WO2023286699A1 - Curable resin composition - Google Patents

Curable resin composition Download PDF

Info

Publication number
WO2023286699A1
WO2023286699A1 PCT/JP2022/027059 JP2022027059W WO2023286699A1 WO 2023286699 A1 WO2023286699 A1 WO 2023286699A1 JP 2022027059 W JP2022027059 W JP 2022027059W WO 2023286699 A1 WO2023286699 A1 WO 2023286699A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
polyfunctional
acrylate
total number
compound
Prior art date
Application number
PCT/JP2022/027059
Other languages
French (fr)
Japanese (ja)
Inventor
広大 大坪
文也 鈴木
陽子 坂田
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to KR1020247004296A priority Critical patent/KR20240032947A/en
Priority to JP2023534768A priority patent/JPWO2023286699A1/ja
Priority to CN202280046568.XA priority patent/CN117616067A/en
Publication of WO2023286699A1 publication Critical patent/WO2023286699A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/66Mercaptans
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/04Polythioethers from mercapto compounds or metallic derivatives thereof
    • C08G75/045Polythioethers from mercapto compounds or metallic derivatives thereof from mercapto compounds and unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16

Definitions

  • the present invention relates to a curable resin composition, an adhesive containing the composition, a cured product obtained by curing the same, and a semiconductor device containing the cured product.
  • UV curable adhesives Adhesives that are cured by ultraviolet (UV) irradiation
  • UV curable adhesives there is also a type of adhesive that is temporarily fixed by UV irradiation and fully cured by heating (hereinafter also referred to as “UV-thermosetting adhesive”) (see, for example, Patent Document 1).
  • UV curable adhesives contain polyfunctional acrylate compounds and polyfunctional thiol compounds. Such adhesives cure by enethiol reaction (radical addition of thiol groups to double bonds in (meth)acryloyloxy groups) and homopolymerization (radical polymerization of (meth)acryloyloxy groups).
  • UV curable adhesives are especially often used in the manufacture of semiconductor devices that require high-precision positioning during assembly, such as image sensor modules.
  • image sensor modules the relative positional relationship between each part is extremely important. Therefore, in assembling the image sensor module, it is necessary to position each component with high precision. Therefore, the use of this adhesive, which can be cured in a short period of time by UV irradiation, in the manufacture of image sensor modules is extremely useful because it improves assembly efficiency.
  • Assemblies made using UV curable adhesives may be heated and/or cooled with considerable temperature changes. For example, if a UV curable adhesive is cured by UV irradiation followed by heating, the assembly is heated after UV curing and then cooled. In addition, the UV-cured assembly may be placed in an environment that can reach high temperatures, such as inside a car in the summer.
  • the present invention aims to provide a UV-curable curable resin composition that gives a cured product that is difficult to peel off from an adherend even when the ambient temperature changes. do.
  • the present invention provides a UV-curable curable resin composition that gives a cured product that is difficult to peel off from an adherend even when the ambient temperature changes in the process of heating and/or cooling after UV curing. Also intended to
  • the present inventors arrived at the present invention as a result of extensive research in order to solve the above problems.
  • the present invention includes, but is not limited to, the following inventions.
  • curable resin composition according to the preceding item 1, further comprising (E) a heat curing accelerator.
  • the modifier consists essentially of (b1) a monofunctional (meth)acrylate compound and [(B) the total number of (meth)acryloyloxy groups for the modifier + the total number of epoxy groups for (B) the modifier ]/[(C) the total number of thiol groups in the polyfunctional thiol compound] is 0.2 to 0.5, the curable resin composition according to any one of the preceding items 1 to 7.
  • the modifier consists essentially of (b2) an epoxy resin, and [total number of (meth)acryloyloxy groups for (B) modifier + total number of epoxy groups for (B) modifier]/[(C )
  • a cured product obtainable by curing the curable resin composition according to any one of the preceding items 1 to 9 or the adhesive according to the preceding item 10.
  • a semiconductor device comprising the cured product according to 11 above.
  • a sensor module comprising the cured product according to 11 above.
  • the curable resin composition of the present invention comprises (A) a polyfunctional (meth)acrylate compound, (B) a modifier, (C) a polyfunctional thiol compound and (D) a photoradical initiator. Contains as an ingredient.
  • a polyfunctional (meth)acrylate compound (B) a modifier, (C) a polyfunctional thiol compound and (D) a photoradical initiator.
  • acrylic acid (or derivatives thereof) and “methacrylic acid” (or derivatives thereof) are collectively referred to as "(meth) acrylic acid”, “(meth) acrylate”, “(meth) acrylic ”, “(meth)acryloyl”, etc. may be used. Each of these terms may be used as an independent term or as part of another term.
  • (meth)acrylic acid means “acrylic acid and/or methacrylic acid”
  • (meth)acryloyloxy group means “acryloyloxy group and/or methacryloyloxy group”.
  • the curable resin composition of the present invention contains (A) a polyfunctional (meth)acrylate compound.
  • the polyfunctional (meth)acrylate compound used in the present invention is a compound containing a total of two or more (meth)acryloyloxy groups that react with thiol groups in the polyfunctional thiol compound described below.
  • a polyfunctional (meth)acrylate compound has a structure in which one molecule of a compound having two or more hydroxyl groups is esterified with a total of two or more molecules of (meth)acrylic acid (unesterified hydroxyl groups There may be).
  • the polyfunctional (meth)acrylate compound may contain (meth)acryloyl groups that are not in the form of (meth)acryloyloxy groups, as long as the above structural requirements are met.
  • N,N'-methylenebisacrylamide is not a polyfunctional (meth)acrylate compound.
  • the polyfunctional (meth)acrylate compound preferably has a molecular weight of 100 to 10,000, more preferably 200 to 5,000, and more preferably 200 to 3,000. is more preferred, and it is particularly preferred to include those of 200-800.
  • polyfunctional (meth)acrylate compounds include - a di(meth)acrylate of bisphenol A; - a di(meth)acrylate of bisphenol F; - polyfunctional (meth) acrylate having an isocyanuric skeleton; - di(meth)acrylate of dimethyloltricyclodecane; - polyfunctional (meth)acrylates of trimethylolpropane or oligomers thereof; - polyfunctional (meth)acrylates of ditrimethylolpropane; - polyfunctional (meth)acrylates of pentaerythritol or oligomers thereof; - polyfunctional (meth)acrylates of dipentaerythritol; and - di(meth)acrylates of neopentyl glycol-modified trimethylolpropane; - di(meth)acrylates of polyethylene glycol; - di(meth)acrylates of polypropylene glycol; - di(meth)acrylates of linear or
  • polyfunctional (meth)acrylate refers to a compound containing two or more (meth)acryloyloxy groups.
  • polyfunctional (meth)acrylate of trimethylolpropane or its oligomer refers to an ester of one molecule of trimethylolpropane or its oligomer and two or more molecules of (meth)acrylic acid.
  • the polyfunctional (meth)acrylate compound preferably contains a bifunctional (meth)acrylate compound.
  • a bifunctional (meth)acrylate compound is a polyfunctional (meth)acrylate compound having a total of two (meth)acryloyloxy groups.
  • trifunctional and tetrafunctional (meth)acrylate compounds are polyfunctional (meth)acrylate compounds having 3 and 4 (meth)acryloyloxy groups.
  • a silane coupling agent having a plurality of (meth)acrylate groups is not included in the polyfunctional (meth)acrylate compound.
  • the polyfunctional (meth)acrylate compound does not contain silicon atoms.
  • the curable resin composition of the present invention contains (B) a modifier.
  • the (B) regulator used in the present invention is the following (b1) and/or (b2): (b1) Monofunctional (meth)acrylate compounds (b2) Epoxy resins having no reactive unsaturated double bonds.
  • the monofunctional (meth)acrylate compound used in the present invention is a compound containing one (meth)acryloyloxy group. This (meth)acryloyloxy group reacts with a thiol group in the polyfunctional thiol compound described later.
  • a monofunctional (meth)acrylate compound has a structure in which one molecule of a compound having one or more hydroxyl groups is esterified with one molecule of (meth)acrylic acid (there is an unesterified hydroxyl group). may be).
  • a silane coupling agent having one (meth)acrylate group is not included in the monofunctional (meth)acrylate compound.
  • the monofunctional (meth)acrylate compound does not contain silicon atoms.
  • Examples of monofunctional (meth)acrylate compounds include: - ethyl (meth)acrylate, trifluoroethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, glycidyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, isoamyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isodecyl (meth)acrylate, isobornyl (meth)acrylate, stearyl (meth)acrylate, lauryl (meth)acrylate Acrylates, Phenoxyethyl (meth)acrylate, Benzyl (meth)acrylate, Tetrahydrofurfuryl (meth
  • the monofunctional (meth)acrylate compound preferably has a molecular weight of 100 to 1000, more preferably 120 to 500, even more preferably 140 to 400. It is particularly preferred to include those of ⁇ 300.
  • the monofunctional (meth)acrylate compound does not have an epoxy group in its molecule. If the monofunctional (meth)acrylate compound has an epoxy group in its molecule, the crosslink density may increase when heated after UV curing. This is because such a monofunctional (meth)acrylate compound is incorporated into the polymer chain by homopolymerizing the double bond in the (meth)acryloyloxy group during UV curing, and the monofunctional (meth)acrylate compound This is because the epoxy groups of can react with thiol groups in other polymer chains under heating to form new crosslinks.
  • the epoxy resin not having a reactive unsaturated double bond [(b2) epoxy resin] used in the present invention is a compound containing one or more epoxy groups and not having a reactive unsaturated double bond.
  • the reactive unsaturated double bond means, under UV irradiation or heating, a thiol group in a polyfunctional thiol compound and/or a (meth) acryloyloxy group in a polyfunctional (meth)acrylate compound (exactly, its double bond that can react with the double bond in the Generally, epoxy groups and thiol groups do not react under UV irradiation, but they can react under heating.
  • the (b2) epoxy resin usually does not react with the polyfunctional thiol compound under UV irradiation, but when a thermosetting accelerator (in particular, a basic component) is present in the system or on the surface of the adherend, under heating Only its epoxy groups can react with polyfunctional thiol compounds.
  • Silane coupling agents containing one or more epoxy groups and having no reactive unsaturated double bonds are not included in epoxy resins having no reactive unsaturated double bonds.
  • epoxy resins without reactive unsaturated double bonds do not contain silicon atoms.
  • Epoxy resins are roughly divided into monofunctional epoxy resins and polyfunctional epoxy resins.
  • the epoxy resin may contain only one of these, or may contain both of them. From the viewpoint of thermosetting properties, (b2) the epoxy resin preferably contains a polyfunctional epoxy resin. (b2) It is particularly preferred that the epoxy resin contains a bifunctional epoxy resin.
  • a monofunctional epoxy resin is a compound that contains one epoxy group and does not have a reactive unsaturated double bond.
  • monofunctional epoxy resins include n-butyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, cresyl glycidyl ether, p-s-butylphenyl glycidyl ether, styrene oxide, ⁇ -pinene oxide, 4-tert.
  • Polyfunctional epoxy resins are compounds containing two or more epoxy groups and no reactive unsaturated double bonds. Polyfunctional epoxy resins are roughly classified into aliphatic polyfunctional epoxy resins and aromatic polyfunctional epoxy resins. Aliphatic polyfunctional epoxy resins are polyfunctional epoxy resins having structures that do not contain aromatic rings.
  • aliphatic polyfunctional epoxy resins include: - (poly)ethylene glycol diglycidyl ether, (poly)propylene glycol diglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane diglycidyl ether, poly Tetramethylene ether glycol diglycidyl ether, glycerin diglycidyl ether, neopentyl glycol diglycidyl ether, 1,2-epoxy-4-(2-methyloxiranyl)-1-methylcyclohexane, cyclohexane type diglycidyl ether, dicyclo diepoxy resins such as pentadiene-type diglycidyl ethers; - triepoxy resins such as trimethylolpropane triglycidyl ether,
  • aromatic polyfunctional epoxy resin is a polyfunctional epoxy resin having a structure containing an aromatic ring.
  • Many conventional epoxy resins such as bisphenol A type epoxy resin, are of this type.
  • aromatic polyfunctional epoxy resins include: - bisphenol A type epoxy resin; - branched polyfunctional bisphenol A type epoxy resins such as p-glycidyloxyphenyldimethyltrisbisphenol A diglycidyl ether; - bisphenol F type epoxy resin; - novolac type epoxy resins; - tetrabromobisphenol A type epoxy resin; - a fluorene-type epoxy resin; - biphenyl aralkyl epoxy resins; - diepoxy resins such as 1,4-phenyldimethanol diglycidyl ether; -biphenyl-type epoxy resins such as 3,3',5,5'-tetramethyl-4,4'-diglycidyloxybiphenyl; -glycidylamine type epoxy resins such as dig
  • the epoxy resin includes a liquid epoxy resin.
  • liquid epoxy resin means an epoxy resin that is in a liquid physical state at 25°C.
  • the modifier is (b1) a monofunctional (meth)acrylate compound.
  • the (B) modifier includes either or both of (b1) a monofunctional (meth)acrylate compound and (b2) an epoxy resin.
  • the modifier comprises both (b1) a monofunctional (meth)acrylate compound and (b2) an epoxy resin.
  • the curable resin composition of the present invention contains a polyfunctional thiol compound.
  • the polyfunctional thiol compound used in the present invention includes (meth)acryloyloxy groups (more precisely, double bonds therein) in the polyfunctional (meth)acrylate compound and the monofunctional (meth)acrylate compound, and the reaction It is a compound containing two or more thiol groups that react with epoxy groups in an epoxy resin that does not have a polyunsaturated double bond.
  • the polyfunctional thiol compound preferably has 3 or more thiol groups.
  • the polyfunctional thiol compound more preferably contains a trifunctional thiol compound and/or a tetrafunctional thiol compound.
  • Trifunctional and tetrafunctional thiol compounds are thiol compounds having 3 and 4 thiol groups, respectively.
  • the thiol equivalent weight of the polyfunctional thiol compound is preferably 90-150 g/eq, more preferably 90-140 g/eq, even more preferably 90-130 g/eq.
  • the polyfunctional thiol compound includes a thiol compound having a hydrolyzable partial structure such as an ester bond in the molecule (i.e. hydrolyzable) and a thiol compound having no such partial structure (i.e. non-hydrolyzable).
  • hydrolyzable polyfunctional thiol compounds include trimethylolpropane tris (3-mercaptopropionate) (manufactured by SC Organic Chemical Co., Ltd.: TMMP), tris-[(3-mercaptopropionyloxy)-ethyl]- Isocyanurate (manufactured by SC Organic Chemical Co., Ltd.: TEMPIC), pentaerythritol tetrakis (3-mercaptopropionate) (manufactured by SC Organic Chemical Co., Ltd.: PEMP), tetraethylene glycol bis (3-mercaptopropionate) (SC Organic Chemical Co., Ltd.: EGMP-4), dipentaerythritol hexakis (3-mercaptopropionate) (manufactured by SC Organic Chemical Co., Ltd.: DPMP), pentaerythritol tetrakis (3-mercaptobutyrate) (manufactured by
  • non-hydrolyzable polyfunctional thiol compounds include 1,3,4,6-tetrakis (2-mercaptoethyl) glycoluril (manufactured by Shikoku Kasei Co., Ltd.: TS-G), (1,3 , 4,6-tetrakis(3-mercaptopropyl)glycoluril (manufactured by Shikoku Kasei Co., Ltd.: C3 TS-G), 1,3,4,6-tetrakis(mercaptomethyl)glycoluril, 1,3,4, 6-tetrakis(mercaptomethyl)-3a-methylglycoluril, 1,3,4,6-tetrakis(2-mercaptoethyl)-3a-methylglycoluril, 1,3,4,6-tetrakis(3-mercaptopropyl )-3a-methylglycoluril, 1,3,4,6-tetrakis(mercaptomethyl)-3a,6a-d
  • the curable resin composition of the present invention - The total number (total amount) of (meth)acryloyloxy contained in the (A) polyfunctional (meth)acrylate compound, - The total number (total amount) of (meth)acryloyloxy contained in the (B) regulator, - The total number (total amount) of epoxy groups contained in the (B) modifier, and - The total number (total amount) of thiol groups contained in the (C) polyfunctional thiol compound
  • [(A) the total number of (meth)acryloyloxy groups for the polyfunctional (meth)acrylate compound]/[(C) the total number of thiol groups for the polyfunctional thiol compound] is 0.4 to 0.8
  • [(B) the total number of (meth)acryloyloxy groups for the modifier + (B) the total number of epoxy groups for the modifier]/[(C) the total number of thiol groups for the polyfunctional thiol compound] is 0.05 to 0.65.
  • the total number of (meth)acryloyloxy groups for the polyfunctional (meth)acrylate compound is the mass (g) of the polyfunctional (meth)acrylate compound contained in the (A) polyfunctional (meth)acrylate compound.
  • the (meth)acryloyl equivalent can be calculated as a quotient obtained by dividing the molecular weight of the polyfunctional (meth)acrylate compound by the number of (meth)acryloyloxy groups in one molecule of the polyfunctional (meth)acrylate compound.
  • the total number of (meth)acryloyloxy groups for (B) modifier can also be determined in the same manner as for (A) polyfunctional (meth)acrylate compound.
  • the curable resin composition of the present invention preferably contains a polyfunctional (meth)acrylate compound having a (meth)acryloyl equivalent of 60 to 300 g/eq, more preferably a (meth)acryloyl equivalent of 70 to 250 g/eq. More preferably, it contains a polyfunctional (meth)acrylate compound having a (meth)acryloyl equivalent of 80 to 220 g/eq.
  • total number of (meth) acryloyl groups for (A) polyfunctional (meth) acrylate compound having (meth) acryloyl equivalent of 300 g/eq or less]/[(A) total polyfunctional (meth) acrylate compound (Meth) total number of acryloyl groups] is preferably 0.7 to 1, more preferably 0.8 to 1, still more preferably 0.9 to 1, particularly preferably 0.95 to 1 is.
  • the curable resin composition of the present invention It is preferable because the curability of the product tends to be good, and a tough crosslinked structure can be easily obtained in the cured product given by this composition.
  • the (A) polyfunctional (meth)acrylate compound having a (meth)acryloyl equivalent of 300 g/eq or less as described above does not have a poly(alkylene glycol) skeleton.
  • the curable resin composition of the present invention has a (meth)acryloyl equivalent of 60 to 300 g/eq and does not have a poly(alkylene glycol) skeleton, (A) polyfunctional (meth) Contains acrylate compounds.
  • the adhesiveness to the adherend is easily imparted to the cured product provided by this composition (that is, the cured product becomes difficult to peel off from the adherend).
  • a poly(alkylene glycol) skeleton means a poly(oxyalkylene) chain composed of two or more oxyalkylene groups, such as a poly(oxyethylene) chain that can be introduced by ethylene oxide (EO) modification, propylene oxide ( PO) refers to poly(oxypropylene) chains and the like that can be introduced by modification.
  • EO ethylene oxide
  • PO propylene oxide
  • the (A) polyfunctional (meth)acrylate compound having a (meth)acryloyl equivalent of 300 g/eq or less as described above preferably has a poly(alkylene glycol) skeleton. This is because when the curable resin composition of the present invention contains such a polyfunctional (meth)acrylate compound (A), the cured product provided by the composition becomes brittle and easily peeled off from the adherend. be. The reason for this is that poly(alkylene glycol) skeletons are present relatively densely in such a polyfunctional (meth)acrylate compound (A). It is speculated that the structures may be formed.
  • the curable resin composition of the present invention may contain (A) a polyfunctional (meth)acrylate compound having a (meth)acryloyl equivalent of 60 to 300 g/eq and having a poly(alkylene glycol) skeleton.
  • [(meth)acryloyl groups for (A) polyfunctional (meth)acrylate compounds having a (meth)acryloyl equivalent of 60 to 300 g/eq and a poly(alkylene glycol) skeleton The total number]/[(A) the total number of (meth)acryloyl groups for the entire polyfunctional (meth)acrylate compound] is preferably 0.5 or less, more preferably 0.4 or less, and still more preferably It is 0.3 or less, particularly preferably 0.2 or less, and most preferably 0.1 or less. In one aspect of the invention, this ratio is between 0 and 0.5, preferably between 0 and 0.4, more preferably between 0 and 0.3, particularly preferably between 0 and
  • the total number of epoxy groups for a modifier is the quotient of the mass (g) of the epoxy resin containing no reactive unsaturated double bonds contained in the modifier divided by the epoxy equivalent weight of that epoxy resin. (the sum of such quotients for each epoxy resin, if epoxy resins without more than one type of reactive unsaturated double bond are involved).
  • the epoxy equivalent can be determined by the method described in JIS K7236. If the epoxy equivalent cannot be obtained by this method, it may be calculated as a quotient obtained by dividing the molecular weight of the epoxy resin by the number of epoxy groups in one molecule of the epoxy resin.
  • the total number of thiol groups for the polyfunctional thiol compound is the quotient obtained by dividing the mass (g) of the polyfunctional thiol compound contained in the (C) polyfunctional thiol compound by the thiol equivalent of the polyfunctional thiol compound (multiple When multiple functional thiol compounds are included, the sum of such quotients for each polyfunctional thiol compound).
  • a thiol equivalent can be determined by an iodometric titration method. This method is widely known and disclosed, for example, in paragraph 0079 of JP-A-2012-153794. If the thiol equivalent cannot be determined by this method, the molecular weight of the polyfunctional thiol compound may be calculated as a quotient divided by the number of thiol groups in one molecule of the polyfunctional thiol compound.
  • the curable resin composition has (A) a portion of the polyfunctional (meth)acrylate compound substituted with (B) the modifier, and (C) the amount of the polyfunctional thiol compound
  • the total amount of (A) polyfunctional (meth)acrylate compound and (B) modifier is approximately equivalent.
  • [(A) the total number of (meth)acryloyloxy groups for the polyfunctional (meth)acrylate compound + the total number of (meth)acryloyloxy groups for (B) the modifier + (B) the total number of (meth)acryloyloxy groups for the modifier total number of epoxy groups]/[total number of thiol groups for (C) polyfunctional thiol compound] is 0.8 to 1.2, preferably 0.9 to 1.1, more preferably 0.95 to 1 .1.
  • the curable resin composition of the present invention includes (A) the total number of (meth)acryloyloxy groups for the polyfunctional (meth)acrylate compound, (B) the total number of (meth)acryloyloxy groups for the modifier, ( B) the total number of epoxy groups for the modifier and (C) the total number of thiol groups for the polyfunctional thiol compound satisfies the above conditions, (A) the polyfunctional (meth)acrylate compound, (B) the regulator agent and (C) a polyfunctional thiol compound.
  • [(A) the total number of (meth) acryloyloxy groups for the polyfunctional (meth) acrylate compound] / [(C) the total number of thiol groups for the polyfunctional thiol compound] is greater than 0.8, the surrounding Due to expansion and/or shrinkage of the adherend due to changes in temperature, the cured product after UV curing tends to separate from the adherend (that is, poor adhesion reliability).
  • [(A) the total number of (meth)acryloyloxy groups for the polyfunctional (meth)acrylate compound]/[(C) the total number of thiol groups for the polyfunctional thiol compound] is preferably 0.45 to 0.7, more preferably 0.5 to 0.7, still more preferably 0.5 to 0.65.
  • total number of (meth)acryloyloxy groups for (B) modifier + total number of epoxy groups for (B) modifier]/[total number of thiol groups for (C) polyfunctional thiol compound] is 0. If it is less than 05, the cured product after UV curing tends to peel off from the adherend due to expansion and/or shrinkage of the adherend due to changes in ambient temperature (that is, poor adhesion reliability). On the other hand, [total number of (meth)acryloyloxy groups for (B) modifier + total number of epoxy groups for (B) modifier]/[total number of thiol groups for (C) polyfunctional thiol compound] is 0.
  • the content in the cured product of the structure generated by the reaction of (A) the polyfunctional (meth)acrylate compound and (C) the polyfunctional thiol compound is excessively low, so the adhesion after UV curing treatment becomes insufficient.
  • [(B) the total number of (meth)acryloyloxy groups for the modifier + (B) the total number of epoxy groups for the modifier]/[(C) the total number of thiol groups for the polyfunctional thiol compound] is , preferably 0.2 to 0.5, more preferably 0.30 to 0.45.
