシ樹脂の準備>
 下記のようにして、フェノキシ樹脂(P-1)~(P-3)の3種のフェノキシ樹脂を合成した。
[合成例1:フェノキシ樹脂(P-1)]
 撹拌機、温度計、窒素吹き込み管、および冷却管を備えた反応装置に、ビスフェノールA型エポキシ樹脂(DIC株式会社製エピクロンEXA-850CRP、固形分100質量%、エポキシ当量173g/eq)を100質量部、ビスフェノールAを65質量部(エポキシ基のモル数(E1)とフェノール性水酸基のモル数(F1)の比(E1/F1)=1.01)、反応溶媒としてシクロヘキサノンを15部仕込み、窒素雰囲気下で100℃まで昇温させた。次いで、触媒としてメチルトリフェニルホスホニウムブロマイドを0.1部仕込んだ後、内温を140℃まで上昇させた。反応が進行するに伴い反応液が増粘し始めたので、シクロヘキサノン72部を数回に分けて適宜追加することで撹拌機のトルクを一定にしながら反応を行った。なお、反応温度は不揮発分が80%以上では140~145℃で行い、それ以降は還流温度で行った。反応途中でサンプルを採取し、GPCで平均分子量を測定した。重量平均分子量が20,000になるまで反応を続けた。前記分子量であることを確認した後、反応を終了した。次いで、シクロヘキサノンを添加し攪拌することで、固形分15質量%のフェノキシ樹脂(P-1)を得た。
<Preparation of phenoxy resin>
Three types of phenoxy resins (P-1) to (P-3) were synthesized in the following manner.
[Synthesis Example 1: Phenoxy Resin (P-1)]
100 mass of bisphenol A type epoxy resin (Epiclon EXA-850CRP manufactured by DIC Corporation, solid content 100%, epoxy equivalent 173 g/eq) was placed in a reactor equipped with a stirrer, thermometer, nitrogen blowing tube, and cooling tube. 65 parts by mass of bisphenol A (the ratio of the number of moles of epoxy groups (E1) to the number of moles of phenolic hydroxyl groups (F1) (E1/F1) = 1.01), 15 parts of cyclohexanone as a reaction solvent, nitrogen The temperature was raised to 100° C. under the atmosphere. Then, after adding 0.1 part of methyltriphenylphosphonium bromide as a catalyst, the internal temperature was raised to 140°C. As the reaction progressed, the viscosity of the reaction solution began to increase. Therefore, 72 parts of cyclohexanone was appropriately added in several portions to carry out the reaction while keeping the torque of the stirrer constant. The reaction temperature was 140 to 145° C. when the non-volatile content was 80% or more, and thereafter the reaction temperature was reflux temperature. A sample was taken during the reaction and the average molecular weight was measured by GPC. The reaction was continued until the weight average molecular weight reached 20,000. After confirming the above molecular weight, the reaction was terminated. Next, cyclohexanone was added and stirred to obtain a phenoxy resin (P-1) having a solid content of 15% by mass.
[合成例2:フェノキシ樹脂(P-2)]
 撹拌機、温度計、窒素吹き込み管、および冷却管を備えた反応装置に、ビスフェノールA型エポキシ樹脂(DIC株式会社製エピクロンEXA-850CRP、固形分100質量%、エポキシ当量173g/eq)を100質量部、ビスフェノールAを65質量部(エポキシ基のモル数(E1)とフェノール性水酸基のモル数(F1)の比(E1/F1)=1.01)、反応溶媒としてシクロヘキサノンを15部仕込み、窒素雰囲気下で100℃まで昇温させた。次いで、触媒としてメチルトリフェニルホスホニウムブロマイドを0.1部仕込んだ後、内温を140℃まで上昇させた。反応が進行するに伴い反応液が増粘し始めたので、シクロヘキサノン72部を数回に分けて適宜追加することで撹拌機のトルクを一定にしながら反応を行った。なお、反応温度は不揮発分が80%以上では140~145℃で行い、それ以降は還流温度で行った。反応途中でサンプルを採取し、GPCで平均分子量を測定した。重量平均分子量が45,000になるまで反応を続けた。前記分子量であることを確認した後、反応を終了した。次いで、シクロヘキサノンを添加し攪拌することで、固形分15質量%のフェノキシ樹脂(P-2)を得た。
[Synthesis Example 2: Phenoxy resin (P-2)]
100 mass of bisphenol A type epoxy resin (Epiclon EXA-850CRP manufactured by DIC Corporation, solid content 100%, epoxy equivalent 173 g/eq) was placed in a reactor equipped with a stirrer, thermometer, nitrogen blowing tube, and cooling tube. 65 parts by mass of bisphenol A (the ratio of the number of moles of epoxy groups (E1) to the number of moles of phenolic hydroxyl groups (F1) (E1/F1) = 1.01), 15 parts of cyclohexanone as a reaction solvent, nitrogen The temperature was raised to 100° C. under the atmosphere. Then, after adding 0.1 part of methyltriphenylphosphonium bromide as a catalyst, the internal temperature was raised to 140°C. As the reaction progressed, the viscosity of the reaction solution began to increase. Therefore, 72 parts of cyclohexanone was appropriately added in several portions to carry out the reaction while keeping the torque of the stirrer constant. The reaction temperature was 140 to 145° C. when the non-volatile content was 80% or more, and thereafter the reaction temperature was reflux temperature. A sample was taken during the reaction and the average molecular weight was measured by GPC. The reaction was continued until the weight average molecular weight reached 45,000. After confirming the above molecular weight, the reaction was terminated. Next, cyclohexanone was added and stirred to obtain a phenoxy resin (P-2) having a solid content of 15% by mass.
