WO2019013040A1 - Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article - Google Patents

Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article Download PDF

Info

Publication number
WO2019013040A1
WO2019013040A1 PCT/JP2018/025167 JP2018025167W WO2019013040A1 WO 2019013040 A1 WO2019013040 A1 WO 2019013040A1 JP 2018025167 W JP2018025167 W JP 2018025167W WO 2019013040 A1 WO2019013040 A1 WO 2019013040A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
acid
resin
laminate
layer
Prior art date
Application number
PCT/JP2018/025167
Other languages
French (fr)
Japanese (ja)
Inventor
亘 冨士川
憲一 平林
深澤 憲正
白髪 潤
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2019523896A priority Critical patent/JP6579293B2/en
Priority to CN201880040399.2A priority patent/CN110785282B/en
Priority to KR1020207000075A priority patent/KR102364792B1/en
Publication of WO2019013040A1 publication Critical patent/WO2019013040A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • C09D133/068Copolymers with monomers not covered by C09D133/06 containing glycidyl groups
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material

Definitions

  • the present invention relates to a laminate that can be used for printed wiring boards, flexible printed wiring boards, molded articles, and the like.
  • FCCL flexible copper-clad laminate
  • the copper foil can not be made sufficiently thin for handling since it is pasted while pulling out the copper foil wound in a roll shape. Furthermore, it is necessary to roughen the surface of the copper foil in order to enhance the adhesion to the polymer film, so the high frequency (GHz band) and high frequency required to achieve high density and high performance of the printed wiring board There is a problem that transmission loss occurs in the transmission speed (tens of Gbps) area.
  • a metal thin film is formed on the surface of a polyimide film by a vapor deposition method or a sputtering method, and then an electroplating method, an electroless plating method or both are combined on the metal thin film.
  • a method of forming copper by a method has been proposed (see, for example, Patent Document 1).
  • Patent Document 1 in order to use a vapor deposition method or a sputtering method in order to form a metal thin film, extensive vacuum equipment is required, and there is a problem that the substrate size is limited on equipment.
  • ABS acrylonitrile-butadiene-styrene copolymer
  • ABS-PC polymer alloy of ABS and polycarbonate
  • a metal plating film having excellent adhesion can be obtained even with other types of plastic without being limited to ABS or ABS-PC as a substrate.
  • it has been required to reduce the amount of environmentally harmful substances used.
  • the problem to be solved by the present invention is a laminate which can be produced by a simple method without roughening the surface of the support, and has excellent adhesion between the support and the metal layer (metal plating layer), Printed wiring board, a flexible printed wiring board, and a molded article using the same.
  • a primer layer a layer of a cured product of a crosslinking agent containing a resin having an epoxy group and a hydroxyl group and a carboxylic acid as a primer layer. It discovered that the laminated body which provided and was laminated
  • the present invention is a laminate in which a primer layer (B), a metal nanoparticle layer (C) and a metal plating layer (D) are sequentially laminated on a support (A), and the primer layer A laminate characterized in that B) is a cured product of a resin (b1) having an epoxy group and a hydroxyl group and a crosslinking agent (b2) containing a polyvalent carboxylic acid, a printed wiring board using the same, and a flexible Provided is a printed wiring board and a laminate.
  • the laminate of the present invention is excellent in the adhesion between the support and the metal layer (metal plating layer) without roughening the surface of the support.
  • the metal layer metal plating layer
  • it is a laminate having a sufficiently thin metal layer with a smooth surface, without using extensive vacuum equipment.
  • the laminate of the present invention is, for example, a printed wiring board, a flexible printed wiring board, a conductive film for a touch panel, a metal mesh for a touch panel, an organic solar cell, an organic EL element, an organic transistor, by patterning a metal layer.
  • a metal layer for example, a printed wiring board, a flexible printed wiring board, a conductive film for a touch panel, a metal mesh for a touch panel, an organic solar cell, an organic EL element, an organic transistor, by patterning a metal layer.
  • It can be suitably used as an RFID such as a noncontact IC card, an electromagnetic wave shield, an LED illumination base, an electronic member such as a digital signage.
  • FCCL flexible printed wiring board applications
  • electronic components such as connectors for connecting wires for optical communication etc., electrical components, electric motor peripheral components, battery components, etc .; decorative components for automobiles, lamp reflectors, mobile phones, personal computers, mirrors, It can be suitably used for decoration of containers, home appliances, various switches, faucet parts, shower heads and the like.
  • the laminate of the present invention is a laminate in which a primer layer (B), a metal nanoparticle layer (C) and a metal plating layer (D) are sequentially laminated on a support (A), and the primer layer (B) is a cured product of a resin (b1) having an epoxy group and a hydroxyl group and a crosslinking agent (b2) containing a polyvalent carboxylic acid.
  • the laminate of the present invention may be a laminate in which the primer layer (B) and the like are sequentially laminated on one side of the support (A), and the primer layer (B) and the like may be formed on both sides of the support (A).
  • stacked sequentially may be sufficient.
  • Examples of the support (A) include polyimide, polyamideimide, polyamide, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, acrylonitrile-butadiene-styrene (hereinafter abbreviated as "ABS”) resin, ABS and polycarbonate.
  • ABS acrylonitrile-butadiene-styrene
  • Polymer alloy acrylic resin such as methyl poly (meth) acrylate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polycarbonate, polyethylene, polypropylene, polyurethane, liquid crystal polymer (LCP), poly Ether ether ketone (PEEK), polyphenylene sulfide (PPS), polyphenylene sulfone (PPSU), epoxy resin, cellulose nanofiber, sili Supports made of iron, ceramics, glass, etc., porous supports made of them, steel plates, supports made of metal such as copper, their surfaces are silicon carbide, diamond like carbon, aluminum, copper, titanium, stainless steel etc. And the like.
  • acrylic resin such as methyl poly (meth) acrylate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polycarbonate, polyethylene
  • the laminate of the present invention is used for a printed wiring board etc.
  • polyimide polyethylene terephthalate, polyethylene naphthalate, liquid crystal polymer (LCP), polyetheretherketone (PEEK), epoxy resin as the support (A)
  • LCP liquid crystal polymer
  • PEEK polyetheretherketone
  • epoxy resin epoxy resin
  • the film-form or sheet-like support which has the bendable softness
  • the thickness is generally preferably 1 ⁇ m to 5,000 ⁇ m, more preferably 1 ⁇ m to 300 ⁇ m, and still more preferably 1 ⁇ m to 200 ⁇ m.
  • the surface of the support (A) may be as fine as possible without losing smoothness, as necessary. Irregularities may be formed, soil attached to the surface may be washed, or surface treatment may be performed to introduce functional groups such as hydroxyl group, carbonyl group, carboxyl group and the like. Specifically, methods such as plasma discharge treatment such as corona discharge treatment, dry treatment such as ultraviolet light treatment, wet treatment using an aqueous solution of water, acid or alkali, an organic solvent or the like may be mentioned.
  • the primer layer (B) is a cured product of a resin (b1) having an epoxy group and a hydroxyl group and a crosslinking agent (b2) containing a polyvalent carboxylic acid.
  • the said resin (b1) is a resin which has an epoxy group and a hydroxyl group in a molecule
  • the hydroxyl group contained in the resin (b1) may be either an alcoholic hydroxyl group or a phenolic hydroxyl group.
  • the resin (b1) may be used alone or in combination of two or more of plural resin types.
  • Examples of the epoxy resin used as the resin (b1) include bisphenol A epoxy resin, bisphenol F epoxy resin, and phenol novolac epoxy resin.
  • the bisphenol A type epoxy resin and the bisphenol F type epoxy resin are obtained by reacting bisphenol A or the like with epichlorohydrin, and since they have an epoxy group and a hydroxyl group in the same molecule, they are used as the resin (b1) as they are. It is preferable because it can be used.
  • the phenol novolac epoxy resin can be used as the resin (b1) by reacting the phenol novolac resin and epichlorohydrin so as to leave a phenolic hydroxyl group.
  • These epoxy resins can be used alone or in combination of two or more.
  • an acrylic resin used as said resin (b1) what co-polymerized the (meth) acrylic monomer which has an epoxy group, and the (meth) acrylic monomer which has a hydroxyl group as an essential raw material is mentioned, for example .
  • the (meth) acrylic monomer refers to any one or both of an acrylic monomer and a methacrylic monomer.
  • (meth) acrylic acid refers to one or both of acrylic acid and methacrylic acid
  • (meth) acrylate refers to one or both of acrylate and methacrylate.
  • Examples of the (meth) acrylic monomer having an epoxy group include glycidyl (meth) acrylate, 4-hydroxybutyl acrylate glycidyl ether, allyl glycidyl ether and the like.
  • these (meth) acrylic monomers having an epoxy group glycidyl methacrylate is preferable because adhesion can be further improved.
  • these (meth) acrylic monomers having an epoxy group may be used alone or in combination of two or more.
  • (meth) acrylic monomer having a hydroxyl group 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) Acrylate, 6-hydroxyhexyl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate, glycerol (meth) acrylate, polyethylene glycol (meth) acrylate, N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl Examples include (meth) acrylamide, N-hydroxybutyl acrylamide and the like.
  • the acrylic resin can be produced by polymerizing a mixture of the (meth) acrylic monomer and the like by a known method.
  • the polymerization method for example, solution polymerization method in which polymerization is performed in an organic solvent, emulsion polymerization method in which polymerization is performed in an aqueous medium, suspension polymerization method, precipitation polymerization method, bulk polymerization method in which polymerization is performed without solvent It can be mentioned.
  • Examples of the polymerization initiator used in the production of the acrylic resin include azo initiators such as azonitrile, azo ester, azoamide, azoamidine and azoimidazoline; peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, Organic peroxides such as peroxydicarbonate and peroxyester; and inorganic peroxides such as ammonium persulfate, potassium persulfate and hydrogen peroxide.
  • azo initiators such as azonitrile, azo ester, azoamide, azoamidine and azoimidazoline
  • peroxyketal hydroperoxide, dialkyl peroxide, diacyl peroxide
  • Organic peroxides such as peroxydicarbonate and peroxyester
  • inorganic peroxides such as ammonium persulfate, potassium persulfate and hydrogen peroxide.
  • the peroxide ascorbic acid, erythorbic acid, sodium erythorbate, metal salt of formaldehyde sulfoxylate, sodium thiosulfate, sodium bisulfite, chloride It may be polymerized by a redox polymerization initiator system in combination with a reducing agent such as diiron.
  • the epoxy group concentration in the resin (b1) is preferably 0.05 mmol / g or more and 8 mmol / g or less, and more preferably 0.5 mmol / g or more and 3 mmol / g or less, and 1 mmol / g More than 2 mmol / g is further preferable.
  • the hydroxyl group concentration in the resin (b1) is preferably 0.05 mmol / g or more and 3 mmol / g or less, more preferably 0.1 mmol / g or more and 2 mmol / g or less, since adhesion can be further improved. 5 mmol / g or more and 1.5 mmol / g or less are more preferable.
  • an acrylic resin is preferable because adhesion can be further improved.
  • the crosslinking agent (b2) contains a polyvalent carboxylic acid.
  • the polyvalent carboxylic acid may also be an anhydride.
  • Specific examples of the polyvalent carboxylic acid include aromatic polyvalent carboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid, mellitic acid, biphenyldicarboxylic acid, biphenyltetracarboxylic acid and naphthalenedicarboxylic acid.
  • Acids and their anhydrides Oxalic acid, malonic acid, succinic acid, methylsuccinic anhydride, ethylsuccinic anhydride, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, maleic acid , Fumaric acid, 2,3-butanedicarboxylic acid, 2,4-pentanedicarboxylic acid, 3,5-heptanedicarboxylic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, tetrahydrophthalic acid, norbornane-2,3-dicarboxylic acid Acid, methyl norbornane-2,3-dicarboxylic acid, 1,2,4 Cyclohexane tricarboxylic acid, dodecyl succinic acid, nadic acid, methylnadic acid, bicyclo [2.2.2] octane
  • the molar ratio [carboxyl group / epoxy group] of the number of moles of the carboxyl group in the crosslinker (b2) and the number of moles of the epoxy group in the resin (b1) is more than 0.3 because adhesion can be further improved.
  • An amount of 3 or less is preferable, and 0.5 or more and 2.5 or less is more preferable.
  • a curing catalyst may be used to accelerate the reaction of the epoxy and the polyvalent carboxylic acid.
  • the curing catalyst include tertiary amines, imidazoles, organic phosphines, and Lewis acid catalysts.
  • tertiary amine examples include trimethylamine, triethylamine, tripropylamine, tributylamine, triamylamine, trihexylamine, trihexylamine, trioctylamine, trilaurylamine, dimethylethylamine, dimethylpropylamine and dimethylamine.
  • examples of the imidazole compound include 1-benzyl-2-imidazole (1B2MZ), 2-ethyl-4-imidazole, 2-unimidazole, 1,2-dimethylimidazole, 1-benzyl-2 -Phenylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole (2P4MHZ) and the like.
  • organic phosphines include triphenylphosphine (TPP), triphenylphosphine-triphenylborate, tris (p-methoxyphenyl) phosphine, tetraphenylphosphonium tetraphenylborate and the like.
  • Lewis acid catalyst examples include Lewis acid catalysts such as boron trifluoride amine complex, boron trichloride amine complex and boron trifluoride ethylamine complex.
  • tertiary amines and imidazole compounds are preferably used because adhesion can be further improved.
  • these curing catalysts can be used alone or in combination of two or more.
  • a primer composition (b) containing the resin (b1) and the crosslinking agent (b2) is prepared, and the primer composition It is preferred to coat b) on the support (A).
  • resin a urethane resin, an acrylic resin, block isocyanate resin, a melamine resin, a phenol resin etc. are mentioned, for example. These other resins may be used alone or in combination of two or more.
  • an organic solvent with the said primer composition (b), in order to set it as the viscosity which is easy to apply, when coating to the said support body (A).
  • the organic solvent include toluene, ethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and the like.
  • the amount of the organic solvent used be appropriately adjusted according to the coating method used when coating on the support (A) and the desired film thickness of the primer layer (B).
  • a film forming auxiliary such as a film forming auxiliary, a leveling agent, a thickener, a water repellent, an antifoamer, an antioxidant, etc. are appropriately added to the primer composition (b), as necessary. You may use it.
  • the primer composition (b) is applied to part or all of the surface of the support (A), and the organic solvent contained in the primer composition (b) is used. It can be formed by removing.
  • Examples of the method for applying the primer composition (b) to the surface of the support (A) include methods such as gravure method, coating method, screen method, roller method, rotary method, spray method and capillary method. It can be mentioned.
  • the drying temperature may be set to a temperature in which the used organic solvent can be volatilized and the support (A) is not adversely affected by heat deformation and the like.
  • the film thickness of the primer layer (B) formed using the said primer composition (b) changes with uses which use the laminated body of this invention, the said metal support (A) and the metal nanoparticle layer (C) mentioned later
  • the range in which the adhesion with it can be further improved is preferable, and the film thickness of the primer layer is preferably 10 nm to 30 ⁇ m, more preferably 10 nm to 1 ⁇ m, and still more preferably 10 nm to 500 nm.
  • the surface of the primer layer (B) can further improve the adhesion to the metal nanoparticle layer (C), and therefore, if necessary, it can be a dry process such as a plasma discharge treatment method such as corona discharge treatment method or an ultraviolet treatment method
  • the surface treatment may be performed by a treatment method, a wet treatment method using water, an acidic or alkaline chemical solution, an organic solvent or the like.
  • the metal nanoparticle layer (C) is formed on the primer layer (B), and as the metal constituting the metal nanoparticle layer (C), a transition metal or a compound thereof can be mentioned, among which Ionizable transition metals are preferred.
  • the ionic transition metal include copper, silver, gold, nickel, palladium, platinum, cobalt and the like. Among these, silver is preferable because it is easy to form the metal plating layer (D).
  • copper, nickel, chromium, cobalt, tin etc. are mentioned as a metal which comprises the said metal plating layer (D).
  • copper is preferable because a laminate can be obtained which has a low electrical resistance and is resistant to corrosion.
  • a primer layer (B) is formed on a support (A), and then a fluid containing nano-sized metal nanoparticles (c) is coated. And forming the metal nanoparticle layer (C) by removing the organic solvent and the like contained in the fluid by drying, and then the metal plating layer (D) by electrolytic plating, electroless plating, or both.
  • the shape of the metal nanoparticles (c) used to form the metal nanoparticle layer (C) is preferably particulate or fibrous.
  • the size of the metal nanoparticles (c) is nanosize, specifically, when the shape of the metal nanoparticles (c) is particulate, a fine conductive pattern can be formed.
  • the average particle diameter is preferably 1 nm or more and 100 nm or less, and more preferably 1 nm or more and 50 nm or less because the resistance value can be further reduced.
  • the “average particle diameter” is a volume average value measured by dynamic light scattering method after diluting the conductive substance with a dispersion good solvent. For this measurement, "Nanotrack UPA-150" manufactured by Microtrac, Inc. can be used.
  • the diameter of the fiber is preferably 5 nm or more and 100 nm or less, and 5 nm or more The range of 50 nm or less is more preferable.
  • the length of the fiber is preferably 0.1 ⁇ m to 100 ⁇ m, and more preferably 0.1 ⁇ m to 30 ⁇ m.
  • 1 mass% or more and 90 mass% or less are preferable, as for the content rate of the said metal nanoparticle (c) in the said fluid, 1 mass% or more and 60 mass% or less are more preferable, and 1 mass% or more and 10 mass% or less preferable.
  • a dispersant or solvent for dispersing the metal nanoparticles (c) in a solvent and, if necessary, a surfactant, a leveling agent, a viscosity modifier as described later, Film forming aids, antifoaming agents, preservatives and the like can be mentioned.
  • a low molecular weight or high molecular weight dispersant examples include dodecanethiol, 1-octanethiol, triphenylphosphine, dodecylamine, polyethylene glycol, polyvinyl pyrrolidone, polyethylene imine, polyvinyl pyrrolidone; fatty acids such as myristic acid, octanoic acid and stearic acid; cholic acid, Examples thereof include polycyclic hydrocarbon compounds having a carboxyl group such as glycyrrhizic acid and aventic acid.
  • a polymer dispersant is preferable because the adhesion between the metal nanoparticle layer (C) and the metal plating layer (D) can be improved, and as the polymer dispersant, polyethyleneimine, polypropyleneimine, etc. And a compound obtained by adding a polyoxyalkylene to the polyalkyleneimine, a urethane resin, an acrylic resin, the urethane resin, a compound having a phosphoric acid group in the acrylic resin, and the like.
  • the amount of the dispersing agent required to disperse the metal nanoparticles (c) is preferably 0.01 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the metal nanoparticles (c), and 0. More than 01 mass parts and below 10 mass parts are more preferred.
  • an aqueous medium and an organic solvent can be used as a solvent used for the said fluid.
  • the aqueous medium include distilled water, ion exchanged water, pure water, ultrapure water and the like.
  • an alcohol compound, an ether compound, an ester compound, a ketone compound etc. are mentioned as said organic solvent.
  • Examples of the alcohol compound include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, and the like.
  • ethylene glycol, diethylene glycol, 1,3-butanediol, isoprene glycol and the like can be used as the fluid, as necessary.
  • a common surfactant can be used as the surfactant, and examples thereof include di-2-ethylhexyl sulfosuccinate, dodecylbenzene sulfonate, alkyl diphenyl ether disulfonate, alkyl naphthalene sulfonate, hexametaphosphoric acid Salt etc. are mentioned.
  • a general leveling agent can be used as the leveling agent, and examples thereof include silicone compounds, acetylene diol compounds, and fluorine compounds.
  • a general thickener can be used as the viscosity modifier.
  • an acrylic polymer or synthetic rubber latex that can be thickened by adjusting to alkalinity, or a urethane that can be thickened by association of molecules Resin, hydroxyethylcellulose, carboxymethylcellulose, methylcellulose, polyvinyl alcohol, castor oil with water, amide wax, polyethylene oxide, metal soap, dibenzylidene sorbitol and the like.
  • a general film forming aid can be used, and examples thereof include anionic surfactants (such as dioctyl sulfosuccinic acid ester soda salt) and hydrophobic nonionic surfactants (sorbitan monooleate).
  • anionic surfactants such as dioctyl sulfosuccinic acid ester soda salt
  • hydrophobic nonionic surfactants sorbitan monooleate
  • Etc. polyether-modified siloxane, silicone oil and the like.
  • antifoaming agent a general antifoaming agent can be used, and examples thereof include silicone antifoaming agents, nonionic surfactants, polyethers, higher alcohols, and polymer surfactants.
  • a general preservative can be used, for example, isothiazoline preservative, triazine preservative, imidazole preservative, pyridine preservative, azole preservative, iodine preservative, pyrithione Examples include antiseptics and the like.
  • the viscosity (value measured using a B-type viscometer at 25 ° C.) of the fluid is preferably 0.1 mPa ⁇ s or more and 500,000 mPa ⁇ s or less, and 0.2 mPa ⁇ s or more and 10,000 mPa ⁇ s or less More preferable.
  • the viscosity is preferably 5 mPa ⁇ s or more and 20 mPa ⁇ s or less.
  • Examples of methods for coating or printing the fluid on the primer layer (B) include inkjet printing, reverse printing, screen printing, offset printing, spin coating, spray coating, and bar coating. Methods, die coating methods, slit coating methods, roll coating methods, dip coating methods, pad printing, flexographic printing methods and the like.
  • the metal nanoparticle layer (C) patterned in a thin line form of 0.01 ⁇ m or more and 100 ⁇ m or less which is required when achieving high density of electronic circuits and the like It is preferable to use an inkjet printing method or a reverse printing method for
  • an inkjet printer As the inkjet printing method, one generally referred to as an inkjet printer can be used. Specifically, Konica Minolta EB 100, XY 100 (manufactured by Konica Minolta IJ Co., Ltd.), Dymatics Material Printer DMP-3000, Dimatics Material Printer DMP-2831 (manufactured by Fuji Film Co., Ltd.), etc. may be mentioned.
  • the reverse printing method the letterpress reverse printing method and the intaglio reverse printing method are known, and for example, the fluid is coated on the surface of various blankets and brought into contact with a plate in which non-image areas are projected;
  • the pattern is formed on the surface of the blanket or the like by selectively transferring the fluid corresponding to the non-image area onto the surface of the plate, and then the pattern is formed on the support (A).
  • a method of transferring to (surface) may be mentioned.
  • the pad printing method is known about printing of the pattern to a three-dimensional molded article. This is done by placing the ink on the intaglio plate, filling the ink uniformly into the recess by writing with the squeegee, pressing the pad made of silicone rubber or urethane rubber onto the plate loaded with the ink, the pattern on the pad It is a method of transferring and transferring to a three-dimensional molded product.
  • Mass per unit area of the metal nanoparticle layer (C) is preferably from 1 mg / m 2 or more 30,000 / m 2 or less, 1 mg / m 2 or more 5,000 mg / m 2 or less.
  • the thickness of the metal nanoparticle layer (C) is adjusted by controlling the processing time, the current density, the amount of use of the additive for plating, etc. in the plating process when forming the metal plating layer (D). be able to.
  • the metal plating layer (D) constituting the laminate of the present invention is, for example, a reliable member capable of maintaining good conductivity without causing disconnection or the like over a long period of time when the laminate is used for a printed wiring board or the like. It is a layer provided for the purpose of forming a highly conductive wiring pattern.
  • the method of forming by the plating process is preferable as the formation method.
  • wet plating methods such as an electrolytic plating method which can form the said metal plating layer (D) simply, and an electroless plating method, are mentioned. Also, two or more of these plating methods may be combined. For example, after the electroless plating is performed, electrolytic plating may be performed to form the metal plating layer (D).
  • a metal such as copper contained in the electroless plating solution is precipitated by bringing the electroless plating solution into contact with the metal constituting the metal nanoparticle layer (C). It is a method of forming an electroless plating layer (coating) composed of a coating.
  • Examples of the electroless plating solution include those containing a metal such as copper, nickel, chromium, cobalt, tin, gold, silver and the like, a reducing agent, and a solvent such as an aqueous medium and an organic solvent.
  • reducing agent examples include dimethylaminoborane, hypophosphorous acid, sodium hypophosphite, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, phenol and the like.
  • monocarboxylic acids such as formic acid and acetic acid
  • dicarboxylic acid compounds such as malonic acid, succinic acid, adipic acid, maleic acid and fumaric acid
  • malic acid lactic acid and glycol Hydroxycarboxylic acid compounds such as gluconic acid and citric acid
  • amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid and glutamic acid
  • iminodiacetic acid nitrilotriacetic acid, ethylenediaminediacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, etc.
  • a complexing agent such as an organic acid such as aminopolycarboxylic acid compound of the above or a soluble salt of such an organic acid (sodium salt, potassium salt, ammonium salt etc.), an amine compound such as ethylenediamine, diethylenetriamine, triethylenetetramine etc. Also It can be used.
  • the electroless plating solution is preferably used at 20 ° C. or more and 98 ° C. or less.
  • the electrolytic plating method is performed, for example, in a state in which an electrolytic plating solution is in contact with the surface of the metal forming the metal nanoparticle layer (C) or the electroless plating layer (film) formed by the electroless processing.
  • a conductive substance constituting the metal nanoparticle layer (C) in which a metal such as copper contained in the electrolytic plating solution is disposed at the cathode by energization, or an electroless plating layer formed by the electroless treatment It is a method of depositing on the surface of (coating) to form an electrolytic plating layer (metal coating).
  • Examples of the electrolytic plating solution include those containing sulfides of metals such as copper, nickel, chromium, cobalt and tin, sulfuric acid, and an aqueous medium. Specifically, those containing copper sulfate, sulfuric acid and an aqueous medium can be mentioned.
  • the electrolytic plating solution is preferably used in the range of 20 ° C. or more and 98 ° C. or less.
  • the metal plating layer (D) As a method of forming the metal plating layer (D), after electroless plating is performed because the film thickness of the metal plating layer (D) can be easily controlled to a desired film thickness from thin film to thick film, The method of electrolytic plating is preferred.
  • the thickness of the metal plating layer (D) is preferably in the range of 1 ⁇ m to 50 ⁇ m.
  • the film thickness of the metal plating layer (D) is adjusted by controlling the processing time, the current density, the use amount of the additive for plating, etc. in the plating treatment step in forming the metal plating layer (D). Can.
  • a polymerization initiator solution containing 1 part by mass of butyronitrile and 20 parts by mass of ethyl acetate was dropped and polymerized from separate dropping funnels over 240 minutes while maintaining the temperature in the reaction vessel at 90 ⁇ 1 ° C. After completion of the dropwise addition, after stirring for 120 minutes at the same temperature, the temperature in the reaction vessel was cooled to 30 ° C. Then, the reaction solution was diluted with ethyl acetate to obtain a 2% by mass solution of a primer acrylic resin (1).
  • a polymerization initiator solution containing 1 part by mass of butyronitrile and 20 parts by mass of ethyl acetate was dropped and polymerized from separate dropping funnels over 240 minutes while maintaining the temperature in the reaction vessel at 90 ⁇ 1 ° C. After completion of the dropwise addition, after stirring for 120 minutes at the same temperature, the temperature in the reaction vessel was cooled to 30 ° C. Then, the reaction solution was diluted with ethyl acetate to obtain a 2% by mass solution of a primer acrylic resin (2).
  • a polymerization initiator solution containing 1 part by mass of butyronitrile and 20 parts by mass of ethyl acetate was dropped and polymerized from separate dropping funnels over 240 minutes while maintaining the temperature in the reaction vessel at 90 ⁇ 1 ° C. After completion of the dropwise addition, after stirring for 120 minutes at the same temperature, the temperature in the reaction vessel was cooled to 30 ° C. Then, the reaction solution was diluted with ethyl acetate to obtain a 2% by mass solution of a primer acrylic resin (3).
  • Production Example 4 Production of Acrylic Resin for Primer (4)
  • a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen introduction pipe, a thermometer, a dropping funnel for dropping a monomer mixture, and a dropping funnel for dropping a polymerization catalyst 180 parts by mass of ethyl acetate is charged, and nitrogen is blown up to 90 ° C. The temperature rose.
  • a polymerization initiator solution containing 1 part by mass of azoisobutyronitrile and 20 parts by mass of ethyl acetate was added dropwise over 240 minutes while maintaining the temperature in the reaction vessel at 90 ⁇ 1 ° C. from separate dropping funnels. . After completion of the dropwise addition, after stirring for 120 minutes at the same temperature, the temperature in the reaction vessel was cooled to 30 ° C. Subsequently, it diluted with ethyl acetate and obtained 2 mass% solution of acrylic resin (4) for primers.
  • a monomer mixture, and a polymerization initiator solution containing 1 part by mass of azoisobutyronitrile and 20 parts by mass of ethyl acetate are added from separate dropping funnels for 240 minutes while maintaining the temperature in the reaction vessel at 90 ⁇ 1 ° C. It dripped and polymerized. After completion of the dropwise addition, after stirring for 120 minutes at the same temperature, the temperature in the reaction vessel was cooled to 30 ° C. Then, the reaction solution was diluted with ethyl acetate to obtain a 2% by mass solution of a primer acrylic resin (5).
  • Production Example 6 Production of Acrylic Resin for Primer (6)
  • a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet, a thermometer, a dropping funnel for dropping a monomer mixture, and a dropping funnel for dropping a polymerization catalyst 200 parts by mass of ethyl acetate is added, and nitrogen is blown up to 90 ° C. The temperature rose.
  • a polymerization initiator solution containing 1 part by mass of azoisobutyronitrile and 20 parts by mass of ethyl acetate was added dropwise over 240 minutes while maintaining the temperature in the reaction vessel at 90 ⁇ 1 ° C. from separate dropping funnels. After completion of the dropwise addition, after stirring for 120 minutes at the same temperature, the temperature in the reaction vessel was cooled to 30 ° C. Subsequently, it diluted with ethyl acetate and obtained 2 mass% solution of acrylic resin (6) for primers.
  • a polymerization initiator solution containing 20 parts by mass was polymerized dropwise over 240 minutes while maintaining the temperature in the reaction vessel at 90 ⁇ 1 ° C. from each separate dropping funnel. After completion of the dropwise addition, after stirring for 120 minutes at the same temperature, the temperature in the reaction vessel was cooled to 30 ° C. Then, the reaction solution was diluted with ethyl acetate to obtain a 2% by mass solution of a primer acrylic resin (7).
  • Preparation Example 1 Preparation of Primer Composition (1) Anhydrous pyromellitic as a curing agent in 100 parts by mass of a solution in which an epoxy resin ("EPICLON 1050" manufactured by DIC Corporation; bisphenol A type epoxy resin, epoxy equivalent 475 g / equivalent) is diluted with methyl ethyl ketone to make the solid content 2 mass% A primer composition (1) was obtained by uniformly mixing 11.5 parts by mass of a 2% by mass methyl ethyl ketone solution of an acid.
  • an epoxy resin (“EPICLON 1050” manufactured by DIC Corporation; bisphenol A type epoxy resin, epoxy equivalent 475 g / equivalent) is diluted with methyl ethyl ketone to make the solid content 2 mass%
  • a primer composition (1) was obtained by uniformly mixing 11.5 parts by mass of a 2% by mass methyl ethyl ketone solution of an acid.
  • Preparation Example 2 Preparation of Primer Composition (2) Epoxy resin ("EPICLON 830S” manufactured by DIC Corporation; bisphenol F type epoxy resin, epoxy equivalent 170 g / equivalent) diluted with methyl ethyl ketone to make the solid content 2 mass% 100 parts by weight of an aqueous dry trimet as a curing agent
  • Epoxy resin (“EPICLON 830S” manufactured by DIC Corporation; bisphenol F type epoxy resin, epoxy equivalent 170 g / equivalent) diluted with methyl ethyl ketone to make the solid content 2 mass% 100 parts by weight of an aqueous dry trimet as a curing agent
  • the primer composition (2) was obtained by uniformly mixing 38.9 parts by mass of a 2% by mass methyl ethyl ketone solution of an acid.
  • Preparation Example 3 Preparation of Primer Composition (3) 100 parts by mass of a 2% by mass solution of acrylic resin (1) for a primer obtained in Production Example 1 was uniformly mixed with 11.6 parts by mass of a 2% by mass solution of trimellitic anhydride diluted with methyl ethyl ketone. A composition (3) was obtained.
  • Preparation Example 4 Preparation of Primer Composition (4) In 100 parts by mass of a 2% by mass solution of acrylic resin (1) for a primer obtained in Production Example 1, 17.4 parts by mass of a 2% by mass solution in which trimellitic anhydride is diluted with methyl ethyl ketone is uniformly mixed. A composition (4) was obtained.
  • Preparation Example 5 Preparation of Primer Composition (5) In 100 parts by mass of a 2% by mass solution of acrylic resin (1) for a primer obtained in Production Example 1, 23.2 parts by mass of a solid 2% by mass solution of trimellitic anhydride diluted with methyl ethyl ketone is uniformly mixed. The primer composition (5) was obtained.
  • Preparation Example 6 Preparation of Primer Composition (6) In 2 parts by mass of a 2% by mass solution of acrylic resin (1) for primers obtained in Production Example 1, 20.3 parts by mass of a solution of 2% by mass of solid content obtained by diluting dodecanedioic acid with isopropyl alcohol is uniformly mixed The primer composition (6) was obtained.
  • Preparation Example 7 Preparation of Primer Composition (7) 100 parts by mass of a 2% by mass solution of acrylic resin (2) for primers obtained in Production Example 2 was uniformly mixed with 4.6 parts by mass of a 2% by mass solid solution obtained by diluting trimellitic anhydride with methyl ethyl ketone The primer composition (7) was obtained.
  • Preparation Example 8 Preparation of Primer Composition (8) In 100 parts by mass of a 2% by mass solution of acrylic resin (3) for a primer obtained in Production Example 3, 15.4 parts by mass of a 2% by mass solution in which pyromellitic anhydride is diluted with methyl ethyl ketone is uniformly mixed, A composition (8) was obtained.
  • Primer Composition (9) A primer composition was prepared by uniformly mixing 9.3 mass parts of a 2 mass% solution of trimellitic anhydride diluted with methyl ethyl ketone with 100 mass parts of 2 mass% of the acrylic resin (4) for a primer obtained in Production Example 4 Obtained the thing (9).
  • Preparation Example 10 Preparation of Primer Composition (10) The primer composition was prepared by uniformly mixing 0.46 parts by mass of a 2% by mass solution of trimellitic anhydride diluted with methyl ethyl ketone with 2 parts by mass of 100% by mass of the acrylic resin (5) for primer obtained in Production Example 5 Obtained object (10).
  • Preparation Example 11 Preparation of Primer Composition (R1) 100 parts by mass of a 2% by mass solution of acrylic resin (6) for a primer obtained in Production Example 6 is uniformly mixed with 11.6 parts by mass of a 2% by mass solution of trimellitic anhydride diluted with methyl ethyl ketone A composition (R1) was obtained.
  • Preparation Example 12 Preparation of Primer Composition (R2) 100 parts by mass of a 2% by mass solution of acrylic resin (7) for a primer obtained in Production Example 7 is uniformly mixed with 13.9 parts by mass of a 2% by mass solution obtained by diluting trimellitic anhydride with methyl ethyl ketone A composition (R2) was obtained.
  • Preparation Example 13 Preparation of Primer Composition (R3) 100 parts by mass of a 2% by mass solution of the acrylic resin for primers (1) obtained in Production Example 1 was used as it is as a primer composition (R3).
  • Example 1 described in Japanese Patent No. 4573138, a cationic silver nano consisting of a flake-like lump having an ash green color which is a complex of silver nanoparticles and an organic compound having a cationic group (amino group) I got the particles. Thereafter, the powder of silver nanoparticles was dispersed in a mixed solvent of 45 parts by mass of ethylene glycol and 55 parts by mass of ion-exchanged water to prepare a fluid (1) having 5% by mass of cationic silver nanoparticles. .
  • Example 1 On the surface of a polyimide film ("Kapton 100H” manufactured by Toray DuPont Co., Ltd .; thickness 25 ⁇ m), the primer composition (1) obtained in Preparation Example 1 was divided into a bench type small coater (manufactured by RK Print Coat Instrument Co., Ltd.) It applied so that the thickness after the drying might be set to 100 nm using K printing prober "). Then, a primer layer was formed on the surface of the polyimide film by drying at 150 ° C. for 5 minutes using a hot air drier.
  • a bench type small coater manufactured by RK Print Coat Instrument Co., Ltd.
  • the fluid (1) obtained above was applied to the surface of the primer layer formed above using a bar coater. Then, by drying for 5 minutes at 150 ° C., a silver layer (film thickness 20 nm) corresponding to the metal nanoparticle layer (C) was formed.
  • the silver layer formed above is immersed for 12 minutes at 45 ° C. in an electroless copper plating solution (“OIC Kappa” manufactured by Okuno Pharmaceutical Co., Ltd., “OIC kappa”, pH 12.5) to perform electroless copper plating, and copper by electroless plating A plating layer (film thickness 0.2 ⁇ m) was formed.
  • an electroless copper plating solution (“OIC Kappa” manufactured by Okuno Pharmaceutical Co., Ltd., “OIC kappa”, pH 12.5) to perform electroless copper plating, and copper by electroless plating
  • a plating layer (film thickness 0.2 ⁇ m) was formed.
  • the copper plating layer by electroless copper plating obtained above is set on the cathode side, phosphorus-containing copper is set on the anode side, and an electrolytic plating solution containing copper sulfate is used at a current density of 2.5 A / dm 2 By performing electrolytic plating for 30 minutes, a copper plating layer (film thickness 15 ⁇ m) by electrolytic copper plating was formed on the surface of the copper plating layer by electroless copper plating.
  • the electrolytic plating solution 70 g / L of copper sulfate, 200 g / L of sulfuric acid, 50 mg / L of chlorine ion, and 5 ml / L of an additive (“Top Rutina SF-M” manufactured by Okuno Pharmaceutical Co., Ltd.) were used.
  • a combination of a copper plating layer by electroless copper plating and a copper plating layer by electrolytic copper plating formed thereon corresponds to the metal plating layer (D).
  • a laminate (1) in which a support (A), a primer layer (B), a metal nanoparticle layer (C), and a metal plating layer (D) were sequentially laminated was obtained.
  • Example 1 Example 1 was repeated except that the primer compositions (2) to (10) and (R1) to (R3) were used instead of the primer composition (1) used in Example 1, and a laminate was obtained. (2) to (10) and (R1) to (R3) were obtained.
  • the adhesion was evaluated according to the following criteria from the value of the peel strength before heating measured above.
  • the retention ratio before and after heating was calculated, and heat resistance was evaluated according to the following criteria.
  • the laminates (1) to (10) obtained in Examples 1 to 10, which are laminates of the present invention, have a sufficiently high initial (pre-heating) adhesion, and a decrease in peel strength after heating. It was confirmed that the heat resistance was excellent.
  • the laminate (R1) of Comparative Example 1 is an example using an acrylic resin not having an epoxy group as a resin for a primer used in the primer layer, but the adhesion at the initial stage (before heating) is extremely low.
  • the peel strength after that was 0 kN / m, and it could be confirmed that there was a problem with adhesion.
  • the laminate (R2) of Comparative Example 2 is an example in which an acrylic resin having no hydroxyl group is used as a resin for a primer used in the primer layer, but the adhesion in the initial stage (before heating) is extremely low and peeling after heating The strength was 0 kN / m, confirming that there was a problem with adhesion.
  • the laminate (R3) of Comparative Example 3 is an example in which the crosslinking agent is not used, but although the adhesion in the initial stage (before heating) is relatively high, the retention of peel strength after heating is 53%, the heat resistance It was confirmed that there was a problem with sex.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