  • (B) the modifier consists essentially of (b1) a monofunctional (meth)acrylate compound (substantially free of (b2) epoxy resin).
  • [total number of (meth)acryloyloxy groups for (B) modifier + total number of epoxy groups for (B) modifier]/[total number of thiol groups for (C) polyfunctional thiol compound] is It is preferably 0.2 to 0.5, more preferably 0.25 to 0.45. If this ratio is less than 0.2, the effect of the modifier (B) for lowering the crosslink density of the cured product becomes small, and the cured product tends to peel off. On the other hand, if this ratio exceeds 0.5, UV curability may deteriorate.
  • the modifier consists essentially of (b2) an epoxy resin (substantially free of (b1) monofunctional (meth)acrylate compounds).
  • [total number of (meth)acryloyloxy groups for (B) modifier + total number of epoxy groups for (B) modifier]/[total number of thiol groups for (C) polyfunctional thiol compound] is It is preferably 0.2 to 0.5, more preferably 0.25 to 0.45. If this ratio is less than 0.2, the effect of the modifier (B) for imparting flexibility to the cured product is reduced, and the cured product tends to peel off. On the other hand, if this ratio exceeds 0.5, UV curability may deteriorate.
  • the (B) modifier comprises both (b1) a monofunctional (meth)acrylate compound and (b2) an epoxy resin.
  • [total number of (meth)acryloyloxy groups for (B) modifier]:[total number of epoxy groups for (B) modifier] is preferably from 1:0.01 to 1:20, More preferably 1:0.05 to 1:15, still more preferably 1:0.1 to 1:10, particularly preferably 1:0.1 to 1:5, most preferably 1: 0.1 to 1:1. Too little [total number of epoxy groups for (B) modifier] relative to [total number of (meth)acryloyloxy groups for (B) modifier] results in poor adhesion after UV curing followed by heat curing. tends to be insufficient.
  • the curable resin composition of the present invention contains (D) a photoradical initiator.
  • the curable resin composition can be cured by UV irradiation for a short period of time.
  • the (D) photoradical initiator that can be used in the present invention is not particularly limited, and known ones can be used.
  • photoradical initiators include 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, diethoxyacetophenone, 1-(4-isopropylphenyl)-2 -hydroxy-2-methylpropan-1-one, 1-(4-dodecylphenyl)-2-hydroxy-2-methylpropan-1-one, 4-(2-hydroxyethoxy)-phenyl(2-hydroxy-2 -propyl)ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropane-1, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-butyl ether, benzoin phenyl ether, benzyl dimethyl ketal, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone,
  • the amount of the photoradical initiator is preferably 0.01 to 10% by mass of the curable resin composition, more preferably 0.05 to 5% by mass, and 0.1 to 3% by mass. % is more preferred.
  • each of those parts deforms according to the thermal expansion coefficient of that material. Since the degree of this deformation is not constant for each part due to differences in thermal expansion coefficients, it introduces stresses associated with the deformation of each part into the assembly. The stress that accompanies this deformation acts particularly on the joints of the parts, that is, the cured adhesive. If the cured product is moderately flexible, the cured product will follow the deformation of the components of the assembly, thereby preventing separation of the cured product from the adherend. However, since the cured product provided by the conventional UV-curable adhesive lacks flexibility, it is difficult to follow the deformation of the parts of the assembly, and the cured product sometimes peels off from the adherend.
  • Such peeling of the cured product from the adherend is particularly performed when a plurality of adherends are adhered by curing the UV curable adhesive by a heat curing treatment subsequent to the UV curing treatment, and When the material constituting one of the adherends has a glass transition temperature (T g ) lower than the temperature of the heat curing treatment (for example, one of the adherends is polyethylene terephthalate (PET) or polybutylene terephthalate (PBT) manufactured).
  • T g glass transition temperature
  • a cured product provided by the curable resin composition of the present invention has a lower crosslink density than a cured product provided by a conventional UV-curable adhesive. Such a cured product follows the deformation of the parts of the assembly even if the temperature of the assembly containing it changes, so it is difficult to separate from the adherend.
  • a cured product can be obtained by - UV curing treatment by ultraviolet (UV) irradiation, and optionally - thermal curing treatment by heating.
  • UV ultraviolet
  • the polyfunctional (meth)acrylate compound and the polyfunctional thiol compound are subjected to the UV curing treatment in the presence of (D) a photoradical initiator, - Reaction (1) between a polyfunctional (meth)acrylate compound and a polyfunctional thiol compound, and - Reaction (2) between a polyfunctional (meth)acrylate compound happens. Furthermore, when the product obtained by this UV curing treatment is subjected to a heat curing treatment, - Reaction (3) between a polyfunctional (meth)acrylate compound and a polyfunctional thiol compound happens.
  • reaction (1) between a monofunctional (meth)acrylate compound and a polyfunctional thiol compound
  • reaction (2) between the polyfunctional (meth)acrylate compound and (b1) the monofunctional (meth)acrylate compound suppress the increase in crosslink density of the cured product.
  • reaction (2) extends the polymer chain and widens the spacing of the crosslinks.
  • the cured product provided by the curable resin composition of the present invention is a crosslinked polymer.
  • (B) modifiers prevents the increase in crosslink density during UV curing and heat curing, so this polymer is less susceptible to conventional curing without (B) modifiers.
  • the crosslink density is lower than that of the cured product obtained from the resin composition.
  • the epoxy resin remains unreacted in the resulting cured product.
  • flexibility is improved by the unreacted (b2) epoxy resin. Therefore, when such a curable resin composition is used, the cured product follows the deformation of the assembly parts caused by changes in ambient temperature, thereby preventing the cured product from peeling from the adherend.
  • thermosetting accelerator in particular, a basic component
  • subjecting the curable resin composition of the present invention to the above UV curing treatment and heat curing treatment results in (b2) Reaction (4) between the epoxy resin and the polyfunctional thiol compound causes ring-opening of the epoxy groups contained in the (b2) epoxy resin to generate hydroxyl groups.
  • This hydroxyl group can contribute to improving the adhesive strength of the cured product to the adherend and thus preventing the cured product from peeling off from the adherend.
  • reaction (4) caps the thiol groups contained in the polyfunctional thiol compound, thereby suppressing the formation of new crosslinks. As a result, reaction (4) does not increase the crosslink density of the cured product.
  • the epoxy resin is a polyfunctional epoxy resin, the reaction (4) can theoretically form new crosslinks.
  • UV curing treatment forms a polymer, which restricts the movement of the (b2) epoxy resin in the system, making it difficult to form new crosslinks.
  • the curable resin composition of the present invention may contain optional components other than the above components (A) to (D), such as those described below.
  • the curable resin composition of the present invention may further contain (E) a heat curing accelerator, if desired.
  • a heat curing accelerator By including a thermosetting accelerator, the curable resin composition of the present invention can be cured in a short time even under low temperature conditions.
  • the thermosetting accelerator used in the present invention is not particularly limited as long as it is a curing catalyst for epoxy resins, and known ones can be used.
  • the thermal accelerator is a basic substance.
  • the thermal curing accelerator is a latent curing catalyst.
  • a latent curing catalyst is a compound that is inactive at room temperature and is activated by heating to function as a curing catalyst.
  • an imidazole compound that is solid at room temperature a solid-dispersed amine adduct-based latent curing catalyst such as a compound (amine-epoxy adduct system); a reaction product of an amine compound and an isocyanate compound or a urea compound (urea adduct system);
  • Typical examples of commercially available latent curing catalysts include "Amicure PN-23” (trade name, manufactured by Ajinomoto Fine-Techno Co., Inc.) and “Amicure PN-40” as amine-epoxy adduct system (amine adduct system).
  • Urea adducts include "Fujicure FXE-1000" (trade name, manufactured by T&K TOKA Co., Ltd.), “Fujicure FXR-1030” (trade name, manufactured by T&K TOKA Co., Ltd.), but are not limited to these. Absent.
  • the thermosetting accelerator may be used alone or in combination of two or more.
  • the heat curing accelerator is preferably a solid-dispersed amine adduct latent curing catalyst.
  • the amount of the heat curing accelerator is preferably 0.1 to 20% by mass of the curable resin composition, more preferably 0.5 to 15% by mass, and 1 to 10% by mass. More preferred.
  • thermosetting accelerators are provided in the form of a dispersion dispersed in a polyfunctional epoxy resin.
  • the amount of the polyfunctional epoxy resin in which it is dispersed is also included in the amount of the (b2) epoxy resin in the curable resin composition of the present invention. Be careful.
  • the curable resin composition of the present invention may contain fillers, particularly silica fillers and/or talc fillers, if desired.
  • a filler can be added to improve the thermal cycle resistance of the cured product obtained by curing the curable resin composition of the present invention.
  • the reason why the thermal cycle resistance is improved by adding a filler is that the coefficient of linear expansion of the cured product is reduced, that is, expansion and contraction of the cured product due to thermal cycles are suppressed. In addition, shrinkage during curing is also suppressed.
  • the average particle size is preferably 0.1 to 10 ⁇ m.
  • the average particle diameter refers to a volume-based median diameter (d50) measured by a laser diffraction method in accordance with ISO-13320 (2009), unless otherwise specified.
  • a filler When a filler is used, its content is preferably 1 to 70% by mass, more preferably 5 to 60% by mass, relative to the total mass of the curable resin composition.
  • a filler may be used independently and may be used in combination of 2 or more type.
  • Specific examples of fillers other than silica fillers and talc fillers include alumina fillers, calcium carbonate fillers, polytetrafluoroethylene (PTFE) fillers, silicone fillers, acrylic fillers, styrene fillers, etc., but are limited to these. not.
  • the filler may be surface-treated.
  • the curable resin composition of the present invention may contain a stabilizer, if desired.
  • a stabilizer can be added to the curable resin composition of the present invention in order to improve its storage stability and prolong its pot life.
  • Various stabilizers known in the art can be used as stabilizers for one-liquid type adhesives. At least one selected is preferred.
  • liquid borate compounds include 2,2′-oxybis(5,5′-dimethyl-1,3,2-oxaborinane), trimethylborate, triethylborate, tri-n-propylborate, triisopropylborate, tri-n-butylborate, tripentylborate, triallylborate, trihexylborate, tricyclohexylborate, trioctylborate, trinonylborate, tridecylborate, tridodecylborate, trihexadecylborate, trioctadecylborate, tris( 2-ethylhexyloxy)borane, bis(1,4,7,10-tetraoxaundecyl)(1,4,7,10,13-pentoxatetradecyl)(1,4,7-trioxaundecyl) ) borane, tribenzylborate, triphenylborate, tri-
  • liquid borate ester compound is liquid at room temperature (25° C.), it is preferable because the viscosity of the formulation can be kept low.
  • aluminum chelate for example, aluminum chelate A (manufactured by Kawaken Fine Chemicals Co., Ltd.) can be used.
  • organic acid for example, barbituric acid can be used.
  • the amount of the stabilizer is 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of components (A) to (D). It is preferably from 0.05 to 5 parts by mass, and even more preferably from 0.1 to 3 parts by mass.
  • the curable resin composition of the present invention may contain a coupling agent, if desired.
  • Addition of a coupling agent, particularly a silane coupling agent, is preferable from the viewpoint of improving adhesive strength.
  • a silane coupling agent is an organosilicon compound having two or more different functional groups in its molecule, including a functional group that can chemically bond with an inorganic material and a functional group that can chemically bond with an organic material.
  • a functional group capable of chemically bonding with an inorganic material is a hydrolyzable silyl group, and an alkoxy group, especially a silyl group containing a methoxy group and/or an ethoxy group is used as this functional group.
  • silane coupling agents As functional groups capable of chemically bonding with organic materials, vinyl groups, epoxy groups, (meth)acrylic groups, styryl groups, unsubstituted or substituted amino groups, mercapto groups, ureido groups, isocyanate groups and the like are used.
  • the coupling agent various silane coupling agents having the above functional groups can be used. Specific examples of silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, vinyltrimethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene).
  • silane coupling agents may be used alone or in combination of two or more.
  • silane coupling agent including those used for surface treatment of the filler
  • silane coupling agents are not included in components (A) to (D).
  • the amount of the coupling agent is 0.01 with respect to 100 parts by mass of the total amount of components (A) to (D) from the viewpoint of improving adhesive strength. It is preferably from 10 parts by mass, more preferably from 0.1 to 5 parts by mass.
  • the curable resin composition of the present invention may contain a thixotropic agent, if desired.
  • the thixotropic agent used in the present invention is not particularly limited, and known ones can be used.
  • Examples of thixotropic agents for use in the present invention include, but are not limited to, silica and the like.
  • Silica may be natural silica (silica stone, quartz, etc.) or synthetic silica. Synthetic silica can be synthesized by any method, including dry and wet methods.
  • the thixotropic agent may also be surface treated with a surface treatment agent (eg, polydimethylsiloxane). In the present invention, at least part of the thixotropic agent is preferably surface-treated.
  • the average particle size of the primary particles of the thixotropic agent is preferably 5 to 50 nm.
  • the curable resin composition of the present invention preferably contains 0.1 to 30% by mass, more preferably 1 to 20% by mass, of the thixotropic agent relative to the total mass of the curable resin composition. It is particularly preferable to contain ⁇ 15% by mass.
  • the curable resin composition of the present invention may contain other additives, such as carbon black, titanium black, ion trapping agents, leveling agents, if desired, within the scope of the present invention.
  • additives such as carbon black, titanium black, ion trapping agents, leveling agents, if desired, within the scope of the present invention.
  • Antioxidants, antifoaming agents, viscosity modifiers, flame retardants, colorants, solvents and the like can be added.
  • the type and amount of each additive are as per conventional methods.
  • the method for producing the curable resin composition of the present invention is not particularly limited.
  • components (A) to (D) and, if desired, additives are simultaneously or separately introduced into a suitable mixer and mixed by stirring while melting by heating if necessary to obtain a homogeneous mixture.
  • the curable resin composition of the present invention can be obtained.
  • the mixer is not particularly limited, but a Raikai machine equipped with a stirring device and a heating device, a Henschel mixer, a three-roll mill, a ball mill, a planetary mixer, a bead mill, or the like can be used. Also, these devices may be used in combination as appropriate.
  • the curable resin composition thus obtained is, as described above, It can be converted into a cured product by subjecting it to a UV curing treatment by ultraviolet (UV) irradiation and optionally a thermal curing treatment by heating.
  • UV ultraviolet
  • the UV curing treatment can be performed by causing the curable resin composition of the present invention to receive a sufficient cumulative amount of ultraviolet rays at room temperature.
  • the irradiation intensity is preferably 100-10000 mW/cm 2 , more preferably 1000-9000 mW/cm 2 .
  • the wavelength of the ultraviolet rays is preferably 315-450 nm, more preferably 340-430 nm, and particularly preferably 350-380 nm.
  • the ultraviolet light source is not particularly limited, and a gallium nitride UV-LED or the like can be used.
  • the integrated amount of ultraviolet light received by the curable resin composition of the present invention is preferably 200 mJ/cm 2 or more, more preferably 500 mJ/cm 2 or more, still more preferably 1000 mJ/cm 2 or more, and particularly It is preferably 2000 mJ/cm 2 or more.
  • the integrated amount of ultraviolet light can be measured using a measuring instrument commonly used in the relevant field, such as an integrated ultraviolet light meter and a light receiver.
  • the integrated amount of light in the ultraviolet wavelength region (310 to 390 nm) with a center wavelength of 365 nm can be measured using an ultraviolet integrating photometer (Ushio Inc., UIT-250) and a light receiver (Ushio Inc., UVD-S365). ) can be measured using
  • heat curing treatment can optionally be performed by heating the curable resin composition of the present invention after UV curing treatment under appropriate conditions.
  • This heating is preferably carried out at 60 to 120°C, more preferably 60 to 100°C, particularly preferably 70 to 90°C.
  • This heating is preferably carried out for 5 to 180 minutes, more preferably for 10 to 120 minutes, particularly preferably for 20 to 70 minutes.
  • the curable resin composition of the present invention When the curable resin composition of the present invention is subjected to UV curing treatment as described above, it gives a flexible cured product with a lower crosslink density than conventional cured products. Therefore, when two parts (adherends) are joined using the curable resin composition of the present invention, even if the resulting assembly is deformed due to changes in temperature after UV curing, the The cured product provided by the curable resin composition is difficult to separate from the adherend.
  • the curable resin composition of the present invention can be used, for example, as a semiconductor device including various electronic parts, an adhesive for bonding parts constituting electronic parts, or a raw material thereof.
  • the present invention also provides an adhesive containing the curable resin composition of the present invention.
  • the adhesive of the present invention is suitable, for example, for fixing modules and electronic components.
  • the present invention also provides a cured product obtained by curing the curable resin composition or adhesive of the present invention.
  • the present invention further provides a semiconductor device containing the cured product of the present invention.
  • the present invention further provides a sensor module including the semiconductor device of the present invention.
  • Examples 1-36, Comparative Examples 1-8 A curable resin composition was prepared according to the formulation shown in Table 1 by mixing predetermined amounts of each component using a three-roll mill. In Table 1, the amount of each component is expressed in parts by mass (unit: g).
  • A Polyfunctional (meth)acrylate compound
  • the compounds used as the polyfunctional (meth)acrylate compounds are as follows.
  • (B) Modifier (b1) Monofunctional (meth)acrylate compound In the examples and comparative examples, the compounds used as the monofunctional (meth)acrylate compounds are as follows. (B-1): Isobornyl acrylate (trade name: Light Acrylate IBXA, manufactured by Kyoeisha Chemical Co., Ltd., (meth)acrylate equivalent: 208) (B-2): Phenoxyethyl acrylate (trade name: Light Acrylate PO-A, manufactured by Kyoeisha Chemical Co., Ltd., (meth)acrylate equivalent: 192) (B-3): 4-tert-butylcyclohexyl acrylate (trade name: TBCHA, manufactured by KJ Chemicals, (meth)acrylate equivalent: 210) (B-4): Dicyclopentanyl acrylate (trade name: FA513AS, manufactured by Showa Denko Materials Co., Ltd., (meth)acrylate equivalent: 206) (B-5): 3-phenoxybenzyl acrylate (trade name
  • (b2) Epoxy Resins Having No Reactive Unsaturated Double Bonds
  • (B-9) Bisphenol A type epoxy resin (trade name: JER834, manufactured by Mitsubishi Chemical Holdings Corporation, epoxy equivalent: 250)
  • (B') Epoxy Resin Having Reactive Unsaturated Double Bonds Compounds used as epoxy resins having reactive unsaturated double bonds in Examples and Comparative Examples are as follows.
  • C- 1 Pentaerythritol tetrakis(3-mercaptopropionate) (trade name: PEMP, manufactured by SC Organic Chemical Co., Ltd., thiol equivalent: 122)
  • C-2) Pentaerythritol trippropanethiol (trade name: PEPT, manufactured by SC Organic Chemical Co., Ltd., thiol equivalent: 124)
  • C-3) 1,3,4,6-tetrakis(2-mercaptopropyl)glycoluril (trade name: C3 TS-G, manufactured by Shikoku Kasei Co., Ltd., thiol equivalent: 114)
  • (D) Photoradical Initiator Compounds used as photoradical initiators in Examples and Comparative Examples are as follows.
  • E Heat Curing Accelerator Compounds used as heat curing accelerators in Examples and Comparative Examples are as follows.
  • E-1) Amine adduct latent curing catalyst 1 (trade name: Fujicure FXR1121, manufactured by T&K TOKA Co., Ltd.)
  • E-2) Amine adduct-based latent curing catalyst 2 (trade name: Amicure PN-23, manufactured by Ajinomoto Fine-Techno Co., Inc.)
  • the glass plate coated with the curable resin composition is placed on the PBT plate with the surface coated with the curable resin composition facing down so that the curable resin composition is positioned between the two spacers. Then, the curable resin composition and the spacer were put on the glass plate and the PBT plate so as to be sandwiched between the glass plate and the PBT plate.
  • the curable resin composition between the PBT plate and the glass plate was irradiated with a UV LED irradiation device AC475 manufactured by Excelitas Technologies, Inc., with an integrated light amount of 2000 mJ / cm 2 (Ushio Inc. UIT-250 (receiver UVD-365). connection)) and cured by UV irradiation.
  • the spacer was removed, and the UV-cured curable resin composition was heated at 80° C. for 60 minutes in a blower dryer.
  • the obtained cured product between the PBT plate and the glass plate was allowed to stand at room temperature (20° C.) for 2 hours, and then the degree of peeling of the cured product from the glass plate and/or the PBT plate was evaluated by visual observation.
  • the cured product prepared above is observed from the glass plate side, the cured product adhering to both the glass plate and the PBT plate is perceived as a transparent area, and the cured product peeled off from the glass plate and/or the PBT plate. is perceived as a white area.
  • the degree of peeling of the cured product was evaluated based on the approximate ratio (%) of the area of the white region to the total area of the clear region and the white region.
  • Table 1 shows the results.
  • the symbol “ ⁇ ” in the table indicates that the above ratio was substantially 0% in all four tests.
  • the symbol “O” in the table indicates that the above ratio was more than 0% and 50% or less in all four tests.
  • the symbol “ ⁇ ” in the table indicates that the ratio was more than 0% and 50% or less in 2 or 3 tests out of 4 tests, and the ratio was more than 50% in 1 or 2 tests.
  • the curable resin compositions of Examples 1 to 36 containing appropriate amounts of (A) a polyfunctional (meth)acrylate compound, (B) a modifier and (C) a polyfunctional thiol compound. can be cured in a short time by UV irradiation. Further, the resulting cured product is less likely to separate from the adherend even if it is cooled after being heated. Incidentally, the adhesion reliability of the curable resin composition of Example 36 using (A) a polyfunctional (meth) acrylate compound having a poly (alkylene glycol) skeleton is inferior to those of Examples 1 to 35, It was better than Comparative Examples 1-7.
  • the curable resin composition of Comparative Example 8 which contains (B′) an epoxy resin having a reactive unsaturated double bond instead of (B) the modifier, can be cured by UV irradiation, but the It can be seen that the cured product is separated from the adherend when it is cooled following heating.
  • the curable resin composition of the present invention gives a flexible cured product with a lower crosslink density than conventional ones.
  • the curable resin composition of the present invention is not easily peeled off from the adherend even when the ambient temperature changes in the heating and/or cooling process described above after UV curing. useful for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Epoxy Resins (AREA)