[合成例3:フェノキシ樹脂(P-3)]
 撹拌機、温度計、窒素吹き込み管、および冷却管を備えた反応装置に、ビスフェノールA型エポキシ樹脂(DIC株式会社製エピクロンEXA-850CRP、固形分100質量%、エポキシ当量173g/eq)を100質量部、ビスフェノールAを65質量部(エポキシ基のモル数(E1)とフェノール性水酸基のモル数(F1)の比(E1/F1)=1.01)、反応溶媒としてシクロヘキサノンを15部仕込み、窒素雰囲気下で100℃まで昇温させた。次いで、触媒としてメチルトリフェニルホスホニウムブロマイドを0.1部仕込んだ後、内温を140℃まで上昇させた。反応が進行するに伴い反応液が増粘し始めたので、シクロヘキサノン72部を数回に分けて適宜追加することで撹拌機のトルクを一定にしながら反応を行った。なお、反応温度は不揮発分が80%以上では140~145℃で行い、それ以降は還流温度で行った。反応途中でサンプルを採取し、GPCで平均分子量を測定した。重量平均分子量が100,000になるまで反応を続けた。前記分子量であることを確認した後、反応を終了した。次いで、シクロヘキサノンを添加し攪拌することで、固形分15質量%のフェノキシ樹脂(P-3)を得た。
[Synthesis Example 3: Phenoxy Resin (P-3)]
100 mass of bisphenol A type epoxy resin (Epiclon EXA-850CRP manufactured by DIC Corporation, solid content 100%, epoxy equivalent 173 g/eq) was placed in a reactor equipped with a stirrer, thermometer, nitrogen blowing tube, and cooling tube. 65 parts by mass of bisphenol A (the ratio of the number of moles of epoxy groups (E1) to the number of moles of phenolic hydroxyl groups (F1) (E1/F1) = 1.01), 15 parts of cyclohexanone as a reaction solvent, nitrogen The temperature was raised to 100° C. under the atmosphere. Then, after adding 0.1 part of methyltriphenylphosphonium bromide as a catalyst, the internal temperature was raised to 140°C. As the reaction progressed, the viscosity of the reaction solution began to increase. Therefore, 72 parts of cyclohexanone was appropriately added in several portions to carry out the reaction while keeping the torque of the stirrer constant. The reaction temperature was 140 to 145° C. when the non-volatile content was 80% or more, and thereafter the reaction temperature was reflux temperature. A sample was taken during the reaction and the average molecular weight was measured by GPC. The reaction was continued until the weight average molecular weight reached 100,000. After confirming the above molecular weight, the reaction was terminated. Next, cyclohexanone was added and stirred to obtain a phenoxy resin (P-3) having a solid content of 15% by mass.
[合成例4:変性ノボラック樹脂C]
 温度計、冷却管、分留管、攪拌器を取り付けたフラスコに、フェノール750質量部、メラミン75質量部、41.5質量%ホルマリン346質量部、およびトリエチルアミン1.5質量部を加え、発熱に注意しながら100℃まで昇温した。還流下100℃にて2時間反応させた後、常圧下にて水を除去しながら180℃まで2時間かけて昇温した。次いで、減圧下で未反応のフェノールを除去し、ノボラック樹脂Cとしてアミノトリアジン変性ノボラック樹脂を得た。水酸基当量は120g/当量であった。
[Synthesis Example 4: Modified Novolac Resin C]
750 parts by weight of phenol, 75 parts by weight of melamine, 346 parts by weight of 41.5% by weight formalin, and 1.5 parts by weight of triethylamine were added to a flask equipped with a thermometer, condenser, fractionating tube, and stirrer. The temperature was raised to 100°C with caution. After reacting at 100° C. for 2 hours under reflux, the temperature was raised to 180° C. over 2 hours while removing water under normal pressure. Next, unreacted phenol was removed under reduced pressure to obtain an aminotriazine-modified novolak resin as novolak resin C. The hydroxyl equivalent weight was 120 g/equivalent.
<プライマー層形成用塗工液の調製>
[調製例1:プライマー層形成用塗工液(1)の調製]
 合成例1で得られたフェノキシ樹脂(P-1)を、シクロヘキサノンを用いて不揮発分が2質量%となるように希釈し、均一に混合することで、プライマー層形成用塗工液(1)を得た。
<Preparation of coating solution for forming primer layer>
[Preparation Example 1: Preparation of Primer Layer Forming Coating Solution (1)]
The phenoxy resin (P-1) obtained in Synthesis Example 1 was diluted with cyclohexanone so that the nonvolatile content was 2% by mass, and mixed uniformly to obtain a primer layer forming coating solution (1). got
[調製例2:プライマー層形成用塗工液(2)の調製]
 合成例2で得られたフェノキシ樹脂(P-2)を、シクロヘキサノンを用いて不揮発分が2質量%となるように希釈し、均一に混合することで、プライマー層形成用塗工液(2)を得た。
[Preparation Example 2: Preparation of primer layer-forming coating solution (2)]
The phenoxy resin (P-2) obtained in Synthesis Example 2 was diluted with cyclohexanone so that the nonvolatile content was 2% by mass, and mixed uniformly to obtain a primer layer forming coating solution (2). got