The present invention provides: a laminate in which a primer layer (B), a metal nanoparticle layer (C), and a metal plating layer (D) are sequentially laminated on a support body (A), the laminate being characterized in that the primer layer (B) is a cured product of a resin (b1) having an epoxy group and a hydroxyl group, and a cross-linking agent (b2) containing a polyvalent carboxylic acid; a printed wiring board in which the laminate is used; a flexible printed wiring board; and a molded article. The laminate can be manufactured by a simple method and exhibits exceptional adhesion between the support body and the metal layer (metal plating layer) without the surface of the support body being roughened.

Description

積層体、それを用いたプリント配線板、フレキシブルプリント配線板及び成形品Laminate, printed wiring board using it, flexible printed wiring board and molded article
 本発明は、プリント配線板、フレキシブルプリント配線板、成形品等に用いることのできる積層体に関するものである。 The present invention relates to a laminate that can be used for printed wiring boards, flexible printed wiring boards, molded articles, and the like.
 電子機器の小型化、高速化により、プリント配線基板の高密度化、高性能化が要求されており、この要求に応えるため、表面が平滑で充分薄い導電層(金属層)を有するプリント配線板が求められている。また、このプリント配線基板を構成するものとしてフレキシブル銅張積層板(以下、「FCCL」と略記する。)が知られている。FCCLは、主に耐熱性高分子フィルムと銅箔とをエポキシ樹脂系接着剤を用いて張り合わせる方法で製造されている。 With the miniaturization and speeding up of electronic devices, high density and high performance of printed wiring boards are required. In order to meet this demand, printed wiring boards having a conductive layer (metal layer) having a smooth surface and a sufficiently thin surface. Is required. A flexible copper-clad laminate (hereinafter abbreviated as "FCCL") is known as a component of this printed wiring board. FCCL is mainly manufactured by a method of bonding a heat resistant polymer film and a copper foil using an epoxy resin adhesive.
 しかし、この銅箔を用いたFCCLでは、ロール状に巻かれた銅箔を引き出しながら張り合わせることから、取り扱い上、銅箔は充分に薄くすることができない。さらに、高分子フィルムとの密着性を高めるため、銅箔表面を粗化する必要があるので、プリント配線板の高密度化、高性能化を図るために必要な高周波数(GHz帯域)、高伝送速度(数十Gbps)領域で伝送損失を生じる問題があった。 However, in the FCCL using this copper foil, the copper foil can not be made sufficiently thin for handling since it is pasted while pulling out the copper foil wound in a roll shape. Furthermore, it is necessary to roughen the surface of the copper foil in order to enhance the adhesion to the polymer film, so the high frequency (GHz band) and high frequency required to achieve high density and high performance of the printed wiring board There is a problem that transmission loss occurs in the transmission speed (tens of Gbps) area.
 ここで、FCCLの銅層を薄膜化する方法として、ポリイミドフィルムの表面に金属薄膜を蒸着法又はスパッタ法により形成した後、その金属薄膜上に電気めっき法、無電解めっき法もしくは両者を組み合わせた方法で銅を形成する方法が提案されている(例えば、特許文献1参照。)。しかしながら、この方法では、金属薄膜を形成するために、蒸着法又はスパッタ法を用いるため、大がかりな真空設備が必要となり、設備上、基材サイズが限定されるなどの問題がある。 Here, as a method of thinning the copper layer of FCCL, a metal thin film is formed on the surface of a polyimide film by a vapor deposition method or a sputtering method, and then an electroplating method, an electroless plating method or both are combined on the metal thin film. A method of forming copper by a method has been proposed (see, for example, Patent Document 1). However, in this method, in order to use a vapor deposition method or a sputtering method in order to form a metal thin film, extensive vacuum equipment is required, and there is a problem that the substrate size is limited on equipment.
 そこで、銅箔等の金属層の表面を粗化することなく、高分子フィルム等の支持体と充分な密着性を有し、またその金属層の薄膜化に際して、大がかりな真空設備を必要とせず、簡便な方法で製造できる積層体が求められていた。 Therefore, without roughening the surface of a metal layer such as copper foil, it has sufficient adhesion to a support such as a polymer film, and when thinning the metal layer, a large vacuum facility is not required. There has been a demand for a laminate that can be manufactured by a simple method.
 また従来、プラスチック成形品への装飾めっきとしては、携帯電話、パソコン、鏡、容器、各種スイッチ、シャワーヘッド等に用いられてきた。これらの用途の支持体は、アクリロニトリル-ブタジエン-スチレン共重合体(以下、「ABS」と略記する。)やABSとポリカーボネートとのポリマーアロイ(以下、「ABS-PC」と略記する。)にのみ限定されてきた。この理由として、基材とめっき膜の密着性を確保するため基材表面を粗化する必要があり、例えばABSであれば、ポリブタジエン成分を六価クロム酸、過マンガン酸塩等の強力な酸化剤でエッチングし、除去することで表面粗化が可能である。しかしながら、六価クロム酸などは、環境負荷物質であるため、使用しないことが好ましく、代替方法が開発されてきた(例えば、特許文献2参照。)。 In addition, conventionally, as decorative plating on a plastic molded product, it has been used for mobile phones, personal computers, mirrors, containers, various switches, shower heads, and the like. The support for these uses is limited to acrylonitrile-butadiene-styrene copolymer (hereinafter abbreviated as "ABS") or polymer alloy of ABS and polycarbonate (hereinafter abbreviated as "ABS-PC"). It has been limited. For this reason, it is necessary to roughen the substrate surface in order to secure the adhesion between the substrate and the plating film. For example, in the case of ABS, the polybutadiene component is a strong oxidation such as hexavalent chromic acid or permanganate. Surface roughening is possible by etching with an agent and removing. However, since hexavalent chromic acid and the like are environmentally hazardous substances, it is preferable not to use them, and alternative methods have been developed (see, for example, Patent Document 2).
 このように、プラスチック成形品への装飾などを目的としためっきでは、基材がABS又はABS-PCに限定されることなく、他の種類のプラスチックでも密着性に優れる金属めっき膜が得られ、また環境負荷物質の使用量を低減することが求められていた。 Thus, in plating for the purpose of decoration to a plastic molded product, a metal plating film having excellent adhesion can be obtained even with other types of plastic without being limited to ABS or ABS-PC as a substrate. In addition, it has been required to reduce the amount of environmentally harmful substances used.
特開2015-118044号公報JP, 2015-118044, A 特許第5830807号公報Patent No. 5830807 gazette
 本発明が解決しようとする課題は、支持体表面を粗化することなく、簡便な方法で製造でき、支持体と金属層(金属めっき層)との間の密着性に優れた積層体、それを用いたプリント配線板、フレキシブルプリント配線板及び成形品を提供することである。 The problem to be solved by the present invention is a laminate which can be produced by a simple method without roughening the surface of the support, and has excellent adhesion between the support and the metal layer (metal plating layer), Printed wiring board, a flexible printed wiring board, and a molded article using the same.
 本発明者らは、上記の課題を解決するため鋭意研究した結果、支持体の上に、プライマー層として、エポキシ基と水酸基とを有する樹脂とカルボン酸を含有する架橋剤の硬化物の層を設け、その上に金属ナノ粒子により形成した金属層と、金属めっき層とを順次積層した積層体が上記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found, as a primer layer, a layer of a cured product of a crosslinking agent containing a resin having an epoxy group and a hydroxyl group and a carboxylic acid as a primer layer. It discovered that the laminated body which provided and was laminated | stacked sequentially and the metal layer formed with the metal nanoparticle, and the metal plating layer can solve the said subject, and completed this invention.
 すなわち、本発明は、支持体(A)の上に、プライマー層(B)、金属ナノ粒子層(C)及び金属めっき層(D)が順次積層された積層体であって、前記プライマー層(B)が、エポキシ基と水酸基とを有する樹脂(b1)及び多価カルボン酸を含有する架橋剤(b2)の硬化物であることを特徴とする積層体、それを用いたプリント配線板、フレキシブルプリント配線板及び積層体を提供するものである。 That is, the present invention is a laminate in which a primer layer (B), a metal nanoparticle layer (C) and a metal plating layer (D) are sequentially laminated on a support (A), and the primer layer A laminate characterized in that B) is a cured product of a resin (b1) having an epoxy group and a hydroxyl group and a crosslinking agent (b2) containing a polyvalent carboxylic acid, a printed wiring board using the same, and a flexible Provided is a printed wiring board and a laminate.
 本発明の積層体は、支持体表面を粗化しなくても、支持体と金属層(金属めっき層)との間の密着性に優れたものである。また、その金属層の薄膜化に際して、大がかりな真空設備を用いなくても、表面が平滑で充分薄い金属層を有する積層体である。 The laminate of the present invention is excellent in the adhesion between the support and the metal layer (metal plating layer) without roughening the surface of the support. In addition, when thinning the metal layer, it is a laminate having a sufficiently thin metal layer with a smooth surface, without using extensive vacuum equipment.
 また、本発明の積層体は、金属層をパターニングすることにより、例えば、プリント配線板、フレキシブルプリント配線板、タッチパネル向け導電性フィルム、タッチパネル用メタルメッシュ、有機太陽電池、有機EL素子、有機トランジスタ、非接触ICカード等のRFID、電磁波シールド、LED照明基材、デジタルサイネージなどの電子部材として好適に用いることができる。特に、FCCL等のフレキシブルプリント配線板用途に最適である。また、成形品へ適用することにより、光通信等の配線を接続するコネクター、電装部材、電気モーター周辺部材、電池部材などの電子部材;自動車用装飾部品、ランプリフレクター、携帯電話、パソコン、鏡、容器、家電、各種スイッチ、水栓部品、シャワーヘッドなどの装飾に好適に用いることができる。 In addition, the laminate of the present invention is, for example, a printed wiring board, a flexible printed wiring board, a conductive film for a touch panel, a metal mesh for a touch panel, an organic solar cell, an organic EL element, an organic transistor, by patterning a metal layer. It can be suitably used as an RFID such as a noncontact IC card, an electromagnetic wave shield, an LED illumination base, an electronic member such as a digital signage. In particular, it is most suitable for flexible printed wiring board applications such as FCCL. Also, by applying to molded articles, electronic components such as connectors for connecting wires for optical communication etc., electrical components, electric motor peripheral components, battery components, etc .; decorative components for automobiles, lamp reflectors, mobile phones, personal computers, mirrors, It can be suitably used for decoration of containers, home appliances, various switches, faucet parts, shower heads and the like.
 本発明の積層体は、支持体(A)の上に、プライマー層(B)、金属ナノ粒子層(C)及び金属めっき層(D)が順次積層された積層体であって、前記プライマー層(B)が、エポキシ基と水酸基とを有する樹脂(b1)及び多価カルボン酸を含有する架橋剤(b2)の硬化物であるものである。 The laminate of the present invention is a laminate in which a primer layer (B), a metal nanoparticle layer (C) and a metal plating layer (D) are sequentially laminated on a support (A), and the primer layer (B) is a cured product of a resin (b1) having an epoxy group and a hydroxyl group and a crosslinking agent (b2) containing a polyvalent carboxylic acid.
 本発明の積層体は、前記支持体(A)の片面に、プライマー層(B)等を順次積層した積層体であってもよく、前記支持体(A)の両面にプライマー層(B)等を順次積層した積層体であってもよい。 The laminate of the present invention may be a laminate in which the primer layer (B) and the like are sequentially laminated on one side of the support (A), and the primer layer (B) and the like may be formed on both sides of the support (A). The laminated body which laminated | stacked sequentially may be sufficient.
 前記支持体(A)としては、例えば、ポリイミド、ポリアミドイミド、ポリアミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、アクリロニトリル-ブタジエン-スチレン(以下、「ABS」と略記する。)樹脂、ABSとポリカーボネートとのポリマーアロイ、ポリ(メタ)アクリル酸メチル等のアクリル樹脂、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリウレタン、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルフィド(PPS)、ポリフェニレンスルホン(PPSU)、エポキシ樹脂、セルロースナノファイバー、シリコン、セラミックス、ガラス等からなる支持体、それらからなる多孔質の支持体、鋼板、銅等の金属からなる支持体、それらの表面をシリコンカーバイド、ダイヤモンドライクカーボン、アルミニウム、銅、チタン、ステンレス等を蒸着処理した支持体などが挙げられる。 Examples of the support (A) include polyimide, polyamideimide, polyamide, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, acrylonitrile-butadiene-styrene (hereinafter abbreviated as "ABS") resin, ABS and polycarbonate. Polymer alloy, acrylic resin such as methyl poly (meth) acrylate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polycarbonate, polyethylene, polypropylene, polyurethane, liquid crystal polymer (LCP), poly Ether ether ketone (PEEK), polyphenylene sulfide (PPS), polyphenylene sulfone (PPSU), epoxy resin, cellulose nanofiber, sili Supports made of iron, ceramics, glass, etc., porous supports made of them, steel plates, supports made of metal such as copper, their surfaces are silicon carbide, diamond like carbon, aluminum, copper, titanium, stainless steel etc. And the like.
 また、本発明の積層体をプリント配線板等に用いる場合は、前記支持体(A)として、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、エポキシ樹脂、ガラス、セルロースナノファイバーなどからなる支持体を用いることが好ましい。 When the laminate of the present invention is used for a printed wiring board etc., polyimide, polyethylene terephthalate, polyethylene naphthalate, liquid crystal polymer (LCP), polyetheretherketone (PEEK), epoxy resin as the support (A) It is preferable to use a support made of glass, cellulose nanofibers or the like.
 さらに、本発明の積層体をフレキシブルプリント配線板等に用いる場合は、前記支持体(A)として、折り曲げ可能な柔軟性を有するフィルム状又はシート状の支持体が好ましい。 Furthermore, when using the laminated body of this invention for a flexible printed wiring board etc., the film-form or sheet-like support which has the bendable softness | flexibility as said support body (A) is preferable.
 前記支持体(A)の形状がフィルム状又はシート状の場合、その厚さは、通常、1μm以上5,000μm以下が好ましく、1μm以上300μm以下がより好ましく、1μm以上200μm以下がさらに好ましい。 When the shape of the support (A) is a film or sheet, the thickness is generally preferably 1 μm to 5,000 μm, more preferably 1 μm to 300 μm, and still more preferably 1 μm to 200 μm.
 また、前記支持体(A)と後述するプライマー層(B)との密着性をより向上できることから、必要に応じて、前記支持体(A)の表面に、平滑性を失わない程度の微細な凹凸を形成したり、その表面に付着した汚れを洗浄したり、ヒドロキシル基、カルボニル基、カルボキシル基等の官能基の導入のために表面処理したりしてもよい。具体的には、コロナ放電処理等のプラズマ放電処理、紫外線処理等の乾式処理、水、酸・アルカリ等の水溶液又は有機溶剤等を用いる湿式処理等の方法が挙げられる。 In addition, since the adhesion between the support (A) and the primer layer (B) described later can be further improved, the surface of the support (A) may be as fine as possible without losing smoothness, as necessary. Irregularities may be formed, soil attached to the surface may be washed, or surface treatment may be performed to introduce functional groups such as hydroxyl group, carbonyl group, carboxyl group and the like. Specifically, methods such as plasma discharge treatment such as corona discharge treatment, dry treatment such as ultraviolet light treatment, wet treatment using an aqueous solution of water, acid or alkali, an organic solvent or the like may be mentioned.
 前記プライマー層(B)は、エポキシ基と水酸基とを有する樹脂(b1)及び多価カルボン酸を含有する架橋剤(b2)の硬化物である。 The primer layer (B) is a cured product of a resin (b1) having an epoxy group and a hydroxyl group and a crosslinking agent (b2) containing a polyvalent carboxylic acid.
 前記樹脂(b1)は、分子内にエポキシ基と水酸基とを有する樹脂であり、樹脂種としてはエポキシ樹脂、アクリル樹脂等が挙げられる。なお、前記樹脂(b1)が有する水酸基は、アルコール性水酸基であっても、フェノール性水酸基であってもよい。また、前記樹脂(b1)は、1種で用いることも、複数の樹脂種のものを2種以上併用することもできる。 The said resin (b1) is a resin which has an epoxy group and a hydroxyl group in a molecule | numerator, and an epoxy resin, an acrylic resin, etc. are mentioned as a resin seed | species. The hydroxyl group contained in the resin (b1) may be either an alcoholic hydroxyl group or a phenolic hydroxyl group. The resin (b1) may be used alone or in combination of two or more of plural resin types.
 前記樹脂(b1)として用いるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂などが挙げられる。ビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂は、ビスフェノールA等とエピクロロヒドリンとを反応させたものであり、エポキシ基と水酸基とを同一分子内に有するため、そのまま前記樹脂(b1)として用いることができるため好ましい。また、フェノールノボラック型エポキシ樹脂は、フェノールノボラック樹脂とエピクロルヒドリンとを反応する際、フェノール性水酸基が残るように反応させることで前記樹脂(b1)として用いることができる。これらのエポキシ樹脂は、1種で用いることも2種以上併用することもできる。 Examples of the epoxy resin used as the resin (b1) include bisphenol A epoxy resin, bisphenol F epoxy resin, and phenol novolac epoxy resin. The bisphenol A type epoxy resin and the bisphenol F type epoxy resin are obtained by reacting bisphenol A or the like with epichlorohydrin, and since they have an epoxy group and a hydroxyl group in the same molecule, they are used as the resin (b1) as they are. It is preferable because it can be used. Further, the phenol novolac epoxy resin can be used as the resin (b1) by reacting the phenol novolac resin and epichlorohydrin so as to leave a phenolic hydroxyl group. These epoxy resins can be used alone or in combination of two or more.
 前記樹脂(b1)として用いるアクリル樹脂としては、例えば、エポキシ基を有する(メタ)アクリル単量体及び水酸基を有する(メタ)アクリル単量体を必須原料として、それらを共重合したものが挙げられる。なお、(メタ)アクリル単量体は、アクリル単量体及びメタクリル単量体のいずれか一方または両方をいう。また、(メタ)アクリル酸はアクリル酸及びメタクリル酸の一方または両方をいい、(メタ)アクリレートはアクリレート及びメタクリレートの一方または両方をいう。 As an acrylic resin used as said resin (b1), what co-polymerized the (meth) acrylic monomer which has an epoxy group, and the (meth) acrylic monomer which has a hydroxyl group as an essential raw material is mentioned, for example . In addition, the (meth) acrylic monomer refers to any one or both of an acrylic monomer and a methacrylic monomer. Also, (meth) acrylic acid refers to one or both of acrylic acid and methacrylic acid, and (meth) acrylate refers to one or both of acrylate and methacrylate.