Abstract

The present invention addresses the problem of providing a UV-curable resin composition that provides a flexible cured product having a lower crosslinking density than conventional cured products. The present invention comprises the following (A) to (D): (A) a polyfunctional (meth)acrylate compound; (B) an adjusting agent containing the following (b1) and/or (b2): (b1) a monofunctional (meth)acrylate compound, and (b2) an epoxy resin having no reactive unsaturated double bond; (C) a polyfunctional thiol compound; and (D) a photo-radical initiator, wherein the total number (total amount) of (meth)acryloyloxy contained in the (A) polyfunctional (meth)acrylate compound, the total number (total amount) of (meth)acryloyloxy contained in the (B) adjusting agent, the total number (total amount) of epoxy groups contained in the (B) adjusting agent, and the total number (total amount) of thiol groups contained in the (C) polyfunctional thiol compound satisfy a predetermined relationship.

Description

硬化性樹脂組成物Curable resin composition
 本発明は、硬化性樹脂組成物、それを含む接着剤、それを硬化させて得られる硬化物及びその硬化物を含む半導体装置に関する。 The present invention relates to a curable resin composition, an adhesive containing the composition, a cured product obtained by curing the same, and a semiconductor device containing the cured product.
 紫外線(UV)照射により硬化させるタイプの接着剤(以下「UV硬化型接着剤」とも称する)は、多くの分野で使用されている。UV硬化型接着剤には、UV照射により仮固定し、加熱により本硬化させるタイプの接着剤(以下「UV-熱硬化型接着剤」とも称する)も存在する(例えば特許文献1を参照)。UV硬化型接着剤には、多官能アクリレート化合物及び多官能チオール化合物を含むものがある。このような接着剤は、エンチオール反応((メタ)アクリロイルオキシ基中の二重結合へのチオール基のラジカル付加)及びホモ重合((メタ)アクリロイルオキシ基のラジカル重合)によって硬化する。 Adhesives that are cured by ultraviolet (UV) irradiation (hereinafter also referred to as "UV curable adhesives") are used in many fields. Among UV curable adhesives, there is also a type of adhesive that is temporarily fixed by UV irradiation and fully cured by heating (hereinafter also referred to as “UV-thermosetting adhesive”) (see, for example, Patent Document 1). Some UV curable adhesives contain polyfunctional acrylate compounds and polyfunctional thiol compounds. Such adhesives cure by enethiol reaction (radical addition of thiol groups to double bonds in (meth)acryloyloxy groups) and homopolymerization (radical polymerization of (meth)acryloyloxy groups).
 UV硬化型接着剤は特に、組み立てにおいて高精度の位置決めを要する半導体装置、例えばイメージセンサモジュールの製造にしばしば使用されている。イメージセンサモジュールでは、各部品の間の相対的な位置関係が極めて重要である。そのため、イメージセンサモジュールの組み立てでは、各部品の位置決めを高精度で行う必要がある。そのため、イメージセンサモジュールの製造にUV照射による短時間硬化が可能なこの接着剤を用いることは、組み立ての効率を向上させるので極めて有用である。 UV curable adhesives are especially often used in the manufacture of semiconductor devices that require high-precision positioning during assembly, such as image sensor modules. In an image sensor module, the relative positional relationship between each part is extremely important. Therefore, in assembling the image sensor module, it is necessary to position each component with high precision. Therefore, the use of this adhesive, which can be cured in a short period of time by UV irradiation, in the manufacture of image sensor modules is extremely useful because it improves assembly efficiency.
特開2014-077024号公報JP 2014-077024 A 国際公開第2018/181421号WO2018/181421
 UV硬化型接着剤を用いて作成された組み立て物が、相当な温度変化を伴って加熱及び/又は冷却される場合がある。例えば、UV硬化型接着剤をUV照射及びそれに続く加熱により硬化させる場合、UV硬化後に組み立て物は加熱され、その後冷却される。また、UV硬化後の組み立て物が、夏季の車内等の高温になりうる環境に置かれることもある。 Assemblies made using UV curable adhesives may be heated and/or cooled with considerable temperature changes. For example, if a UV curable adhesive is cured by UV irradiation followed by heating, the assembly is heated after UV curing and then cooled. In addition, the UV-cured assembly may be placed in an environment that can reach high temperatures, such as inside a car in the summer.
 従来のUV硬化型接着剤を用いて作成された組み立て物では、上記のような加熱及び/又は冷却の過程において、硬化物が被着体から剥離してしまうことがあるという問題があった。 In assemblies made using conventional UV-curing adhesives, there was a problem that the cured product may peel off from the adherend during the heating and/or cooling process as described above.
 本発明は、上記した従来技術の問題点を解決するため、周囲の温度が変化しても被着体から剥離しにくい硬化物を与える、UV硬化型の硬化性樹脂組成物の提供を目的とする。
 本発明は、特に、UV硬化後の加熱及び/又は冷却の過程において、周囲の温度が変化しても被着体から剥離しにくい硬化物を与える、UV硬化型の硬化性樹脂組成物の提供をも目的とする。
In order to solve the above-described problems of the prior art, the present invention aims to provide a UV-curable curable resin composition that gives a cured product that is difficult to peel off from an adherend even when the ambient temperature changes. do.
In particular, the present invention provides a UV-curable curable resin composition that gives a cured product that is difficult to peel off from an adherend even when the ambient temperature changes in the process of heating and/or cooling after UV curing. Also intended to
 本発明者らは、上記問題点を解決するために鋭意研究を重ねた結果、本発明に到達した。 The present inventors arrived at the present invention as a result of extensive research in order to solve the above problems.
 すなわち、本発明は、以下に限定されるものではないが、次の発明を包含する。 That is, the present invention includes, but is not limited to, the following inventions.
1.下記(A)~(D):
(A)多官能(メタ)アクリレート化合物;
(B)下記(b1)及び/又は(b2)を含む調節剤
 (b1)単官能(メタ)アクリレート化合物
 (b2)反応性不飽和二重結合を有しないエポキシ樹脂;
(C)多官能チオール化合物;及び
(D)光ラジカル開始剤
を含み、
 [(A)多官能(メタ)アクリレート化合物についての(メタ)アクリロイルオキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]が0.4~0.8であり、
 [(B)調節剤についての(メタ)アクリロイルオキシ基の総数+(B)調節剤についてのエポキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]が0.05~0.65である、硬化性樹脂組成物。
1. (A) to (D) below:
(A) a polyfunctional (meth)acrylate compound;
(B) a modifier comprising (b1) and/or (b2) below (b1) a monofunctional (meth)acrylate compound (b2) an epoxy resin having no reactive unsaturated double bonds;
(C) a polyfunctional thiol compound; and (D) a photoradical initiator,
[(A) the total number of (meth)acryloyloxy groups for the polyfunctional (meth)acrylate compound]/[(C) the total number of thiol groups for the polyfunctional thiol compound] is 0.4 to 0.8,
[(B) the total number of (meth)acryloyloxy groups for the modifier + (B) the total number of epoxy groups for the modifier]/[(C) the total number of thiol groups for the polyfunctional thiol compound] is 0.05 to 0.65, a curable resin composition.
2.さらに(E)熱硬化促進剤を含む、前項1記載の硬化性樹脂組成物。 2. The curable resin composition according to the preceding item 1, further comprising (E) a heat curing accelerator.
3.[(A)多官能(メタ)アクリレート化合物についての(メタ)アクリロイルオキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]が0.5~0.7である、前項1又は2記載の硬化性樹脂組成物。 3. [(A) the total number of (meth)acryloyloxy groups for the polyfunctional (meth)acrylate compound]/[(C) the total number of thiol groups for the polyfunctional thiol compound] is 0.5 to 0.7, the preceding item 3. The curable resin composition according to 1 or 2.
4.(B)調節剤が、(b1)単官能(メタ)アクリレート化合物及び(b2)反応性不飽和二重結合を有しないエポキシ樹脂の両者を含む、前項1~3のいずれか一項記載の硬化性樹脂組成物。 4. (B) The curing agent according to any one of the preceding items 1 to 3, wherein the modifier comprises both (b1) a monofunctional (meth)acrylate compound and (b2) an epoxy resin having no reactive unsaturated double bonds. elastic resin composition.
5.(C)多官能チオール化合物が3個以上のチオール基を有する、前項1~4のいずれか一項記載の硬化性樹脂組成物。 5. (C) The curable resin composition according to any one of the preceding items 1 to 4, wherein the polyfunctional thiol compound has 3 or more thiol groups.
6.(C)多官能チオール化合物が3官能チオール化合物及び/又は4官能チオール化合物を含む、前項1~5のいずれか一項記載の硬化性樹脂組成物。 6. (C) The curable resin composition according to any one of the preceding items 1 to 5, wherein the polyfunctional thiol compound comprises a trifunctional thiol compound and/or a tetrafunctional thiol compound.
7.(A)多官能(メタ)アクリレート化合物が2官能(メタ)アクリレート化合物を含む、前項1~6のいずれか一項記載の硬化性樹脂組成物。 7. (A) The curable resin composition according to any one of the preceding items 1 to 6, wherein the polyfunctional (meth)acrylate compound contains a bifunctional (meth)acrylate compound.
8.(B)調節剤が実質的に(b1)単官能(メタ)アクリレート化合物からなり、[(B)調節剤についての(メタ)アクリロイルオキシ基の総数+(B)調節剤についてのエポキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]が0.2~0.5である、前項1~7のいずれか1項記載の硬化性樹脂組成物。 8. (B) the modifier consists essentially of (b1) a monofunctional (meth)acrylate compound and [(B) the total number of (meth)acryloyloxy groups for the modifier + the total number of epoxy groups for (B) the modifier ]/[(C) the total number of thiol groups in the polyfunctional thiol compound] is 0.2 to 0.5, the curable resin composition according to any one of the preceding items 1 to 7.
9.(B)調節剤が実質的に(b2)エポキシ樹脂からなり、[(B)調節剤についての(メタ)アクリロイルオキシ基の総数+(B)調節剤についてのエポキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]が0.2~0.5である、前項1~7のいずれか1項記載の硬化性樹脂組成物。 9. (B) the modifier consists essentially of (b2) an epoxy resin, and [total number of (meth)acryloyloxy groups for (B) modifier + total number of epoxy groups for (B) modifier]/[(C ) The curable resin composition according to any one of the preceding items 1 to 7, wherein the total number of thiol groups in the polyfunctional thiol compound] is 0.2 to 0.5.
10.前項1~9のいずれか1項記載の硬化性樹脂組成物を含む接着剤。 10. 10. An adhesive comprising the curable resin composition according to any one of 1 to 9 above.
11.前項1~9のいずれか1項記載の硬化性樹脂組成物、又は前項10に記載の接着剤を硬化させることにより得られうる硬化物。 11. A cured product obtainable by curing the curable resin composition according to any one of the preceding items 1 to 9 or the adhesive according to the preceding item 10.
12.前項11記載の硬化物を含む半導体装置。 12. 12. A semiconductor device comprising the cured product according to 11 above.
13.前項11記載の硬化物を含むセンサモジュール。 13. 12. A sensor module comprising the cured product according to 11 above.
 本発明の硬化性樹脂組成物は、前記したように、(A)多官能(メタ)アクリレート化合物、(B)調節剤、(C)多官能チオール化合物及び(D)光ラジカル開始剤を必須の成分として含む。これらの成分につき以下に説明する。
 なお本明細書においては、合成樹脂の分野における慣例に倣い、硬化前の硬化性樹脂組成物を構成する成分に対して、通常は高分子(特に合成高分子)を指す用語「樹脂」を含む名称を、その成分が高分子ではないにも関わらず用いる場合がある。
As described above, the curable resin composition of the present invention comprises (A) a polyfunctional (meth)acrylate compound, (B) a modifier, (C) a polyfunctional thiol compound and (D) a photoradical initiator. Contains as an ingredient. These components are described below.
In the present specification, following the practice in the field of synthetic resins, the term "resin", which usually refers to polymers (especially synthetic polymers), is included for the components constituting the curable resin composition before curing. A name may be used even though the component is not a macromolecule.
 また本明細書においては、「アクリル酸」(又はその誘導体)及び「メタクリル酸」(又はその誘導体)の総称として、「(メタ)アクリル酸」、「(メタ)アクリレート」、「(メタ)アクリル」、「(メタ)アクリロイル」等の名称を用いる場合がある。これらの用語は各々、独立した1つの用語としても、又は他の用語の一部としても用いられうる。例えば、用語「(メタ)アクリル酸」は「アクリル酸及び/又はメタクリル酸」を意味し、用語「(メタ)アクリロイルオキシ基」は「アクリロイルオキシ基及び/又はメタクリロイルオキシ基」を意味する。 In the present specification, "acrylic acid" (or derivatives thereof) and "methacrylic acid" (or derivatives thereof) are collectively referred to as "(meth) acrylic acid", "(meth) acrylate", "(meth) acrylic ”, “(meth)acryloyl”, etc. may be used. Each of these terms may be used as an independent term or as part of another term. For example, the term "(meth)acrylic acid" means "acrylic acid and/or methacrylic acid", and the term "(meth)acryloyloxy group" means "acryloyloxy group and/or methacryloyloxy group".
(A)多官能(メタ)アクリレート化合物
 本発明の硬化性樹脂組成物は、(A)多官能(メタ)アクリレート化合物を含む。本発明において用いる多官能(メタ)アクリレート化合物は、後述する多官能チオール化合物中のチオール基と反応する(メタ)アクリロイルオキシ基を、合計で2個以上含む化合物である。換言すれば、多官能(メタ)アクリレート化合物は、2個以上のヒドロキシル基を有する化合物1分子が、合計2分子以上の(メタ)アクリル酸でエステル化された構造(エステル化されていないヒドロキシル基があってもよい)を有する化合物である。
 多官能(メタ)アクリレート化合物は、上記の構造的要件を満たしている限り、(メタ)アクリロイルオキシ基の形態でない(メタ)アクリロイル基を含んでいてもよい。例えば、N,N’-メチレンビスアクリルアミドは多官能(メタ)アクリレート化合物に該当しない。(A)多官能(メタ)アクリレート化合物は、分子量が100~10,000のものを含むことが好ましく、200~5,000のものを含むことがより好ましく、200~3,000のものを含むことがさらに好ましく、200~800のものを含むことが特に好ましい。
(A) Polyfunctional (meth)acrylate compound The curable resin composition of the present invention contains (A) a polyfunctional (meth)acrylate compound. The polyfunctional (meth)acrylate compound used in the present invention is a compound containing a total of two or more (meth)acryloyloxy groups that react with thiol groups in the polyfunctional thiol compound described below. In other words, a polyfunctional (meth)acrylate compound has a structure in which one molecule of a compound having two or more hydroxyl groups is esterified with a total of two or more molecules of (meth)acrylic acid (unesterified hydroxyl groups There may be).
The polyfunctional (meth)acrylate compound may contain (meth)acryloyl groups that are not in the form of (meth)acryloyloxy groups, as long as the above structural requirements are met. For example, N,N'-methylenebisacrylamide is not a polyfunctional (meth)acrylate compound. (A) The polyfunctional (meth)acrylate compound preferably has a molecular weight of 100 to 10,000, more preferably 200 to 5,000, and more preferably 200 to 3,000. is more preferred, and it is particularly preferred to include those of 200-800.
 多官能(メタ)アクリレート化合物の例としては、
-ビスフェノールAのジ(メタ)アクリレート;
-ビスフェノールFのジ(メタ)アクリレート;
-イソシアヌル骨格を有する多官能(メタ)アクリレート;
-ジメチロールトリシクロデカンのジ(メタ)アクリレート;
-トリメチロールプロパン又はそのオリゴマーの多官能(メタ)アクリレート;
-ジトリメチロールプロパンの多官能(メタ)アクリレート;
-ペンタエリスリトール又はそのオリゴマーの多官能(メタ)アクリレート;
-ジペンタエリスリトールの多官能(メタ)アクリレート;及び
-ネオペンチルグリコール変性トリメチロールプロパンのジ(メタ)アクリレート;
-ポリエチレングリコールのジ(メタ)アクリレート;
-ポリプロピレングリコールのジ(メタ)アクリレート;
-鎖式又は環式のアルカンジオールのジ(メタ)アクリレート;
-ネオペンチルグリコールのジ(メタ)アクリレート;
-1分子中に2個以上の(メタ)アクリロイル基を有するポリウレタン;
-1分子中に2個以上の(メタ)アクリロイル基を有するポリエステル;
-グリセリンの多官能(メタ)アクリレート;等を挙げることができる。
 これらの中でも、ジメチロールトリシクロデカンのジ(メタ)アクリレート、ジトリメチロールプロパンの(トリ/テトラ)(メタ)アクリレート、ジペンタエリスリトールのヘキサ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンのジ(メタ)アクリレート、1分子中に(メタ)アクリロイル基を2個有するポリウレタンが好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、本明細書において、「多官能(メタ)アクリレート」とは、(メタ)アクリロイルオキシ基を2個以上含む化合物のことを指す。例えば、「トリメチロールプロパン又はそのオリゴマーの多官能(メタ)アクリレート」とは、1分子のトリメチロールプロパン又はそのオリゴマーと2分子以上の(メタ)アクリル酸とのエステルを指す。
Examples of polyfunctional (meth)acrylate compounds include
- a di(meth)acrylate of bisphenol A;
- a di(meth)acrylate of bisphenol F;
- polyfunctional (meth) acrylate having an isocyanuric skeleton;
- di(meth)acrylate of dimethyloltricyclodecane;
- polyfunctional (meth)acrylates of trimethylolpropane or oligomers thereof;
- polyfunctional (meth)acrylates of ditrimethylolpropane;
- polyfunctional (meth)acrylates of pentaerythritol or oligomers thereof;
- polyfunctional (meth)acrylates of dipentaerythritol; and - di(meth)acrylates of neopentyl glycol-modified trimethylolpropane;
- di(meth)acrylates of polyethylene glycol;
- di(meth)acrylates of polypropylene glycol;
- di(meth)acrylates of linear or cyclic alkanediols;
- di(meth)acrylates of neopentyl glycol;
-Polyurethanes having two or more (meth)acryloyl groups in one molecule;
-polyester having two or more (meth) acryloyl groups in one molecule;
- polyfunctional (meth)acrylate of glycerin;
Among these, di(meth)acrylate of dimethyloltricyclodecane, (tri/tetra)(meth)acrylate of ditrimethylolpropane, hexa(meth)acrylate of dipentaerythritol, di(meth)acrylate of neopentylglycol-modified trimethylolpropane Preferred are meth)acrylates and polyurethanes having two (meth)acryloyl groups in one molecule. These may be used alone or in combination of two or more. In this specification, "polyfunctional (meth)acrylate" refers to a compound containing two or more (meth)acryloyloxy groups. For example, "polyfunctional (meth)acrylate of trimethylolpropane or its oligomer" refers to an ester of one molecule of trimethylolpropane or its oligomer and two or more molecules of (meth)acrylic acid.
 本発明においては、多官能(メタ)アクリレート化合物が2官能(メタ)アクリレート化合物を含むことが好ましい。2官能(メタ)アクリレート化合物とは、(メタ)アクリロイルオキシ基を合計で2個有する多官能(メタ)アクリレート化合物である。同様に、たとえば3官能及び4官能(メタ)アクリレート化合物とは、(メタ)アクリロイルオキシ基を3個及び4個有する多官能(メタ)アクリレート化合物である。
 本発明において、(メタ)アクリレート基を複数個有するシランカップリング剤は、多官能(メタ)アクリレート化合物に含まれない。好ましくは、多官能(メタ)アクリレート化合物は、ケイ素原子を含まない。
In the present invention, the polyfunctional (meth)acrylate compound preferably contains a bifunctional (meth)acrylate compound. A bifunctional (meth)acrylate compound is a polyfunctional (meth)acrylate compound having a total of two (meth)acryloyloxy groups. Similarly, trifunctional and tetrafunctional (meth)acrylate compounds, for example, are polyfunctional (meth)acrylate compounds having 3 and 4 (meth)acryloyloxy groups.
In the present invention, a silane coupling agent having a plurality of (meth)acrylate groups is not included in the polyfunctional (meth)acrylate compound. Preferably, the polyfunctional (meth)acrylate compound does not contain silicon atoms.
(B)調節剤
 本発明の硬化性樹脂組成物は、(B)調節剤を含む。本発明において用いる(B)調節剤は、下記(b1)及び/又は(b2):
 (b1)単官能(メタ)アクリレート化合物
 (b2)反応性不飽和二重結合を有しないエポキシ樹脂
を含む。
(B) Modifier The curable resin composition of the present invention contains (B) a modifier. The (B) regulator used in the present invention is the following (b1) and/or (b2):
(b1) Monofunctional (meth)acrylate compounds (b2) Epoxy resins having no reactive unsaturated double bonds.
 本発明において用いる単官能(メタ)アクリレート化合物は、(メタ)アクリロイルオキシ基を1個含む化合物である。この(メタ)アクリロイルオキシ基は、後述する多官能チオール化合物中のチオール基と反応する。換言すれば、単官能(メタ)アクリレート化合物は、1個以上のヒドロキシル基を有する化合物1分子が、1分子の(メタ)アクリル酸でエステル化された構造(エステル化されていないヒドロキシル基があってもよい)を有する化合物である。
 本発明において、(メタ)アクリレート基を1個有するシランカップリング剤は、単官能(メタ)アクリレート化合物に含まれない。好ましくは、単官能(メタ)アクリレート化合物は、ケイ素原子を含まない。
The monofunctional (meth)acrylate compound used in the present invention is a compound containing one (meth)acryloyloxy group. This (meth)acryloyloxy group reacts with a thiol group in the polyfunctional thiol compound described later. In other words, a monofunctional (meth)acrylate compound has a structure in which one molecule of a compound having one or more hydroxyl groups is esterified with one molecule of (meth)acrylic acid (there is an unesterified hydroxyl group). may be).
In the present invention, a silane coupling agent having one (meth)acrylate group is not included in the monofunctional (meth)acrylate compound. Preferably, the monofunctional (meth)acrylate compound does not contain silicon atoms.
 単官能(メタ)アクリレート化合物の例としては、
-エチル(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソアミル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2-エチルヘキシルジエチレングリコール(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、3-フェノキシベンジル(メタ)アクリレート等の、1価アルコールと(メタ)アクリル酸のエステル;
-2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、オクチルアクリレート、ノニルアクリレート、アクリル酸イソノニル、3,3,5-トリメチルシクロヘキシルアクリレート、環状トリメチロールプロパンホルマールアクリレート、1-ナフタレンメチル(メタ)アクリレート1-エチルシクロヘキシル(メタ)クリレート、1-メチルシクロヘキシル(メタ)クリレート、1-エチルシクロペンチル(メタ)アクリレート、1-メチルシクロペンチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロジシクロペンタジエルニル(メタ)アクリレート、2-(o-フェニルフェノキシ)エチル(メタ)アクリレート、イソボルニルシクロヘキシル(メタ)アクリレート、(2-メチル-2-エチル-1,3ージオキソランー4-イル)メチル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、3-ヒドロキシ-1アダマンチル(メタ)アクリレート、2-メチル-2-アダマンタニル(メタ)アクリレート、2-エチル-2-アダマンタニル(メタ)アクリレート、2-イソプロピルアダマンタン-2-イル(メタ)アクリレート、3-ヒドロキシ-1-アダマンチル(メタ)アクリレート、(アダマンタン-1-イルオキシ)メチル(メタ)アクリレート、2-イソプロピル-2-アダマンチル(メタ)アクリレート、1-メチル-1-エチル-1-アダマンチルメタノール(メタ)アクリレート、1,1-ジエチル-1-アダマンチルメタノール(メタ)アクリレート、2-シクロヘキシルプロパン-2-イル(メタ)アクリレート、1-イソプロピルシクロヘキシル(メタ)アクリレート、1-メチルシクロヘキシル(メタ)アクリレート、1-エチルシクロペンチル(メタ)アクリレート、1-メチルシクロヘキシル(メタ)アクリレート、テトラヒドロピラニル(メタ)アクリレート、テトラヒドロ-2-フラニル(メタ)アクリレート、2-オキソテトラヒドロフラン-3-イル(メタ)アクリレート、(5-オキソテトラヒドロフラン-2-イル)メチル(メタ)アクリレート、(2-オキソ-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、1-エトキシエチル(メタ)アクリレート等の、多価アルコールのモノ(メタ)アクリレート
等を挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。(b1)単官能(メタ)アクリレート化合物は、分子量が100~1000のものを含むことが好ましく、120~500のものを含むことがより好ましく、140~400のものを含むことがさらに好ましく、160~300のものを含むことが特に好ましい。
Examples of monofunctional (meth)acrylate compounds include:
- ethyl (meth)acrylate, trifluoroethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, glycidyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, isoamyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isodecyl (meth)acrylate, isobornyl (meth)acrylate, stearyl (meth)acrylate, lauryl (meth)acrylate Acrylates, Phenoxyethyl (meth)acrylate, Benzyl (meth)acrylate, Tetrahydrofurfuryl (meth)acrylate, Ethoxydiethyleneglycol (meth)acrylate, Phenoxydiethyleneglycol (meth)acrylate, Phenoxypolyethyleneglycol (meth)acrylate, Butoxydiethyleneglycol (meth)acrylate Acrylate, methoxydipropylene glycol (meth)acrylate, methoxypolyethyleneglycol (meth)acrylate, methoxytriethyleneglycol (meth)acrylate, methoxypolyethyleneglycol (meth)acrylate, 2-ethylhexyldiethyleneglycol (meth)acrylate, 4-tert-butyl Esters of monohydric alcohols and (meth)acrylic acid such as cyclohexyl (meth)acrylate and 3-phenoxybenzyl (meth)acrylate;
-2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate, octyl acrylate, nonyl acrylate, isononyl acrylate , 3,3,5-trimethylcyclohexyl acrylate, cyclic trimethylolpropane formal acrylate, 1-naphthalenemethyl (meth)acrylate 1-ethylcyclohexyl (meth)acrylate, 1-methylcyclohexyl (meth)acrylate, 1-ethylcyclopentyl (meth)acrylate ) acrylate, 1-methylcyclopentyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, nonylphenoxy polyethylene glycol (meth) acrylate, tetrahydrodi Cyclopentadienyl (meth)acrylate, 2-(o-phenylphenoxy)ethyl (meth)acrylate, isobornylcyclohexyl (meth)acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl)methyl (Meth) acrylate, 1-adamantyl (meth) acrylate, 3-hydroxy-1 adamantyl (meth) acrylate, 2-methyl-2-adamantanyl (meth) acrylate, 2-ethyl-2-adamantanyl (meth) acrylate, 2- isopropyladamantan-2-yl (meth)acrylate, 3-hydroxy-1-adamantyl (meth)acrylate, (adamantan-1-yloxy)methyl (meth)acrylate, 2-isopropyl-2-adamantyl (meth)acrylate, 1- Methyl-1-ethyl-1-adamantylmethanol (meth)acrylate, 1,1-diethyl-1-adamantylmethanol (meth)acrylate, 2-cyclohexylpropan-2-yl (meth)acrylate, 1-isopropylcyclohexyl (meth)acrylate Acrylates, 1-methylcyclohexyl (meth)acrylate, 1-ethylcyclopentyl (meth)acrylate, 1-methylcyclohexyl (meth)acrylate, tetrahydropyranyl (meth)acrylate, tetrahydro-2-furanyl (meth)acrylate, 2-oxo Tetrahydrofuran-3-yl (meth)acrylate, (5-oxotetrahydro Polyhydric alcohol mono( meth)acrylates and the like can be mentioned. These may be used alone or in combination of two or more. (b1) The monofunctional (meth)acrylate compound preferably has a molecular weight of 100 to 1000, more preferably 120 to 500, even more preferably 140 to 400. It is particularly preferred to include those of ~300.
 本発明のある態様においては、単官能(メタ)アクリレート化合物は、その分子中にエポキシ基を有しない。単官能(メタ)アクリレート化合物が、その分子中にエポキシ基を有すると、UV硬化後に加熱された場合、架橋密度が高くなるおそれがある。これは、そのような単官能(メタ)アクリレート化合物が、UV硬化時に、(メタ)アクリロイルオキシ基中の二重結合がホモ重合することによりポリマー鎖に取り込まれ、その単官能(メタ)アクリレート化合物のエポキシ基が、加熱下で他のポリマー鎖中のチオール基と反応し、新たな架橋を形成しうるためである。 In one aspect of the present invention, the monofunctional (meth)acrylate compound does not have an epoxy group in its molecule. If the monofunctional (meth)acrylate compound has an epoxy group in its molecule, the crosslink density may increase when heated after UV curing. This is because such a monofunctional (meth)acrylate compound is incorporated into the polymer chain by homopolymerizing the double bond in the (meth)acryloyloxy group during UV curing, and the monofunctional (meth)acrylate compound This is because the epoxy groups of can react with thiol groups in other polymer chains under heating to form new crosslinks.