[調製例3:プライマー層形成用塗工液(3)の調製]
 合成例3で得られたフェノキシ樹脂(P-3)を、シクロヘキサノンを用いて不揮発分が2質量%となるように希釈し、均一に混合することで、プライマー層形成用塗工液(3)を得た。
[Preparation Example 3: Preparation of primer layer-forming coating liquid (3)]
The phenoxy resin (P-3) obtained in Synthesis Example 3 was diluted with cyclohexanone so that the nonvolatile content was 2% by mass, and mixed uniformly to obtain a primer layer forming coating solution (3). got
[調製例4:プライマー層形成用塗工液(4)の調製]
 合成例1で得られたフェノキシ樹脂(P-1)を533質量部、エポキシ樹脂A(DIC株式会社製「EPICLON 850-S」;ビスフェノールA型エポキシ樹脂、エポキシ基当量188g/当量)17質量部、ノボラック樹脂B(DIC株式会社製「PHENOLITE TD-2131」、水酸基当量104g/当量)3質量部、および、硬化触媒1として四国化成株式会社製「TBZ」0.5質量部を混合し、シクロヘキサノンを用いて不揮発分が2質量%となるように希釈し、均一に混合することで、プライマー層形成用塗工液(4)を得た。
[Preparation Example 4: Preparation of primer layer-forming coating solution (4)]
533 parts by mass of the phenoxy resin (P-1) obtained in Synthesis Example 1, and 17 parts by mass of epoxy resin A (“EPICLON 850-S” manufactured by DIC Corporation; bisphenol A type epoxy resin, epoxy group equivalent: 188 g/equivalent). , Novolak resin B (DIC Corporation "PHENOLITE TD-2131", hydroxyl equivalent 104 g / equivalent) 3 parts by mass, and Shikoku Kasei Co., Ltd. as a curing catalyst 1 "TBZ" 0.5 parts by mass were mixed, and cyclohexanone was mixed. was used to dilute the non-volatile matter to 2% by mass, and mixed uniformly to obtain a primer layer-forming coating liquid (4).
[調製例5:プライマー層形成用塗工液(5)の調製]
 合成例2で得られたフェノキシ樹脂(P-2)を267質量部、エポキシ樹脂A(DIC株式会社製「EPICLON 850-S」;ビスフェノールA型エポキシ樹脂、エポキシ基当量188g/当量)60質量部、および、硬化触媒1として四国化成株式会社製「TBZ」0.5質量部を混合し、シクロヘキサノンを用いて不揮発分が2質量%となるように希釈し、均一に混合することで、プライマー層形成用塗工液(5)を得た。
[Preparation Example 5: Preparation of primer layer-forming coating liquid (5)]
267 parts by mass of the phenoxy resin (P-2) obtained in Synthesis Example 2, and 60 parts by mass of epoxy resin A ("EPICLON 850-S" manufactured by DIC Corporation; bisphenol A type epoxy resin, epoxy group equivalent: 188 g/equivalent). , And, as a curing catalyst 1, 0.5 parts by mass of “TBZ” manufactured by Shikoku Kasei Co., Ltd. is mixed, diluted with cyclohexanone so that the nonvolatile content is 2% by mass, and mixed uniformly to form a primer layer. A forming coating liquid (5) was obtained.
[調製例6:プライマー層形成用塗工液(6)の調製]
 合成例1で得られたフェノキシ樹脂(P-2)を133質量部、エポキシ樹脂A(DIC株式会社製「EPICLON 850-S」;ビスフェノールA型エポキシ樹脂、エポキシ基当量188g/当量)70質量部、合成例4で得られた変性ノボラック樹脂C10質量部、および、硬化触媒2として四国化成株式会社製「2E4MZ」5質量部を混合し、シクロヘキサノンを用いて不揮発分が2質量%となるように希釈し、均一に混合することで、プライマー層形成用塗工液(6)を得た。
[Preparation Example 6: Preparation of primer layer-forming coating solution (6)]
133 parts by mass of the phenoxy resin (P-2) obtained in Synthesis Example 1, and 70 parts by mass of epoxy resin A ("EPICLON 850-S" manufactured by DIC Corporation; bisphenol A type epoxy resin, epoxy group equivalent: 188 g/equivalent). , 10 parts by mass of the modified novolak resin C obtained in Synthesis Example 4, and 5 parts by mass of "2E4MZ" manufactured by Shikoku Kasei Co., Ltd. as a curing catalyst 2, are mixed, and cyclohexanone is used so that the nonvolatile content is 2% by mass. By diluting and mixing uniformly, a primer layer-forming coating liquid (6) was obtained.
[調製例7:プライマー層形成用塗工液(7)の調製]
 合成例3で得られたフェノキシ樹脂(P-3)を67質量部、エポキシ樹脂A(DIC株式会社製「EPICLON 850-S」;ビスフェノールA型エポキシ樹脂、エポキシ基当量188g/当量)76質量部、ノボラック樹脂B(DIC株式会社製「PHENOLITE TD-2131」、水酸基当量104g/当量)14質量部、および、硬化触媒1として四国化成株式会社製「TBZ」0.5質量部を混合し、シクロヘキサノンを用いて不揮発分が2質量%となるように希釈し、均一に混合することで、プライマー層形成用塗工液(7)を得た。
[Preparation Example 7: Preparation of primer layer-forming coating liquid (7)]
67 parts by mass of the phenoxy resin (P-3) obtained in Synthesis Example 3, and 76 parts by mass of epoxy resin A ("EPICLON 850-S" manufactured by DIC Corporation; bisphenol A type epoxy resin, epoxy group equivalent: 188 g/equivalent). , Novolak resin B (DIC Corporation "PHENOLITE TD-2131", hydroxyl equivalent 104 g / equivalent) 14 parts by weight, and Shikoku Kasei Co., Ltd. as curing catalyst 1 "TBZ" 0.5 parts by weight were mixed, and cyclohexanone was mixed. was used to dilute the non-volatile matter to 2% by mass, and mixed uniformly to obtain a primer layer-forming coating liquid (7).