 前記エポキシ基を有する(メタ)アクリル単量体としては、グリシジル(メタ)アクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル、アリルグリシジルエーテル等が挙げられる。これらのエポキシ基を有する(メタ)アクリル単量体の中でも、密着性がより向上できることから、グリシジルメタクリレートが好ましい。また、これらのエポキシ基を有する(メタ)アクリル単量体は、1種で用いることも2種以上併用することもできる。 Examples of the (meth) acrylic monomer having an epoxy group include glycidyl (meth) acrylate, 4-hydroxybutyl acrylate glycidyl ether, allyl glycidyl ether and the like. Among these (meth) acrylic monomers having an epoxy group, glycidyl methacrylate is preferable because adhesion can be further improved. Moreover, these (meth) acrylic monomers having an epoxy group may be used alone or in combination of two or more.
 また、前記水酸基を有する(メタ)アクリル単量体としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、(4-ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド、N-ヒドロキシブチルアクリルアミド等が挙げられる。これらの水酸基を有する(メタ)アクリル単量体の中でも、密着性がより向上できることから、2-ヒドロキシエチル(メタ)アクリレートが好ましい。また、これらの水酸基を有する(メタ)アクリル単量体は、1種で用いることも2種以上併用することもできる。 Moreover, as the (meth) acrylic monomer having a hydroxyl group, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) Acrylate, 6-hydroxyhexyl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate, glycerol (meth) acrylate, polyethylene glycol (meth) acrylate, N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl Examples include (meth) acrylamide, N-hydroxybutyl acrylamide and the like. Among these (meth) acrylic monomers having a hydroxyl group, 2-hydroxyethyl (meth) acrylate is preferable because adhesion can be further improved. Moreover, these (meth) acrylic monomers having a hydroxyl group may be used alone or in combination of two or more.
 また、前記アクリル樹脂の原料として、エポキシ基を有する(メタ)アクリル単量体、水酸基を有する(メタ)アクリル単量体以外のこれらと共重合可能なその他の重合性単量体を用いてもよい。このようなその他の重合性単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-ペンタフルオロプロピル(メタ)アクリレート、パーフルオロシクロヘキシル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、β-(パーフルオロヘキシル)エチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の(メタ)アクリル酸エステル化合物;N,N’-メチレンビス(メタ)アクリルアミド、N,N’-エチレンビス(メタ)アクリルアミド等のアクリルアミド化合物;スチレン、α-メチルスチレン等のスチレン及びその誘導体などが挙げられる。これらのその他の重合性単量体の中でも、密着性がより向上できることから、スチレンが好ましい。また、これらのその他の重合性単量体は、1種で用いることも2種以上併用することもできる。 Moreover, even if it uses the (meth) acrylic monomer which has an epoxy group, and the other polymerizable monomer copolymerizable with these other than the (meth) acrylic monomer which has a hydroxyl group as a raw material of the said acrylic resin Good. As such other polymerizable monomers, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (Meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (Meth) acrylate, nonyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, adamantyl (meth) a Lilate, dicyclopentanyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-pentafluoropropyl (meth) ) Acrylate, perfluorocyclohexyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, β- (perfluorohexyl) ethyl (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol Di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, polybutylene glycol di (meth) acrylate, neopentyl (Meth) acrylic acid ester compounds such as glycol di (meth) acrylate, polyneopentyl glycol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate; N, N′-methylene bis (meth) acrylamide, N, Acrylamide compounds such as N'-ethylenebis (meth) acrylamide; styrene such as styrene and α-methylstyrene and derivatives thereof. Among these other polymerizable monomers, styrene is preferable because adhesion can be further improved. Moreover, these other polymerizable monomers can be used alone or in combination of two or more.
 前記アクリル樹脂は、前記(メタ)アクリル単量体等の混合物を、公知の方法で重合することによって製造することができる。この重合方法としては、例えば、有機溶剤中で重合を行う溶液重合法、水性媒体中で重合を行う乳化重合法、懸濁重合法、沈殿重合法、無溶剤下で重合する塊状重合法等が挙げられる。 The acrylic resin can be produced by polymerizing a mixture of the (meth) acrylic monomer and the like by a known method. As the polymerization method, for example, solution polymerization method in which polymerization is performed in an organic solvent, emulsion polymerization method in which polymerization is performed in an aqueous medium, suspension polymerization method, precipitation polymerization method, bulk polymerization method in which polymerization is performed without solvent It can be mentioned.
 前記アクリル樹脂の製造の際に用いる重合開始剤としては、例えば、アゾニトリル、アゾエステル、アゾアミド、アゾアミジン、アゾイミダゾリン等のアゾ系開始剤;パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル等の有機過酸化物;過硫酸アンモニウム、過硫酸カリウム、過酸化水素等の無機過酸化物などが挙げられる。 Examples of the polymerization initiator used in the production of the acrylic resin include azo initiators such as azonitrile, azo ester, azoamide, azoamidine and azoimidazoline; peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, Organic peroxides such as peroxydicarbonate and peroxyester; and inorganic peroxides such as ammonium persulfate, potassium persulfate and hydrogen peroxide.
 また、前記過酸化物のみを用いてラジカル重合しても、前記過酸化物と、アスコルビン酸、エリソルビン酸、エリソルビン酸ナトリウム、ホルムアルデヒドスルホキシラートの金属塩、チオ硫酸ナトリウム、重亜硫酸ナトリウム、塩化第二鉄等の還元剤とを併用したレドックス重合開始剤系によって重合してもよい。 Further, even if radical polymerization is carried out using only the peroxide, the peroxide, ascorbic acid, erythorbic acid, sodium erythorbate, metal salt of formaldehyde sulfoxylate, sodium thiosulfate, sodium bisulfite, chloride It may be polymerized by a redox polymerization initiator system in combination with a reducing agent such as diiron.
 前記樹脂(b1)中のエポキシ基濃度は、密着性がより向上できることから、0.05mmol/g以上8mmol/g以下が好ましく、0.5mmol/g以上3mmol/g以下がより好ましく、1mmol/g以上2mmol/g以下がさらに好ましい。 From the viewpoint that adhesion can be further improved, the epoxy group concentration in the resin (b1) is preferably 0.05 mmol / g or more and 8 mmol / g or less, and more preferably 0.5 mmol / g or more and 3 mmol / g or less, and 1 mmol / g More than 2 mmol / g is further preferable.
 また、前記樹脂(b1)中の水酸基濃度は、密着性がより向上できることから、0.05mmol/g以上3mmol/g以下が好ましく、0.1mmol/g以上2mmol/g以下がより好ましく、0.5mmol/g以上1.5mmol/g以下がさらに好ましい。 In addition, the hydroxyl group concentration in the resin (b1) is preferably 0.05 mmol / g or more and 3 mmol / g or less, more preferably 0.1 mmol / g or more and 2 mmol / g or less, since adhesion can be further improved. 5 mmol / g or more and 1.5 mmol / g or less are more preferable.
 前記樹脂(b1)として用いることのできる樹脂の中でも、密着性がより向上できることから、アクリル樹脂が好ましい。 Among the resins that can be used as the resin (b1), an acrylic resin is preferable because adhesion can be further improved.
 前記架橋剤(b2)は、多価カルボン酸を含有するものである。前記多価カルボン酸は、無水物のものも用いることができる。前記多価カルボン酸の具体例としては、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、メリト酸、ビフェニルジカルボン酸、ビフェニルテトラカルボン酸、ナフタレンジカルボン酸等の芳香族多価カルボン酸及びこれらの無水物;シュウ酸、マロン酸、コハク酸、メチルコハク酸無水物、エチルコハク酸無水物、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、マレイン酸、フマル酸、2,3-ブタンジカルボン酸、2,4-ペンタンジカルボン酸、3,5-ヘプタンジカルボン酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、テトラヒドロフタル酸、ノルボルナン-2,3-ジカルボン酸、メチルノルボルナン-2,3-ジカルボン酸、1,2,4-シクロヘキサントリカルボン酸、ドデシルコハク酸、ナジック酸、メチルナジック酸、ビシクロ[2.2.2]オクタン-2,3-ジカルボン酸等の脂肪族多価カルボン酸及びこれらの無水物などが挙げられる。これらの多価カルボン酸の中でも、密着性がより向上できることから、トリメリット酸無水物が好ましい。これらの多価カルボン酸は、1種で用いることも2種以上併用することもできる。 The crosslinking agent (b2) contains a polyvalent carboxylic acid. The polyvalent carboxylic acid may also be an anhydride. Specific examples of the polyvalent carboxylic acid include aromatic polyvalent carboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid, mellitic acid, biphenyldicarboxylic acid, biphenyltetracarboxylic acid and naphthalenedicarboxylic acid. Acids and their anhydrides; Oxalic acid, malonic acid, succinic acid, methylsuccinic anhydride, ethylsuccinic anhydride, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, maleic acid , Fumaric acid, 2,3-butanedicarboxylic acid, 2,4-pentanedicarboxylic acid, 3,5-heptanedicarboxylic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, tetrahydrophthalic acid, norbornane-2,3-dicarboxylic acid Acid, methyl norbornane-2,3-dicarboxylic acid, 1,2,4 Cyclohexane tricarboxylic acid, dodecyl succinic acid, nadic acid, methylnadic acid, bicyclo [2.2.2] octane-2,3-aliphatic, such as dicarboxylic acid with a polyvalent carboxylic acid and anhydrides thereof. Among these polyvalent carboxylic acids, trimellitic anhydride is preferable because adhesion can be further improved. These polyvalent carboxylic acids can be used alone or in combination of two or more.
 前記架橋剤(b2)中のカルボキシル基のモル数と前記樹脂(b1)中のエポキシ基のモル数のモル比[カルボキシル基/エポキシ基]は、密着性がより向上できることから、0.3以上3以下が好ましくとなる量が好ましく、0.5以上2.5以下がより好ましい。 The molar ratio [carboxyl group / epoxy group] of the number of moles of the carboxyl group in the crosslinker (b2) and the number of moles of the epoxy group in the resin (b1) is more than 0.3 because adhesion can be further improved. An amount of 3 or less is preferable, and 0.5 or more and 2.5 or less is more preferable.
 また、エポキシと多価カルボン酸の反応を促進するため、硬化触媒を使用してもよい。前記硬化触媒としては、第3級アミン、イミダゾール類、有機ホスフィン、ルイス酸触媒等が挙げられる。 In addition, a curing catalyst may be used to accelerate the reaction of the epoxy and the polyvalent carboxylic acid. Examples of the curing catalyst include tertiary amines, imidazoles, organic phosphines, and Lewis acid catalysts.
 前記第3級アミンとしては、具体的には、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリアミルアミン、トリヘキシルアミン、トリオクチルアミン、トリラウリルアミン、ジメチルエチルアミン、ジメチルプロピルアミン、ジメチルブチルアミン、ジメチルアミルアミン、ジメチルヘキシルアミン、ジメチルシクロヘキシルアミン、ジメチルオクチルアミン、ジメチルラウリルアミン、トリアリルアミン、テトラメチルエチレンジアミン、トリエチレンジアミン(トリエチレンテトラミン:TETA)、N-メチルモルフォリン、4,4’-(オキシジ-2,1-エタンジイル)ビス-モルフォリン、N,N-ジメチルベンジルアミン、ピリジン、ピコリン、ジメチルアミノメチルフェノール、トリスジメチルアミノメチルフェノール、トリエタノールアミン、N,N’-ジメチルピペラジン、テトラメチルブタンジアミン、ビス(2,2-モルフォリノエチル)エーテル、ビス(ジメチルアミノエチル)エーテル、N,N’,N’’-トリス(ジメチルアミノプロピル)ヘキサヒドロ-s-トリアジン、N,N’,N’’-トリス(ジメチルアミノエチル)ヘキサヒドロ-s-トリアジン、N,N’,N’’-トリス(2-ヒドロキシエチル)ヘキサヒドロ-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、1,8-ジアザビシクロ[5.4.0]ウンデセン-1、1,4-ジアザビシクロ[2.2.2]オクタン、1,8-ジアザビシクロ[5.4.0]ウンデク-7-エン(DBU)などが挙げられる。 Specific examples of the tertiary amine include trimethylamine, triethylamine, tripropylamine, tributylamine, triamylamine, trihexylamine, trihexylamine, trioctylamine, trilaurylamine, dimethylethylamine, dimethylpropylamine and dimethylamine. Butylamine, dimethylamylamine, dimethylhexylamine, dimethylcyclohexylamine, dimethyloctylamine, dimethyllaurylamine, triallylamine, tetramethylethylenediamine, triethylenediamine (triethylenetetramine: TETA), N-methylmorpholine, 4,4'- (Oxydi-2,1-ethanediyl) bis-morpholine, N, N-dimethylbenzylamine, pyridine, picoline, dimethylaminomethylphenol , Trisdimethylaminomethylphenol, triethanolamine, N, N'-dimethylpiperazine, tetramethylbutanediamine, bis (2,2-morpholinoethyl) ether, bis (dimethylaminoethyl) ether, N, N ', N '' -Tris (dimethylaminopropyl) hexahydro-s-triazine, N, N ', N' '-tris (dimethylaminoethyl) hexahydro-s-triazine, N, N', N ''-tris (2-hydroxy) Ethyl) Hexahydro-s-triazine, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 1,8-diazabicyclo [5.4.0] undecen-1 1,4-diazabicyclo [2.2.2] octane, 1,8-diazabicyclo [5.4.0] unde And the like-7-ene (DBU).
 前記イミダゾール化合物としては、具体的には、例えば、1-ベンジル-2-イミダゾール(1B2MZ)、2-エチル-4-イミダゾール、2-ウンデルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(2P4MHZ)などが挙げられる。 Specifically, examples of the imidazole compound include 1-benzyl-2-imidazole (1B2MZ), 2-ethyl-4-imidazole, 2-unimidazole, 1,2-dimethylimidazole, 1-benzyl-2 -Phenylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole (2P4MHZ) and the like.
 有機ホスフィンとしては、具体的には、例えば、トリフェニルホスフィン(TPP)、トリフェニルホスフィン-トリフェニルボレート、トリス(p-メトキシフェニル)ホスフィン、テトラフェニルホスフォニウム・テトラフェニルボレートなどが挙げられる。 Specific examples of the organic phosphines include triphenylphosphine (TPP), triphenylphosphine-triphenylborate, tris (p-methoxyphenyl) phosphine, tetraphenylphosphonium tetraphenylborate and the like.
 ルイス酸触媒としては、具体的には、例えば、三フッ化ホウ素アミン錯体、三塩化ホウ素アミン錯体、三フッ化ホウ素エチルアミン錯体などのルイス酸触媒などが挙げられる。 Specific examples of the Lewis acid catalyst include Lewis acid catalysts such as boron trifluoride amine complex, boron trichloride amine complex and boron trifluoride ethylamine complex.
 これらの硬化触媒の中でも、密着性がより向上できることから、第3級アミン、イミダゾール化合物を用いることが好ましい。また、これらの硬化触媒は、1種で用いることも2種以上併用することもできる。 Among these curing catalysts, tertiary amines and imidazole compounds are preferably used because adhesion can be further improved. Moreover, these curing catalysts can be used alone or in combination of two or more.
 前記プライマー層(B)を前記支持体(A)上に形成するために、前記樹脂(b1)及び前記架橋剤(b2)を含有するプライマー組成物(b)を調製し、前記プライマー組成物(b)を前記支持体(A)上に塗工することが好ましい。前記プライマー組成物(b)には、必要に応じて、前記樹脂(b1)及び前記架橋剤(b2)以外のその他の樹脂を配合してもよい。その他の樹脂としては、例えば、ウレタン樹脂、アクリル樹脂、ブロックイソシアネート樹脂、メラミン樹脂、フェノール樹脂等が挙げられる。これらのその他の樹脂は、1種で用いることも2種以上併用することもできる。 In order to form the primer layer (B) on the support (A), a primer composition (b) containing the resin (b1) and the crosslinking agent (b2) is prepared, and the primer composition It is preferred to coat b) on the support (A). You may mix | blend other resin other than the said resin (b1) and the said crosslinking agent (b2) with the said primer composition (b) as needed. As other resin, a urethane resin, an acrylic resin, block isocyanate resin, a melamine resin, a phenol resin etc. are mentioned, for example. These other resins may be used alone or in combination of two or more.
 また、前記プライマー組成物(b)には、前記支持体(A)へ塗工する際に、塗工しやすい粘度とするため、有機溶剤を配合することが好ましい。前記有機溶剤としては、例えば、トルエン、酢酸エチル、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられる。 Moreover, it is preferable to mix | blend an organic solvent with the said primer composition (b), in order to set it as the viscosity which is easy to apply, when coating to the said support body (A). Examples of the organic solvent include toluene, ethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and the like.
 前記有機溶剤の使用量は、前記支持体(A)へ塗工する際に用いる塗工方法、前記プライマー層(B)の所望とする膜厚により、適宜調整することが好ましい。 It is preferable that the amount of the organic solvent used be appropriately adjusted according to the coating method used when coating on the support (A) and the desired film thickness of the primer layer (B).
 また、前記プライマー組成物(b)には、必要に応じて、皮膜形成助剤、レベリング剤、増粘剤、撥水剤、消泡剤、酸化防止剤、等の公知の添加剤を適宜添加して使用してもよい。 In addition, known additives such as a film forming auxiliary, a leveling agent, a thickener, a water repellent, an antifoamer, an antioxidant, etc. are appropriately added to the primer composition (b), as necessary. You may use it.
 前記プライマー層(B)は、例えば、前記支持体(A)の表面の一部又は全部に前記プライマー組成物(b)を塗工し、前記プライマー組成物(b)中に含まれる有機溶剤を除去することによって形成することができる。 In the primer layer (B), for example, the primer composition (b) is applied to part or all of the surface of the support (A), and the organic solvent contained in the primer composition (b) is used. It can be formed by removing.
 前記プライマー組成物(b)を前記支持体(A)の表面に塗工する方法としては、例えば、グラビア方式、コーティング方式、スクリーン方式、ローラー方式、ロータリー方式、スプレー方式、キャピラリー方式等の方法が挙げられる。 Examples of the method for applying the primer composition (b) to the surface of the support (A) include methods such as gravure method, coating method, screen method, roller method, rotary method, spray method and capillary method. It can be mentioned.
 前記プライマー組成物(b)を前記支持体(A)の表面に塗工した後、その塗工層に含まれる有機溶剤を除去する方法としては、例えば、乾燥機を用いて乾燥させ、有機溶剤を揮発させる方法が一般的である。乾燥温度としては、用いた有機溶剤を揮発させることが可能で、かつ前記支持体(A)に熱変形等の悪影響を与えない範囲の温度に設定すればよい。 As a method of removing the organic solvent contained in the coating layer after applying the said primer composition (b) on the surface of the said support body (A), it is made to dry using a dryer, for example, and an organic solvent The method of volatilizing is generally used. The drying temperature may be set to a temperature in which the used organic solvent can be volatilized and the support (A) is not adversely affected by heat deformation and the like.