 一方、本発明において用いる反応性不飽和二重結合を有しないエポキシ樹脂[(b2)エポキシ樹脂]は、エポキシ基を1個以上含み、反応性不飽和二重結合を有しない化合物である。反応性不飽和二重結合とは、UV照射下又は加熱下において、多官能チオール化合物中のチオール基及び/又は多官能(メタ)アクリレート化合物中の(メタ)アクリロイルオキシ基(正確には、その中の二重結合)と反応しうる二重結合を意味する。通常、エポキシ基とチオール基は、UV照射下では反応しないが、加熱下では反応しうる。したがって通常、(b2)エポキシ樹脂は、UV照射下では多官能チオール化合物と反応しないが、系内あるいは被着体表面に熱硬化促進剤(特に、塩基性成分)が存在する場合、加熱下ではそのエポキシ基のみにおいて多官能チオール化合物と反応しうる。
 エポキシ基を1個以上含み、反応性不飽和二重結合を有しないシランカップリング剤は、反応性不飽和二重結合を有しないエポキシ樹脂に含まれない。好ましくは、反応性不飽和二重結合を有しないエポキシ樹脂は、ケイ素原子を含まない。
On the other hand, the epoxy resin not having a reactive unsaturated double bond [(b2) epoxy resin] used in the present invention is a compound containing one or more epoxy groups and not having a reactive unsaturated double bond. The reactive unsaturated double bond means, under UV irradiation or heating, a thiol group in a polyfunctional thiol compound and/or a (meth) acryloyloxy group in a polyfunctional (meth)acrylate compound (exactly, its double bond that can react with the double bond in the Generally, epoxy groups and thiol groups do not react under UV irradiation, but they can react under heating. Therefore, the (b2) epoxy resin usually does not react with the polyfunctional thiol compound under UV irradiation, but when a thermosetting accelerator (in particular, a basic component) is present in the system or on the surface of the adherend, under heating Only its epoxy groups can react with polyfunctional thiol compounds.
Silane coupling agents containing one or more epoxy groups and having no reactive unsaturated double bonds are not included in epoxy resins having no reactive unsaturated double bonds. Preferably, epoxy resins without reactive unsaturated double bonds do not contain silicon atoms.
 (b2)エポキシ樹脂は、単官能エポキシ樹脂と多官能エポキシ樹脂に大別される。(b2)エポキシ樹脂は、これらのうち一方のみを含んでもよく、これら両方を含んでもよい。熱硬化性の観点からは、(b2)エポキシ樹脂は、多官能エポキシ樹脂を含むことが好ましい。(b2)エポキシ樹脂は、2官能エポキシ樹脂を含むことが特に好ましい。 (b2) Epoxy resins are roughly divided into monofunctional epoxy resins and polyfunctional epoxy resins. (b2) The epoxy resin may contain only one of these, or may contain both of them. From the viewpoint of thermosetting properties, (b2) the epoxy resin preferably contains a polyfunctional epoxy resin. (b2) It is particularly preferred that the epoxy resin contains a bifunctional epoxy resin.
 単官能エポキシ樹脂は、エポキシ基を1個含み、反応性不飽和二重結合を有しない化合物である。単官能エポキシ樹脂の例としては、n-ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、クレジルグリシジルエーテル、p-s-ブチルフェニルグリシジルエーテル、スチレンオキシド、α-ピネンオキシド、4-tert-ブチルフェニルグリシジルエーテル、ネオデカン酸グリシジルエステル、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタン酸グリシジルエステル等を挙げることができるが、これらに限定されない。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 A monofunctional epoxy resin is a compound that contains one epoxy group and does not have a reactive unsaturated double bond. Examples of monofunctional epoxy resins include n-butyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, cresyl glycidyl ether, p-s-butylphenyl glycidyl ether, styrene oxide, α-pinene oxide, 4-tert. -butylphenyl glycidyl ether, neodecanoic acid glycidyl ester, 2-(4,4-dimethylpentan-2-yl)-5,7,7-trimethyloctanoic acid glycidyl ester, and the like, but are not limited thereto. These may be used alone or in combination of two or more.
 多官能エポキシ樹脂は、エポキシ基を2個以上含み、反応性不飽和二重結合を有しない化合物である。多官能エポキシ樹脂は、脂肪族多官能エポキシ樹脂と芳香族多官能エポキシ樹脂に大別される。脂肪族多官能エポキシ樹脂は、芳香環を含まない構造を有する多官能エポキシ樹脂である。脂肪族多官能エポキシ樹脂の例としては、
-(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、ポリテトラメチレンエーテルグリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,2-エポキシ-4-(2-メチルオキシラニル)-1-メチルシクロヘキサン、シクロヘキサン型ジグリシジルエーテル、ジシクロペンタジエン型ジグリシジルエーテルのようなジエポキシ樹脂;
-トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテルのようなトリエポキシ樹脂;
-ビニル(3,4-シクロヘキセン)ジオキシド、2-(3,4-エポキシシクロヘキシル)-5,1-スピロ-(3,4-エポキシシクロヘキシル)-m-ジオキサンのような脂環式エポキシ樹脂;
-テトラグリシジルビス(アミノメチル)シクロヘキサンのようなグリシジルアミン型エポキシ樹脂;
-1,3-ジグリシジル-5-メチル-5-エチルヒダントインのようなヒダントイン型エポキシ樹脂;及び
-1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサンのようなシリコーン骨格を有するエポキシ樹脂
などが挙げられるが、これらに限定されない。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Polyfunctional epoxy resins are compounds containing two or more epoxy groups and no reactive unsaturated double bonds. Polyfunctional epoxy resins are roughly classified into aliphatic polyfunctional epoxy resins and aromatic polyfunctional epoxy resins. Aliphatic polyfunctional epoxy resins are polyfunctional epoxy resins having structures that do not contain aromatic rings. Examples of aliphatic polyfunctional epoxy resins include:
- (poly)ethylene glycol diglycidyl ether, (poly)propylene glycol diglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane diglycidyl ether, poly Tetramethylene ether glycol diglycidyl ether, glycerin diglycidyl ether, neopentyl glycol diglycidyl ether, 1,2-epoxy-4-(2-methyloxiranyl)-1-methylcyclohexane, cyclohexane type diglycidyl ether, dicyclo diepoxy resins such as pentadiene-type diglycidyl ethers;
- triepoxy resins such as trimethylolpropane triglycidyl ether, glycerin triglycidyl ether;
- cycloaliphatic epoxy resins such as vinyl (3,4-cyclohexene) dioxide, 2-(3,4-epoxycyclohexyl)-5,1-spiro-(3,4-epoxycyclohexyl)-m-dioxane;
- glycidylamine type epoxy resins such as tetraglycidylbis(aminomethyl)cyclohexane;
-hydantoin-type epoxy resins such as 1,3-diglycidyl-5-methyl-5-ethylhydantoin; and -1,3-bis(3-glycidoxypropyl)-1,1,3,3-tetramethyldi Examples include, but are not limited to, epoxy resins having a silicone skeleton such as siloxane. These may be used alone or in combination of two or more.
 芳香族多官能エポキシ樹脂は、芳香環を含む構造を有する多官能エポキシ樹脂である。ビスフェノールA型エポキシ樹脂など、従来頻用されているエポキシ樹脂にはこの種のものが多い。芳香族多官能エポキシ樹脂の例としては、
-ビスフェノールA型エポキシ樹脂;
-p-グリシジルオキシフェニルジメチルトリスビスフェノールAジグリシジルエーテルのような分岐状多官能ビスフェノールA型エポキシ樹脂;
-ビスフェノールF型エポキシ樹脂;
-ノボラック型エポキシ樹脂;
-テトラブロモビスフェノールA型エポキシ樹脂;
-フルオレン型エポキシ樹脂;
-ビフェニルアラルキルエポキシ樹脂;
-1,4-フェニルジメタノールジグリシジルエーテルのようなジエポキシ樹脂;
-3,3',5,5'-テトラメチル-4,4'-ジグリシジルオキシビフェニルのようなビフェニル型エポキシ樹脂;
-ジグリシジルアニリン、ジグリシジルトルイジン、トリグリシジル-p-アミノフェノール、テトラグリシジル-m-キシリレンジアミンのようなグリシジルアミン型エポキシ樹脂;及び
-ナフタレン環含有エポキシ樹脂
などが挙げられるが、これらに限定されない。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (b2)エポキシ樹脂のエポキシ当量は、90~500g/eqであることが好ましく、100~450g/eqであることがより好ましく、100~350g/eqであることがさらに好ましい。
An aromatic polyfunctional epoxy resin is a polyfunctional epoxy resin having a structure containing an aromatic ring. Many conventional epoxy resins, such as bisphenol A type epoxy resin, are of this type. Examples of aromatic polyfunctional epoxy resins include:
- bisphenol A type epoxy resin;
- branched polyfunctional bisphenol A type epoxy resins such as p-glycidyloxyphenyldimethyltrisbisphenol A diglycidyl ether;
- bisphenol F type epoxy resin;
- novolac type epoxy resins;
- tetrabromobisphenol A type epoxy resin;
- a fluorene-type epoxy resin;
- biphenyl aralkyl epoxy resins;
- diepoxy resins such as 1,4-phenyldimethanol diglycidyl ether;
-biphenyl-type epoxy resins such as 3,3',5,5'-tetramethyl-4,4'-diglycidyloxybiphenyl;
-glycidylamine type epoxy resins such as diglycidylaniline, diglycidyltoluidine, triglycidyl-p-aminophenol, tetraglycidyl-m-xylylenediamine; not. These may be used alone or in combination of two or more.
(b2) The epoxy equivalent of the epoxy resin is preferably 90 to 500 g/eq, more preferably 100 to 450 g/eq, even more preferably 100 to 350 g/eq.
 本発明のある態様においては、(b2)エポキシ樹脂は、液状エポキシ樹脂を含む。本明細書では、「液状エポキシ樹脂」とは25℃で物理的状態が液体のエポキシ樹脂のことである。この場合、本発明の樹脂組成物をUV硬化させて得られる硬化物の接着信頼性(耐剥離性)を向上させる観点から、(B)調節剤は(b1)単官能(メタ)アクリレート化合物と(b2)エポキシ樹脂の両者を含むことが好ましい。 In one aspect of the present invention, (b2) the epoxy resin includes a liquid epoxy resin. As used herein, "liquid epoxy resin" means an epoxy resin that is in a liquid physical state at 25°C. In this case, from the viewpoint of improving the adhesion reliability (peeling resistance) of the cured product obtained by UV-curing the resin composition of the present invention, (B) the modifier is (b1) a monofunctional (meth)acrylate compound. (b2) It is preferable to include both epoxy resins.
 本発明において、(B)調節剤は、(b1)単官能(メタ)アクリレート化合物及び(b2)エポキシ樹脂のいずれか又は両者を含む。一実施形態において、(B)調節剤は、(b1)単官能(メタ)アクリレート化合物及び(b2)エポキシ樹脂の両者を含む。 In the present invention, the (B) modifier includes either or both of (b1) a monofunctional (meth)acrylate compound and (b2) an epoxy resin. In one embodiment, (B) the modifier comprises both (b1) a monofunctional (meth)acrylate compound and (b2) an epoxy resin.
(C)多官能チオール化合物
 本発明の硬化性樹脂組成物は、多官能チオール化合物を含む。本発明において用いる多官能チオール化合物は、前記多官能(メタ)アクリレート化合物及び単官能(メタ)アクリレート化合物中の(メタ)アクリロイルオキシ基(正確には、その中の二重結合)、並びに前記反応性不飽和二重結合を有しないエポキシ樹脂中のエポキシ基と反応するチオール基を2個以上含む化合物である。多官能チオール化合物は、3個以上のチオール基を有することが好ましい。多官能チオール化合物は、3官能チオール化合物及び/又は4官能チオール化合物を含むことがより好ましい。3官能及び4官能のチオール化合物とは、それぞれ、チオール基を3個及び4個有するチオール化合物のことである。多官能チオール化合物のチオール当量は、90~150g/eqであることが好ましく、90~140g/eqであることがより好ましく、90~130g/eqであることがさらに好ましい。
(C) Polyfunctional Thiol Compound The curable resin composition of the present invention contains a polyfunctional thiol compound. The polyfunctional thiol compound used in the present invention includes (meth)acryloyloxy groups (more precisely, double bonds therein) in the polyfunctional (meth)acrylate compound and the monofunctional (meth)acrylate compound, and the reaction It is a compound containing two or more thiol groups that react with epoxy groups in an epoxy resin that does not have a polyunsaturated double bond. The polyfunctional thiol compound preferably has 3 or more thiol groups. The polyfunctional thiol compound more preferably contains a trifunctional thiol compound and/or a tetrafunctional thiol compound. Trifunctional and tetrafunctional thiol compounds are thiol compounds having 3 and 4 thiol groups, respectively. The thiol equivalent weight of the polyfunctional thiol compound is preferably 90-150 g/eq, more preferably 90-140 g/eq, even more preferably 90-130 g/eq.
 多官能チオール化合物は、分子中にエステル結合等の加水分解性の部分構造を有する(即ち加水分解性の)チオール化合物と、そのような部分構造を有しない(即ち非加水分解性の)チオール化合物に大別される。
 加水分解性の多官能チオール化合物の例としては、トリメチロールプロパントリス(3-メルカプトプロピオネート)(SC有機化学株式会社製:TMMP)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート(SC有機化学株式会社製:TEMPIC)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(SC有機化学株式会社製:PEMP)、テトラエチレングリコールビス(3-メルカプトプロピオネート)(SC有機化学株式会社製:EGMP-4)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)(SC有機化学株式会社製:DPMP)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)(昭和電工株式会社製:カレンズMT(登録商標)PE1)、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(昭和電工株式会社製:カレンズMT(登録商標)NR1)等を挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The polyfunctional thiol compound includes a thiol compound having a hydrolyzable partial structure such as an ester bond in the molecule (i.e. hydrolyzable) and a thiol compound having no such partial structure (i.e. non-hydrolyzable). It is divided into
Examples of hydrolyzable polyfunctional thiol compounds include trimethylolpropane tris (3-mercaptopropionate) (manufactured by SC Organic Chemical Co., Ltd.: TMMP), tris-[(3-mercaptopropionyloxy)-ethyl]- Isocyanurate (manufactured by SC Organic Chemical Co., Ltd.: TEMPIC), pentaerythritol tetrakis (3-mercaptopropionate) (manufactured by SC Organic Chemical Co., Ltd.: PEMP), tetraethylene glycol bis (3-mercaptopropionate) (SC Organic Chemical Co., Ltd.: EGMP-4), dipentaerythritol hexakis (3-mercaptopropionate) (manufactured by SC Organic Chemical Co., Ltd.: DPMP), pentaerythritol tetrakis (3-mercaptobutyrate) (manufactured by Showa Denko K.K.) : Karenz MT (registered trademark) PE1), 1,3,5-tris(3-mercaptobutyryloxyethyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione ( Karenz MT (registered trademark) NR1) manufactured by Showa Denko K.K. These may be used alone or in combination of two or more.
 一方、非加水分解性の多官能チオール化合物の例としては、1,3,4,6-テトラキス(2-メルカプトエチル)グリコールウリル(四国化成工業株式会社製:TS-G)、(1,3,4,6-テトラキス(3-メルカプトプロピル)グリコールウリル(四国化成工業株式会社製:C3 TS-G)、1,3,4,6-テトラキス(メルカプトメチル)グリコールウリル、1,3,4,6-テトラキス(メルカプトメチル)-3a-メチルグリコールウリル、1,3,4,6-テトラキス(2-メルカプトエチル)-3a-メチルグリコールウリル、1,3,4,6-テトラキス(3-メルカプトプロピル)-3a-メチルグリコールウリル、1,3,4,6-テトラキス(メルカプトメチル)-3a,6a-ジメチルグリコールウリル、1,3,4,6-テトラキス(2-メルカプトエチル)-3a,6a-ジメチルグリコールウリル、1,3,4,6-テトラキス(3-メルカプトプロピル)-3a,6a-ジメチルグリコールウリル、1,3,4,6-テトラキス(メルカプトメチル)-3a,6a-ジフェニルグリコールウリル、1,3,4,6-テトラキス(2-メルカプトエチル)-3a,6a-ジフェニルグリコールウリル、1,3,4,6-テトラキス(3-メルカプトプロピル)-3a,6a-ジフェニルグリコールウリル、ペンタエリスリトールトリプロパンチオール(SC有機化学株式会社製:PEPT)、ペンタエリスリトールテトラプロパンチオール、1,2,3-トリス(メルカプトメチルチオ)プロパン、1,2,3-トリス(2-メルカプトエチルチオ)プロパン、1,2,3-トリス(3-メルカプトプロピルチオ)プロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、テトラキス(メルカプトメチルチオメチル)メタン、テトラキス(2-メルカプトエチルチオメチル)メタン、テトラキス(3-メルカプトプロピルチオメチル)メタン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、1,1,5,5-テトラキス(メルカプトメチルチオ)-3-チアペンタン、1,1,6,6-テトラキス(メルカプトメチルチオ)-3,4-ジチアヘキサン、2,2-ビス(メルカプトメチルチオ)エタンチオール、3-メルカプトメチルチオ-1,7-ジメルカプト-2,6-ジチアヘプタン、3,6-ビス(メルカプトメチルチオ)-1,9-ジメルカプト-2,5,8-トリチアノナン、3-メルカプトメチルチオ-1,6-ジメルカプト-2,5-ジチアヘキサン、1,1,9,9-テトラキス(メルカプトメチルチオ)-5-(3,3-ビス(メルカプトメチルチオ)-1-チアプロピル)3,7-ジチアノナン、トリス(2,2-ビス(メルカプトメチルチオ)エチル)メタン、トリス(4,4-ビス(メルカプトメチルチオ)-2-チアブチル)メタン、テトラキス(2,2-ビス(メルカプトメチルチオ)エチル)メタン、テトラキス(4,4-ビス(メルカプトメチルチオ)-2-チアブチル)メタン、3,5,9,11-テトラキス(メルカプトメチルチオ)-1,13-ジメルカプト-2,6,8,12-テトラチアトリデカン、3,5,9,11,15,17-ヘキサキス(メルカプトメチルチオ)-1,19-ジメルカプト-2,6,8,12,14,18-ヘキサチアノナデカン、9-(2,2-ビス(メルカプトメチルチオ)エチル)-3,5,13,15-テトラキス(メルカプトメチルチオ)-1,17-ジメルカプト-2,6,8,10,12,16-ヘキサチアヘプタデカン、3,4,8,9-テトラキス(メルカプトメチルチオ)-1,11-ジメルカプト-2,5,7,10-テトラチアウンデカン、3,4,8,9,13,14-ヘキサキス(メルカプトメチルチオ)-1,16-ジメルカプト-2,5,7,10,12,15-ヘキサチアヘキサデカン、8-[ビス(メルカプトメチルチオ)メチル]-3,4,12,13-テトラキス(メルカプトメチルチオ)-1,15-ジメルカプト-2,5,7,9,11,14-ヘキサチアペンタデカン、4,6-ビス[3,5-ビス(メルカプトメチルチオ)-7-メルカプト-2,6-ジチアヘプチルチオ]-1,3-ジチアン、4-[3,5-ビス(メルカプトメチルチオ)-7-メルカプト-2,6-ジチアヘプチルチオ]-6-メルカプトメチルチオ-1,3-ジチアン、1,1-ビス[4-(6-メルカプトメチルチオ)-1,3-ジチアニルチオ]-1,3-ビス(メルカプトメチルチオ)プロパン、1-[4-(6-メルカプトメチルチオ)-1,3-ジチアニルチオ]-3-[2,2-ビス(メルカプトメチルチオ)エチル]-7,9-ビス(メルカプトメチルチオ)-2,4,6,10-テトラチアウンデカン、3-[2-(1,3-ジチエタニル)]メチル-7,9-ビス(メルカプトメチルチオ)-1,11-ジメルカプト-2,4,6,10-テトラチアウンデカン、9-[2-(1,3-ジチエタニル)]メチル-3,5,13,15-テトラキス(メルカプトメチルチオ)-1,17-ジメルカプト-2,6,8,10,12,16-ヘキサチアヘプタデカン、3-[2-(1,3-ジチエタニル)]メチル-7,9,13,15-テトラキス(メルカプトメチルチオ)-1,17-ジメルカプト-2,4,6,10,12,16-ヘキサチアヘプタデカン、4,6-ビス[4-(6-メルカプトメチルチオ)-1,3-ジチアニルチオ]-6-[4-(6-メルカプトメチルチオ)-1,3-ジチアニルチオ]-1,3-ジチアン、4-[3,4,8,9-テトラキス(メルカプトメチルチオ)-11-メルカプト-2,5,7,10-テトラチアウンデシル]-5-メルカプトメチルチオ-1,3-ジチオラン、4,5-ビス[3,4-ビス(メルカプトメチルチオ)-6-メルカプト-2,5-ジチアヘキシルチオ]-1,3-ジチオラン、4-[3,4-ビス(メルカプトメチルチオ)-6-メルカプト-2,5-ジチアヘキシルチオ]-5-メルカプトメチルチオ-1,3-ジチオラン、4-[3-ビス(メルカプトメチルチオ)メチル-5,6-ビス(メルカプトメチルチオ)-8-メルカプト-2,4,7-トリチアオクチル]-5-メルカプトメチルチオ-1,3-ジチオラン、2-{ビス[3,4-ビス(メルカプトメチルチオ)-6-メルカプト-2,5-ジチアヘキシルチオ]メチル}-1,3-ジチエタン、2-[3,4-ビス(メルカプトメチルチオ)-6-メルカプト-2,5-ジチアヘキシルチオ]メルカプトメチルチオメチル-1,3-ジチエタン、2-[3,4,8,9-テトラキス(メルカプトメチルチオ)-11-メルカプト-2,5,7,10-テトラチアウンデシルチオ]メルカプトメチルチオメチル-1,3-ジチエタン、2-[3-ビス(メルカプトメチルチオ)メチル-5,6-ビス(メルカプトメチルチオ)-8-メルカプト-2,4,7-トリチアオクチル]メルカプトメチルチオメチル-1,3-ジチエタン、4-{1-[2-(1,3-ジチエタニル)]-3-メルカプト-2-チアプロピルチオ}-5-[1,2-ビス(メルカプトメチルチオ)-4-メルカプト-3-チアブチルチオ]-1,3-ジチオラン等を挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 On the other hand, examples of non-hydrolyzable polyfunctional thiol compounds include 1,3,4,6-tetrakis (2-mercaptoethyl) glycoluril (manufactured by Shikoku Kasei Co., Ltd.: TS-G), (1,3 , 4,6-tetrakis(3-mercaptopropyl)glycoluril (manufactured by Shikoku Kasei Co., Ltd.: C3 TS-G), 1,3,4,6-tetrakis(mercaptomethyl)glycoluril, 1,3,4, 6-tetrakis(mercaptomethyl)-3a-methylglycoluril, 1,3,4,6-tetrakis(2-mercaptoethyl)-3a-methylglycoluril, 1,3,4,6-tetrakis(3-mercaptopropyl )-3a-methylglycoluril, 1,3,4,6-tetrakis(mercaptomethyl)-3a,6a-dimethylglycoluril, 1,3,4,6-tetrakis(2-mercaptoethyl)-3a,6a- dimethyl glycol uril, 1,3,4,6-tetrakis(3-mercaptopropyl)-3a,6a-dimethyl glycol uril, 1,3,4,6-tetrakis(mercaptomethyl)-3a,6a-diphenyl glycol uril, 1,3,4,6-tetrakis(2-mercaptoethyl)-3a,6a-diphenylglycoluril, 1,3,4,6-tetrakis(3-mercaptopropyl)-3a,6a-diphenylglycoluril, pentaerythritol Tripropanethiol (manufactured by SC Organic Chemical Co., Ltd.: PEPT), pentaerythritol tetrapropanethiol, 1,2,3-tris(mercaptomethylthio)propane, 1,2,3-tris(2-mercaptoethylthio)propane, 1 , 2,3-tris(3-mercaptopropylthio)propane, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 5,7-dimercaptomethyl-1,11-dimercapto-3,6, 9-trithiundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9- trithiundecane, tetrakis(mercaptomethylthiomethyl)methane, tetrakis(2-mercaptoethylthiomethyl)methane, tetrakis(3-mercaptopropylthiomethyl)methane, 1,1,3,3-tetrakis(mercaptomethylthio)propane, 1 , 1,2,2-tetrakis(mercaptomethylthio)eta 1,1,5,5-tetrakis(mercaptomethylthio)-3-thiapentane, 1,1,6,6-tetrakis(mercaptomethylthio)-3,4-dithiahexane, 2,2-bis(mercaptomethylthio)ethane thiol, 3-mercaptomethylthio-1,7-dimercapto-2,6-dithiaheptane, 3,6-bis(mercaptomethylthio)-1,9-dimercapto-2,5,8-trithianone, 3-mercaptomethylthio-1, 6-dimercapto-2,5-dithiahexane, 1,1,9,9-tetrakis(mercaptomethylthio)-5-(3,3-bis(mercaptomethylthio)-1-thiapropyl)3,7-dithianonane, tris(2 , 2-bis(mercaptomethylthio)ethyl)methane, tris(4,4-bis(mercaptomethylthio)-2-thiabutyl)methane, tetrakis(2,2-bis(mercaptomethylthio)ethyl)methane, tetrakis(4,4 -bis(mercaptomethylthio)-2-thiabutyl)methane, 3,5,9,11-tetrakis(mercaptomethylthio)-1,13-dimercapto-2,6,8,12-tetrathiatridecane, 3,5, 9,11,15,17-hexakis(mercaptomethylthio)-1,19-dimercapto-2,6,8,12,14,18-hexathianonadecane, 9-(2,2-bis(mercaptomethylthio)ethyl )-3,5,13,15-tetrakis(mercaptomethylthio)-1,17-dimercapto-2,6,8,10,12,16-hexathiaheptadecane, 3,4,8,9-tetrakis(mercapto methylthio)-1,11-dimercapto-2,5,7,10-tetrathiaundecane, 3,4,8,9,13,14-hexakis(mercaptomethylthio)-1,16-dimercapto-2,5,7 , 10,12,15-hexathiahexadecane, 8-[bis(mercaptomethylthio)methyl]-3,4,12,13-tetrakis(mercaptomethylthio)-1,15-dimercapto-2,5,7,9, 11,14-hexathiapentadecane, 4,6-bis[3,5-bis(mercaptomethylthio)-7-mercapto-2,6-dithiaheptylthio]-1,3-dithiane, 4-[3,5 -bis(mercaptomethylthio)-7-mercapto-2,6-dithiaheptylthio]-6-mercaptomethylthio-1,3-dithiane, 1,1-bis[4-(6-mercap methylthio)-1,3-dithianylthio]-1,3-bis(mercaptomethylthio)propane, 1-[4-(6-mercaptomethylthio)-1,3-dithianylthio]-3-[2,2-bis(mercapto methylthio)ethyl]-7,9-bis(mercaptomethylthio)-2,4,6,10-tetrathiaundecane, 3-[2-(1,3-dithietanyl)]methyl-7,9-bis(mercaptomethylthio )-1,11-dimercapto-2,4,6,10-tetrathiaundecane, 9-[2-(1,3-dithietanyl)]methyl-3,5,13,15-tetrakis(mercaptomethylthio)-1 , 17-dimercapto-2,6,8,10,12,16-hexathiaheptadecane, 3-[2-(1,3-dithietanyl)]methyl-7,9,13,15-tetrakis(mercaptomethylthio) -1,17-dimercapto-2,4,6,10,12,16-hexathiaheptadecane, 4,6-bis[4-(6-mercaptomethylthio)-1,3-dithianylthio]-6-[4 -(6-mercaptomethylthio)-1,3-dithianylthio]-1,3-dithiane, 4-[3,4,8,9-tetrakis(mercaptomethylthio)-11-mercapto-2,5,7,10- Tetrathiaundecyl]-5-mercaptomethylthio-1,3-dithiolane, 4,5-bis[3,4-bis(mercaptomethylthio)-6-mercapto-2,5-dithiahexylthio]-1,3 -dithiolane, 4-[3,4-bis(mercaptomethylthio)-6-mercapto-2,5-dithiahexylthio]-5-mercaptomethylthio-1,3-dithiolane, 4-[3-bis(mercaptomethylthio) ) methyl-5,6-bis(mercaptomethylthio)-8-mercapto-2,4,7-trithiooctyl]-5-mercaptomethylthio-1,3-dithiolane, 2-{bis[3,4-bis( mercaptomethylthio)-6-mercapto-2,5-dithiahexylthio]methyl}-1,3-dithietane, 2-[3,4-bis(mercaptomethylthio)-6-mercapto-2,5-dithiahexyl Thio]mercaptomethylthiomethyl-1,3-dithiethane, 2-[3,4,8,9-tetrakis(mercaptomethylthio)-11-mercapto-2,5,7,10-tetrathiaundecylthio]mercaptomethylthiomethyl -1,3-dithiethane, 2-[3-bis(mercaptomethyl thio)methyl-5,6-bis(mercaptomethylthio)-8-mercapto-2,4,7-trithiooctyl]mercaptomethylthiomethyl-1,3-dithiethane, 4-{1-[2-(1,3 -dithietanyl)]-3-mercapto-2-thiapropylthio}-5-[1,2-bis(mercaptomethylthio)-4-mercapto-3-thiabutylthio]-1,3-dithiolane. These may be used alone or in combination of two or more.
 本発明の硬化性樹脂組成物においては、
・前記(A)多官能(メタ)アクリレート化合物に含まれる(メタ)アクリロイルオキシの総数(総量)、
・前記(B)調節剤に含まれる(メタ)アクリロイルオキシの総数(総量)、
・前記(B)調節剤に含まれるエポキシ基の総数(総量)、及び
・前記(C)多官能チオール化合物に含まれるチオール基の総数(総量)
が、所定の関係を満足することが必要である。具体的には、本発明の硬化性樹脂組成物においては、
 [(A)多官能(メタ)アクリレート化合物についての(メタ)アクリロイルオキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]が0.4~0.8であり、かつ
 [(B)調節剤についての(メタ)アクリロイルオキシ基の総数+(B)調節剤についてのエポキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]が0.05~0.65である。
In the curable resin composition of the present invention,
- The total number (total amount) of (meth)acryloyloxy contained in the (A) polyfunctional (meth)acrylate compound,
- The total number (total amount) of (meth)acryloyloxy contained in the (B) regulator,
- The total number (total amount) of epoxy groups contained in the (B) modifier, and - The total number (total amount) of thiol groups contained in the (C) polyfunctional thiol compound
However, it is necessary to satisfy a predetermined relationship. Specifically, in the curable resin composition of the present invention,
[(A) the total number of (meth)acryloyloxy groups for the polyfunctional (meth)acrylate compound]/[(C) the total number of thiol groups for the polyfunctional thiol compound] is 0.4 to 0.8, and [(B) the total number of (meth)acryloyloxy groups for the modifier + (B) the total number of epoxy groups for the modifier]/[(C) the total number of thiol groups for the polyfunctional thiol compound] is 0.05 to 0.65.
 (A)多官能(メタ)アクリレート化合物についての(メタ)アクリロイルオキシ基の総数は、(A)多官能(メタ)アクリレート化合物に含まれる多官能(メタ)アクリレート化合物の質量(g)を、その多官能(メタ)アクリレート化合物の(メタ)アクリロイル当量で割った商(複数種の多官能(メタ)アクリレート化合物が含まれる場合は、各多官能(メタ)アクリレート化合物についてのそのような商の合計)である。(メタ)アクリロイル当量は、その多官能(メタ)アクリレート化合物の分子量を、その多官能(メタ)アクリレート化合物1分子中の(メタ)アクリロイルオキシ基数で割った商として算出できる。
 (B)調節剤についての(メタ)アクリロイルオキシ基の総数も、(A)多官能(メタ)アクリレート化合物についてのそれと同様にして求めることができる。
(A) The total number of (meth)acryloyloxy groups for the polyfunctional (meth)acrylate compound is the mass (g) of the polyfunctional (meth)acrylate compound contained in the (A) polyfunctional (meth)acrylate compound. The quotient divided by the (meth)acryloyl equivalent of the polyfunctional (meth)acrylate compound (when multiple types of polyfunctional (meth)acrylate compounds are included, the sum of such quotients for each polyfunctional (meth)acrylate compound ). The (meth)acryloyl equivalent can be calculated as a quotient obtained by dividing the molecular weight of the polyfunctional (meth)acrylate compound by the number of (meth)acryloyloxy groups in one molecule of the polyfunctional (meth)acrylate compound.
The total number of (meth)acryloyloxy groups for (B) modifier can also be determined in the same manner as for (A) polyfunctional (meth)acrylate compound.