[調製例8:プライマー層形成用塗工液(8)の調製]
 合成例4で得られた変性ノボラック樹脂C65質量部に、エポキシ樹脂A(DIC株式会社製「EPICLON 850-S」;ビスフェノールA型エポキシ樹脂、エポキシ基当量188g/当量)35質量部を混合後、メチルエチルケトンで不揮発分2質量%となるように希釈し、均一に混合することで、アミノトリアジン変性ノボラック樹脂とエポキシ樹脂の混合樹脂溶液を得た。
[Preparation Example 8: Preparation of Primer Layer Forming Coating Solution (8)]
After mixing 65 parts by mass of modified novolak resin C obtained in Synthesis Example 4 with 35 parts by mass of epoxy resin A (“EPICLON 850-S” manufactured by DIC Corporation; bisphenol A type epoxy resin, epoxy group equivalent weight: 188 g/equivalent), The mixed resin solution of the aminotriazine-modified novolac resin and the epoxy resin was obtained by diluting with methyl ethyl ketone so that the non-volatile content was 2% by mass and mixing uniformly.
<金属粒子層形成用塗工液の調製>
 窒素雰囲気下、メトキシポリエチレングリコール(数平均分子量2,000)20質量部、ピリジン8.0質量部およびクロロホルム20mlを含む混合物に、p-トルエンスルホン酸クロライド9.6質量部を含むクロロホルム(30ml)溶液を、氷冷撹拌しながら30分間滴下した後、浴槽温度40℃で4時間攪拌し、クロロホルム50mlを混合した。
 次いで、得られた生成物を、5質量%塩酸水溶液100mlで洗浄し、次いで飽和炭酸水素ナトリウム水溶液100mlで洗浄し、次いで飽和食塩水溶液100mlで洗浄した後、無水硫酸マグネシウムを用いて乾燥し、濾過、減圧濃縮し、ヘキサンで数回洗浄した後、濾過し、80℃で減圧乾燥することによって、p-トルエンスルホニルオキシ基を有するメトキシポリエチレングリコールを得た。
<Preparation of coating solution for forming metal particle layer>
Under a nitrogen atmosphere, chloroform (30 ml) containing 9.6 parts by weight of p-toluenesulfonyl chloride was added to a mixture containing 20 parts by weight of methoxypolyethylene glycol (number average molecular weight of 2,000), 8.0 parts by weight of pyridine and 20 ml of chloroform. The solution was added dropwise for 30 minutes with ice-cooling and stirring, then stirred at a bath temperature of 40° C. for 4 hours, and mixed with 50 ml of chloroform.
Next, the obtained product is washed with 100 ml of 5% by mass hydrochloric acid aqueous solution, then with 100 ml of saturated sodium bicarbonate aqueous solution, then with 100 ml of saturated saline solution, dried with anhydrous magnesium sulfate, and filtered. , concentrated under reduced pressure, washed several times with hexane, filtered and dried at 80° C. under reduced pressure to obtain methoxypolyethylene glycol having a p-toluenesulfonyloxy group.
 p-トルエンスルホニルオキシ基を有するメトキシポリエチレングリコール5.39質量部、ポリエチレンイミン(アルドリッチ社製、分子量25,000)20質量部、炭酸カリウム0.07質量部およびN,N-ジメチルアセトアミド100mlを混合し、窒素雰囲気下、100℃で6時間攪拌した。
 次いで、酢酸エチルとヘキサンとの混合溶液(酢酸エチル/ヘキサンの体積比=1/2)300mlを加え、室温で強力攪拌した後、生成物の固形物を濾過した。その固形物を、酢酸エチルとヘキサンの混合溶液(酢酸エチル/ヘキサンの体積比=1/2)100mlを用いて洗浄した後、減圧乾燥することによって、ポリエチレンイミンにポリエチレングリコールが結合した化合物を得た。
5.39 parts by mass of methoxypolyethylene glycol having a p-toluenesulfonyloxy group, 20 parts by mass of polyethyleneimine (manufactured by Aldrich, molecular weight 25,000), 0.07 parts by mass of potassium carbonate and 100 ml of N,N-dimethylacetamide are mixed. and stirred at 100° C. for 6 hours under a nitrogen atmosphere.
Next, 300 ml of a mixed solution of ethyl acetate and hexane (volume ratio of ethyl acetate/hexane=1/2) was added, and the mixture was vigorously stirred at room temperature, and the solid product was filtered. The solid was washed with 100 ml of a mixed solution of ethyl acetate and hexane (volume ratio of ethyl acetate/hexane=1/2) and then dried under reduced pressure to obtain a compound in which polyethyleneimine was bound to polyethylene glycol. rice field.
 得られたポリエチレンイミンにポリエチレングリコールが結合した化合物を0.592質量部含む水溶液138.8質量部と、酸化銀10質量部とを混合し、25℃で30分間攪拌した。次いで、ジメチルエタノールアミン46質量部を攪拌しながら徐々に加え、25℃で30分間攪拌した。続いて、10質量%アスコルビン酸水溶液15.2質量部を攪拌しながら徐々に加え20時間攪拌を続けることによって銀の分散体を得た。 138.8 parts by mass of an aqueous solution containing 0.592 parts by mass of a compound in which polyethylene glycol is bound to polyethyleneimine obtained was mixed with 10 parts by mass of silver oxide, and the mixture was stirred at 25°C for 30 minutes. Then, 46 parts by mass of dimethylethanolamine was gradually added while stirring, and the mixture was stirred at 25°C for 30 minutes. Subsequently, 15.2 parts by mass of a 10% by mass ascorbic acid aqueous solution was gradually added with stirring, and stirring was continued for 20 hours to obtain a silver dispersion.