 前記プライマー組成物(b)を用いて形成するプライマー層(B)の膜厚は、本発明の積層体を用いる用途によって異なるが、前記支持体(A)と後述する金属ナノ粒子層(C)との密着性をより向上できる範囲が好ましく、前記プライマー層の膜厚は、10nm以上30μm以下が好ましく、10nm以上1μm以下がより好ましく、10nm以上500nm以下がさらに好ましい。 Although the film thickness of the primer layer (B) formed using the said primer composition (b) changes with uses which use the laminated body of this invention, the said metal support (A) and the metal nanoparticle layer (C) mentioned later The range in which the adhesion with it can be further improved is preferable, and the film thickness of the primer layer is preferably 10 nm to 30 μm, more preferably 10 nm to 1 μm, and still more preferably 10 nm to 500 nm.
 前記プライマー層(B)の表面は、前記金属ナノ粒子層(C)との密着性をより向上できることから、必要に応じて、コロナ放電処理法等のプラズマ放電処理法、紫外線処理法等の乾式処理法、水や酸性又はアルカリ性薬液、有機溶剤等を用いた湿式処理法によって、表面処理してもよい。 The surface of the primer layer (B) can further improve the adhesion to the metal nanoparticle layer (C), and therefore, if necessary, it can be a dry process such as a plasma discharge treatment method such as corona discharge treatment method or an ultraviolet treatment method The surface treatment may be performed by a treatment method, a wet treatment method using water, an acidic or alkaline chemical solution, an organic solvent or the like.
 前記金属ナノ粒子層(C)は、前記プライマー層(B)上に形成されたものであり、前記金属ナノ粒子層(C)を構成する金属としては、遷移金属又はその化合物が挙げられ、中でもイオン性の遷移金属が好ましい。このイオン性の遷移金属としては、銅、銀、金、ニッケル、パラジウム、白金、コバルト等が挙げられる。これらの中でも、前記金属めっき層(D)を形成しやすいことから銀が好ましい。 The metal nanoparticle layer (C) is formed on the primer layer (B), and as the metal constituting the metal nanoparticle layer (C), a transition metal or a compound thereof can be mentioned, among which Ionizable transition metals are preferred. Examples of the ionic transition metal include copper, silver, gold, nickel, palladium, platinum, cobalt and the like. Among these, silver is preferable because it is easy to form the metal plating layer (D).
 また、前記金属めっき層(D)を構成する金属としては、銅、ニッケル、クロム、コバルト、スズ等が挙げられる。これらの中でも、電気抵抗が低く、腐食に強いプリント配線板に用いることができる積層体が得られることから銅が好ましい。 Moreover, copper, nickel, chromium, cobalt, tin etc. are mentioned as a metal which comprises the said metal plating layer (D). Among these, copper is preferable because a laminate can be obtained which has a low electrical resistance and is resistant to corrosion.
 本発明の積層体の製造方法としては、まず、支持体(A)の上に、プライマー層(B)を形成し、その後、ナノサイズの金属ナノ粒子(c)を含有する流動体を塗工し、流動体中に含まれる有機溶剤等を乾燥により除去することによって、金属ナノ粒子層(C)を形成した後、電解めっきもしく無電解めっき、又はその両方により前記金属めっき層(D)を形成する方法が挙げられる。 As a method for producing a laminate of the present invention, first, a primer layer (B) is formed on a support (A), and then a fluid containing nano-sized metal nanoparticles (c) is coated. And forming the metal nanoparticle layer (C) by removing the organic solvent and the like contained in the fluid by drying, and then the metal plating layer (D) by electrolytic plating, electroless plating, or both. Methods to form
 前記金属ナノ粒子層(C)の形成に用いる前記金属ナノ粒子(c)の形状は、粒子状又繊維状のものが好ましい。また、前記金属ナノ粒子(c)の大きさはナノサイズのものを用いるが、具体的には、前記金属ナノ粒子(c)の形状が粒子状の場合は、微細な導電性パターンを形成でき、抵抗値をより低減できることから、平均粒子径が1nm以上100nm以下が好ましく、1nm以上50nm以下がより好ましい。なお、前記「平均粒子径」は、前記導電性物質を分散良溶媒にて希釈し、動的光散乱法により測定した体積平均値である。この測定にはマイクロトラック社製「ナノトラックUPA-150」を用いることができる。 The shape of the metal nanoparticles (c) used to form the metal nanoparticle layer (C) is preferably particulate or fibrous. In addition, although the size of the metal nanoparticles (c) is nanosize, specifically, when the shape of the metal nanoparticles (c) is particulate, a fine conductive pattern can be formed. The average particle diameter is preferably 1 nm or more and 100 nm or less, and more preferably 1 nm or more and 50 nm or less because the resistance value can be further reduced. The “average particle diameter” is a volume average value measured by dynamic light scattering method after diluting the conductive substance with a dispersion good solvent. For this measurement, "Nanotrack UPA-150" manufactured by Microtrac, Inc. can be used.
 一方、前記金属ナノ粒子(c)の形状が繊維状の場合も、微細な導電性パターンを形成でき、抵抗値をより低減できることから、繊維の直径が5nm以上100nm以下の範囲が好ましく、5nm以上50nm以下の範囲がより好ましい。また、繊維の長さは、0.1μm以上100μm以下が好ましく、0.1μm以上30μm以下がより好ましい。 On the other hand, even when the shape of the metal nanoparticles (c) is fibrous, a fine conductive pattern can be formed, and the resistance value can be further reduced. Therefore, the diameter of the fiber is preferably 5 nm or more and 100 nm or less, and 5 nm or more The range of 50 nm or less is more preferable. The length of the fiber is preferably 0.1 μm to 100 μm, and more preferably 0.1 μm to 30 μm.
 前記流動体中の前記金属ナノ粒子(c)の含有率は、1質量%以上90質量%以下が好ましく、1質量%以上60質量%以下がより好ましく、1質量%以上10質量%以下がさらに好ましい。 1 mass% or more and 90 mass% or less are preferable, as for the content rate of the said metal nanoparticle (c) in the said fluid, 1 mass% or more and 60 mass% or less are more preferable, and 1 mass% or more and 10 mass% or less preferable.
 前記流動体に配合される成分としては、前記金属ナノ粒子(c)を溶媒中に分散させるための分散剤や溶媒、また必要に応じて、後述する界面活性剤、レベリング剤、粘度調整剤、成膜助剤、消泡剤、防腐剤等が挙げられる。 As components to be blended in the fluid, a dispersant or solvent for dispersing the metal nanoparticles (c) in a solvent, and, if necessary, a surfactant, a leveling agent, a viscosity modifier as described later, Film forming aids, antifoaming agents, preservatives and the like can be mentioned.
 前記金属ナノ粒子(c)を溶媒中に分散させるため、低分子量又は高分子量の分散剤を用いることが好ましい。前記分散剤としては、例えば、ドデカンチオール、1-オクタンチオール、トリフェニルホスフィン、ドデシルアミン、ポリエチレングリコール、ポリビニルピロリドン、ポリエチレンイミン、ポリビニルピロリドン;ミリスチン酸、オクタン酸、ステアリン酸等の脂肪酸;コール酸、グリシルジン酸、アビンチン酸等のカルボキシル基を有する多環式炭化水素化合物などが挙げられる。これらの中でも、前記金属ナノ粒子層(C)と前記金属めっき層(D)との密着性を向上できることから、高分子分散剤が好ましく、この高分子分散剤としては、ポリエチレンイミン、ポリプロピレンイミン等のポリアルキレンイミン、前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物、ウレタン樹脂、アクリル樹脂、前記ウレタン樹脂や前記アクリル樹脂にリン酸基を含有する化合物等が挙げられる。 In order to disperse the metal nanoparticles (c) in a solvent, it is preferable to use a low molecular weight or high molecular weight dispersant. Examples of the dispersant include dodecanethiol, 1-octanethiol, triphenylphosphine, dodecylamine, polyethylene glycol, polyvinyl pyrrolidone, polyethylene imine, polyvinyl pyrrolidone; fatty acids such as myristic acid, octanoic acid and stearic acid; cholic acid, Examples thereof include polycyclic hydrocarbon compounds having a carboxyl group such as glycyrrhizic acid and aventic acid. Among these, a polymer dispersant is preferable because the adhesion between the metal nanoparticle layer (C) and the metal plating layer (D) can be improved, and as the polymer dispersant, polyethyleneimine, polypropyleneimine, etc. And a compound obtained by adding a polyoxyalkylene to the polyalkyleneimine, a urethane resin, an acrylic resin, the urethane resin, a compound having a phosphoric acid group in the acrylic resin, and the like.
 前記金属ナノ粒子(c)を分散させるために必要な前記分散剤の使用量は、前記金属ナノ粒子(c)100質量部に対し、0.01質量部以上50質量部以下が好ましく、0.01質量部以上10質量部以下がより好ましい。 The amount of the dispersing agent required to disperse the metal nanoparticles (c) is preferably 0.01 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the metal nanoparticles (c), and 0. More than 01 mass parts and below 10 mass parts are more preferred.
 前記流動体に用いる溶媒としては、水性媒体や有機溶剤を用いることができる。前記水性媒体としては、例えば、蒸留水、イオン交換水、純水、超純水等が挙げられる。また、前記有機溶剤としては、アルコール化合物、エーテル化合物、エステル化合物、ケトン化合物等が挙げられる。 As a solvent used for the said fluid, an aqueous medium and an organic solvent can be used. Examples of the aqueous medium include distilled water, ion exchanged water, pure water, ultrapure water and the like. Moreover, an alcohol compound, an ether compound, an ester compound, a ketone compound etc. are mentioned as said organic solvent.
 前記アルコール化合物としては、例えば、メタノール、エタノール、n-プロパノール、イソプロピルアルコール、n-ブタノール、イソブチルアルコール、sec-ブタノール、tert-ブタノール、ヘプタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ステアリルアルコール、アリルアルコール、シクロヘキサノール、テルピネオール、ターピネオール、ジヒドロターピネオール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル等が挙げられる。 Examples of the alcohol compound include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, and the like. Tetradecanol, pentadecanol, stearyl alcohol, allyl alcohol, cyclohexanol, terpineol, terpineol, dihydroterpineol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol The Butyl ether, tetraethylene glycol monobutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, tri Propylene glycol monobutyl ether and the like can be mentioned.
 また、前記流動体には、前記金属ナノ粒子(c)、溶媒の他に、必要に応じてエチレングリコール、ジエチレングリコール、1,3-ブタンジオール、イソプレングリコール等を用いることができる。 In addition to the metal nanoparticles (c) and the solvent, ethylene glycol, diethylene glycol, 1,3-butanediol, isoprene glycol and the like can be used as the fluid, as necessary.
 前記界面活性剤としては、一般的な界面活性剤を用いることができ、例えば、ジ-2-エチルヘキシルスルホコハク酸塩、ドデシルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルキルナフタレンスルホン酸塩、ヘキサメタリン酸塩等が挙げられる。 A common surfactant can be used as the surfactant, and examples thereof include di-2-ethylhexyl sulfosuccinate, dodecylbenzene sulfonate, alkyl diphenyl ether disulfonate, alkyl naphthalene sulfonate, hexametaphosphoric acid Salt etc. are mentioned.
 前記レベリング剤としては、一般的なレベリング剤を用いることができ、例えば、シリコーン系化合物、アセチレンジオール系化合物、フッ素系化合物等が挙げられる。 A general leveling agent can be used as the leveling agent, and examples thereof include silicone compounds, acetylene diol compounds, and fluorine compounds.
 前記粘度調整剤としては、一般的な増粘剤を用いることができ、例えば、アルカリ性に調整することによって増粘可能なアクリル重合体や合成ゴムラテックス、分子が会合することによって増粘可能なウレタン樹脂、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、ポリビニルアルコール、水添加ヒマシ油、アマイドワックス、酸化ポリエチレン、金属石鹸、ジベンジリデンソルビトールなどが挙げられる。 As the viscosity modifier, a general thickener can be used. For example, an acrylic polymer or synthetic rubber latex that can be thickened by adjusting to alkalinity, or a urethane that can be thickened by association of molecules Resin, hydroxyethylcellulose, carboxymethylcellulose, methylcellulose, polyvinyl alcohol, castor oil with water, amide wax, polyethylene oxide, metal soap, dibenzylidene sorbitol and the like.
 前記成膜助剤としては、一般的な成膜助剤を用いることができ、例えば、アニオン系界面活性剤(ジオクチルスルホコハク酸エステルソーダ塩など)、疎水性ノニオン系界面活性剤(ソルビタンモノオレエートなど)、ポリエーテル変性シロキサン、シリコーンオイル等が挙げられる。 As the film forming aid, a general film forming aid can be used, and examples thereof include anionic surfactants (such as dioctyl sulfosuccinic acid ester soda salt) and hydrophobic nonionic surfactants (sorbitan monooleate). Etc., polyether-modified siloxane, silicone oil and the like.
 前記消泡剤としては、一般的な消泡剤を用いることができ、例えば、シリコーン系消泡剤、ノニオン系界面活性剤、ポリエーテル,高級アルコール、ポリマー系界面活性剤等が挙げられる。 As the antifoaming agent, a general antifoaming agent can be used, and examples thereof include silicone antifoaming agents, nonionic surfactants, polyethers, higher alcohols, and polymer surfactants.
 前記防腐剤としては、一般的な防腐剤を用いることができ、例えば、イソチアゾリン系防腐剤、トリアジン系防腐剤、イミダゾール系防腐剤、ピリジン系防腐剤、アゾール系防腐剤、ヨード系防腐剤、ピリチオン系防腐剤等が挙げられる。 As the preservative, a general preservative can be used, for example, isothiazoline preservative, triazine preservative, imidazole preservative, pyridine preservative, azole preservative, iodine preservative, pyrithione Examples include antiseptics and the like.
 前記流動体の粘度(25℃でB型粘度計を用いて測定した値)は、0.1mPa・s以上500,000mPa・s以下が好ましく、0.2mPa・s以上10,000mPa・s以下がより好ましい。また、前記流動体を、後述するインクジェット印刷法、凸版反転印刷等の方法によって塗工(印刷)する場合には、その粘度は5mPa・s以上20mPa・s以下が好ましい。 The viscosity (value measured using a B-type viscometer at 25 ° C.) of the fluid is preferably 0.1 mPa · s or more and 500,000 mPa · s or less, and 0.2 mPa · s or more and 10,000 mPa · s or less More preferable. When the fluid is coated (printed) by a method such as inkjet printing or letterpress reverse printing described later, the viscosity is preferably 5 mPa · s or more and 20 mPa · s or less.
 前記プライマー層(B)の上に前記流動体を塗工や印刷する方法としては、例えば、インクジェット印刷法、反転印刷法、スクリーン印刷法、オフセット印刷法、スピンコート法、スプレーコート法、バーコート法、ダイコート法、スリットコート法、ロールコート法、ディップコート法、パッド印刷、フレキソ印刷法等が挙げられる。 Examples of methods for coating or printing the fluid on the primer layer (B) include inkjet printing, reverse printing, screen printing, offset printing, spin coating, spray coating, and bar coating. Methods, die coating methods, slit coating methods, roll coating methods, dip coating methods, pad printing, flexographic printing methods and the like.
 これらの塗工方法の中でも、例えば、電子回路等の高密度化を実現する際に求められる0.01μm以上100μm以下の細線状でパターン化された前記金属ナノ粒子層(C)を形成する場合には、インクジェット印刷法、反転印刷法を用いることが好ましい。 Among these coating methods, for example, in the case of forming the metal nanoparticle layer (C) patterned in a thin line form of 0.01 μm or more and 100 μm or less, which is required when achieving high density of electronic circuits and the like It is preferable to use an inkjet printing method or a reverse printing method for
 前記インクジェット印刷法としては、一般にインクジェットプリンターといわれるものを用いることができる。具体的には、コニカミノルタEB100、XY100(コニカミノルタIJ株式会社製)、ダイマティックス・マテリアルプリンターDMP-3000、ダイマティックス・マテリアルプリンターDMP-2831(富士フィルム株式会社製)等が挙げられる。 As the inkjet printing method, one generally referred to as an inkjet printer can be used. Specifically, Konica Minolta EB 100, XY 100 (manufactured by Konica Minolta IJ Co., Ltd.), Dymatics Material Printer DMP-3000, Dimatics Material Printer DMP-2831 (manufactured by Fuji Film Co., Ltd.), etc. may be mentioned.
 また、反転印刷法としては、凸版反転印刷法、凹版反転印刷法が知られており、例えば、各種ブランケットの表面に前記流動体を塗工し、非画線部が突出した版と接触させ、前記非画線部に対応する流動体を前記版の表面に選択的に転写させることによって、前記ブランケット等の表面に前記パターンを形成し、次いで、前記パターンを、前記支持体(A)の上(表面)に転写させる方法が挙げられる。 Further, as the reverse printing method, the letterpress reverse printing method and the intaglio reverse printing method are known, and for example, the fluid is coated on the surface of various blankets and brought into contact with a plate in which non-image areas are projected; The pattern is formed on the surface of the blanket or the like by selectively transferring the fluid corresponding to the non-image area onto the surface of the plate, and then the pattern is formed on the support (A). A method of transferring to (surface) may be mentioned.
 また、立体成形品へのパターンの印刷については、パッド印刷法が知られている。これは、凹版の上にインクを載せ、スキージで書き取ることでインクを均質に凹部に充填し、インクを載せた版上に、シリコンゴムやウレタンゴム製のパッドを押し当て、パターンをパッド上に転写し、立体成形品へ転写させる方法である。 Moreover, the pad printing method is known about printing of the pattern to a three-dimensional molded article. This is done by placing the ink on the intaglio plate, filling the ink uniformly into the recess by writing with the squeegee, pressing the pad made of silicone rubber or urethane rubber onto the plate loaded with the ink, the pattern on the pad It is a method of transferring and transferring to a three-dimensional molded product.
 前記金属ナノ粒子層(C)の単位面積当たりの質量は、1mg/m以上30,000mg/m以下が好ましく、1mg/m以上5,000mg/m以下が好ましい。前記金属ナノ粒子層(C)の厚さは、前記金属めっき層(D)の形成する際のめっき処理工程における処理時間、電流密度、めっき用添加剤の使用量等を制御することによって調整することができる。 Mass per unit area of the metal nanoparticle layer (C) is preferably from 1 mg / m 2 or more 30,000 / m 2 or less, 1 mg / m 2 or more 5,000 mg / m 2 or less. The thickness of the metal nanoparticle layer (C) is adjusted by controlling the processing time, the current density, the amount of use of the additive for plating, etc. in the plating process when forming the metal plating layer (D). be able to.
 本発明の積層体を構成する金属めっき層(D)は、例えば、前記積層体をプリント配線板等に用いる場合に、長期間にわたり断線等を生じることなく、良好な通電性を維持可能な信頼性の高い配線パターンを形成することを目的として設けられる層である。 The metal plating layer (D) constituting the laminate of the present invention is, for example, a reliable member capable of maintaining good conductivity without causing disconnection or the like over a long period of time when the laminate is used for a printed wiring board or the like. It is a layer provided for the purpose of forming a highly conductive wiring pattern.