 本発明の硬化性樹脂組成物は、好ましくは60~300g/eqの(メタ)アクリロイル当量を有する多官能(メタ)アクリレート化合物を含み、より好ましくは70~250g/eqの(メタ)アクリロイル当量を有する多官能(メタ)アクリレート化合物を含み、特に好ましくは80~220g/eqの(メタ)アクリロイル当量を有する多官能(メタ)アクリレート化合物を含む。また、[300g/eq以下の(メタ)アクリロイル当量を有する(A)多官能(メタ)アクリレート化合物についての(メタ)アクリロイル基の総数]/[(A)多官能(メタ)アクリレート化合物全体についての(メタ)アクリロイル基の総数]は、好ましくは0.7~1であり、より好ましくは0.8~1であり、さらに好ましくは0.9~1であり、特に好ましくは0.95~1である。(メタ)アクリロイル当量が300g/eq以下である(A)多官能(メタ)アクリレート化合物が、(A)多官能(メタ)アクリレート化合物の大部分を占めていると、本発明の硬化性樹脂組成物の硬化性が良好となりやすく、この組成物が与える硬化物において強靭な架橋構造が得られやすくなるので好ましい。 The curable resin composition of the present invention preferably contains a polyfunctional (meth)acrylate compound having a (meth)acryloyl equivalent of 60 to 300 g/eq, more preferably a (meth)acryloyl equivalent of 70 to 250 g/eq. More preferably, it contains a polyfunctional (meth)acrylate compound having a (meth)acryloyl equivalent of 80 to 220 g/eq. In addition, [total number of (meth) acryloyl groups for (A) polyfunctional (meth) acrylate compound having (meth) acryloyl equivalent of 300 g/eq or less]/[(A) total polyfunctional (meth) acrylate compound (Meth) total number of acryloyl groups] is preferably 0.7 to 1, more preferably 0.8 to 1, still more preferably 0.9 to 1, particularly preferably 0.95 to 1 is. When the (A) polyfunctional (meth)acrylate compound having a (meth)acryloyl equivalent of 300 g/eq or less accounts for the majority of the (A) polyfunctional (meth)acrylate compound, the curable resin composition of the present invention It is preferable because the curability of the product tends to be good, and a tough crosslinked structure can be easily obtained in the cured product given by this composition.
 好ましくは、上記のような(メタ)アクリロイル当量が300g/eq以下である(A)多官能(メタ)アクリレート化合物は、ポリ(アルキレングリコール)骨格を有しない。本発明のある態様において、本発明の硬化性樹脂組成物は、60~300g/eqの(メタ)アクリロイル当量を有し、ポリ(アルキレングリコール)骨格を有しない、(A)多官能(メタ)アクリレート化合物を含む。この場合、この組成物が与える硬化物に被着体への密着性が付与されやすくなる(すなわち、硬化物が被着体から剥離しにくくなる)。
 本明細書においてポリ(アルキレングリコール)骨格とは、2つ以上のオキシアルキレン基からなるポリ(オキシアルキレン)鎖、例えば、エチレンオキシド(EO)変性により導入されうるポリ(オキシエチレン)鎖、プロピレンオキシド(PO)変性により導入されうるポリ(オキシプロピレン)鎖等を指す。
Preferably, the (A) polyfunctional (meth)acrylate compound having a (meth)acryloyl equivalent of 300 g/eq or less as described above does not have a poly(alkylene glycol) skeleton. In one aspect of the present invention, the curable resin composition of the present invention has a (meth)acryloyl equivalent of 60 to 300 g/eq and does not have a poly(alkylene glycol) skeleton, (A) polyfunctional (meth) Contains acrylate compounds. In this case, the adhesiveness to the adherend is easily imparted to the cured product provided by this composition (that is, the cured product becomes difficult to peel off from the adherend).
As used herein, a poly(alkylene glycol) skeleton means a poly(oxyalkylene) chain composed of two or more oxyalkylene groups, such as a poly(oxyethylene) chain that can be introduced by ethylene oxide (EO) modification, propylene oxide ( PO) refers to poly(oxypropylene) chains and the like that can be introduced by modification.
 上記のような(メタ)アクリロイル当量が300g/eq以下である(A)多官能(メタ)アクリレート化合物が、ポリ(アルキレングリコール)骨格を有することは好ましくない。これは、本発明の硬化性樹脂組成物がこのような(A)多官能(メタ)アクリレート化合物を含むと、同組成物が与える硬化物が脆くなり、被着体から剥離しやすくなるためである。その原因は、このような(A)多官能(メタ)アクリレート化合物ではポリ(アルキレングリコール)骨格が相対的に密集して存在するため、ポリ(アルキレングリコール)骨格の会合により硬化物中で脆い微小構造体が形成されうることにあると推察されている。
 本発明の硬化性樹脂組成物は、(メタ)アクリロイル当量が60~300g/eqであり、かつポリ(アルキレングリコール)骨格を有する(A)多官能(メタ)アクリレート化合物を含んでいてもよい。しかし、接着信頼性の観点から、[(メタ)アクリロイル当量が60~300g/eqであり、かつポリ(アルキレングリコール)骨格を有する(A)多官能(メタ)アクリレート化合物についての(メタ)アクリロイル基の総数]/[(A)多官能(メタ)アクリレート化合物全体についての(メタ)アクリロイル基の総数]は、好ましくは0.5以下であり、より好ましくは0.4以下であり、さらに好ましくは0.3以下であり、特に好ましくは0.2以下であり、最も好ましくは0.1以下である。本発明のある態様では、この比は0~0.5、好ましくは0~0.4、より好ましくは0~0.3、特に好ましくは0~0.2、最も好ましくは0~0.1である。
The (A) polyfunctional (meth)acrylate compound having a (meth)acryloyl equivalent of 300 g/eq or less as described above preferably has a poly(alkylene glycol) skeleton. This is because when the curable resin composition of the present invention contains such a polyfunctional (meth)acrylate compound (A), the cured product provided by the composition becomes brittle and easily peeled off from the adherend. be. The reason for this is that poly(alkylene glycol) skeletons are present relatively densely in such a polyfunctional (meth)acrylate compound (A). It is speculated that the structures may be formed.
The curable resin composition of the present invention may contain (A) a polyfunctional (meth)acrylate compound having a (meth)acryloyl equivalent of 60 to 300 g/eq and having a poly(alkylene glycol) skeleton. However, from the viewpoint of adhesion reliability, [(meth)acryloyl groups for (A) polyfunctional (meth)acrylate compounds having a (meth)acryloyl equivalent of 60 to 300 g/eq and a poly(alkylene glycol) skeleton The total number]/[(A) the total number of (meth)acryloyl groups for the entire polyfunctional (meth)acrylate compound] is preferably 0.5 or less, more preferably 0.4 or less, and still more preferably It is 0.3 or less, particularly preferably 0.2 or less, and most preferably 0.1 or less. In one aspect of the invention, this ratio is between 0 and 0.5, preferably between 0 and 0.4, more preferably between 0 and 0.3, particularly preferably between 0 and 0.2 and most preferably between 0 and 0.1. is.
 (B)調節剤についてのエポキシ基の総数は、(B)調節剤に含まれる反応性不飽和二重結合を有しないエポキシ樹脂の質量(g)を、そのエポキシ樹脂のエポキシ当量で割った商(複数種の反応性不飽和二重結合を有しないエポキシ樹脂が含まれる場合は、各エポキシ樹脂についてのそのような商の合計)である。エポキシ当量は、JIS K7236に記載されている方法により求めることができる。この方法ではエポキシ当量を求めることができない場合には、そのエポキシ樹脂の分子量を、そのエポキシ樹脂1分子中のエポキシ基数で割った商として算出しても良い。 (B) The total number of epoxy groups for a modifier is the quotient of the mass (g) of the epoxy resin containing no reactive unsaturated double bonds contained in the modifier divided by the epoxy equivalent weight of that epoxy resin. (the sum of such quotients for each epoxy resin, if epoxy resins without more than one type of reactive unsaturated double bond are involved). The epoxy equivalent can be determined by the method described in JIS K7236. If the epoxy equivalent cannot be obtained by this method, it may be calculated as a quotient obtained by dividing the molecular weight of the epoxy resin by the number of epoxy groups in one molecule of the epoxy resin.
 (C)多官能チオール化合物についてのチオール基の総数は、(C)多官能チオール化合物に含まれる多官能チオール化合物の質量(g)を、その多官能チオール化合物のチオール当量で割った商(多官能チオール化合物が複数含まれる場合は、各多官能チオール化合物についてのそのような商の合計)である。チオール当量は、ヨウ素滴定法により決定することができる。この方法は広く知られており、例えば、特開2012-153794号の段落0079に開示されている。この方法ではチオール当量を求めることができない場合には、その多官能チオール化合物の分子量を、その多官能チオール化合物1分子中のチオール基数で割った商として算出しても良い。 (C) The total number of thiol groups for the polyfunctional thiol compound is the quotient obtained by dividing the mass (g) of the polyfunctional thiol compound contained in the (C) polyfunctional thiol compound by the thiol equivalent of the polyfunctional thiol compound (multiple When multiple functional thiol compounds are included, the sum of such quotients for each polyfunctional thiol compound). A thiol equivalent can be determined by an iodometric titration method. This method is widely known and disclosed, for example, in paragraph 0079 of JP-A-2012-153794. If the thiol equivalent cannot be determined by this method, the molecular weight of the polyfunctional thiol compound may be calculated as a quotient divided by the number of thiol groups in one molecule of the polyfunctional thiol compound.
 本発明のある態様においては、硬化性樹脂組成物は、(A)多官能(メタ)アクリレート化合物の一部が(B)調節剤で置換され、(C)多官能チオール化合物の量に対して(A)多官能(メタ)アクリレート化合物と(B)調節剤の合計量がほぼ当量である。
 ある態様においては、[(A)多官能(メタ)アクリレート化合物についての(メタ)アクリロイルオキシ基の総数+(B)調節剤についての(メタ)アクリロイルオキシ基の総数+(B)調節剤についてのエポキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]が、0.8~1.2、好ましくは、0.9~1.1、より好ましくは0.95~1.1である。
 ただし、本発明の硬化性樹脂組成物は、(A)多官能(メタ)アクリレート化合物についての(メタ)アクリロイルオキシ基の総数、(B)調節剤についての(メタ)アクリロイルオキシ基の総数、(B)調節剤についてのエポキシ基の総数及び(C)多官能チオール化合物についてのチオール基の総数が上記の条件を満足する量比で、(A)多官能(メタ)アクリレート化合物、(B)調節剤及び(C)多官能チオール化合物を含有する。
In one aspect of the present invention, the curable resin composition has (A) a portion of the polyfunctional (meth)acrylate compound substituted with (B) the modifier, and (C) the amount of the polyfunctional thiol compound The total amount of (A) polyfunctional (meth)acrylate compound and (B) modifier is approximately equivalent.
In some embodiments, [(A) the total number of (meth)acryloyloxy groups for the polyfunctional (meth)acrylate compound + the total number of (meth)acryloyloxy groups for (B) the modifier + (B) the total number of (meth)acryloyloxy groups for the modifier total number of epoxy groups]/[total number of thiol groups for (C) polyfunctional thiol compound] is 0.8 to 1.2, preferably 0.9 to 1.1, more preferably 0.95 to 1 .1.
However, the curable resin composition of the present invention includes (A) the total number of (meth)acryloyloxy groups for the polyfunctional (meth)acrylate compound, (B) the total number of (meth)acryloyloxy groups for the modifier, ( B) the total number of epoxy groups for the modifier and (C) the total number of thiol groups for the polyfunctional thiol compound satisfies the above conditions, (A) the polyfunctional (meth)acrylate compound, (B) the regulator agent and (C) a polyfunctional thiol compound.
 [(A)多官能(メタ)アクリレート化合物についての(メタ)アクリロイルオキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]が0.4未満であると、接着性をもたらす、(A)多官能(メタ)アクリレート化合物と(C)多官能チオール化合物の反応によって生成する構造(換言すれば、従来のUV硬化型接着剤が与える硬化物の構造)の硬化物における含有量が過度に少なくなるため、UV硬化後の接着性が不十分になる。一方、[(A)多官能(メタ)アクリレート化合物についての(メタ)アクリロイルオキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]が0.8超であると、周囲温度の変化に伴う被着体の膨張及び/又は収縮により、UV硬化後の硬化物が被着体から剥離しやすい(すなわち、接着信頼性に乏しい)。 [(A) the total number of (meth) acryloyloxy groups for the polyfunctional (meth) acrylate compound] / [(C) the total number of thiol groups for the polyfunctional thiol compound] is less than 0.4, the adhesion Containment in the cured product of the structure generated by the reaction of (A) the polyfunctional (meth)acrylate compound and (C) the polyfunctional thiol compound (in other words, the structure of the cured product given by conventional UV-curable adhesives) Too little amount results in poor adhesion after UV curing. On the other hand, [(A) the total number of (meth) acryloyloxy groups for the polyfunctional (meth) acrylate compound] / [(C) the total number of thiol groups for the polyfunctional thiol compound] is greater than 0.8, the surrounding Due to expansion and/or shrinkage of the adherend due to changes in temperature, the cured product after UV curing tends to separate from the adherend (that is, poor adhesion reliability).
 本発明において、[(A)多官能(メタ)アクリレート化合物についての(メタ)アクリロイルオキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]は、好ましくは0.45~0.7であり、より好ましくは0.5~0.7であり、さらに好ましくは0.5~0.65である。 In the present invention, [(A) the total number of (meth)acryloyloxy groups for the polyfunctional (meth)acrylate compound]/[(C) the total number of thiol groups for the polyfunctional thiol compound] is preferably 0.45 to 0.7, more preferably 0.5 to 0.7, still more preferably 0.5 to 0.65.
 また、[(B)調節剤についての(メタ)アクリロイルオキシ基の総数+(B)調節剤についてのエポキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]が0.05未満であると、周囲温度の変化に伴う被着体の膨張及び/又は収縮により、UV硬化後の硬化物が被着体から剥離しやすい(すなわち、接着信頼性に乏しい)。一方、[(B)調節剤についての(メタ)アクリロイルオキシ基の総数+(B)調節剤についてのエポキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]が0.65超であると、(A)多官能(メタ)アクリレート化合物と(C)多官能チオール化合物の反応によって生成する構造の硬化物における含有量が過度に少なくなるため、UV硬化処理後の接着性が不十分になる。 Further, [total number of (meth)acryloyloxy groups for (B) modifier + total number of epoxy groups for (B) modifier]/[total number of thiol groups for (C) polyfunctional thiol compound] is 0. If it is less than 05, the cured product after UV curing tends to peel off from the adherend due to expansion and/or shrinkage of the adherend due to changes in ambient temperature (that is, poor adhesion reliability). On the other hand, [total number of (meth)acryloyloxy groups for (B) modifier + total number of epoxy groups for (B) modifier]/[total number of thiol groups for (C) polyfunctional thiol compound] is 0. If it is more than 65, the content in the cured product of the structure generated by the reaction of (A) the polyfunctional (meth)acrylate compound and (C) the polyfunctional thiol compound is excessively low, so the adhesion after UV curing treatment becomes insufficient.
 本発明において、[(B)調節剤についての(メタ)アクリロイルオキシ基の総数+(B)調節剤についてのエポキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]は、好ましくは0.2~0.5であり、より好ましくは0.30~0.45である。
 本発明のある態様において、(B)調節剤は実質的に(b1)単官能(メタ)アクリレート化合物からなる(実質的に(b2)エポキシ樹脂を含まない)。この場合、[(B)調節剤についての(メタ)アクリロイルオキシ基の総数+(B)調節剤についてのエポキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]は、好ましくは0.2~0.5であり、より好ましくは0.25~0.45である。この比率が0.2未満であると、硬化物の架橋密度を低下させる(B)調節剤の効果が小さくなるため、硬化物が剥離しやすくなる。一方、この比率が0.5超であると、UV硬化性が悪化するおそれがある。
 本発明の別の態様において、(B)調節剤は実質的に(b2)エポキシ樹脂からなる(実質的に(b1)単官能(メタ)アクリレート化合物を含まない)。この場合、[(B)調節剤についての(メタ)アクリロイルオキシ基の総数+(B)調節剤についてのエポキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]は、好ましくは0.2~0.5であり、より好ましくは0.25~0.45である。この比率が0.2未満であると、硬化物に柔軟性を付与する(B)調節剤の効果が小さくなるため、硬化物が剥離しやすくなる。一方、この比率が0.5超であると、UV硬化性が悪化するおそれがある。
 本発明のさらなる態様において、(B)調節剤は(b1)単官能(メタ)アクリレート化合物と(b2)エポキシ樹脂の両者を含む。この場合、[(B)調節剤についての(メタ)アクリロイルオキシ基の総数]:[(B)調節剤についてのエポキシ基の総数]は、好ましくは1:0.01~1:20であり、より好ましくは1:0.05~1:15であり、さらに好ましくは1:0.1~1:10であり、特に好ましくは1:0.1~1:5であり、最も好ましくは1:0.1~1:1である。[(B)調節剤についての(メタ)アクリロイルオキシ基の総数]に対して[(B)調節剤についてのエポキシ基の総数]が少なすぎると、UV硬化処理に続く熱硬化処理後の接着性が不十分になりやすい。一方、[(B)調節剤についての(メタ)アクリロイルオキシ基の総数]に対して[(B)調節剤についてのエポキシ基の総数]が多すぎると、UV硬化処理後の接着性が不十分になりやすい。
In the present invention, [(B) the total number of (meth)acryloyloxy groups for the modifier + (B) the total number of epoxy groups for the modifier]/[(C) the total number of thiol groups for the polyfunctional thiol compound] is , preferably 0.2 to 0.5, more preferably 0.30 to 0.45.
In one aspect of the invention, (B) the modifier consists essentially of (b1) a monofunctional (meth)acrylate compound (substantially free of (b2) epoxy resin). In this case, [total number of (meth)acryloyloxy groups for (B) modifier + total number of epoxy groups for (B) modifier]/[total number of thiol groups for (C) polyfunctional thiol compound] is It is preferably 0.2 to 0.5, more preferably 0.25 to 0.45. If this ratio is less than 0.2, the effect of the modifier (B) for lowering the crosslink density of the cured product becomes small, and the cured product tends to peel off. On the other hand, if this ratio exceeds 0.5, UV curability may deteriorate.
In another aspect of the invention, (B) the modifier consists essentially of (b2) an epoxy resin (substantially free of (b1) monofunctional (meth)acrylate compounds). In this case, [total number of (meth)acryloyloxy groups for (B) modifier + total number of epoxy groups for (B) modifier]/[total number of thiol groups for (C) polyfunctional thiol compound] is It is preferably 0.2 to 0.5, more preferably 0.25 to 0.45. If this ratio is less than 0.2, the effect of the modifier (B) for imparting flexibility to the cured product is reduced, and the cured product tends to peel off. On the other hand, if this ratio exceeds 0.5, UV curability may deteriorate.
In a further aspect of the invention, the (B) modifier comprises both (b1) a monofunctional (meth)acrylate compound and (b2) an epoxy resin. In this case, [total number of (meth)acryloyloxy groups for (B) modifier]:[total number of epoxy groups for (B) modifier] is preferably from 1:0.01 to 1:20, More preferably 1:0.05 to 1:15, still more preferably 1:0.1 to 1:10, particularly preferably 1:0.1 to 1:5, most preferably 1: 0.1 to 1:1. Too little [total number of epoxy groups for (B) modifier] relative to [total number of (meth)acryloyloxy groups for (B) modifier] results in poor adhesion after UV curing followed by heat curing. tends to be insufficient. On the other hand, if the [(B) total number of epoxy groups for the modifier] is too large relative to the [(B) total number of (meth)acryloyloxy groups for the modifier], the adhesion after UV curing treatment is insufficient. easy to become
(D)光ラジカル開始剤
 本発明の硬化性樹脂組成物は、(D)光ラジカル開始剤を含む。(D)光ラジカル開始剤を含むことにより、硬化性樹脂組成物を短時間のUV照射で硬化させることが可能となる。本発明において使用可能な(D)光ラジカル開始剤は、特に限定されず、公知のものを使用することが可能である。(D)光ラジカル開始剤の例としては、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4-ベンゾイル-4'-メチルジフェニルサルファイド、3,3'-ジメチル-4-メトキシベンゾフェノン、チオキサントン、2-クロルチオキサントン、2-メチルチオキサントン、2,4-ジメチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、2,4,6-トリメチルベンゾイルジフェニルホスフインオキサイド、メチルフェニルグリオキシレート、ベンジル、カンファーキノン等を挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。(D)光ラジカル開始剤の量は、硬化性樹脂組成物の0.01~10質量%であることが好ましく、0.05~5質量%であることがより好ましく、0.1~3質量%であることがさらに好ましい。
(D) Photoradical Initiator The curable resin composition of the present invention contains (D) a photoradical initiator. By including (D) a photoradical initiator, the curable resin composition can be cured by UV irradiation for a short period of time. The (D) photoradical initiator that can be used in the present invention is not particularly limited, and known ones can be used. (D) Examples of photoradical initiators include 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, diethoxyacetophenone, 1-(4-isopropylphenyl)-2 -hydroxy-2-methylpropan-1-one, 1-(4-dodecylphenyl)-2-hydroxy-2-methylpropan-1-one, 4-(2-hydroxyethoxy)-phenyl(2-hydroxy-2 -propyl)ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropane-1, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-butyl ether, benzoin phenyl ether, benzyl dimethyl ketal, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 4-benzoyl-4'-methyldiphenylsulfide, 3,3'-dimethyl-4-methoxybenzophenone, Thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 2,4,6-trimethyl benzoyldiphenylphosphine oxide, methylphenylglyoxylate, benzyl, camphorquinone, and the like. These may be used alone or in combination of two or more. (D) The amount of the photoradical initiator is preferably 0.01 to 10% by mass of the curable resin composition, more preferably 0.05 to 5% by mass, and 0.1 to 3% by mass. % is more preferred.
 本発明者らは種々検討の結果、(b1)単官能(メタ)アクリレート化合物及び/又は(b2)エポキシ樹脂を含む(B)調節剤の使用により、従来のUV硬化型接着剤において問題とされていた、加熱及び/又は冷却の過程における硬化物の被着体からの剥離を防止することが可能になることを見出した。 As a result of various investigations, the present inventors found that the use of (B) a modifier containing (b1) a monofunctional (meth)acrylate compound and/or (b2) an epoxy resin poses a problem in conventional UV curable adhesives. It has been found that separation of the cured product from the adherend during heating and/or cooling can be prevented.
 異なる材料で作られた複数の部品が接着剤で互いに接合された組み立て物の温度が変化すると、それらの部品は各々、その材料の熱膨張係数に応じて変形する。この変形の程度は、熱膨張係数の違いにより各部品について一定でないため、各部品の変形に伴う応力を組み立て物にもたらす。この変形に伴う応力は、特に部品の接合部、即ち接着剤の硬化物に作用する。この硬化物が適度に柔軟であれば、組み立て物の部品の変形に硬化物が追従することにより、被着体からの硬化物の剥離は防止される。しかし、従来のUV硬化型接着剤が与える硬化物は、柔軟性に乏しいため組み立て物の部品の変形に追従しにくく、硬化物が被着体から剥離してしまうことがあった。 When the temperature of an assembly in which multiple parts made of different materials are glued together is changed, each of those parts deforms according to the thermal expansion coefficient of that material. Since the degree of this deformation is not constant for each part due to differences in thermal expansion coefficients, it introduces stresses associated with the deformation of each part into the assembly. The stress that accompanies this deformation acts particularly on the joints of the parts, that is, the cured adhesive. If the cured product is moderately flexible, the cured product will follow the deformation of the components of the assembly, thereby preventing separation of the cured product from the adherend. However, since the cured product provided by the conventional UV-curable adhesive lacks flexibility, it is difficult to follow the deformation of the parts of the assembly, and the cured product sometimes peels off from the adherend.
 このような硬化物の被着体からの剥離は特に、UV硬化型接着剤を、UV硬化処理に続く熱硬化処理により硬化させて、複数の被着体を接着する場合であって、上記被着体の一つを構成する材料が、熱硬化処理の温度よりも低いガラス転移温度(T)を有する場合(例えば、被着体の一つがポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)製である場合)に起こりやすい。 Such peeling of the cured product from the adherend is particularly performed when a plurality of adherends are adhered by curing the UV curable adhesive by a heat curing treatment subsequent to the UV curing treatment, and When the material constituting one of the adherends has a glass transition temperature (T g ) lower than the temperature of the heat curing treatment (for example, one of the adherends is polyethylene terephthalate (PET) or polybutylene terephthalate (PBT) manufactured).
 このような硬化物の被着体からの剥離は、乏しい柔軟性をもたらす、この硬化物の高すぎる架橋密度に起因していると考えられる。本発明の硬化性樹脂組成物が与える硬化物は、従来のUV硬化型接着剤が与える硬化物に比して、低い架橋密度を有する。そのような硬化物は、それを含む組み立て物の温度が変化しても、組み立て物の部品の変形に追従するため、被着体から剥離しにくい。 It is believed that such peeling of the cured product from the adherend is due to the too high crosslink density of the cured product, which results in poor flexibility. A cured product provided by the curable resin composition of the present invention has a lower crosslink density than a cured product provided by a conventional UV-curable adhesive. Such a cured product follows the deformation of the parts of the assembly even if the temperature of the assembly containing it changes, so it is difficult to separate from the adherend.
 本発明の硬化性樹脂組成物を、
-紫外線(UV)照射によるUV硬化処理、及び場合により
-加熱による熱硬化処理
に付すことにより硬化物を得ることができる。
The curable resin composition of the present invention,
A cured product can be obtained by - UV curing treatment by ultraviolet (UV) irradiation, and optionally - thermal curing treatment by heating.
 上記UV硬化処理のためのUV照射下では、下記反応(1)及び(2):
(1)(メタ)アクリロイルオキシ基中の二重結合への、チオール基のラジカル反応による付加
(2)(メタ)アクリロイルオキシ基中の二重結合のラジカル重合(ホモ重合)
が進行する。エポキシ基の反応は、UV照射下では起こらない。
Under UV irradiation for the UV curing treatment, the following reactions (1) and (2):
(1) Addition of a thiol group to the double bond in the (meth)acryloyloxy group by radical reaction (2) Radical polymerization (homopolymerization) of the double bond in the (meth)acryloyloxy group
progresses. Reaction of epoxy groups does not occur under UV irradiation.
 一方、場合により行われる上記熱硬化処理のための加熱下では、下記反応(3)及び(4):
(3)(メタ)アクリロイルオキシ基中の二重結合への、チオール基の熱的付加
(4)エポキシ基への、チオール基の開環求核付加
が進行する。(メタ)アクリロイルオキシ基中の二重結合のラジカル重合(ホモ重合)は、加熱下では起こらない。
On the other hand, under heat for the optional thermosetting treatment, the following reactions (3) and (4):
(3) Thermal addition of a thiol group to the double bond in the (meth)acryloyloxy group; (4) Ring-opening nucleophilic addition of the thiol group to the epoxy group proceeds. Radical polymerization (homopolymerization) of double bonds in (meth)acryloyloxy groups does not occur under heating.
 (B)調節剤を用いず、多官能(メタ)アクリレート化合物と多官能チオール化合物を、(D)光ラジカル開始剤の存在下に、上記UV硬化処理に付した場合、
-多官能(メタ)アクリレート化合物と多官能チオール化合物の間の反応(1)、及び
-多官能(メタ)アクリレート化合物の間の反応(2)
が起こる。
 さらに、このUV硬化処理で得られた生成物を熱硬化処理に付すと、
-多官能(メタ)アクリレート化合物と多官能チオール化合物の間の反応(3)
が起こる。
 このような場合、周囲温度の変化に伴う被着体の膨張及び/又は収縮により、UV硬化後の硬化物が被着体から剥離しやすい。これは、得られる硬化物の柔軟性が、高すぎる架橋密度のために乏しいことに起因していると考えられる。
(B) Without using a modifier, the polyfunctional (meth)acrylate compound and the polyfunctional thiol compound are subjected to the UV curing treatment in the presence of (D) a photoradical initiator,
- Reaction (1) between a polyfunctional (meth)acrylate compound and a polyfunctional thiol compound, and - Reaction (2) between a polyfunctional (meth)acrylate compound
happens.
Furthermore, when the product obtained by this UV curing treatment is subjected to a heat curing treatment,
- Reaction (3) between a polyfunctional (meth)acrylate compound and a polyfunctional thiol compound
happens.