 得られた銀の分散体にイソプロピルアルコール200mlとヘキサン200mlの混合溶剤を加え2分間攪拌した後、3000rpmで5分間遠心濃縮を行った。上澄みを除去した後、沈殿物にイソプロピルアルコール50mlとヘキサン50mlの混合溶剤を加えて2分間攪拌した後、3000rpmで5分間遠心濃縮を行った。上澄みを除去した後、沈殿物にさらに水20質量部を加えて2分間攪拌して、減圧下有機溶剤を除去した。さらに水10質量部を加えて攪拌分散した後、該分散体を-40℃の冷凍機に1昼夜放置して凍結し、これを凍結乾燥機(東京理化器械株式会社製 FDU-2200)で24時間処理することによって、灰緑色の金属光沢があるフレーク状の塊からなるカチオン性銀粒子を得た。 A mixed solvent of 200 ml of isopropyl alcohol and 200 ml of hexane was added to the resulting silver dispersion, and after stirring for 2 minutes, centrifugal concentration was performed at 3000 rpm for 5 minutes. After removing the supernatant, a mixed solvent of 50 ml of isopropyl alcohol and 50 ml of hexane was added to the precipitate, stirred for 2 minutes, and concentrated by centrifugation at 3000 rpm for 5 minutes. After removing the supernatant, 20 parts by mass of water was added to the precipitate, and the mixture was stirred for 2 minutes to remove the organic solvent under reduced pressure. After further adding 10 parts by mass of water and stirring and dispersing, the dispersion was left in a freezer at -40°C for one day and night to freeze. The time treatment gave cationic silver particles consisting of flaky masses with a gray-green metallic luster.
 得られたカチオン性銀粒子の粉末を、エチレングリコール45質量部と、イオン交換水55質量部との混合溶媒に分散させて、カチオン性銀粒子の含有量が5質量%の金属粒子層形成用塗工液を調製した。 The obtained powder of cationic silver particles is dispersed in a mixed solvent of 45 parts by mass of ethylene glycol and 55 parts by mass of deionized water to form a metal particle layer containing 5% by mass of cationic silver particles. A coating solution was prepared.
<積層体(1)~(8)の作製>
 ポリイミドフィルム(東レデュポン株式会社製「カプトン150EN-A」;厚さ38μm)の表面に、上記で得られた各プライマー層形成用塗工液(1)~(8)を、卓上型小型コーター(Kプリンティングプローファー、RKプリントコートインストルメント株式会社)を用いて、乾燥後の塗膜厚が300nmとなるように塗工した。次いで、熱風乾燥機を用いて155℃で5分間乾燥することによって、ポリイミドフィルムの表面にプライマー層を形成した。
 続いて、プライマー層の表面に、上記で得られた金属粒子層形成用塗工液を、バーコーターを用いて、乾燥後の塗膜厚が100nmとなるように塗工した。次いで、140℃で5分間乾燥することによって、金属粒子層を形成した。
<Production of laminates (1) to (8)>
On the surface of a polyimide film (“Kapton 150EN-A” manufactured by Toray DuPont Co., Ltd.; thickness 38 μm), each primer layer forming coating solution (1) to (8) obtained above is applied to a desktop small coater ( Using a K printing prober (RK Print Coat Instrument Co., Ltd.), coating was performed so that the coating thickness after drying was 300 nm. Then, a primer layer was formed on the surface of the polyimide film by drying at 155° C. for 5 minutes using a hot air dryer.
Subsequently, the coating solution for forming a metal particle layer obtained above was applied to the surface of the primer layer using a bar coater so that the coating thickness after drying was 100 nm. A metal particle layer was then formed by drying at 140° C. for 5 minutes.
 上記のようにして形成した金属粒子層をカソード側に設定し、含リン銅をアノード側に設定し、硫酸銅を含有する電解めっき液を用いて電流密度2A/dmで18分間電解めっきを行うことによって、金属粒子層上に銅めっき層(膜厚8μm)を形成した。電解めっき液としては、硫酸銅70g/L、硫酸200g/L、塩素イオン50mg/L、添加剤(トップルチナSF-M、奥野製薬工業株式会社)5ml/Lを用いた。
 このようにして、支持体、プライマー層、金属粒子層、および金属めっき層が順次積層された積層体(1)~(8)を得た。なお、プライマー層形成用塗工液の番号と積層体の番号は対応しており、例えば、プライマー層形成用塗工液(1)は積層体(1)に対応する。
The metal particle layer formed as described above is set on the cathode side, the phosphorous copper is set on the anode side, and electrolytic plating is performed for 18 minutes at a current density of 2 A/dm 2 using an electrolytic plating solution containing copper sulfate. A copper plating layer (film thickness: 8 μm) was formed on the metal particle layer. As an electrolytic plating solution, 70 g/L of copper sulfate, 200 g/L of sulfuric acid, 50 mg/L of chloride ion, and 5 ml/L of additive (Top Lucina SF-M, Okuno Chemical Industry Co., Ltd.) were used.