 前記金属めっき層(D)は、前記金属ナノ粒子層(C)の上に形成される層であるが、その形成方法としては、めっき処理によって形成する方法が好ましい。このめっき処理としては、簡便に前記金属めっき層(D)を形成できる電解めっき法、無電解めっき法等の湿式めっき法が挙げられる。また、これらのめっき法を2つ以上組み合わせてもよい。例えば、無電解めっきを施した後、電解めっきを施して、前記金属めっき層(D)を形成してもよい。 Although the said metal plating layer (D) is a layer formed on the said metal nanoparticle layer (C), the method of forming by the plating process is preferable as the formation method. As this plating process, wet plating methods, such as an electrolytic plating method which can form the said metal plating layer (D) simply, and an electroless plating method, are mentioned. Also, two or more of these plating methods may be combined. For example, after the electroless plating is performed, electrolytic plating may be performed to form the metal plating layer (D).
 上記の無電解めっき法は、例えば、前記金属ナノ粒子層(C)を構成する金属に、無電解めっき液を接触させることで、無電解めっき液中に含まれる銅等の金属を析出させ金属皮膜からなる無電解めっき層(皮膜)を形成する方法である。 In the above electroless plating method, for example, a metal such as copper contained in the electroless plating solution is precipitated by bringing the electroless plating solution into contact with the metal constituting the metal nanoparticle layer (C). It is a method of forming an electroless plating layer (coating) composed of a coating.
 前記無電解めっき液としては、例えば、銅、ニッケル、クロム、コバルト、スズ、金、銀等の金属と、還元剤と、水性媒体、有機溶剤等の溶媒とを含有するものが挙げられる。 Examples of the electroless plating solution include those containing a metal such as copper, nickel, chromium, cobalt, tin, gold, silver and the like, a reducing agent, and a solvent such as an aqueous medium and an organic solvent.
 前記還元剤としては、例えば、ジメチルアミノボラン、次亜燐酸、次亜燐酸ナトリウム、ジメチルアミンボラン、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、フェノール等が挙げられる。 Examples of the reducing agent include dimethylaminoborane, hypophosphorous acid, sodium hypophosphite, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, phenol and the like.
 また、前記無電解めっき液としては、必要に応じて、蟻酸、酢酸等のモノカルボン酸;マロン酸、コハク酸、アジピン酸、マレイン酸、フマル酸等のジカルボン酸化合物;リンゴ酸、乳酸、グリコール酸、グルコン酸、クエン酸等のヒドロキシカルボン酸化合物;グリシン、アラニン、イミノジ酢酸、アルギニン、アスパラギン酸、グルタミン酸等のアミノ酸化合物;イミノジ酢酸、ニトリロトリ酢酸、エチレンジアミンジ酢酸、エチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸等のアミノポリカルボン酸化合物などの有機酸、又はこれらの有機酸の可溶性塩(ナトリウム塩、カリウム塩、アンモニウム塩等)、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等のアミン化合物等の錯化剤を含有するものを用いることができる。 Further, as the electroless plating solution, if necessary, monocarboxylic acids such as formic acid and acetic acid; dicarboxylic acid compounds such as malonic acid, succinic acid, adipic acid, maleic acid and fumaric acid; malic acid, lactic acid and glycol Hydroxycarboxylic acid compounds such as gluconic acid and citric acid; amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid and glutamic acid; iminodiacetic acid, nitrilotriacetic acid, ethylenediaminediacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, etc. Containing a complexing agent such as an organic acid such as aminopolycarboxylic acid compound of the above or a soluble salt of such an organic acid (sodium salt, potassium salt, ammonium salt etc.), an amine compound such as ethylenediamine, diethylenetriamine, triethylenetetramine etc. Also It can be used.
 前記無電解めっき液は、20℃以上98℃以下で用いることが好ましい。 The electroless plating solution is preferably used at 20 ° C. or more and 98 ° C. or less.
 前記電解めっき法は、例えば、前記金属ナノ粒子層(C)を構成する金属、又は、前記無電解処理によって形成された無電解めっき層(皮膜)の表面に、電解めっき液を接触した状態で通電することにより、前記電解めっき液中に含まれる銅等の金属を、カソードに設置した前記金属ナノ粒子層(C)を構成する導電性物質又は前記無電解処理によって形成された無電解めっき層(皮膜)の表面に析出させ、電解めっき層(金属皮膜)を形成する方法である。 The electrolytic plating method is performed, for example, in a state in which an electrolytic plating solution is in contact with the surface of the metal forming the metal nanoparticle layer (C) or the electroless plating layer (film) formed by the electroless processing. A conductive substance constituting the metal nanoparticle layer (C) in which a metal such as copper contained in the electrolytic plating solution is disposed at the cathode by energization, or an electroless plating layer formed by the electroless treatment It is a method of depositing on the surface of (coating) to form an electrolytic plating layer (metal coating).
 前記電解めっき液としては、例えば、銅、ニッケル、クロム、コバルト、スズ等の金属の硫化物と、硫酸と、水性媒体とを含有するもの等が挙げられる。具体的には、硫酸銅と硫酸と水性媒体とを含有するものが挙げられる。 Examples of the electrolytic plating solution include those containing sulfides of metals such as copper, nickel, chromium, cobalt and tin, sulfuric acid, and an aqueous medium. Specifically, those containing copper sulfate, sulfuric acid and an aqueous medium can be mentioned.
 前記電解めっき液は、20℃以上98℃以下の範囲で用いることが好ましい。 The electrolytic plating solution is preferably used in the range of 20 ° C. or more and 98 ° C. or less.
 前記金属めっき層(D)の形成方法としては、前記金属めっき層(D)の膜厚を、薄膜から厚膜まで所望とする膜厚に制御しやすいことから、無電解めっきを施した後、電解めっきを施す方法が好ましい。 As a method of forming the metal plating layer (D), after electroless plating is performed because the film thickness of the metal plating layer (D) can be easily controlled to a desired film thickness from thin film to thick film, The method of electrolytic plating is preferred.
 前記金属めっき層(D)の膜厚は、1μm以上50μm以下の範囲が好ましい。前記金属めっき層(D)の膜厚は、前記金属めっき層(D)の形成する際のめっき処理工程における処理時間、電流密度、めっき用添加剤の使用量等を制御することによって調整することができる。 The thickness of the metal plating layer (D) is preferably in the range of 1 μm to 50 μm. The film thickness of the metal plating layer (D) is adjusted by controlling the processing time, the current density, the use amount of the additive for plating, etc. in the plating treatment step in forming the metal plating layer (D). Can.
 以下、実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail by way of examples.
(製造例1:プライマー用アクリル樹脂(1)の製造)
 攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗及び重合触媒滴下用滴下漏斗を備えた反応容器に、酢酸エチル180質量部を入れ、窒素を吹き込みながら90℃まで昇温した。90℃まで昇温した反応容器内に、攪拌下、グリシジルメタクリレート25質量部、2-ヒドロキシエチルメタクリレート12質量部、スチレン55質量部及びメチルメタクリレート8質量部を含有する単量体混合物と、アゾイソブチロニトリル1質量部及び酢酸エチル20質量部を含有する重合開始剤溶液を、各々別の滴下漏斗から反応容器内温度を90±1℃に保ちながら240分間かけて滴下し重合した。滴下終了後、同温度にて120分間攪拌した後、前記反応容器内の温度を30℃に冷却した。次いで、酢酸エチルで希釈し、プライマー用アクリル樹脂(1)の2質量%溶液を得た。
(Production Example 1: Production of Acrylic Resin for Primer (1))
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen introduction pipe, a thermometer, a dropping funnel for dropping a monomer mixture, and a dropping funnel for dropping a polymerization catalyst, 180 parts by mass of ethyl acetate is charged, and nitrogen is blown up to 90 ° C. The temperature rose. A monomer mixture containing 25 parts by mass of glycidyl methacrylate, 12 parts by mass of 2-hydroxyethyl methacrylate, 55 parts by mass of styrene and 8 parts by mass of methyl methacrylate under stirring in a reaction vessel heated to 90 ° C. A polymerization initiator solution containing 1 part by mass of butyronitrile and 20 parts by mass of ethyl acetate was dropped and polymerized from separate dropping funnels over 240 minutes while maintaining the temperature in the reaction vessel at 90 ± 1 ° C. After completion of the dropwise addition, after stirring for 120 minutes at the same temperature, the temperature in the reaction vessel was cooled to 30 ° C. Then, the reaction solution was diluted with ethyl acetate to obtain a 2% by mass solution of a primer acrylic resin (1).
(製造例2:プライマー用アクリル樹脂(2)の製造)
 攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗及び重合触媒滴下用滴下漏斗を備えた反応容器に、酢酸エチル180質量部を入れ、窒素を吹き込みながら90℃まで昇温した。90℃まで昇温した反応容器内に、攪拌下、グリシジルメタクリレート10質量部、2-ヒドロキシエチルメタクリレート20質量部、スチレン30質量部及びメチルメタクリレート40質量部を含有する単量体混合物と、アゾイソブチロニトリル1質量部及び酢酸エチル20質量部を含有する重合開始剤溶液を、各々別の滴下漏斗から反応容器内温度を90±1℃に保ちながら240分間かけて滴下し重合した。滴下終了後、同温度にて120分間攪拌した後、前記反応容器内の温度を30℃に冷却した。次いで、酢酸エチルで希釈し、プライマー用アクリル樹脂(2)の2質量%溶液を得た。
(Production Example 2: Production of Acrylic Resin for Primer (2))
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen introduction pipe, a thermometer, a dropping funnel for dropping a monomer mixture, and a dropping funnel for dropping a polymerization catalyst, 180 parts by mass of ethyl acetate is charged, and nitrogen is blown up to 90 ° C. The temperature rose. A monomer mixture containing 10 parts by mass of glycidyl methacrylate, 20 parts by mass of 2-hydroxyethyl methacrylate, 30 parts by mass of styrene and 40 parts by mass of methyl methacrylate under stirring in a reaction vessel heated to 90 ° C. A polymerization initiator solution containing 1 part by mass of butyronitrile and 20 parts by mass of ethyl acetate was dropped and polymerized from separate dropping funnels over 240 minutes while maintaining the temperature in the reaction vessel at 90 ± 1 ° C. After completion of the dropwise addition, after stirring for 120 minutes at the same temperature, the temperature in the reaction vessel was cooled to 30 ° C. Then, the reaction solution was diluted with ethyl acetate to obtain a 2% by mass solution of a primer acrylic resin (2).
(製造例3:プライマー用アクリル樹脂(3)の製造)
 攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗及び重合触媒滴下用滴下漏斗を備えた反応容器に、酢酸エチル180質量部を入れ、窒素を吹き込みながら90℃まで昇温した。90℃まで昇温した反応容器内に、攪拌下、グリシジルメタクリレート40質量部、2-ヒドロキシエチルメタクリレート5質量部、スチレン20質量部及びメチルメタクリレート35質量部を含有する単量体混合物と、アゾイソブチロニトリル1質量部及び酢酸エチル20質量部を含有する重合開始剤溶液を、各々別の滴下漏斗から反応容器内温度を90±1℃に保ちながら240分間かけて滴下し重合した。滴下終了後、同温度にて120分間攪拌した後、前記反応容器内の温度を30℃に冷却した。次いで、酢酸エチルで希釈し、プライマー用アクリル樹脂(3)の2質量%溶液を得た。
Production Example 3 Production of Acrylic Resin for Primer (3)
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen introduction pipe, a thermometer, a dropping funnel for dropping a monomer mixture, and a dropping funnel for dropping a polymerization catalyst, 180 parts by mass of ethyl acetate is charged, and nitrogen is blown up to 90 ° C. The temperature rose. A monomer mixture containing 40 parts by mass of glycidyl methacrylate, 5 parts by mass of 2-hydroxyethyl methacrylate, 20 parts by mass of styrene and 35 parts by mass of methyl methacrylate under stirring in a reaction vessel heated to 90 ° C. A polymerization initiator solution containing 1 part by mass of butyronitrile and 20 parts by mass of ethyl acetate was dropped and polymerized from separate dropping funnels over 240 minutes while maintaining the temperature in the reaction vessel at 90 ± 1 ° C. After completion of the dropwise addition, after stirring for 120 minutes at the same temperature, the temperature in the reaction vessel was cooled to 30 ° C. Then, the reaction solution was diluted with ethyl acetate to obtain a 2% by mass solution of a primer acrylic resin (3).
(製造例4:プライマー用アクリル樹脂(4)の製造)
 攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗及び重合触媒滴下用滴下漏斗を備えた反応容器に、酢酸エチル180質量部を入れ、窒素を吹き込みながら90℃まで昇温した。90℃まで昇温した反応容器内に、攪拌下、グリシジルメタクリレート20質量部、2-ヒドロキシエチルメタクリレート15質量部、n-ブチルアクリレート30質量部及びメチルメタクリレート35質量部を含有する単量体混合物と、アゾイソブチロニトリル1質量部及び酢酸エチル20質量部を含有する重合開始剤溶液を、各々別の滴下漏斗から反応容器内温度を90±1℃に保ちながら240分間かけて滴下し重合した。滴下終了後、同温度にて120分間攪拌した後、前記反応容器内の温度を30℃に冷却した。次いで、酢酸エチルで希釈し、プライマー用アクリル樹脂(4)の2質量%溶液を得た。
Production Example 4: Production of Acrylic Resin for Primer (4)
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen introduction pipe, a thermometer, a dropping funnel for dropping a monomer mixture, and a dropping funnel for dropping a polymerization catalyst, 180 parts by mass of ethyl acetate is charged, and nitrogen is blown up to 90 ° C. The temperature rose. A monomer mixture containing 20 parts by mass of glycidyl methacrylate, 15 parts by mass of 2-hydroxyethyl methacrylate, 30 parts by mass of n-butyl acrylate and 35 parts by mass of methyl methacrylate under stirring in a reaction vessel heated to 90 ° C. A polymerization initiator solution containing 1 part by mass of azoisobutyronitrile and 20 parts by mass of ethyl acetate was added dropwise over 240 minutes while maintaining the temperature in the reaction vessel at 90 ± 1 ° C. from separate dropping funnels. . After completion of the dropwise addition, after stirring for 120 minutes at the same temperature, the temperature in the reaction vessel was cooled to 30 ° C. Subsequently, it diluted with ethyl acetate and obtained 2 mass% solution of acrylic resin (4) for primers.
(製造例5:プライマー用アクリル樹脂(5)の製造)
 攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗及び重合触媒滴下用滴下漏斗を備えた反応容器に、酢酸エチル180質量部を入れ、窒素を吹き込みながら90℃まで昇温した。90℃まで昇温した反応容器内に、攪拌下、グリシジルメタクリレート1質量部、2-ヒドロキシエチルメタクリレート1質量部、スチレン40質量部、メチルメタクリレート39質量部及びn-ブチルアクリレート19質量部を含有する単量体混合物と、アゾイソブチロニトリル1質量部及び酢酸エチル20質量部を含有する重合開始剤溶液を、各々別の滴下漏斗から反応容器内温度を90±1℃に保ちながら240分間かけて滴下し重合した。滴下終了後、同温度にて120分間攪拌した後、前記反応容器内の温度を30℃に冷却した。次いで、酢酸エチルで希釈し、プライマー用アクリル樹脂(5)の2質量%溶液を得た。
(Production Example 5: Production of Acrylic Resin for Primer (5))
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen introduction pipe, a thermometer, a dropping funnel for dropping a monomer mixture, and a dropping funnel for dropping a polymerization catalyst, 180 parts by mass of ethyl acetate is charged, and nitrogen is blown up to 90 ° C. The temperature rose. 1 part by mass of glycidyl methacrylate, 1 part by mass of 2-hydroxyethyl methacrylate, 40 parts by mass of styrene, 39 parts by mass of methyl methacrylate and 19 parts by mass of n-butyl acrylate in a reaction vessel heated to 90 ° C. A monomer mixture, and a polymerization initiator solution containing 1 part by mass of azoisobutyronitrile and 20 parts by mass of ethyl acetate are added from separate dropping funnels for 240 minutes while maintaining the temperature in the reaction vessel at 90 ± 1 ° C. It dripped and polymerized. After completion of the dropwise addition, after stirring for 120 minutes at the same temperature, the temperature in the reaction vessel was cooled to 30 ° C. Then, the reaction solution was diluted with ethyl acetate to obtain a 2% by mass solution of a primer acrylic resin (5).
(製造例6:プライマー用アクリル樹脂(6)の製造)
 攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗及び重合触媒滴下用滴下漏斗を備えた反応容器に、酢酸エチル200質量部を入れ、窒素を吹き込みながら90℃まで昇温した。90℃まで昇温した反応容器内に、攪拌下、2-ヒドロキシエチルメタクリレート15質量部、スチレン38質量部、アクリル酸nーブチル30質量部、メチルメタクリレート17質量部を含有する単量体混合物と、アゾイソブチロニトリル1質量部及び酢酸エチル20質量部を含有する重合開始剤溶液を、各々別の滴下漏斗から反応容器内温度を90±1℃に保ちながら240分間かけて滴下し重合した。滴下終了後、同温度にて120分間攪拌した後、前記反応容器内の温度を30℃に冷却した。次いで、酢酸エチルで希釈し、プライマー用アクリル樹脂(6)の2質量%溶液を得た。
Production Example 6: Production of Acrylic Resin for Primer (6)
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet, a thermometer, a dropping funnel for dropping a monomer mixture, and a dropping funnel for dropping a polymerization catalyst, 200 parts by mass of ethyl acetate is added, and nitrogen is blown up to 90 ° C. The temperature rose. A monomer mixture containing 15 parts by mass of 2-hydroxyethyl methacrylate, 38 parts by mass of styrene, 30 parts by mass of n-butyl acrylate, and 17 parts by mass of methyl methacrylate under stirring in a reaction vessel heated to 90 ° C .; A polymerization initiator solution containing 1 part by mass of azoisobutyronitrile and 20 parts by mass of ethyl acetate was added dropwise over 240 minutes while maintaining the temperature in the reaction vessel at 90 ± 1 ° C. from separate dropping funnels. After completion of the dropwise addition, after stirring for 120 minutes at the same temperature, the temperature in the reaction vessel was cooled to 30 ° C. Subsequently, it diluted with ethyl acetate and obtained 2 mass% solution of acrylic resin (6) for primers.
(製造例7:プライマー用アクリル樹脂(7)の製造)
 攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗及び重合触媒滴下用滴下漏斗を備えた反応容器に、酢酸エチル180質量部を入れ、窒素を吹き込みながら90℃まで昇温した。90℃まで昇温した反応容器内に、攪拌下、グリシジルメタクリレート30質量部、スチレン55質量部、メチルメタクリレート15質量部を含有する単量体混合物と、アゾイソブチロニトリル1質量部及び酢酸エチル20質量部を含有する重合開始剤溶液を、各々別の滴下漏斗から反応容器内温度を90±1℃に保ちながら240分間かけて滴下し重合した。滴下終了後、同温度にて120分間攪拌した後、前記反応容器内の温度を30℃に冷却した。次いで、酢酸エチルで希釈し、プライマー用アクリル樹脂(7)の2質量%溶液を得た。
(Production Example 7: Production of Acrylic Resin for Primer (7))