In such a case, expansion and/or contraction of the adherend due to changes in ambient temperature may cause the cured product after UV curing to easily separate from the adherend. It is believed that this is due to the poor flexibility of the resulting cured product due to the excessively high crosslink density.
 一方、本発明の硬化性樹脂組成物を上記UV硬化処理に付した場合、上記の反応に加えて、
-(b1)単官能(メタ)アクリレート化合物と多官能チオール化合物の間の反応(1)、
-多官能(メタ)アクリレート化合物と(b1)単官能(メタ)アクリレート化合物の間の反応(2)、及び
-(b1)単官能(メタ)アクリレート化合物の間の反応(2)
が起こる。
 さらに、系内あるいは被着体表面に熱硬化促進剤(特に、塩基性成分)が存在する場合、このUV硬化処理で得られた生成物を熱硬化処理に付すと、上記の反応に加えて、
-(b1)単官能(メタ)アクリレート化合物と多官能チオール化合物の間の反応(3)、及び
-(b2)エポキシ樹脂と多官能チオール化合物の間の反応(4)
が起こる。
On the other hand, when the curable resin composition of the present invention is subjected to the above UV curing treatment, in addition to the above reaction,
- (b1) reaction (1) between a monofunctional (meth)acrylate compound and a multifunctional thiol compound,
- Reaction (2) between polyfunctional (meth)acrylate compound and (b1) monofunctional (meth)acrylate compound, and - Reaction (2) between (b1) monofunctional (meth)acrylate compound
happens.
Furthermore, when a heat curing accelerator (especially a basic component) is present in the system or on the surface of the adherend, when the product obtained by this UV curing treatment is subjected to heat curing treatment, in addition to the above reaction ,
-(b1) Reaction (3) between a monofunctional (meth)acrylate compound and a polyfunctional thiol compound, and -(b2) Reaction (4) between an epoxy resin and a polyfunctional thiol compound
happens.
 これらの(B)調節剤存在下での反応のうち、(b1)単官能(メタ)アクリレート化合物と多官能チオール化合物の間の反応(1)、(b1)単官能(メタ)アクリレート化合物と多官能チオール化合物の間の反応(3)及び多官能(メタ)アクリレート化合物と(b1)単官能(メタ)アクリレート化合物の間の反応(2)は、硬化物の架橋密度が高くなることを抑制する。反応(1)及び(3)により、多官能チオール化合物に含まれるチオール基がキャッピングされ、新たな架橋の形成が抑制される。反応(2)により、ポリマー鎖が延長され、架橋の間隔が広がる。本発明の硬化性樹脂組成物が与える硬化物は、架橋を含む重合体である。しかし上記のように、(B)調節剤の使用により、UV硬化処理及び熱硬化処理中の架橋密度の上昇が妨げられるため、この重合体は、(B)調節剤を使用しない従来の硬化性樹脂組成物から得られる硬化物に比べて架橋密度が低い。 Among these (B) reactions in the presence of a modifier, (b1) reaction (1) between a monofunctional (meth)acrylate compound and a polyfunctional thiol compound, (b1) a monofunctional (meth)acrylate compound and a polyfunctional The reaction (3) between the functional thiol compound and the reaction (2) between the polyfunctional (meth)acrylate compound and (b1) the monofunctional (meth)acrylate compound suppress the increase in crosslink density of the cured product. . By reactions (1) and (3), the thiol groups contained in the polyfunctional thiol compound are capped, and the formation of new crosslinks is suppressed. Reaction (2) extends the polymer chain and widens the spacing of the crosslinks. The cured product provided by the curable resin composition of the present invention is a crosslinked polymer. However, as noted above, the use of (B) modifiers prevents the increase in crosslink density during UV curing and heat curing, so this polymer is less susceptible to conventional curing without (B) modifiers. The crosslink density is lower than that of the cured product obtained from the resin composition.
 本発明の硬化性樹脂組成物をUV硬化処理のみに付した場合、(b2)エポキシ樹脂は、得られる硬化物中に未反応のまま残る。このような硬化物では、未反応の(b2)エポキシ樹脂により柔軟性が向上される。そのため、このような硬化性樹脂組成物を用いると、周囲温度の変化により引き起こされる組み立て物の部品の変形に硬化物が追従することによって、硬化物の被着体からの剥離が防止される。 When the curable resin composition of the present invention is subjected to only UV curing treatment, (b2) the epoxy resin remains unreacted in the resulting cured product. In such a cured product, flexibility is improved by the unreacted (b2) epoxy resin. Therefore, when such a curable resin composition is used, the cured product follows the deformation of the assembly parts caused by changes in ambient temperature, thereby preventing the cured product from peeling from the adherend.
 一方、系内あるいは被着体表面に熱硬化促進剤(特に、塩基性成分)が存在する場合、本発明の硬化性樹脂組成物を上記UV硬化処理及び熱硬化処理に付すと、(b2)エポキシ樹脂と多官能チオール化合物の間の反応(4)により、(b2)エポキシ樹脂に含まれるエポキシ基の開環が起こってヒドロキシル基が生じる。このヒドロキシル基は、硬化物の被着体に対する接着力の向上、ひいては硬化物の被着体からの剥離の防止に寄与しうる。
 また、(b2)エポキシ樹脂が単官能エポキシ樹脂である場合には、この反応(4)により多官能チオール化合物に含まれるチオール基がキャッピングされ、新たな架橋の形成が抑制される。この結果、反応(4)により硬化物の架橋密度が上昇することはない。一方、(b2)エポキシ樹脂が多官能エポキシ樹脂である場合には、理論的にはこの反応(4)により新たな架橋が形成されうる。しかし実際には、UV硬化処理により重合体が形成され、系内での(b2)エポキシ樹脂の運動が制限されるため、新たな架橋は形成されにくい。
On the other hand, when a thermosetting accelerator (in particular, a basic component) is present in the system or on the surface of the adherend, subjecting the curable resin composition of the present invention to the above UV curing treatment and heat curing treatment results in (b2) Reaction (4) between the epoxy resin and the polyfunctional thiol compound causes ring-opening of the epoxy groups contained in the (b2) epoxy resin to generate hydroxyl groups. This hydroxyl group can contribute to improving the adhesive strength of the cured product to the adherend and thus preventing the cured product from peeling off from the adherend.
Further, when the (b2) epoxy resin is a monofunctional epoxy resin, the reaction (4) caps the thiol groups contained in the polyfunctional thiol compound, thereby suppressing the formation of new crosslinks. As a result, reaction (4) does not increase the crosslink density of the cured product. On the other hand, if (b2) the epoxy resin is a polyfunctional epoxy resin, the reaction (4) can theoretically form new crosslinks. However, in practice, UV curing treatment forms a polymer, which restricts the movement of the (b2) epoxy resin in the system, making it difficult to form new crosslinks.
 本発明の硬化性樹脂組成物は、所望であれば、上記(A)~(D)成分以外の任意成分、例えば以下に述べるものを必要に応じて含有してもよい。 If desired, the curable resin composition of the present invention may contain optional components other than the above components (A) to (D), such as those described below.
・(E)熱硬化促進剤
 本発明の硬化性樹脂組成物は、所望であれば、さらに(E)熱硬化促進剤を含んでいてもよい。熱硬化促進剤を含むことにより、本発明の硬化性樹脂組成物を低温条件下でも短時間で硬化させることができる。本発明において用いる熱硬化促進剤は、エポキシ樹脂の硬化触媒であれば特に限定されず、公知のものを使用することができる。本発明のある態様では、熱硬化促進剤は塩基性物質である。熱硬化促進剤は、潜在性硬化触媒であることが好ましい。潜在性硬化触媒とは、室温では不活性の状態で、加熱することにより活性化されて、硬化触媒として機能する化合物であり、例えば、常温で固体のイミダゾール化合物;アミン化合物とエポキシ化合物の反応生成物(アミン-エポキシアダクト系)等の固体分散型アミンアダクト系潜在性硬化触媒;アミン化合物とイソシアネート化合物または尿素化合物の反応生成物(尿素アダクト系)等が挙げられる。
• (E) Heat Curing Accelerator The curable resin composition of the present invention may further contain (E) a heat curing accelerator, if desired. By including a thermosetting accelerator, the curable resin composition of the present invention can be cured in a short time even under low temperature conditions. The thermosetting accelerator used in the present invention is not particularly limited as long as it is a curing catalyst for epoxy resins, and known ones can be used. In one aspect of the invention, the thermal accelerator is a basic substance. Preferably, the thermal curing accelerator is a latent curing catalyst. A latent curing catalyst is a compound that is inactive at room temperature and is activated by heating to function as a curing catalyst. For example, an imidazole compound that is solid at room temperature; a solid-dispersed amine adduct-based latent curing catalyst such as a compound (amine-epoxy adduct system); a reaction product of an amine compound and an isocyanate compound or a urea compound (urea adduct system);
 潜在性硬化触媒の市販品の代表的な例としては、アミン-エポキシアダクト系(アミンアダクト系)として「アミキュアPN-23」(商品名、味の素ファインテクノ株式会社製)、「アミキュアPN-40」(商品名、味の素ファインテクノ株式会社製)、「アミキュアPN-50」(商品名、味の素ファインテクノ株式会社製)「ノバキュアHX-3742」(商品名、旭化成株式会社製)、「ノバキュアHX-3721」(商品名、旭化成株式会社製)、「ノバキュアHXA9322HP」(商品名、旭化成株式会社製)、「ノバキュアHXA3922HP」(商品名、旭化成株式会社製)、「ノバキュアHXA3932HP」(商品名、旭化成株式会社製)、「ノバキュアHXA5945HP」(商品名、旭化成株式会社製)、「ノバキュアHXA9382HP」(商品名、旭化成株式会社製)、「フジキュアーFXR1121」(商品名、株式会社T&K TOKA製)などが挙げられ、尿素アダクト系として「フジキュアーFXE-1000」(商品名、株式会社T&K TOKA製)、「フジキュアーFXR-1030」(商品名、株式会社T&K TOKA製)等が挙げられるが、これらに限定されるものではない。熱硬化促進剤は、単独でも2種以上を併用してもよい。熱硬化促進剤としては、ポットライフ、硬化性の観点から、固体分散型アミンアダクト系潜在性硬化触媒が好ましい。熱硬化促進剤の量は、硬化性樹脂組成物の0.1~20質量%であることが好ましく、0.5~15質量%であることがより好ましく、1~10質量%であることがさらに好ましい。 Typical examples of commercially available latent curing catalysts include "Amicure PN-23" (trade name, manufactured by Ajinomoto Fine-Techno Co., Inc.) and "Amicure PN-40" as amine-epoxy adduct system (amine adduct system). (trade name, manufactured by Ajinomoto Fine-Techno Co., Ltd.), "Amicure PN-50" (trade name, manufactured by Ajinomoto Fine-Techno Co., Ltd.), "Novacure HX-3742" (trade name, manufactured by Asahi Kasei Corporation), "Novacure HX-3721" ” (trade name, manufactured by Asahi Kasei Corporation), “Novacure HXA9322HP” (trade name, manufactured by Asahi Kasei Corporation), “Novacure HXA3922HP” (trade name, manufactured by Asahi Kasei Corporation), “Novacure HXA3932HP” (trade name, Asahi Kasei Corporation ), "Novacure HXA5945HP" (trade name, manufactured by Asahi Kasei Corporation), "Novacure HXA9382HP" (trade name, manufactured by Asahi Kasei Corporation), "Fujicure FXR1121" (trade name, manufactured by T&K TOKA Co., Ltd.), etc. Urea adducts include "Fujicure FXE-1000" (trade name, manufactured by T&K TOKA Co., Ltd.), "Fujicure FXR-1030" (trade name, manufactured by T&K TOKA Co., Ltd.), but are not limited to these. Absent. The thermosetting accelerator may be used alone or in combination of two or more. From the viewpoint of pot life and curability, the heat curing accelerator is preferably a solid-dispersed amine adduct latent curing catalyst. The amount of the heat curing accelerator is preferably 0.1 to 20% by mass of the curable resin composition, more preferably 0.5 to 15% by mass, and 1 to 10% by mass. More preferred.
 なお熱硬化促進剤には、多官能エポキシ樹脂に分散された分散液の形態で提供されるものがある。そのような形態の熱硬化促進剤を使用する場合、それが分散している多官能エポキシ樹脂の量も、本発明の硬化性樹脂組成物における前記(b2)エポキシ樹脂の量に含まれることに注意すべきである。 Some thermosetting accelerators are provided in the form of a dispersion dispersed in a polyfunctional epoxy resin. When using such a form of thermosetting accelerator, the amount of the polyfunctional epoxy resin in which it is dispersed is also included in the amount of the (b2) epoxy resin in the curable resin composition of the present invention. Be careful.
・充填剤
 本発明の硬化性樹脂組成物は、所望であれば、充填剤、特にシリカフィラー及び/又はタルクフィラーを含んでいてもよい。充填剤は、本発明の硬化性樹脂組成物を硬化させることにより得られる硬化物の耐サーマルサイクル性を向上させるために添加することができる。充填剤の添加により耐サーマルサイクル性が向上するのは、硬化物の線膨張係数が減少する、即ちサーマルサイクルによる硬化物の膨張・収縮が抑制されるためである。また、硬化時の収縮も抑制される。
Fillers The curable resin composition of the present invention may contain fillers, particularly silica fillers and/or talc fillers, if desired. A filler can be added to improve the thermal cycle resistance of the cured product obtained by curing the curable resin composition of the present invention. The reason why the thermal cycle resistance is improved by adding a filler is that the coefficient of linear expansion of the cured product is reduced, that is, expansion and contraction of the cured product due to thermal cycles are suppressed. In addition, shrinkage during curing is also suppressed.
 充填剤を用いる場合、その平均粒径は0.1~10μmであることが好ましい。本明細書において、平均粒径とは、特に断りのない限り、ISO-13320(2009)に準拠してレーザー回折法によって測定した体積基準のメジアン径(d50)を指す。 When a filler is used, its average particle size is preferably 0.1 to 10 μm. As used herein, the average particle diameter refers to a volume-based median diameter (d50) measured by a laser diffraction method in accordance with ISO-13320 (2009), unless otherwise specified.
 充填剤を用いる場合、その含有量は、硬化性樹脂組成物の総質量に対し、1~70質量%であることが好ましく、5~60質量%であることがより好ましい。 When a filler is used, its content is preferably 1 to 70% by mass, more preferably 5 to 60% by mass, relative to the total mass of the curable resin composition.
 充填剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。シリカフィラー及びタルクフィラー以外の充填剤の具体的な例としては、アルミナフィラー、炭酸カルシウムフィラー、ポリテトラフルオロエチレン(PTFE)フィラー、シリコーンフィラー、アクリルフィラー、スチレンフィラー等が挙げられるが、これらに限定されない。
 また本発明において、充填剤は、表面処理されていてもよい。
A filler may be used independently and may be used in combination of 2 or more type. Specific examples of fillers other than silica fillers and talc fillers include alumina fillers, calcium carbonate fillers, polytetrafluoroethylene (PTFE) fillers, silicone fillers, acrylic fillers, styrene fillers, etc., but are limited to these. not.
Moreover, in the present invention, the filler may be surface-treated.
・安定剤
 本発明の硬化性樹脂組成物は、所望であれば、安定剤を含んでいてもよい。安定剤は、本発明の硬化性樹脂組成物に、その貯蔵安定性を向上させ、ポットライフを長くするために添加することができる。一液型接着剤の安定剤として公知の種々の安定剤を使用することができるが、貯蔵安定性を向上させる効果の高さから、液状ホウ酸エステル化合物、アルミキレート及び有機酸からなる群から選択される少なくとも1つが好ましい。
- Stabilizer The curable resin composition of the present invention may contain a stabilizer, if desired. A stabilizer can be added to the curable resin composition of the present invention in order to improve its storage stability and prolong its pot life. Various stabilizers known in the art can be used as stabilizers for one-liquid type adhesives. At least one selected is preferred.
 液状ホウ酸エステル化合物の例としては、2,2'-オキシビス(5,5'-ジメチル-1,3,2-オキサボリナン)、トリメチルボレート、トリエチルボレート、トリ-n-プロピルボレート、トリイソプロピルボレート、トリ-n-ブチルボレート、トリペンチルボレート、トリアリルボレート、トリヘキシルボレート、トリシクロヘキシルボレート、トリオクチルボレート、トリノニルボレート、トリデシルボレート、トリドデシルボレート、トリヘキサデシルボレート、トリオクタデシルボレート、トリス(2-エチルヘキシロキシ)ボラン、ビス(1,4,7,10-テトラオキサウンデシル)(1,4,7,10,13-ペンタオキサテトラデシル)(1,4,7-トリオキサウンデシル)ボラン、トリベンジルボレート、トリフェニルボレート、トリ-o-トリルボレート、トリ-m-トリルボレート、トリエタノールアミンボレート等が挙げられる。液状ホウ酸エステル化合物は常温(25℃)で液状であるため、配合物粘度を低く抑えられるため好ましい。アルミキレートとしては、例えばアルミキレートA(川研ファインケミカル株式会社製)を用いることができる。有機酸としては、例えばバルビツール酸を用いることができる。 Examples of liquid borate compounds include 2,2′-oxybis(5,5′-dimethyl-1,3,2-oxaborinane), trimethylborate, triethylborate, tri-n-propylborate, triisopropylborate, tri-n-butylborate, tripentylborate, triallylborate, trihexylborate, tricyclohexylborate, trioctylborate, trinonylborate, tridecylborate, tridodecylborate, trihexadecylborate, trioctadecylborate, tris( 2-ethylhexyloxy)borane, bis(1,4,7,10-tetraoxaundecyl)(1,4,7,10,13-pentoxatetradecyl)(1,4,7-trioxaundecyl) ) borane, tribenzylborate, triphenylborate, tri-o-tolylborate, tri-m-tolylborate, triethanolamineborate and the like. Since the liquid borate ester compound is liquid at room temperature (25° C.), it is preferable because the viscosity of the formulation can be kept low. As the aluminum chelate, for example, aluminum chelate A (manufactured by Kawaken Fine Chemicals Co., Ltd.) can be used. As an organic acid, for example, barbituric acid can be used.
 本発明の硬化性樹脂組成物が安定剤を含む場合、安定剤の量は、成分(A)~(D)の合計量100質量部に対して、0.01~10質量部であることが好ましく、0.05~5質量部であることがより好ましく、0.1~3質量部であることが更に好ましい。 When the curable resin composition of the present invention contains a stabilizer, the amount of the stabilizer is 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of components (A) to (D). It is preferably from 0.05 to 5 parts by mass, and even more preferably from 0.1 to 3 parts by mass.
・カップリング剤
 本発明の硬化性樹脂組成物は、所望であれば、カップリング剤を含んでいてもよい。カップリング剤、特にシランカップリング剤の添加は、接着強度向上の観点から好ましい。シランカップリング剤は、無機材料と化学結合しうる官能基と、有機材料と化学結合しうる官能基を含む、2種以上の異なる官能基をその分子中に有する有機ケイ素化合物である。一般に、無機材料と化学結合しうる官能基は加水分解性シリル基であり、アルコキシ基、特にメトキシ基及び/又はエトキシ基を含むシリル基が、この官能基として用いられている。有機材料と化学結合しうる官能基としては、ビニル基、エポキシ基、(メタ)アクリル基、スチリル基、非置換又は置換アミノ基、メルカプト基、ウレイド基、イソシアネート基等が用いられている。カップリング剤としては、前記の官能基を有する各種シランカップリング剤を用いることができる。シランカップリング剤の具体例としては、3-グリシドキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、ビニルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、8-グリシドキシオクチルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。これらのシランカップリング剤は、単独で用いても、2種以上を併用してもよい。
 なお、シランカップリング剤(上記充填剤の表面処理に用いられるものを含む)は、(メタ)アクリロイル基や、エポキシ基等の反応性官能基を有している場合がある。しかし、本発明において、シランカップリング剤は、成分(A)~(D)に含まれない。
- Coupling agent The curable resin composition of the present invention may contain a coupling agent, if desired. Addition of a coupling agent, particularly a silane coupling agent, is preferable from the viewpoint of improving adhesive strength. A silane coupling agent is an organosilicon compound having two or more different functional groups in its molecule, including a functional group that can chemically bond with an inorganic material and a functional group that can chemically bond with an organic material. In general, a functional group capable of chemically bonding with an inorganic material is a hydrolyzable silyl group, and an alkoxy group, especially a silyl group containing a methoxy group and/or an ethoxy group is used as this functional group. As functional groups capable of chemically bonding with organic materials, vinyl groups, epoxy groups, (meth)acrylic groups, styryl groups, unsubstituted or substituted amino groups, mercapto groups, ureido groups, isocyanate groups and the like are used. As the coupling agent, various silane coupling agents having the above functional groups can be used. Specific examples of silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, vinyltrimethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene). Propylamine, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 8-glycidoxyoctyl trimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, bis(triethoxysilylpropyl)tetrasulfide, 3-isocyanatopropyltriethoxysilane and the like. These silane coupling agents may be used alone or in combination of two or more.
In addition, the silane coupling agent (including those used for surface treatment of the filler) may have a reactive functional group such as (meth)acryloyl group or epoxy group. However, in the present invention, silane coupling agents are not included in components (A) to (D).
 本発明の硬化性樹脂組成物がカップリング剤を含む場合、カップリング剤の量は、接着強度向上の観点から、成分(A)~(D)の合計量100質量部に対して0.01質量部から10質量部であることが好ましく、0.1~5質量部であることがより好ましい。 When the curable resin composition of the present invention contains a coupling agent, the amount of the coupling agent is 0.01 with respect to 100 parts by mass of the total amount of components (A) to (D) from the viewpoint of improving adhesive strength. It is preferably from 10 parts by mass, more preferably from 0.1 to 5 parts by mass.
・揺変剤
 本発明の硬化性樹脂組成物は、所望であれば、揺変剤を含んでいてもよい。本発明において用いる揺変剤は特に限定されず、公知のものを使用することができる。本発明に用いられる揺変剤の例としては、シリカ等が挙げられるが、これらに限定されない。シリカは、天然シリカ(珪石、石英など)であってもよく、合成シリカであってもよい。合成シリカは、乾式法及び湿式法を含む任意の方法で合成されうる。
 また揺変剤は、表面処理剤(例えば、ポリジメチルシロキサン)で表面処理されていてもよい。本発明においては、揺変剤の少なくとも一部が表面処理されていることが好ましい。揺変剤の一次粒子の平均粒径は5~50nmであることが好ましい。
Thixotropic agent The curable resin composition of the present invention may contain a thixotropic agent, if desired. The thixotropic agent used in the present invention is not particularly limited, and known ones can be used. Examples of thixotropic agents for use in the present invention include, but are not limited to, silica and the like. Silica may be natural silica (silica stone, quartz, etc.) or synthetic silica. Synthetic silica can be synthesized by any method, including dry and wet methods.
The thixotropic agent may also be surface treated with a surface treatment agent (eg, polydimethylsiloxane). In the present invention, at least part of the thixotropic agent is preferably surface-treated. The average particle size of the primary particles of the thixotropic agent is preferably 5 to 50 nm.
 本発明の硬化性樹脂組成物は、揺変剤を、硬化性樹脂組成物の総質量に対して0.1~30質量%含むことが好ましく、1~20質量%含むことがより好ましく、1~15質量%含むことが特に好ましい。 The curable resin composition of the present invention preferably contains 0.1 to 30% by mass, more preferably 1 to 20% by mass, of the thixotropic agent relative to the total mass of the curable resin composition. It is particularly preferable to contain ∼15% by mass.
・その他の添加剤
 本発明の硬化性樹脂組成物には、所望であれば、本発明の趣旨を損なわない範囲で、その他の添加剤、例えばカーボンブラック、チタンブラック、イオントラップ剤、レベリング剤、酸化防止剤、消泡剤、粘度調整剤、難燃剤、着色剤、溶剤等を添加することができる。各添加剤の種類、添加量は常法通りである。
- Other additives The curable resin composition of the present invention may contain other additives, such as carbon black, titanium black, ion trapping agents, leveling agents, if desired, within the scope of the present invention. Antioxidants, antifoaming agents, viscosity modifiers, flame retardants, colorants, solvents and the like can be added. The type and amount of each additive are as per conventional methods.
 本発明の硬化性樹脂組成物を製造する方法は、特に限定されない。例えば、成分(A)~(D)及び所望であれば添加剤を、適切な混合機に同時に、または別々に導入して、必要であれば加熱により溶融しながら撹拌して混合し、均一な組成物とすることにより、本発明の硬化性樹脂組成物を得ることができる。この混合機は特に限定されないが、撹拌装置及び加熱装置を備えたライカイ機、ヘンシェルミキサー、3本ロールミル、ボールミル、プラネタリーミキサー、ビーズミル等を使用することができる。また、これら装置を適宜組み合わせて使用してもよい。 The method for producing the curable resin composition of the present invention is not particularly limited. For example, components (A) to (D) and, if desired, additives are simultaneously or separately introduced into a suitable mixer and mixed by stirring while melting by heating if necessary to obtain a homogeneous mixture. By forming a composition, the curable resin composition of the present invention can be obtained. The mixer is not particularly limited, but a Raikai machine equipped with a stirring device and a heating device, a Henschel mixer, a three-roll mill, a ball mill, a planetary mixer, a bead mill, or the like can be used. Also, these devices may be used in combination as appropriate.
 このようにして得られた硬化性樹脂組成物は、先に述べたように、
-紫外線(UV)照射によるUV硬化処理、及び場合により
-加熱による熱硬化処理
に付すことによって、硬化物に変換することができる。
The curable resin composition thus obtained is, as described above,
It can be converted into a cured product by subjecting it to a UV curing treatment by ultraviolet (UV) irradiation and optionally a thermal curing treatment by heating.
 前記UV硬化処理は、常温において、本発明の硬化性樹脂組成物に、十分な積算光量の紫外線を受光させることによって行うことができる。照射強度は、100~10000mW/cmであることが好ましく、1000~9000mW/cmであることがより好ましい。紫外線の波長は、315~450nmであることが好ましく、340~430nmであることがより好ましく、350~380nmであることが特に好ましい。紫外線の光源は特に限定されず、窒化ガリウム系UV-LED等を用いることができる。本発明の硬化性樹脂組成物が受光する紫外線の積算光量は、好ましくは200mJ/cm以上であり、より好ましくは500mJ/cm以上であり、さらに好ましくは1000mJ/cm以上であり、特に好ましくは2000mJ/cm以上である。積算光量の上限に特に制限はなく、本発明の趣旨を損なわない範囲で自由に設定することができる。紫外線の積算光量は、紫外線積算光量計および受光器等の当該分野で通常用いられる測定機器を用いて測定することができる。例えば、中心波長を365nmとした紫外線の波長領域(310~390nm)における積算光量は、紫外線積算光量計(ウシオ電機株式会社製、UIT-250)および受光器(ウシオ電機株式会社製、UVD-S365)を用いて測定することができる。 The UV curing treatment can be performed by causing the curable resin composition of the present invention to receive a sufficient cumulative amount of ultraviolet rays at room temperature. The irradiation intensity is preferably 100-10000 mW/cm 2 , more preferably 1000-9000 mW/cm 2 . The wavelength of the ultraviolet rays is preferably 315-450 nm, more preferably 340-430 nm, and particularly preferably 350-380 nm. The ultraviolet light source is not particularly limited, and a gallium nitride UV-LED or the like can be used. The integrated amount of ultraviolet light received by the curable resin composition of the present invention is preferably 200 mJ/cm 2 or more, more preferably 500 mJ/cm 2 or more, still more preferably 1000 mJ/cm 2 or more, and particularly It is preferably 2000 mJ/cm 2 or more. There is no particular limitation on the upper limit of the integrated amount of light, and it can be freely set within a range that does not impair the gist of the present invention. The integrated amount of ultraviolet light can be measured using a measuring instrument commonly used in the relevant field, such as an integrated ultraviolet light meter and a light receiver. For example, the integrated amount of light in the ultraviolet wavelength region (310 to 390 nm) with a center wavelength of 365 nm can be measured using an ultraviolet integrating photometer (Ushio Inc., UIT-250) and a light receiver (Ushio Inc., UVD-S365). ) can be measured using