Thus, laminates (1) to (8) were obtained in which the support, the primer layer, the metal particle layer, and the metal plating layer were sequentially laminated. The number of the primer layer forming coating liquid corresponds to the number of the laminate, for example, the primer layer forming coating liquid (1) corresponds to the laminate (1).
<密着性評価(常態時)>
 上記で得られた各積層体について、室温環境下において、Nordson DAGE社製4000Plusを用いて剥離強度を測定した。なお、測定に用いるリード幅は5mm、そのピールの角度は90°とした。また、ピール強度は、金属めっき層の厚さが厚くなるほど高い値を示す傾向にあるが、本明細書においてピール強度の測定は、金属めっき層の厚さ8μmにおける測定値を基準として実施した。
 測定した加熱前の剥離強度の値から、下記の基準にしたがって密着性を評価した。
 A:剥離強度の値が600N/m以上である。
 B:剥離強度の値が450N/m以上、600N/m未満である。
 C:剥離強度の値が250N/m以上、450N/m未満である。
 D:剥離強度の値が250N/m未満である。
 評価結果は、下記表1に示されるとおりであった。
<Adhesion evaluation (under normal conditions)>
For each laminate obtained above, the peel strength was measured using 4000Plus manufactured by Nordson DAGE in a room temperature environment. The lead width used for measurement was 5 mm, and the peel angle was 90°. In addition, the peel strength tends to show a higher value as the thickness of the metal plating layer increases. In this specification, the peel strength was measured based on the measurement value at a thickness of 8 μm of the metal plating layer.
Adhesion was evaluated according to the following criteria from the measured peel strength before heating.
A: The value of peel strength is 600 N/m or more.
B: The peel strength value is 450 N/m or more and less than 600 N/m.
C: The peel strength value is 250 N/m or more and less than 450 N/m.
D: The peel strength value is less than 250 N/m.
The evaluation results were as shown in Table 1 below.
<密着性評価(長期耐熱試験)>
 上記で得られた各積層体について、それぞれ150℃に設定した乾燥機内に300時間保管して加熱した。加熱後、各積層体を室温まで冷却し、上記と同様の方法でピール強度を測定した。
 測定した加熱前後のピール強度値を用いて、加熱前後での保持率を算出し、下記の基準にしたがって耐熱性の保持度合いを評価した。
 A:保持率が80%以上である。
 B:保持率が60%以上80%未満である。
 C:保持率が30%以上60%未満である。
 D:保持率が30%未満である。
 評価結果は、下記表1に示されるとおりであった。
<Adhesion evaluation (long-term heat resistance test)>
Each laminate obtained above was stored in a dryer set at 150° C. for 300 hours and heated. After heating, each laminate was cooled to room temperature, and the peel strength was measured in the same manner as above.
Using the measured peel strength values before and after heating, the retention rate before and after heating was calculated, and the degree of retention of heat resistance was evaluated according to the following criteria.
A: The retention rate is 80% or more.
B: The retention rate is 60% or more and less than 80%.
C: The retention rate is 30% or more and less than 60%.
D: The retention rate is less than 30%.
The evaluation results were as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示した密着性評価結果からも明らかなように、プライマー層として特定の分子量を有するフェノキシ樹脂を使用した積層体(積層体(1)~(7))は、いずれも常態時での剥離強度が450N/m以上であり、長期耐熱試験後においても、常態時の剥離強度の80%以上の保持率を有している。すなわち、常態時も長期耐熱試験後のいずれの密着性評価も優れることがわかる。 As is clear from the adhesion evaluation results shown in Table 1, the laminates (laminates (1) to (7)) using a phenoxy resin having a specific molecular weight as the primer layer are all good at normal conditions. The peel strength is 450 N/m or more, and even after the long-term heat resistance test, it has a retention rate of 80% or more of the peel strength in the normal state. In other words, it can be seen that the adhesion evaluation is excellent both in the normal state and after the long-term heat resistance test.
 これに対して、プライマー層としてフェノキシ樹脂を使用しない積層体(積層体(8))では、常態時での剥離強度は高いものの長期耐熱性試験後は保持率が8%しかなく、安定した密着性を有していない。すなわち、実施例と比較して、長期耐熱試験後の密着性評価に劣ることがわかる。 On the other hand, in the laminate (laminate (8)) in which the phenoxy resin was not used as the primer layer, although the peel strength was high under normal conditions, the retention rate was only 8% after the long-term heat resistance test, indicating stable adhesion. have no gender. That is, it can be seen that the adhesion evaluation after the long-term heat resistance test is inferior to that of the examples.