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen introduction pipe, a thermometer, a dropping funnel for dropping a monomer mixture, and a dropping funnel for dropping a polymerization catalyst, 180 parts by mass of ethyl acetate is charged, and nitrogen is blown up to 90 ° C. The temperature rose. A monomer mixture containing 30 parts by mass of glycidyl methacrylate, 55 parts by mass of styrene and 15 parts by mass of methyl methacrylate under stirring in a reaction vessel heated to 90 ° C., 1 part by mass of azoisobutyronitrile, and ethyl acetate A polymerization initiator solution containing 20 parts by mass was polymerized dropwise over 240 minutes while maintaining the temperature in the reaction vessel at 90 ± 1 ° C. from each separate dropping funnel. After completion of the dropwise addition, after stirring for 120 minutes at the same temperature, the temperature in the reaction vessel was cooled to 30 ° C. Then, the reaction solution was diluted with ethyl acetate to obtain a 2% by mass solution of a primer acrylic resin (7).
(調製例1:プライマー組成物(1)の調製)
 エポキシ樹脂(DIC株式会社製「EPICLON 1050」;ビスフェノールA型エポキシ樹脂、エポキシ当量475g/当量)をメチルエチルケトンで希釈して固形分を2質量%にした溶液100質量部に、硬化剤として無水ピロメリット酸の2質量%メチルエチルケトン溶液11.5質量部を均一に混合して、プライマー組成物(1)を得た。
Preparation Example 1: Preparation of Primer Composition (1)
Anhydrous pyromellitic as a curing agent in 100 parts by mass of a solution in which an epoxy resin ("EPICLON 1050" manufactured by DIC Corporation; bisphenol A type epoxy resin, epoxy equivalent 475 g / equivalent) is diluted with methyl ethyl ketone to make the solid content 2 mass% A primer composition (1) was obtained by uniformly mixing 11.5 parts by mass of a 2% by mass methyl ethyl ketone solution of an acid.
(調製例2:プライマー組成物(2)の調製)
 エポキシ樹脂(DIC株式会社製「EPICLON 830S」;ビスフェノールF型エポキシ樹脂、エポキシ当量170g/当量)をメチルエチルケトンで希釈して固形分を2質量%にした溶液100質量部に、硬化剤として無水トリメリット酸の2質量%メチルエチルケトン溶液38.9質量部を均一に混合して、プライマー組成物(2)を得た。
Preparation Example 2 Preparation of Primer Composition (2)
Epoxy resin ("EPICLON 830S" manufactured by DIC Corporation; bisphenol F type epoxy resin, epoxy equivalent 170 g / equivalent) diluted with methyl ethyl ketone to make the solid content 2 mass% 100 parts by weight of an aqueous dry trimet as a curing agent The primer composition (2) was obtained by uniformly mixing 38.9 parts by mass of a 2% by mass methyl ethyl ketone solution of an acid.
(調製例3:プライマー組成物(3)の調製)
 製造例1で得られたプライマー用アクリル樹脂(1)の2質量%溶液100質量部に、無水トリメリット酸をメチルエチルケトンで希釈した2質量%溶液11.6質量部を均一に混合して、プライマー組成物(3)を得た。
Preparation Example 3 Preparation of Primer Composition (3)
100 parts by mass of a 2% by mass solution of acrylic resin (1) for a primer obtained in Production Example 1 was uniformly mixed with 11.6 parts by mass of a 2% by mass solution of trimellitic anhydride diluted with methyl ethyl ketone. A composition (3) was obtained.
(調製例4:プライマー組成物(4)の調製)
 製造例1で得られたプライマー用アクリル樹脂(1)の2質量%溶液100質量部に、無水トリメリット酸をメチルエチルケトンで希釈した2質量%溶液17.4質量部を均一に混合して、プライマー組成物(4)を得た。
Preparation Example 4 Preparation of Primer Composition (4)
In 100 parts by mass of a 2% by mass solution of acrylic resin (1) for a primer obtained in Production Example 1, 17.4 parts by mass of a 2% by mass solution in which trimellitic anhydride is diluted with methyl ethyl ketone is uniformly mixed. A composition (4) was obtained.
(調製例5:プライマー組成物(5)の調製)
 製造例1で得られたプライマー用アクリル樹脂(1)の2質量%溶液100質量部に、無水トリメリット酸をメチルエチルケトンで希釈した固形分2質量%の溶液23.2質量部を均一に混合して、プライマー組成物(5)を得た。
Preparation Example 5 Preparation of Primer Composition (5)
In 100 parts by mass of a 2% by mass solution of acrylic resin (1) for a primer obtained in Production Example 1, 23.2 parts by mass of a solid 2% by mass solution of trimellitic anhydride diluted with methyl ethyl ketone is uniformly mixed. The primer composition (5) was obtained.
(調製例6:プライマー組成物(6)の調製)
 製造例1で得られたプライマー用アクリル樹脂(1)の2質量%溶液100質量部に、ドデカン二酸をイソプロピルアルコールで希釈した固形分2質量%の溶液20.3質量部を均一に混合して、プライマー組成物(6)を得た。
Preparation Example 6 Preparation of Primer Composition (6)
In 2 parts by mass of a 2% by mass solution of acrylic resin (1) for primers obtained in Production Example 1, 20.3 parts by mass of a solution of 2% by mass of solid content obtained by diluting dodecanedioic acid with isopropyl alcohol is uniformly mixed The primer composition (6) was obtained.
(調製例7:プライマー組成物(7)の調製)
 製造例2で得られたプライマー用アクリル樹脂(2)の2質量%溶液100質量部に、無水トリメリット酸をメチルエチルケトンで希釈した固形分2質量%の溶液4.6質量部を均一に混合して、プライマー組成物(7)を得た。
Preparation Example 7 Preparation of Primer Composition (7)
100 parts by mass of a 2% by mass solution of acrylic resin (2) for primers obtained in Production Example 2 was uniformly mixed with 4.6 parts by mass of a 2% by mass solid solution obtained by diluting trimellitic anhydride with methyl ethyl ketone The primer composition (7) was obtained.
(調製例8:プライマー組成物(8)の調製)
 製造例3で得られたプライマー用アクリル樹脂(3)の2質量%溶液100質量部に、無水ピロメリット酸をメチルエチルケトンで希釈した2質量%溶液15.4質量部を均一に混合して、プライマー組成物(8)を得た。
Preparation Example 8 Preparation of Primer Composition (8)
In 100 parts by mass of a 2% by mass solution of acrylic resin (3) for a primer obtained in Production Example 3, 15.4 parts by mass of a 2% by mass solution in which pyromellitic anhydride is diluted with methyl ethyl ketone is uniformly mixed, A composition (8) was obtained.
(調製例9:プライマー組成物(9)の調製)
 製造例4で得られたプライマー用アクリル樹脂(4)の2質量%100質量部に、無水トリメリット酸をメチルエチルケトンで希釈した2質量%溶液9.3質量部を均一に混合して、プライマー組成物(9)を得た。
Preparation Example 9 Preparation of Primer Composition (9)
A primer composition was prepared by uniformly mixing 9.3 mass parts of a 2 mass% solution of trimellitic anhydride diluted with methyl ethyl ketone with 100 mass parts of 2 mass% of the acrylic resin (4) for a primer obtained in Production Example 4 Obtained the thing (9).
(調製例10:プライマー組成物(10)の調製)
 製造例5で得られたプライマー用アクリル樹脂(5)の2質量%100質量部に、無水トリメリット酸をメチルエチルケトンで希釈した2質量%溶液0.46質量部を均一に混合して、プライマー組成物(10)を得た。
Preparation Example 10 Preparation of Primer Composition (10)
The primer composition was prepared by uniformly mixing 0.46 parts by mass of a 2% by mass solution of trimellitic anhydride diluted with methyl ethyl ketone with 2 parts by mass of 100% by mass of the acrylic resin (5) for primer obtained in Production Example 5 Obtained object (10).
(調製例11:プライマー組成物(R1)の調製)
 製造例6で得られたプライマー用アクリル樹脂(6)の2質量%溶液100質量部に、無水トリメリット酸をメチルエチルケトンで希釈した2質量%溶液11.6質量部を均一に混合して、プライマー組成物(R1)を得た。
Preparation Example 11 Preparation of Primer Composition (R1)
100 parts by mass of a 2% by mass solution of acrylic resin (6) for a primer obtained in Production Example 6 is uniformly mixed with 11.6 parts by mass of a 2% by mass solution of trimellitic anhydride diluted with methyl ethyl ketone A composition (R1) was obtained.
(調製例12:プライマー組成物(R2)の調製)
 製造例7で得られたプライマー用アクリル樹脂(7)の2質量%溶液100質量部に、無水トリメリット酸をメチルエチルケトンで希釈した2質量%溶液13.9質量部を均一に混合して、プライマー組成物(R2)を得た。
Preparation Example 12 Preparation of Primer Composition (R2)
100 parts by mass of a 2% by mass solution of acrylic resin (7) for a primer obtained in Production Example 7 is uniformly mixed with 13.9 parts by mass of a 2% by mass solution obtained by diluting trimellitic anhydride with methyl ethyl ketone A composition (R2) was obtained.
(調製例13:プライマー組成物(R3)の調製)
 製造例1で得られたプライマー用アクリル樹脂(1)の2質量%溶液100質量部をそのままプライマー組成物(R3)として用いた。
Preparation Example 13 Preparation of Primer Composition (R3)
100 parts by mass of a 2% by mass solution of the acrylic resin for primers (1) obtained in Production Example 1 was used as it is as a primer composition (R3).
[流動体(1)の調製]
 特許第4573138号公報記載の実施例1にしたがって、銀ナノ粒子とカチオン性基(アミノ基)を有する有機化合物の複合体である灰緑色の金属光沢があるフレーク状の塊からなるカチオン性銀ナノ粒子を得た。その後、この銀ナノ粒子の粉末を、エチレングリコール45質量部と、イオン交換水55質量部との混合溶媒に分散させて、カチオン性銀ナノ粒子が5質量%の流動体(1)を調製した。
[Preparation of fluid (1)]
According to Example 1 described in Japanese Patent No. 4573138, a cationic silver nano consisting of a flake-like lump having an ash green color which is a complex of silver nanoparticles and an organic compound having a cationic group (amino group) I got the particles. Thereafter, the powder of silver nanoparticles was dispersed in a mixed solvent of 45 parts by mass of ethylene glycol and 55 parts by mass of ion-exchanged water to prepare a fluid (1) having 5% by mass of cationic silver nanoparticles. .
(実施例1)
 ポリイミドフィルム(東レ・デュポン株式会社製「カプトン100H」;厚さ25μm)の表面に、調製例1で得られたプライマー組成物(1)を、卓上型小型コーター(RKプリントコートインストルメント社製「Kプリンティングプローファー」)を用いて、その乾燥後の厚さが100nmとなるように塗工した。次いで、熱風乾燥機を用いて150℃で5分間乾燥することによって、ポリイミドフィルムの表面にプライマー層を形成した。
Example 1
On the surface of a polyimide film ("Kapton 100H" manufactured by Toray DuPont Co., Ltd .; thickness 25 μm), the primer composition (1) obtained in Preparation Example 1 was divided into a bench type small coater (manufactured by RK Print Coat Instrument Co., Ltd.) It applied so that the thickness after the drying might be set to 100 nm using K printing prober "). Then, a primer layer was formed on the surface of the polyimide film by drying at 150 ° C. for 5 minutes using a hot air drier.
 上記で形成したプライマー層の表面に、上記で得られた流動体(1)を、バーコーターを用いて塗工した。次いで、150℃で5分間乾燥することによって、前記金属ナノ粒子層(C)に相当する銀層(膜厚20nm)を形成した。 The fluid (1) obtained above was applied to the surface of the primer layer formed above using a bar coater. Then, by drying for 5 minutes at 150 ° C., a silver layer (film thickness 20 nm) corresponding to the metal nanoparticle layer (C) was formed.
 上記で形成した銀層を無電解銅めっき液(奥野製薬工業株式会社製「OICカッパー」、pH12.5)中に45℃で12分間浸漬し、無電解銅めっきを行い、無電解めっきによる銅めっき層(膜厚0.2μm)を形成した。 The silver layer formed above is immersed for 12 minutes at 45 ° C. in an electroless copper plating solution (“OIC Kappa” manufactured by Okuno Pharmaceutical Co., Ltd., “OIC kappa”, pH 12.5) to perform electroless copper plating, and copper by electroless plating A plating layer (film thickness 0.2 μm) was formed.
 上記で得られた無電解銅めっきによる銅めっき層をカソード側に設定し、含リン銅をアノード側に設定し、硫酸銅を含有する電解めっき液を用いて電流密度2.5A/dmで30分間電解めっきを行うことによって、無電解銅めっきによる銅めっき層の表面に、電解銅めっきによる銅めっき層(膜厚15μm)を形成した。前記電解めっき液としては、硫酸銅70g/L、硫酸200g/L、塩素イオン50mg/L、添加剤(奥野製薬工業(株)製「トップルチナSF-M」)5ml/Lを用いた。なお、無電解銅めっきによる銅めっき層及びその上に形成した電解銅めっきによる銅めっき層を合わせたものが、前記金属めっき層(D)に相当する。 The copper plating layer by electroless copper plating obtained above is set on the cathode side, phosphorus-containing copper is set on the anode side, and an electrolytic plating solution containing copper sulfate is used at a current density of 2.5 A / dm 2 By performing electrolytic plating for 30 minutes, a copper plating layer (film thickness 15 μm) by electrolytic copper plating was formed on the surface of the copper plating layer by electroless copper plating. As the electrolytic plating solution, 70 g / L of copper sulfate, 200 g / L of sulfuric acid, 50 mg / L of chlorine ion, and 5 ml / L of an additive (“Top Rutina SF-M” manufactured by Okuno Pharmaceutical Co., Ltd.) were used. A combination of a copper plating layer by electroless copper plating and a copper plating layer by electrolytic copper plating formed thereon corresponds to the metal plating layer (D).
 以上の方法によって、支持体(A)、プライマー層(B)、金属ナノ粒子層(C)、及び金属めっき層(D)が順次積層された積層体(1)を得た。 By the above method, a laminate (1) in which a support (A), a primer layer (B), a metal nanoparticle layer (C), and a metal plating layer (D) were sequentially laminated was obtained.
(実施例2~10及び比較例1~3)
 実施例1で用いたプライマー組成物(1)の代わりにプライマー組成物(2)~(10)及び(R1)~(R3)を用いたこと以外は、実施例1と同様に行い、積層体(2)~(10)及び(R1)~(R3)を得た。
(Examples 2 to 10 and Comparative Examples 1 to 3)
Example 1 was repeated except that the primer compositions (2) to (10) and (R1) to (R3) were used instead of the primer composition (1) used in Example 1, and a laminate was obtained. (2) to (10) and (R1) to (R3) were obtained.
 上記の実施例1~10及び比較例1~3で得られた積層体(1)~(10)及び(R1)~(R3)について、下記の測定及び評価を行った。 The following measurements and evaluations were performed on the laminates (1) to (10) and (R1) to (R3) obtained in the above Examples 1 to 10 and Comparative Examples 1 to 3.
[加熱前の剥離強度の測定]
 上記で得られた各積層体について、株式会社島津製作所製「オートグラフAGS-X 500N」を用いて剥離強度を測定した。なお、測定に用いるリード幅は5mm、そのピールの角度は90°とした。また、ピール強度は、金属めっき層の厚さが厚くなるほど高い値を示す傾向にあるが、本発明でのピール強度の測定は、金属めっき層の厚さ15μmにおける測定値を基準として実施した。
[Measurement of peel strength before heating]
The peel strength of each of the laminates obtained above was measured using "Autograph AGS-X 500N" manufactured by Shimadzu Corporation. The lead width used for measurement was 5 mm, and the peel angle was 90 °. Although the peel strength tends to increase as the thickness of the metal plating layer increases, the measurement of the peel strength in the present invention was performed based on the measurement value at a thickness of 15 μm of the metal plating layer.
[密着性の評価]
 上記で測定した加熱前の剥離強度の値から、下記の基準にしたがって密着性を評価した。
 A:剥離強度の値が650N/m以上である。
 B:剥離強度の値が450N/m以上、650N/m未満である。
 C:剥離強度の値が250N/m以上、450N/m未満である。
 D:剥離強度の値が250N/m未満である。
[Evaluation of adhesion]
The adhesion was evaluated according to the following criteria from the value of the peel strength before heating measured above.
A: The peel strength value is 650 N / m or more.
B: The value of peel strength is 450 N / m or more and less than 650 N / m.
C: The peel strength value is 250 N / m or more and less than 450 N / m.
D: The peel strength value is less than 250 N / m.
[加熱後の剥離強度の測定]
 上記で得られた各積層体について、それぞれ150℃に設定した乾燥機内に168時間保管して加熱した。加熱後、上記と同様の方法でピール強度を測定した。
[Measurement of peel strength after heating]
Each of the laminates obtained above was stored and heated in a dryer set at 150 ° C. for 168 hours. After heating, the peel strength was measured by the same method as described above.
[耐熱性の評価]
 上記で測定した加熱前後のピール強度値を用いて、加熱前後での保持率を算出し、下記の基準にしたがって耐熱性を評価した。
 A:保持率が85%以上である。
 B:保持率が70%以上85%未満である。
 C:保持率が55%以上70%未満である。
 D:保持率が55%未満である。
[Evaluation of heat resistance]
Using the peel strength values before and after heating measured above, the retention ratio before and after heating was calculated, and heat resistance was evaluated according to the following criteria.
A: The retention rate is 85% or more.
B: The retention rate is 70% or more and less than 85%.
C: The retention rate is 55% or more and less than 70%.
D: The retention rate is less than 55%.
 実施例1~10及び比較例1~3で用いたプライマー組成物の種類、加熱前後の剥離強度の測定結果、密着性及び耐熱性の評価結果を表1~3に示す。 The types of primer compositions used in Examples 1 to 10 and Comparative Examples 1 to 3, the measurement results of peel strength before and after heating, and the evaluation results of adhesion and heat resistance are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の積層体である実施例1~10で得られた積層体(1)~(10)は、初期(加熱前)の密着性が充分に高く、また、加熱後の剥離強度の低下もわずかで耐熱性にも優れていることを確認できた。 The laminates (1) to (10) obtained in Examples 1 to 10, which are laminates of the present invention, have a sufficiently high initial (pre-heating) adhesion, and a decrease in peel strength after heating. It was confirmed that the heat resistance was excellent.
 一方、比較例1の積層体(R1)は、プライマー層に用いるプライマー用樹脂にエポキシ基を有さないアクリル樹脂を用いた例であるが、初期(加熱前)の密着性が極めて低く、加熱後の剥離強度は、0kN/mとなり、密着性に問題があることが確認できた。 On the other hand, the laminate (R1) of Comparative Example 1 is an example using an acrylic resin not having an epoxy group as a resin for a primer used in the primer layer, but the adhesion at the initial stage (before heating) is extremely low. The peel strength after that was 0 kN / m, and it could be confirmed that there was a problem with adhesion.
 比較例2の積層体(R2)は、プライマー層に用いるプライマー用樹脂に水酸基を有さないアクリル樹脂を用いた例であるが、初期(加熱前)の密着性が極めて低く、加熱後の剥離強度は、0kN/mとなり、密着性に問題があることが確認できた。 The laminate (R2) of Comparative Example 2 is an example in which an acrylic resin having no hydroxyl group is used as a resin for a primer used in the primer layer, but the adhesion in the initial stage (before heating) is extremely low and peeling after heating The strength was 0 kN / m, confirming that there was a problem with adhesion.
 比較例3の積層体(R3)は、架橋剤を用いなかった例であるが、初期(加熱前)の密着性は比較的高いものの、加熱後の剥離強度の保持率は53%となり、耐熱性に問題があることが確認できた。 The laminate (R3) of Comparative Example 3 is an example in which the crosslinking agent is not used, but although the adhesion in the initial stage (before heating) is relatively high, the retention of peel strength after heating is 53%, the heat resistance It was confirmed that there was a problem with sex.