 一方、熱硬化処理は、UV硬化処理後の本発明の硬化性樹脂組成物を、適切な条件下で加熱することによって、場合により行うことができる。この加熱は、60~120℃で行うことが好ましく、60~100℃で行うことがより好ましく、70~90℃で行うことが特に好ましい。またこの加熱は、5~180分間行うことが好ましく、10~120分間行うことがより好ましく、20~70分間行うことが特に好ましい。 On the other hand, heat curing treatment can optionally be performed by heating the curable resin composition of the present invention after UV curing treatment under appropriate conditions. This heating is preferably carried out at 60 to 120°C, more preferably 60 to 100°C, particularly preferably 70 to 90°C. This heating is preferably carried out for 5 to 180 minutes, more preferably for 10 to 120 minutes, particularly preferably for 20 to 70 minutes.
 本発明の硬化性樹脂組成物は、上記のようなUV硬化処理に付されると、従来の硬化物に比べて架橋密度が低く柔軟な硬化物を与える。そのため、本発明の硬化性樹脂組成物を用いて2つの部品(被着体)を接合すると、得られた組み立て物が、UV硬化後の温度の変化に伴って変形しても、本発明の硬化性樹脂組成物が与える硬化物は、被着体から剥離しにくい。 When the curable resin composition of the present invention is subjected to UV curing treatment as described above, it gives a flexible cured product with a lower crosslink density than conventional cured products. Therefore, when two parts (adherends) are joined using the curable resin composition of the present invention, even if the resulting assembly is deformed due to changes in temperature after UV curing, the The cured product provided by the curable resin composition is difficult to separate from the adherend.
 本発明の硬化性樹脂組成物は、例えば、種々の電子部品を含む半導体装置や、電子部品を構成する部品同士を接合するための接着剤、又はその原料として用いることができる。 The curable resin composition of the present invention can be used, for example, as a semiconductor device including various electronic parts, an adhesive for bonding parts constituting electronic parts, or a raw material thereof.
 本発明においては、本発明の硬化性樹脂組成物を含む接着剤も提供される。本発明の接着剤は、例えば、モジュールや電子部品などの固定に好適である。
 また、本発明においては、本発明の硬化性樹脂組成物又は接着剤を硬化させることにより得られる硬化物も提供される。本発明においてはさらに、本発明の硬化物を含む半導体装置も提供される。本発明においてはさらに、本発明の半導体装置を含むセンサモジュールも提供される。
The present invention also provides an adhesive containing the curable resin composition of the present invention. The adhesive of the present invention is suitable, for example, for fixing modules and electronic components.
The present invention also provides a cured product obtained by curing the curable resin composition or adhesive of the present invention. The present invention further provides a semiconductor device containing the cured product of the present invention. The present invention further provides a sensor module including the semiconductor device of the present invention.
 以下、本発明について、実施例により説明するが、本発明はこれらに限定されるものではない。なお以下の実施例において、部、%は、断りのない限り質量部、質量%を示す。 The present invention will be described below with reference to examples, but the present invention is not limited to these. In the following examples, parts and % indicate parts by weight and % by weight unless otherwise specified.
実施例1~36、比較例1~8
 表1に示す配合に従って、3本ロールミルを用いて所定の量の各成分を混合することにより、硬化性樹脂組成物を調製した。表1において、各成分の量は質量部(単位:g)で表されている。
Examples 1-36, Comparative Examples 1-8
A curable resin composition was prepared according to the formulation shown in Table 1 by mixing predetermined amounts of each component using a three-roll mill. In Table 1, the amount of each component is expressed in parts by mass (unit: g).
・(A)多官能(メタ)アクリレート化合物
 実施例及び比較例において、多官能(メタ)アクリレート化合物として用いた化合物は、以下の通りである。
 (A-1):ジメチロールトリシクロデカンジアクリレート(商品名:ライトアクリレートDCP-A、共栄社化学株式会社製、(メタ)アクリレート当量:152)
 (A-2):2-(2-アクリロイルオキシ-1,1-ジメチルエチル)-5-アクリロイルオキシメチル-5-エチル-1,3-ジオキサン(商標名:KAYARAD R-604、日本化薬株式会社製、(メタ)アクリレート当量:163)
 (A-3):ポリエーテル系ウレタンアクリレート(商標名:UN-6200、根上工業株式会社製、(メタ)アクリレート当量:3250)
 (A-4):ジトリメチロールプロパンテトラアクリレート(商品名:EBECRYL 140、ダイセル・オルネクス株式会社製、(メタ)アクリレート当量:117)
 (A-5):ジペンタエリスリトールヘキサアクリレートとジペンタエリスリトールペンタアクリレートの混合物(商品名:KAYARAD DPHA、日本化薬株式会社製、(メタ)アクリレート当量:87)
 (A-6):トリプロピレングリコールジアクリレート(商品名:NKエステルAPG-200、新中村化学工業株式会社製、(メタ)アクリレート当量:150)
- (A) Polyfunctional (meth)acrylate compound In the examples and comparative examples, the compounds used as the polyfunctional (meth)acrylate compounds are as follows.
(A-1): Dimethyloltricyclodecane diacrylate (trade name: Light Acrylate DCP-A, manufactured by Kyoeisha Chemical Co., Ltd., (meth)acrylate equivalent: 152)
(A-2): 2-(2-acryloyloxy-1,1-dimethylethyl)-5-acryloyloxymethyl-5-ethyl-1,3-dioxane (trade name: KAYARAD R-604, Nippon Kayaku Co., Ltd.) company, (meth)acrylate equivalent: 163)
(A-3): Polyether-based urethane acrylate (trade name: UN-6200, manufactured by Negami Industries Co., Ltd., (meth)acrylate equivalent: 3250)
(A-4): Ditrimethylolpropane tetraacrylate (trade name: EBECRYL 140, manufactured by Daicel-Ornex Co., Ltd., (meth)acrylate equivalent: 117)
(A-5): A mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate (trade name: KAYARAD DPHA, manufactured by Nippon Kayaku Co., Ltd., (meth)acrylate equivalent: 87)
(A-6): Tripropylene glycol diacrylate (trade name: NK Ester APG-200, manufactured by Shin-Nakamura Chemical Co., Ltd., (meth)acrylate equivalent: 150)
・(B)調節剤
(b1)単官能(メタ)アクリレート化合物
 実施例及び比較例において、単官能(メタ)アクリレート化合物として用いた化合物は、以下の通りである。
 (B-1):イソボルニルアクリレート(商品名:ライトアクリレートIBXA、共栄社化学株式会社製、(メタ)アクリレート当量:208)
 (B-2):フェノキシエチルアクリレート(商品名:ライトアクリレートPO-A、共栄社化学株式会社製、(メタ)アクリレート当量:192)
 (B-3):4-tert-ブチルシクロヘキシルアクリレート(商品名:TBCHA、KJケミカルズ株式会社製、(メタ)アクリレート当量:210)
 (B-4):ジシクロペンタニルアクリレート(商品名:FA513AS、昭和電工マテリアルズ株式会社製、(メタ)アクリレート当量:206)
 (B-5):3-フェノキシベンジルアクリレート(商品名:ライトアクリレートPOB-A、共栄社化学株式会社製、(メタ)アクリレート当量:254)
 (B-6):2-(o -フェニルフェノキシ)エチル(メタ)アクリレート(商品名:HRD-01、日触テクノファインケミカル株式会社製、(メタ)アクリレート当量:268)
 (B-7):アクリル酸イソノニル(商品名:AIN、株式会社日本触媒製、(メタ)アクリレート当量:198)
 (B-8):(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチルアクリレート(商品名:MEDOL-10、大阪有機化学工業株式会社製、(メタ)アクリレート当量:200) 
(B) Modifier (b1) Monofunctional (meth)acrylate compound In the examples and comparative examples, the compounds used as the monofunctional (meth)acrylate compounds are as follows.
(B-1): Isobornyl acrylate (trade name: Light Acrylate IBXA, manufactured by Kyoeisha Chemical Co., Ltd., (meth)acrylate equivalent: 208)
(B-2): Phenoxyethyl acrylate (trade name: Light Acrylate PO-A, manufactured by Kyoeisha Chemical Co., Ltd., (meth)acrylate equivalent: 192)
(B-3): 4-tert-butylcyclohexyl acrylate (trade name: TBCHA, manufactured by KJ Chemicals, (meth)acrylate equivalent: 210)
(B-4): Dicyclopentanyl acrylate (trade name: FA513AS, manufactured by Showa Denko Materials Co., Ltd., (meth)acrylate equivalent: 206)
(B-5): 3-phenoxybenzyl acrylate (trade name: Light Acrylate POB-A, manufactured by Kyoeisha Chemical Co., Ltd., (meth)acrylate equivalent: 254)
(B-6): 2-(o-phenylphenoxy)ethyl (meth)acrylate (trade name: HRD-01, Nissho Techno Fine Chemical Co., Ltd., (meth)acrylate equivalent: 268)
(B-7): isononyl acrylate (trade name: AIN, manufactured by Nippon Shokubai Co., Ltd., (meth)acrylate equivalent: 198)
(B-8): (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl acrylate (trade name: MEDOL-10, manufactured by Osaka Organic Chemical Industry Co., Ltd., (meth)acrylate equivalent: 200 )
(b2)反応性不飽和二重結合を有しないエポキシ樹脂
 実施例及び比較例において、反応性不飽和二重結合を有しないエポキシ樹脂として用いた化合物は、以下の通りである。
 (B-9):ビスフェノールA型エポキシ樹脂(商品名:JER834、株式会社三菱ケミカルホールディングス製、エポキシ当量:250)
 (B-10):トリ(エポキシペンチル)イソシアヌレート(商品名:TEPIC-VL、日産化学株式会社製、エポキシ当量:135)
 (B-11):ジグリシジル(ジメチロールシクロヘキサン)(商品名:CDMDG、昭和電工株式会社製、エポキシ当量:136)
(b2) Epoxy Resins Having No Reactive Unsaturated Double Bonds Compounds used as epoxy resins having no reactive unsaturated double bonds in Examples and Comparative Examples are as follows.
(B-9): Bisphenol A type epoxy resin (trade name: JER834, manufactured by Mitsubishi Chemical Holdings Corporation, epoxy equivalent: 250)
(B-10): Tri(epoxypentyl) isocyanurate (trade name: TEPIC-VL, manufactured by Nissan Chemical Industries, Ltd., epoxy equivalent: 135)
(B-11): diglycidyl (dimethylolcyclohexane) (trade name: CDMDG, manufactured by Showa Denko K.K., epoxy equivalent: 136)
・(B’)反応性不飽和二重結合を有するエポキシ樹脂
 実施例及び比較例において、反応性不飽和二重結合を有するエポキシ樹脂として用いた化合物は、以下の通りである。
 (B’-1):エポキシ化1,2-ポリブタジエン(商品名:BF1000、株式会社ADEKA製、エポキシ当量:168)
(B') Epoxy Resin Having Reactive Unsaturated Double Bonds Compounds used as epoxy resins having reactive unsaturated double bonds in Examples and Comparative Examples are as follows.
(B'-1): Epoxidized 1,2-polybutadiene (trade name: BF1000, manufactured by ADEKA Corporation, epoxy equivalent: 168)
・(C)多官能チオール化合物
 実施例及び比較例において、多官能チオール化合物として用いた化合物は、以下の通りである。
 (C-1):ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(商品名:PEMP、SC有機化学株式会社製、チオール当量:122)
 (C-2):ペンタエリスリトールトリプロパンチオール(商品名:PEPT、SC有機化学株式会社製、チオール当量:124)
 (C-3):1,3,4,6-テトラキス(2-メルカプトプロピル)グリコールウリル(商品名:C3 TS-G、四国化成工業株式会社製、チオール当量:114)
- (C) Polyfunctional thiol compound In the examples and comparative examples, the compounds used as the polyfunctional thiol compounds are as follows.
(C-1): Pentaerythritol tetrakis(3-mercaptopropionate) (trade name: PEMP, manufactured by SC Organic Chemical Co., Ltd., thiol equivalent: 122)
(C-2): Pentaerythritol trippropanethiol (trade name: PEPT, manufactured by SC Organic Chemical Co., Ltd., thiol equivalent: 124)
(C-3): 1,3,4,6-tetrakis(2-mercaptopropyl)glycoluril (trade name: C3 TS-G, manufactured by Shikoku Kasei Co., Ltd., thiol equivalent: 114)
・(D)光ラジカル開始剤
 実施例及び比較例において、光ラジカル開始剤として用いた化合物は、以下の通りである。
 (D-1):1-ヒドロキシシクロヘキシルフェニルケトン(商品名:OMNIRAD 184、IGM Resins B.V.製)
 (D-2):2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド(商品名:OMNIRAD TPO、IGM Resins B.V.製)
(D) Photoradical Initiator Compounds used as photoradical initiators in Examples and Comparative Examples are as follows.
(D-1): 1-hydroxycyclohexylphenyl ketone (trade name: OMNIRAD 184, manufactured by IGM Resins B.V.)
(D-2): 2,4,6-trimethylbenzoyldiphenylphosphine oxide (trade name: OMNIRAD TPO, manufactured by IGM Resins B.V.)
・(E)熱硬化促進剤
 実施例及び比較例において、熱硬化促進剤として用いた化合物は、以下の通りである。
 (E-1):アミンアダクト系潜在性硬化触媒1(商品名:フジキュアーFXR1121、株式会社T&K TOKA製)
 (E-2):アミンアダクト系潜在性硬化触媒2(商品名:アミキュアPN-23、味の素ファインテクノ株式会社製)
(E) Heat Curing Accelerator Compounds used as heat curing accelerators in Examples and Comparative Examples are as follows.
(E-1): Amine adduct latent curing catalyst 1 (trade name: Fujicure FXR1121, manufactured by T&K TOKA Co., Ltd.)
(E-2): Amine adduct-based latent curing catalyst 2 (trade name: Amicure PN-23, manufactured by Ajinomoto Fine-Techno Co., Inc.)
・(F)その他の成分
(f1)充填剤
 実施例及び比較例において、充填剤として用いた化合物は、以下の通りである。
 (F-1):合成球状シリカ(商品名:SE2200SEE、株式会社アドマテックス製)
 (F-2):微粒子タルク(商品名:5000PJ、松村産業株式会社製)
(f2)揺変剤
 実施例及び比較例において、揺変剤として用いた化合物は、以下の通りである。
 (F-3):フュームドシリカ(商品名:CAB-O-SIL(登録商標)TS720、キャボットコーポレーション製)
(f3)安定剤
 実施例及び比較例において、安定剤として用いた化合物は、以下の通りである。
 (F-4):ホウ酸トリイソプロピル(東京化成工業株式会社製)
 (F-5):N-ニトロソ-N-フェニルヒドロキシルアミンアルミニウム(富士フイルム和光純薬株式会社製)
 表中の「当量数計算」の記号は、以下を表す。
 (A+B)/(C):[(A)多官能(メタ)アクリレート化合物についての(メタ)アクリロイルオキシ基の総数+(B)調節剤についての(メタ)アクリロイルオキシ基の総数+(B)調節剤についてのエポキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]
 (A)/(C):[(A)多官能(メタ)アクリレート化合物についての(メタ)アクリロイルオキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]
 (B)/(C):[(B)調節剤についての(メタ)アクリロイルオキシ基の総数+(B)調節剤についてのエポキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]
 (b1)/(C):[(b1)単官能(メタ)アクリレート化合物についての(メタ)アクリロイルオキシ基の総数+(b1)単官能(メタ)アクリレート化合物についてのエポキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]
 (b2)/(C):[(b2)反応性不飽和二重結合を有しないエポキシ樹脂についてのエポキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]
· (F) Other Components (f1) Filler Compounds used as fillers in Examples and Comparative Examples are as follows.
(F-1): Synthetic spherical silica (trade name: SE2200SEE, manufactured by Admatechs Co., Ltd.)
(F-2): Fine particle talc (trade name: 5000PJ, manufactured by Matsumura Sangyo Co., Ltd.)
(f2) Thixotropic Agent Compounds used as thixotropic agents in Examples and Comparative Examples are as follows.
(F-3): Fumed silica (trade name: CAB-O-SIL (registered trademark) TS720, manufactured by Cabot Corporation)
(f3) Stabilizer Compounds used as stabilizers in Examples and Comparative Examples are as follows.
(F-4): Triisopropyl borate (manufactured by Tokyo Chemical Industry Co., Ltd.)
(F-5): N-nitroso-N-phenylhydroxylamine aluminum (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.)
The symbol of "equivalent number calculation" in the table represents the following.
(A+B)/(C): [(A) the total number of (meth)acryloyloxy groups for the polyfunctional (meth)acrylate compound + (B) the total number of (meth)acryloyloxy groups for the modifier + (B) adjustment Total number of epoxy groups for agent]/[Total number of thiol groups for (C) polyfunctional thiol compound]
(A)/(C): [(A) the total number of (meth)acryloyloxy groups for the polyfunctional (meth)acrylate compound]/[(C) the total number of thiol groups for the polyfunctional thiol compound]
(B)/(C): [total number of (meth)acryloyloxy groups for (B) modifier + total number of epoxy groups for (B) modifier]/[(C) thiol groups for polyfunctional thiol compound total number]
(b1)/(C): [total number of (meth)acryloyloxy groups for (b1) monofunctional (meth)acrylate compound + total number of epoxy groups for (b1) monofunctional (meth)acrylate compound]/[( C) Total number of thiol groups for polyfunctional thiol compound]
(b2)/(C): [(b2) the total number of epoxy groups for the epoxy resin having no reactive unsaturated double bond]/[(C) the total number of thiol groups for the polyfunctional thiol compound]
(硬化性樹脂組成物の硬化性(UV及び熱)の評価)
 2枚のガラス板に、シリコーン系離型剤を各々塗布した。これらのガラス板の一方の、離型剤が塗布された面に、直方体状の高さ0.3mmのポリイミド製スペーサー2つを乗せ、それらの間に硬化性樹脂組成物を塗布した。このガラス板に、他方のガラス板を、離型剤が塗布された面を下にして、硬化性樹脂組成物及びスペーサーが2枚のガラス板で挟まれるようにして乗せた。2枚のガラス板の間の硬化性樹脂組成物を、エクセリタス・テクノロジーズ社製UV LED照射装置AC475を用いて、積算光量2000mJ/cm(ウシオ電機株式会社製UIT-250(受光機UVD-365を接続))にて測定)で、UV照射によるUV硬化処理に付した。次いで、この硬化性樹脂組成物を、送風乾燥機中にて、80℃で60分間の加熱による熱硬化処理に付した。
 UV硬化処理完了時及びその後の熱硬化処理完了時に、硬化性樹脂組成物がその形状を維持したまま剥離しうる膜を形成していたか否かに基づいて、硬化性樹脂組成物のUV硬化性及び熱硬化性を各々評価した。表中の記号「〇」は、UV硬化処理完了時又はその後の熱硬化処理完了時に、硬化性樹脂組成物がその形状を維持したまま剥離しうる膜を形成していたことを示す。表中の記号「×」は、UV硬化処理完了時又はその後の熱硬化処理完了時に、硬化性樹脂組成物がその形状を維持したまま剥離しうる膜を形成していなかったことを示す。
(Evaluation of curability (UV and heat) of curable resin composition)
Two glass plates were each coated with a silicone release agent. Two rectangular parallelepiped spacers made of polyimide and having a height of 0.3 mm were placed on the surface of one of these glass plates coated with a release agent, and a curable resin composition was coated between them. The other glass plate was placed on this glass plate with the release agent-coated surface facing downward so that the curable resin composition and the spacer were sandwiched between the two glass plates. The curable resin composition between the two glass plates was irradiated with a UV LED irradiation device AC475 manufactured by Excelitas Technologies, Inc. with an integrated light amount of 2000 mJ/cm 2 (Ushio Inc. UIT-250 (connected to a receiver UVD-365). ))) and subjected to UV curing treatment by UV irradiation. Next, this curable resin composition was subjected to heat curing treatment by heating at 80° C. for 60 minutes in a blower dryer.
The UV curability of the curable resin composition is determined based on whether the curable resin composition forms a film that can be peeled off while maintaining its shape upon completion of the UV curing treatment and subsequent completion of the heat curing treatment. and thermosetting were evaluated respectively. The symbol "O" in the table indicates that the curable resin composition formed a film that could be peeled off while maintaining its shape upon completion of the UV curing treatment or subsequent thermal curing treatment. The symbol "x" in the table indicates that the curable resin composition did not form a peelable film while maintaining its shape upon completion of the UV curing treatment or subsequent thermal curing treatment.
(硬化性樹脂組成物の接着信頼性の評価)
 2.6cm×2cm×1.5mmのガラス板上に、卓上型液剤塗布ロボットJR2400N(株式会社サンエイテック製)を用いて、シリンジ(内径200μmのニードルを有するノズルが装着されている)に入れた硬化性樹脂組成物8mgを、1.2cm×0.9cmの四角形(一方の長辺の中央に1mmの隙間を空けて)となるように塗布した。2cm×7cm×2mmのポリブチレンテレフタレート(PBT)板に、直方体状の高さ0.15mmのポリイミド製スペーサー2つを乗せた。上記PBT板に、硬化性樹脂組成物が塗布された上記ガラス板を、硬化性樹脂組成物が塗布された面を下にして、硬化性樹脂組成物が上記2つのスペーサーの間に位置するようにし、硬化性樹脂組成物及びスペーサーがガラス板とPBT板で挟まれるようにして乗せた。上記PBT板とガラス板の間の硬化性樹脂組成物を、エクセリタス・テクノロジーズ社製UV LED照射装置AC475を用いて、積算光量2000mJ/cm(ウシオ電機株式会社製UIT-250(受光機UVD-365を接続)にて測定)で、UV照射によりUV硬化させた。次いで、上記スペーサーを除去し、UV硬化させた硬化性樹脂組成物を、送風乾燥機中80℃で60分間加熱した。得られた上記PBT板とガラス板の間の硬化物を、室温(20℃)に2時間放置した後、ガラス板及び/又はPBT板からの硬化物の剥離の程度を目視観察にて評価した。
 上で作成した硬化物をガラス板側から観察すると、ガラス板及びPBT板の両方に接着している硬化物は透明な領域として感知され、ガラス板及び/又はPBT板から剥離している硬化物は白色の領域として感知される。硬化物の剥離の程度を、透明な領域と白色の領域の合計面積に対する、白色の領域の面積のおよその比率(%)に基づき評価した。1つの硬化性樹脂組成物について、同様の試験を4回行った。結果を表1に示す。
 表中の記号「◎」は、4回の試験で上記比率がいずれも実質的に0%であったことを示す。表中の記号「○」は、4回の試験で上記比率がいずれも0%超、50%以下であったことを示す。表中の記号「△」は、4回の試験のうち、2回又は3回で上記比率が0%超、50%以下であり、1回又は2回で上記比率が50%超であったことを示す。表中の記号「×」は、4回の試験のうち、0回又は1回で上記比率が0%超、50%以下であり、3回又は4回で上記比率が50%超であったことを示す。また、表中の記号「-」は、UV硬化が不十分であった(硬化性樹脂組成物がその形状を維持したまま剥離しうる膜を形成していなかった)ために評価を行わなかったことを示す。
(Evaluation of adhesion reliability of curable resin composition)
On a glass plate of 2.6 cm × 2 cm × 1.5 mm, a tabletop liquid agent application robot JR2400N (manufactured by Sanei Tech Co., Ltd.) was used to put it in a syringe (equipped with a nozzle having a needle with an inner diameter of 200 μm). 8 mg of the curable resin composition was applied so as to form a 1.2 cm×0.9 cm square (with a 1 mm gap in the center of one long side). A 2 cm×7 cm×2 mm polybutylene terephthalate (PBT) plate was placed with two rectangular parallelepiped polyimide spacers having a height of 0.15 mm. The glass plate coated with the curable resin composition is placed on the PBT plate with the surface coated with the curable resin composition facing down so that the curable resin composition is positioned between the two spacers. Then, the curable resin composition and the spacer were put on the glass plate and the PBT plate so as to be sandwiched between the glass plate and the PBT plate. The curable resin composition between the PBT plate and the glass plate was irradiated with a UV LED irradiation device AC475 manufactured by Excelitas Technologies, Inc., with an integrated light amount of 2000 mJ / cm 2 (Ushio Inc. UIT-250 (receiver UVD-365). connection)) and cured by UV irradiation. Next, the spacer was removed, and the UV-cured curable resin composition was heated at 80° C. for 60 minutes in a blower dryer. The obtained cured product between the PBT plate and the glass plate was allowed to stand at room temperature (20° C.) for 2 hours, and then the degree of peeling of the cured product from the glass plate and/or the PBT plate was evaluated by visual observation.
When the cured product prepared above is observed from the glass plate side, the cured product adhering to both the glass plate and the PBT plate is perceived as a transparent area, and the cured product peeled off from the glass plate and/or the PBT plate. is perceived as a white area. The degree of peeling of the cured product was evaluated based on the approximate ratio (%) of the area of the white region to the total area of the clear region and the white region. A similar test was conducted four times for one curable resin composition. Table 1 shows the results.
The symbol "⊚" in the table indicates that the above ratio was substantially 0% in all four tests. The symbol "O" in the table indicates that the above ratio was more than 0% and 50% or less in all four tests. The symbol "△" in the table indicates that the ratio was more than 0% and 50% or less in 2 or 3 tests out of 4 tests, and the ratio was more than 50% in 1 or 2 tests. indicates that The symbol "x" in the table indicates that the ratio was more than 0% and 50% or less in 0 or 1 out of 4 tests, and the ratio was more than 50% in 3 or 4 times. indicates that In addition, the symbol "-" in the table was not evaluated because UV curing was insufficient (the curable resin composition did not form a film that could be peeled off while maintaining its shape). indicates that
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(結果の考察)
 表1より明らかなように、適切な量の(A)多官能(メタ)アクリレート化合物、(B)調節剤及び(C)多官能チオール化合物を含む、実施例1~36の硬化性樹脂組成物はいずれも、UV照射により短時間で硬化させることができる。また得られる硬化物は、その後加熱に続き冷却されても、被着体から剥離しにくい。なお、ポリ(アルキレングリコール)骨格を有する(A)多官能(メタ)アクリレート化合物を使用している実施例36の硬化性樹脂組成物の接着信頼性は、実施例1~35よりは劣るものの、比較例1~7よりは良好であった。
 一方、(A)多官能(メタ)アクリレート化合物、(B)調節剤及び(C)多官能チオール化合物のいずれかの含有量が不適切な比較例1~7の硬化性樹脂組成物は、UV照射によって硬化させることができず、したがってUV硬化後の接着性を測定することができない(比較例3~5、7)か、又は、UV照射により硬化させることはできるが、得られる硬化物が、その後加熱に続き冷却されると被着体から剥離してしまう(比較例1、2、6)ことがわかる。
 また、(B)調節剤の代わりに(B')反応性不飽和二重結合を有するエポキシ樹脂を含む比較例8の硬化性樹脂組成物は、UV照射により硬化させることはできるが、得られる硬化物が、その後加熱に続き冷却されると被着体から剥離してしまうことがわかる。
(Discussion of results)
As is clear from Table 1, the curable resin compositions of Examples 1 to 36 containing appropriate amounts of (A) a polyfunctional (meth)acrylate compound, (B) a modifier and (C) a polyfunctional thiol compound. can be cured in a short time by UV irradiation. Further, the resulting cured product is less likely to separate from the adherend even if it is cooled after being heated. Incidentally, the adhesion reliability of the curable resin composition of Example 36 using (A) a polyfunctional (meth) acrylate compound having a poly (alkylene glycol) skeleton is inferior to those of Examples 1 to 35, It was better than Comparative Examples 1-7.
On the other hand, the curable resin compositions of Comparative Examples 1 to 7, in which the content of any one of (A) the polyfunctional (meth)acrylate compound, (B) the modifier, and (C) the polyfunctional thiol compound is inappropriate, Either it cannot be cured by irradiation and therefore the adhesion after UV curing cannot be measured (Comparative Examples 3-5, 7) or it can be cured by UV irradiation but the resulting cured product is , and then peeled off from the adherend when cooled following heating (Comparative Examples 1, 2, 6).
Also, the curable resin composition of Comparative Example 8, which contains (B′) an epoxy resin having a reactive unsaturated double bond instead of (B) the modifier, can be cured by UV irradiation, but the It can be seen that the cured product is separated from the adherend when it is cooled following heating.
 本発明の硬化性樹脂組成物は、従来に比べて架橋密度が低く柔軟な硬化物を与える。本発明の硬化性樹脂組成物は、UV硬化後の上記加熱及び/又は冷却の過程において、周囲の温度が変化しても被着体から剥離しにくいので、センサモジュールの部品の接着等に非常に有用である。 The curable resin composition of the present invention gives a flexible cured product with a lower crosslink density than conventional ones. The curable resin composition of the present invention is not easily peeled off from the adherend even when the ambient temperature changes in the heating and/or cooling process described above after UV curing. useful for
 日本国特許出願2021-116458号(出願日:2021年7月14日)の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
 