Claims (11)

  1.  支持体と、前記支持体上に、プライマー層、金属粒子層および金属めっき層とを順次備えた積層体であって、前記プライマー層が、重量平均分子量が10,000~100,000のフェノキシ樹脂を含む、積層体。 A laminate comprising a support, a primer layer, a metal particle layer and a metal plating layer on the support in this order, wherein the primer layer is a phenoxy resin having a weight average molecular weight of 10,000 to 100,000. A laminate comprising:
  2.  前記プライマー層が、エポキシ樹脂をさらに含む、請求項1に記載の積層体。 The laminate according to claim 1, wherein the primer layer further contains an epoxy resin.
  3.  前記プライマー層が、前記フェノキシ樹脂と前記エポキシ樹脂とを、質量基準において90:10~10:90の割合で含む、請求項2に記載の積層体。 The laminate according to claim 2, wherein the primer layer contains the phenoxy resin and the epoxy resin in a mass ratio of 90:10 to 10:90.
  4.  前記プライマー層が、さらにアミノトリアジン環を有する化合物を含む、請求項1に記載の積層体。 The laminate according to claim 1, wherein the primer layer further contains a compound having an aminotriazine ring.
  5.  前記アミノトリアジン環を有する化合物が、アミノトリアジン変性ノボラック樹脂である、請求項4に記載の積層体。 The laminate according to claim 4, wherein the compound having an aminotriazine ring is an aminotriazine-modified novolac resin.
  6.  前記金属粒子層が、金属粒子とカチオン性基を有する化合物とを含む、請求項1に記載の積層体。 The laminate according to claim 1, wherein the metal particle layer contains metal particles and a compound having a cationic group.
  7.  前記カチオン性基を有する化合物は、塩基性窒素原子含有基を有する化合物である、請求項6に記載の積層体。 The laminate according to claim 6, wherein the compound having a cationic group is a compound having a basic nitrogen atom-containing group.
  8.  前記支持体が可撓性樹脂材料からなる、請求項1に記載の積層体。 The laminate according to claim 1, wherein the support is made of a flexible resin material.
  9.  電子機器に使用される、請求項1~8のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 8, which is used in electronic equipment.
  10.  電子機器がプリント配線板および電磁波シールドから選択される、請求項9に記載の積層体。 The laminate according to claim 9, wherein the electronic device is selected from printed wiring boards and electromagnetic wave shields.
  11.  請求項1~8のいずれか一項に記載の積層体を備えた電子機器。 An electronic device comprising the laminate according to any one of claims 1 to 8.
PCT/JP2022/027941 2021-07-15 2022-07-15 Laminate and electronic device provided with laminate WO2023286872A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023534876A JPWO2023286872A1 (en) 2021-07-15 2022-07-15
KR1020237043520A KR20240037880A (en) 2021-07-15 2022-07-15 Laminates and electronic devices having laminates
CN202280042830.3A CN117561164A (en) 2021-07-15 2022-07-15 Laminate and electronic device provided with laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021117329 2021-07-15
JP2021-117329 2021-07-15

Publications (1)

Publication Number Publication Date
WO2023286872A1 true WO2023286872A1 (en) 2023-01-19

Family

ID=84920366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027941 WO2023286872A1 (en) 2021-07-15 2022-07-15 Laminate and electronic device provided with laminate

Country Status (5)

Country Link
JP (1) JPWO2023286872A1 (en)
KR (1) KR20240037880A (en)
CN (1) CN117561164A (en)
TW (1) TW202327876A (en)
WO (1) WO2023286872A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156459A (en) * 2014-02-21 2015-08-27 Dic株式会社 Laminate, conductive pattern, and electronic circuit
JP2016112704A (en) * 2014-12-11 2016-06-23 Dic株式会社 Conductive laminate and method for manufacturing the same
WO2019013040A1 (en) * 2017-07-10 2019-01-17 Dic株式会社 Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article
JP2019014188A (en) * 2017-07-10 2019-01-31 Dic株式会社 Laminate, and printed wiring board, flexible printed wiring board and molded article using the same
JP2020059185A (en) * 2018-10-09 2020-04-16 Dic株式会社 Laminate, electronic device, and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6090148B2 (en) 2013-12-19 2017-03-08 住友金属鉱山株式会社 Method for determining adhesion strength of metal thin film / polyimide laminate, and metallized polyimide film substrate using the same
JP6775240B2 (en) 2016-06-10 2020-10-28 株式会社C−Ink Composition for plating base, method for forming plating base and metal film by it
CN110753617A (en) 2017-07-10 2020-02-04 Dic株式会社 Laminate, printed wiring board using same, flexible printed wiring board, and molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156459A (en) * 2014-02-21 2015-08-27 Dic株式会社 Laminate, conductive pattern, and electronic circuit
JP2016112704A (en) * 2014-12-11 2016-06-23 Dic株式会社 Conductive laminate and method for manufacturing the same
WO2019013040A1 (en) * 2017-07-10 2019-01-17 Dic株式会社 Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article
JP2019014188A (en) * 2017-07-10 2019-01-31 Dic株式会社 Laminate, and printed wiring board, flexible printed wiring board and molded article using the same
JP2020059185A (en) * 2018-10-09 2020-04-16 Dic株式会社 Laminate, electronic device, and manufacturing method therefor

Also Published As

Publication number Publication date
KR20240037880A (en) 2024-03-22
TW202327876A (en) 2023-07-16
JPWO2023286872A1 (en) 2023-01-19
CN117561164A (en) 2024-02-13

Similar Documents

Publication Publication Date Title
TW201904759A (en) Resin composition
TWI639371B (en) Manufacturing method of laminated board
KR102414820B1 (en) Method for producing resin sheet
JP6579295B2 (en) Laminated body, printed wiring board, flexible printed wiring board and molded product using the same
TWI606087B (en) Roughened hardened body, laminated body, printed wiring board, and semiconductor device
JP2014148562A (en) Curable resin composition, film, prepreg, and cured product
TW201728456A (en) Resin sheet capable of reducing the bending of the substrate and having excellent part embedding property
JP2015082535A (en) Wiring board manufacturing method
CN112778699A (en) Resin composition
CN110785282B (en) Laminate, printed wiring board using same, flexible printed wiring board, and molded article
WO2023286872A1 (en) Laminate and electronic device provided with laminate
TWI504663B (en) Resin composition
WO2023286873A1 (en) Multilayer body and electronic device that is provided with multilayer body
JP2022190866A (en) Laminate and method for manufacturing the same
JP6627575B2 (en) Resin sheet with support
JP6225422B2 (en) Cured body, manufacturing method of cured body, laminate, printed wiring board, and semiconductor device
TW201726776A (en) Manufacturing method of resin sheet
JP6597755B2 (en) Roughened and hardened body manufacturing method, laminated body manufacturing method, printed wiring board manufacturing method, and semiconductor device manufacturing method
TW202435371A (en) Method for manufacturing a laminate
CN118250890A (en) Laminate, method for producing same, and electronic component having laminate
KR20220119375A (en) Laminates, printed wiring boards, flexible printed wiring boards, electromagnetic shields and molded products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842213

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280042830.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023534876

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22842213

Country of ref document: EP

Kind code of ref document: A1