Claims (9)

  1.  支持体(A)の上に、プライマー層(B)、金属ナノ粒子層(C)及び金属めっき層(D)が順次積層された積層体であって、前記プライマー層(B)が、エポキシ基と水酸基とを有する樹脂(b1)及び多価カルボン酸を含有する架橋剤(b2)の硬化物であることを特徴とする積層体。 It is a laminate in which a primer layer (B), a metal nanoparticle layer (C) and a metal plating layer (D) are sequentially laminated on a support (A), and the primer layer (B) is an epoxy group A laminate characterized in that it is a cured product of a resin (b1) having at least one hydroxyl group and a crosslinking agent (b2) containing a polyvalent carboxylic acid.
  2.  前記多価カルボン酸が芳香族化合物である請求項1記載の積層体。 The laminate according to claim 1, wherein the polyvalent carboxylic acid is an aromatic compound.
  3.  前記多価カルボン酸が無水物である請求項1又は2記載の積層体。 The laminate according to claim 1 or 2, wherein the polybasic carboxylic acid is an anhydride.
  4.  前記樹脂(b1)が芳香環を有する樹脂である請求項1~3のいずれか1項記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the resin (b1) is a resin having an aromatic ring.
  5.  前記樹脂(b1)がアクリル樹脂である請求項1~4のいずれか1項記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the resin (b1) is an acrylic resin.
  6.  前記架橋剤(b2)中のカルボキシル基のモル数と前記樹脂(b1)中のエポキシ基のモル数のモル比[カルボキシル基/エポキシ基]が、0.3以上3以下である請求項1~5のいずれか1項記載の積層体。 The molar ratio [carboxyl group / epoxy group] of the number of moles of carboxyl group in the crosslinker (b2) and the number of moles of epoxy group in the resin (b1) is 0.3 or more and 3 or less. 5. The laminate according to any one of 5.
  7.  請求項1~6のいずれか1項記載の積層体を用いたことを特徴とするプリント配線板。 A printed wiring board using the laminate according to any one of claims 1 to 6.
  8.  請求項1~6のいずれか1項記載の積層体であり、前記支持体(A)がフィルムである積層体を用いたことを特徴とするフレキシブルプリント配線板。 A flexible printed wiring board according to any one of claims 1 to 6, characterized in that the support (A) is a film.
  9.  請求項1~6のいずれか1項記載の積層体を用いたことを特徴とする成形品。 A molded article comprising the laminate according to any one of claims 1 to 6.
PCT/JP2018/025167 2017-07-10 2018-07-03 Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article WO2019013040A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019523896A JP6579293B2 (en) 2017-07-10 2018-07-03 Laminated body, printed wiring board, flexible printed wiring board and molded product using the same
CN201880040399.2A CN110785282B (en) 2017-07-10 2018-07-03 Laminate, printed wiring board using same, flexible printed wiring board, and molded article
KR1020207000075A KR102364792B1 (en) 2017-07-10 2018-07-03 Laminate, printed wiring board, flexible printed wiring board and molded article using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-134607 2017-07-10
JP2017134607 2017-07-10

Publications (1)

Publication Number Publication Date
WO2019013040A1 true WO2019013040A1 (en) 2019-01-17

Family

ID=65001651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025167 WO2019013040A1 (en) 2017-07-10 2018-07-03 Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article

Country Status (5)

Country Link
JP (1) JP6579293B2 (en)
KR (1) KR102364792B1 (en)
CN (1) CN110785282B (en)
TW (1) TWI726222B (en)
WO (1) WO2019013040A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286872A1 (en) * 2021-07-15 2023-01-19 太陽インキ製造株式会社 Laminate and electronic device provided with laminate
WO2023286873A1 (en) * 2021-07-15 2023-01-19 太陽インキ製造株式会社 Multilayer body and electronic device that is provided with multilayer body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052927B2 (en) * 2019-12-24 2022-04-12 Dic株式会社 Laminates, printed wiring boards, flexible printed wiring boards, electromagnetic wave shields and molded products

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231125A (en) * 2006-02-28 2007-09-13 Kaneka Corp Thermosetting resin composition and its use
WO2008105481A1 (en) * 2007-03-01 2008-09-04 Ajinomoto Co., Inc. Process for producing circuit board
WO2008105480A1 (en) * 2007-03-01 2008-09-04 Ajinomoto Co., Inc. Film for metal film transfer, method for transferring metal film, and method for manufacturing circuit board
JP2011025532A (en) * 2009-07-24 2011-02-10 Ajinomoto Co Inc Film with metal film
WO2013146195A1 (en) * 2012-03-28 2013-10-03 Dic株式会社 Electroconductive pattern, electric circuit, electromagnetic wave shield, and method for manufacturing electroconductive pattern
JP2016112704A (en) * 2014-12-11 2016-06-23 Dic株式会社 Conductive laminate and method for manufacturing the same
WO2016098596A1 (en) * 2014-12-16 2016-06-23 株式会社カネカ Photocurable and thermosetting resin composition, cured product and laminate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830807B2 (en) 1977-04-11 1983-07-01 松下電器産業株式会社 Grooving equipment for plate-shaped objects
KR100539062B1 (en) * 2001-05-22 2005-12-26 다이니혼 잉키 가가쿠 고교 가부시키가이샤 Curable unsaturated resin composition
US7786225B2 (en) * 2003-04-30 2010-08-31 Dic Corporation Curable resin composition
SG119379A1 (en) * 2004-08-06 2006-02-28 Nippon Catalytic Chem Ind Resin composition method of its composition and cured formulation
SG160334A1 (en) * 2005-02-25 2010-04-29 Nippon Kayaku Kk Epoxy resin, hardenable resin composition containing the same and use thereof
CN100396748C (en) * 2005-12-22 2008-06-25 武汉化工学院 Epoxy resin type high strength structure adhesive
US20090230568A1 (en) * 2007-04-10 2009-09-17 Hiroyuki Yasuda Adhesive Film for Semiconductor and Semiconductor Device Therewith
TW201522071A (en) * 2013-09-10 2015-06-16 Dainippon Ink & Chemicals Laminate body, conductive pattern, electrical circuit, and method for producing laminate body
JP6090148B2 (en) 2013-12-19 2017-03-08 住友金属鉱山株式会社 Method for determining adhesion strength of metal thin film / polyimide laminate, and metallized polyimide film substrate using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231125A (en) * 2006-02-28 2007-09-13 Kaneka Corp Thermosetting resin composition and its use
WO2008105481A1 (en) * 2007-03-01 2008-09-04 Ajinomoto Co., Inc. Process for producing circuit board
WO2008105480A1 (en) * 2007-03-01 2008-09-04 Ajinomoto Co., Inc. Film for metal film transfer, method for transferring metal film, and method for manufacturing circuit board
JP2011025532A (en) * 2009-07-24 2011-02-10 Ajinomoto Co Inc Film with metal film
WO2013146195A1 (en) * 2012-03-28 2013-10-03 Dic株式会社 Electroconductive pattern, electric circuit, electromagnetic wave shield, and method for manufacturing electroconductive pattern
JP2016112704A (en) * 2014-12-11 2016-06-23 Dic株式会社 Conductive laminate and method for manufacturing the same
WO2016098596A1 (en) * 2014-12-16 2016-06-23 株式会社カネカ Photocurable and thermosetting resin composition, cured product and laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286872A1 (en) * 2021-07-15 2023-01-19 太陽インキ製造株式会社 Laminate and electronic device provided with laminate
WO2023286873A1 (en) * 2021-07-15 2023-01-19 太陽インキ製造株式会社 Multilayer body and electronic device that is provided with multilayer body

Also Published As

Publication number Publication date
CN110785282B (en) 2022-06-24
JPWO2019013040A1 (en) 2019-11-07
CN110785282A (en) 2020-02-11
KR102364792B1 (en) 2022-02-18
KR20200015697A (en) 2020-02-12
TW201908428A (en) 2019-03-01
TWI726222B (en) 2021-05-01
JP6579293B2 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
JP6579295B2 (en) Laminated body, printed wiring board, flexible printed wiring board and molded product using the same
JP6579293B2 (en) Laminated body, printed wiring board, flexible printed wiring board and molded product using the same
JP5258283B2 (en) Substrate with metal foil and manufacturing method thereof
WO2016035896A1 (en) Photocurable electroless plating primer
WO2016017625A1 (en) Electroless plating undercoat agent containing hyperbranched polymer, fine metal particles, and resin primer
TWI819048B (en) Laminated bodies, molded products, conductive patterns and electronic circuits
TW202208475A (en) resin composition
TW202000452A (en) Multilayer body for printed wiring boards and printed wiring board using same
TW202007240A (en) Method of manufacturing printed wiring board
TW202002738A (en) Method of manufacturing printed wiring board
JP6296290B2 (en) Metal-based printed wiring board and manufacturing method thereof
JP2019014188A (en) Laminate, and printed wiring board, flexible printed wiring board and molded article using the same
JP6330979B2 (en) Method for producing laminate using metal nanoparticle ink for flexographic printing
TW202035793A (en) Method for manufacturing printed wiring board
JP2022190866A (en) Laminate and method for manufacturing the same
JP7052927B2 (en) Laminates, printed wiring boards, flexible printed wiring boards, electromagnetic wave shields and molded products
WO2019013039A1 (en) Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article
JP7453632B1 (en) Transfer laminate and its manufacturing method
KR102718930B1 (en) Laminates, molded articles, conductive patterns and electronic circuits
WO2023286873A1 (en) Multilayer body and electronic device that is provided with multilayer body
KR20240037880A (en) Laminates and electronic devices having laminates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523896

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207000075

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831898

Country of ref document: EP

Kind code of ref document: A1