The disclosure of Japanese Patent Application No. 2021-116458 (filing date: July 14, 2021) is incorporated herein by reference in its entirety.
All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.

Claims (13)

  1.  下記(A)~(D):
    (A)多官能(メタ)アクリレート化合物;
    (B)下記(b1)及び/又は(b2)を含む調節剤
     (b1)単官能(メタ)アクリレート化合物
     (b2)反応性不飽和二重結合を有しないエポキシ樹脂;
    (C)多官能チオール化合物;及び
    (D)光ラジカル開始剤
    を含み、
     [(A)多官能(メタ)アクリレート化合物についての(メタ)アクリロイルオキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]が0.4~0.8であり、
     [(B)調節剤についての(メタ)アクリロイルオキシ基の総数+(B)調節剤についてのエポキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]が0.05~0.65である、硬化性樹脂組成物。
    (A) to (D) below:
    (A) a polyfunctional (meth)acrylate compound;
    (B) a modifier comprising (b1) and/or (b2) below (b1) a monofunctional (meth)acrylate compound (b2) an epoxy resin having no reactive unsaturated double bonds;
    (C) a polyfunctional thiol compound; and (D) a photoradical initiator,
    [(A) the total number of (meth)acryloyloxy groups for the polyfunctional (meth)acrylate compound]/[(C) the total number of thiol groups for the polyfunctional thiol compound] is 0.4 to 0.8,
    [(B) the total number of (meth)acryloyloxy groups for the modifier + (B) the total number of epoxy groups for the modifier]/[(C) the total number of thiol groups for the polyfunctional thiol compound] is 0.05 to 0.65, a curable resin composition.
  2.  さらに(E)熱硬化促進剤を含む、請求項1記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, further comprising (E) a thermosetting accelerator.
  3.  [(A)多官能(メタ)アクリレート化合物についての(メタ)アクリロイルオキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]が0.5~0.7である、請求項1又は2記載の硬化性樹脂組成物。 [(A) the total number of (meth)acryloyloxy groups in the polyfunctional (meth)acrylate compound]/[(C) the total number of thiol groups in the polyfunctional thiol compound] is 0.5 to 0.7. 3. The curable resin composition according to Item 1 or 2.
  4.  (B)調節剤が、(b1)単官能(メタ)アクリレート化合物及び(b2)反応性不飽和二重結合を有しないエポキシ樹脂の両者を含む、請求項1~3のいずれか一項記載の硬化性樹脂組成物。 (B) The modifier comprises both (b1) a monofunctional (meth)acrylate compound and (b2) an epoxy resin without reactive unsaturated double bonds. A curable resin composition.
  5.  (C)多官能チオール化合物が3個以上のチオール基を有する、請求項1~4のいずれか一項記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 4, wherein (C) the polyfunctional thiol compound has 3 or more thiol groups.
  6.  (C)多官能チオール化合物が3官能チオール化合物及び/又は4官能チオール化合物を含む、請求項1~5のいずれか一項記載の硬化性樹脂組成物。 (C) The curable resin composition according to any one of claims 1 to 5, wherein the polyfunctional thiol compound contains a trifunctional thiol compound and/or a tetrafunctional thiol compound.
  7.  (A)多官能(メタ)アクリレート化合物が2官能(メタ)アクリレート化合物を含む、請求項1~6のいずれか一項記載の硬化性樹脂組成物。 (A) The curable resin composition according to any one of claims 1 to 6, wherein the polyfunctional (meth)acrylate compound contains a difunctional (meth)acrylate compound.
  8.  (B)調節剤が実質的に(b1)単官能(メタ)アクリレート化合物からなり、[(B)調節剤についての(メタ)アクリロイルオキシ基の総数+(B)調節剤についてのエポキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]が0.2~0.5である、請求項1~7のいずれか1項記載の硬化性樹脂組成物。 (B) the modifier consists essentially of (b1) a monofunctional (meth)acrylate compound and [(B) the total number of (meth)acryloyloxy groups for the modifier + the total number of epoxy groups for (B) the modifier ]/[(C) the total number of thiol groups for the polyfunctional thiol compound] is 0.2 to 0.5, the curable resin composition according to any one of claims 1 to 7.
  9.  (B)調節剤が実質的に(b2)エポキシ樹脂からなり、[(B)調節剤についての(メタ)アクリロイルオキシ基の総数+(B)調節剤についてのエポキシ基の総数]/[(C)多官能チオール化合物についてのチオール基の総数]が0.2~0.5である、請求項1~7のいずれか1項記載の硬化性樹脂組成物。 (B) the modifier consists essentially of (b2) an epoxy resin, and [total number of (meth)acryloyloxy groups for (B) modifier + total number of epoxy groups for (B) modifier]/[(C ) the total number of thiol groups in the polyfunctional thiol compound] is 0.2 to 0.5, the curable resin composition according to any one of claims 1 to 7.
  10.  請求項1~9のいずれか1項記載の硬化性樹脂組成物を含む接着剤。 An adhesive containing the curable resin composition according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか1項記載の硬化性樹脂組成物、又は請求項10に記載の接着剤を硬化させることにより得られうる硬化物。 A cured product obtainable by curing the curable resin composition according to any one of claims 1 to 9 or the adhesive according to claim 10.
  12.  請求項11記載の硬化物を含む半導体装置。 A semiconductor device comprising the cured product according to claim 11.
  13.  請求項11記載の硬化物を含むセンサモジュール。 A sensor module containing the cured product according to claim 11.
PCT/JP2022/027059 2021-07-14 2022-07-08 Curable resin composition WO2023286699A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247004296A KR20240032947A (en) 2021-07-14 2022-07-08 Curable Resin Composition
JP2023534768A JPWO2023286699A1 (en) 2021-07-14 2022-07-08
CN202280046568.XA CN117616067A (en) 2021-07-14 2022-07-08 Curable resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-116458 2021-07-14
JP2021116458 2021-07-14

Publications (1)

Publication Number Publication Date
WO2023286699A1 true WO2023286699A1 (en) 2023-01-19

Family

ID=84919389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027059 WO2023286699A1 (en) 2021-07-14 2022-07-08 Curable resin composition

Country Status (5)

Country Link
JP (1) JPWO2023286699A1 (en)
KR (1) KR20240032947A (en)
CN (1) CN117616067A (en)
TW (1) TW202311430A (en)
WO (1) WO2023286699A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302759A (en) * 2002-04-10 2003-10-24 Toagosei Co Ltd Photosensitive pattern forming curable resin composition, color filter and liquid crystal panel
WO2012147712A1 (en) * 2011-04-28 2012-11-01 三菱瓦斯化学株式会社 Curable composition and adhesive for optical applications
WO2012164869A1 (en) * 2011-05-31 2012-12-06 日油株式会社 Curable resin composition
JP2013043902A (en) * 2011-08-22 2013-03-04 Nippon Shokubai Co Ltd Curable resin composition and cured product
JP2014141621A (en) * 2013-01-25 2014-08-07 Toyo Ink Sc Holdings Co Ltd Ultraviolet-curable composition
WO2016114268A1 (en) * 2015-01-13 2016-07-21 日油株式会社 Curable resin composition
JP2017210475A (en) * 2016-05-23 2017-11-30 株式会社サクラクレパス Photocurable artificial nail compositions
WO2018155013A1 (en) * 2017-02-22 2018-08-30 日産化学工業株式会社 Photocurable composition for imprinting
JP2021075698A (en) * 2019-10-31 2021-05-20 味の素株式会社 Curable composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4976575B1 (en) 2011-07-07 2012-07-18 ナミックス株式会社 Resin composition
JP7070552B2 (en) 2017-03-29 2022-05-18 味の素株式会社 Curable compositions and structures

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302759A (en) * 2002-04-10 2003-10-24 Toagosei Co Ltd Photosensitive pattern forming curable resin composition, color filter and liquid crystal panel
WO2012147712A1 (en) * 2011-04-28 2012-11-01 三菱瓦斯化学株式会社 Curable composition and adhesive for optical applications
WO2012164869A1 (en) * 2011-05-31 2012-12-06 日油株式会社 Curable resin composition
JP2013043902A (en) * 2011-08-22 2013-03-04 Nippon Shokubai Co Ltd Curable resin composition and cured product
JP2014141621A (en) * 2013-01-25 2014-08-07 Toyo Ink Sc Holdings Co Ltd Ultraviolet-curable composition
WO2016114268A1 (en) * 2015-01-13 2016-07-21 日油株式会社 Curable resin composition
JP2017210475A (en) * 2016-05-23 2017-11-30 株式会社サクラクレパス Photocurable artificial nail compositions
WO2018155013A1 (en) * 2017-02-22 2018-08-30 日産化学工業株式会社 Photocurable composition for imprinting
JP2021075698A (en) * 2019-10-31 2021-05-20 味の素株式会社 Curable composition

Also Published As

Publication number Publication date
KR20240032947A (en) 2024-03-12
CN117616067A (en) 2024-02-27
TW202311430A (en) 2023-03-16
JPWO2023286699A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
KR101806152B1 (en) Novel thermal radical generator, method for producing the same, liquid crystal sealing agent, and liquid crystal display cell
TWI826714B (en) Epoxy resin composition
JP2008001867A (en) Curable resin composition
EP4317234A1 (en) Curable resin composition
WO2021033325A1 (en) Epoxy resin composition
JP6810659B2 (en) Resin composition for electronic components
KR102593694B1 (en) Sheet for forming curable resin film and first protective film
JP7266881B2 (en) Photocurable and thermosetting resin compositions and their cured products, adhesives, semiconductor devices, and electronic components
WO2023286700A1 (en) Curable resin composition
JP5996176B2 (en) Heat resistant adhesive
KR102538766B1 (en) Curable resin film and sheet for forming the first protective film
KR102000328B1 (en) Curable composition for hard disk drive
WO2023286699A1 (en) Curable resin composition
WO2023286701A1 (en) Curable resin composition
JP6620273B1 (en) Epoxy resin composition
JP6880809B2 (en) Composition for active energy ray-curable encapsulant
JP7217565B1 (en) Resin compositions, adhesives, sealing materials, cured products, semiconductor devices and electronic components
WO2023167014A1 (en) Resin composition, adhesive, sealing material, cured product, semiconductor device, and electronic parts
JP7217566B1 (en) Resin compositions, adhesives, sealing materials, cured products and semiconductor devices
WO2024090259A1 (en) Resin composition, adhesive, sealing material, cured product, semiconductor device, and electronic component
JP6651161B1 (en) Epoxy resin composition
JP2024064648A (en) Resin composition, adhesive, sealing material, cured product, semiconductor device and electronic component
WO2023021891A1 (en) Ultraviolet-curable composition
WO2023032700A1 (en) Curable composition and adhesive
JP2023039162A (en) Curable resin composition and cured material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842043

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023534768

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247004296

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247004296

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE