WO2023021891A1 - Ultraviolet-curable composition - Google Patents

Ultraviolet-curable composition Download PDF

Info

Publication number
WO2023021891A1
WO2023021891A1 PCT/JP2022/027585 JP2022027585W WO2023021891A1 WO 2023021891 A1 WO2023021891 A1 WO 2023021891A1 JP 2022027585 W JP2022027585 W JP 2022027585W WO 2023021891 A1 WO2023021891 A1 WO 2023021891A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
component
ultraviolet curable
composition
group
Prior art date
Application number
PCT/JP2022/027585
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 富田
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2023021891A1 publication Critical patent/WO2023021891A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to an ultraviolet curable composition.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2017-78122.
  • Patent Document 1 describes a thermally conductive filler in which a refractive index control layer is provided on the surface of thermally conductive particles, and a resin composition containing the filler (claims 1 and 6). Since the object has both transparency and thermal conductivity, it is said that it leads to solving the heat problem of transparent members such as around LEDs and around displays (Paragraph 0006).
  • thermoplastic resins, thermosetting resins such as epoxy resins, rubber resins such as silicone resins, and the like as resins in the resin composition (paragraph 0027). (Paragraphs 0037 to 0039).
  • Patent Document 2 International Publication No. 2005/044875
  • a thermally conductive inorganic filler a thermally conductive inorganic filler
  • a photopolymerization initiator a thermal polymerization initiator
  • a thermal polymerization initiator in combination with a photopolymerization initiator, a sufficiently high polymerization rate can be achieved by light irradiation and the heat generated at that time without actively heating the polymerizable composition. (page 3, lines 3-6).
  • the present invention provides a composition that has excellent photocuring properties and that can stably form a heat radiating member in a desired region.
  • the following UV-curable composition, resin film, and heat-dissipating member are provided.
  • Thermal conductivity density x specific heat x thermal diffusivity (100)
  • a resin film comprising a cured product of the ultraviolet-curable composition according to any one of [1] to [11].
  • a heat dissipating member comprising a cured product of the ultraviolet curable composition according to any one of [1] to [11].
  • composition that has excellent photocuring properties and that can stably form a heat-dissipating member in a desired region.
  • each component may be used alone or in combination of two or more.
  • " ⁇ " representing a numerical range represents above and below, including both the upper limit and the lower limit.
  • the ultraviolet curable composition (hereinafter also simply referred to as the “composition” as appropriate) is specifically an ultraviolet curable thermally conductive composition, comprising the following components (A) and (B) including.
  • (B) Filler The average value of parallel light transmittance at a wavelength of 380 to 780 nm of the cured film (thickness 100 ⁇ m) of the ultraviolet curable composition is 40% or more, and the ultraviolet curable composition is cured.
  • the thermal conductivity obtained by the following formula (100) is 0.25 W / m K or more, and an ultraviolet curable composition measured at 25 ° C. using an E-type viscometer The viscosity of the material is 0.1 Pa ⁇ s or more and 1000 Pa ⁇ s or less.
  • Thermal conductivity density x specific heat x thermal diffusivity (100)
  • the composition contains components (A) and (B), and the parallel light transmittance, thermal conductivity and viscosity are each controlled within specific ranges, so that the composition has excellent photocuring properties.
  • the heat dissipation member can be stably formed in a desired region.
  • the average value of parallel light transmittance at a wavelength of 380 to 780 nm of a cured film (thickness of 100 ⁇ m) of the composition is 40% or more, preferably 50% or more, from the viewpoint of improving the photocuring properties of the composition. Preferably it is 60% or more. Further, the upper limit of the average value of the parallel light transmittance is specifically 100% or less, and may be, for example, 80% or less.
  • the above-mentioned cured film is obtained under light irradiation conditions of UV-LED of wavelength 395 nm, illuminance of 1000 mW/cm 2 and integrated light amount of 3000 mJ/cm 2 , and has a thickness of 100 ⁇ m.
  • the parallel light transmittance is the average transmittance of the cured film at 380 to 780 nm measured with an ultraviolet-visible spectrophotometer.
  • the thermal conductivity of the cured film (thickness 100 ⁇ m) of the composition is 0.25 W/m ⁇ K or more, preferably 0.30 W/m ⁇ K, from the viewpoint of improving the heat dissipation characteristics of the member obtained using the composition. m ⁇ K or more, more preferably 0.40 W/m ⁇ K or more, still more preferably 0.50 W/m ⁇ K or more, still more preferably 0.60 W/m ⁇ K or more.
  • the thermal conductivity of the composition is preferably 5.0 W / m K or less.
  • the cured film is obtained by photocuring with a UV-LED having a wavelength of 395 nm under the conditions of an illuminance of 1000 mW/cm 2 and an integrated amount of light of 3000 mJ/cm 2 , and has a thickness of 100 ⁇ m.
  • the density, specific heat and thermal diffusivity of the resulting cured film are measured, and the thermal conductivity is determined by the following formula (100) based on the measured values.
  • Thermal conductivity density x specific heat x thermal diffusivity (100)
  • the viscosity of the composition is 0.1 Pa ⁇ s or more, preferably 0.5 Pa ⁇ s or more, more preferably 1.0 Pa ⁇ s or more, from the viewpoint of suppressing sedimentation of the filler in the formulation. From the viewpoint of workability of the formulation, the viscosity of the composition is 1000 Pa ⁇ s or less, preferably 500 Pa ⁇ s or less, more preferably 300 Pa ⁇ s or less, and still more preferably 150 Pa ⁇ s or less.
  • the viscosity of the composition is measured with an E-type viscometer using a 3° ⁇ R9.7 cone at 25° C. at the following rotation speeds. Viscosity less than 1 Pa s: 100 rpm Viscosity 1 Pa s or more and less than 100 Pa s: 20 rpm Viscosity of 100 Pa s or more: 5 rpm
  • Component (A) is a polymerizable compound.
  • Specific examples of component (A) include compounds having cationic polymerizable functional groups such as epoxy groups, oxetanyl groups, and vinyl ether groups (hereinafter also referred to as “cationically polymerizable compounds”); and (meth)acryloyl groups , a compound having a radically polymerizable functional group such as a vinyl group (hereinafter also referred to as a “radically polymerizable compound”).
  • the cationically polymerizable compound preferably contains at least one selected from the group consisting of epoxy compounds and oxetane compounds, more preferably epoxy compounds, and still more preferably epoxy compounds.
  • Epoxy compounds are compounds having one or more epoxy groups in one molecule, and specific examples include monoepoxy compounds, difunctional epoxy compounds, and trifunctional or higher epoxy compounds. From the viewpoint of improving curability, the epoxy compound includes a bifunctional or higher functional epoxy compound, more preferably a bifunctional epoxy compound.
  • the epoxy compound preferably contains at least one selected from the group consisting of alicyclic epoxy compounds and aromatic epoxy compounds.
  • An alicyclic epoxy compound is specifically a compound having one or more alicyclic hydrocarbon structures and one or more epoxy groups in the molecule.
  • the alicyclic epoxy compound may have one epoxy group or two or more epoxy groups in the molecule, but from the viewpoint of further enhancing the curability of the composition, it preferably contains two or more epoxy groups.
  • alicyclic epoxy compounds include compounds containing a cycloalkene oxide structure such as an epoxycyclohexane structure, and compounds in which an epoxy group is bonded directly or via a hydrocarbon group to a cycloaliphatic hydrocarbon.
  • the alicyclic epoxy compound is preferably a compound having a cycloalkene oxide structure.
  • the cycloalkene oxide structure is a structure obtained by epoxidizing a cycloalkene with an oxidizing agent such as a peroxide, and is composed of two adjacent carbon atoms and an oxygen atom that constitute an aliphatic ring. It is an epoxy group.
  • Cycloalkene oxide is, for example, cyclohexene oxide, cyclopentene oxide, preferably cyclohexene oxide.
  • the number of cycloalkene oxide structures in one molecule of the alicyclic epoxy compound having a cycloalkene oxide structure may be one, or two or more. From the viewpoint of enhancing the transparency, heat resistance, light resistance, etc. of the cured product, the number of cycloalkene oxide structures in one molecule is preferably two or more.
  • Examples of alicyclic epoxy compounds having a cycloalkene oxide structure include compounds represented by the following general formula (1).
  • X is a single bond or a linking group.
  • Linking groups are, for example, divalent hydrocarbon groups, carbonyl groups, ether groups (ether bonds), thioether groups (thioether bonds), ester groups (ester bonds), carbonate groups (carbonate bonds) and amide groups (amide bonds). and groups in which a plurality of these are linked.
  • divalent hydrocarbon groups examples include alkylene groups having 1 to 18 carbon atoms and divalent alicyclic hydrocarbon groups.
  • specific examples of the alkylene group having 1 to 18 carbon atoms include methylene group, methylmethylene group, dimethylmethylene group, ethylene group, propylene group and trimethylene group.
  • divalent alicyclic hydrocarbon groups include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3 divalent cycloalkylene groups (including cycloalkylidene groups) such as -cyclohexylene group, 1,4-cyclohexylene group and cyclohexylidene group.
  • X is preferably a single bond or a linking group having an oxygen atom, more preferably a single bond.
  • the linking group having an oxygen atom is preferably -CO- (carbonyl group), -O-CO-O- (carbonate group), -COO- (ester group), -O- (ether group ), -CONH- (amide group), a group in which a plurality of these groups are linked, or a group in which one or more of these groups are linked to one or more divalent hydrocarbon groups, more preferably -CO 2 It is a CH 2 - group.
  • l represents an integer of 1-10
  • m represents an integer of 1-30.
  • R represents an alkylene group having 1 to 8 carbon atoms, preferably an alkylene group having 1 to 3 carbon atoms such as methylene, ethylene, propylene and isopropylene.
  • n1 and n2 each independently represent an integer of 1 to 30;
  • alicyclic epoxy compounds having a cycloalkene oxide structure include 3′,4′-epoxycyclohexylmethyl, 3,4-epoxycyclohexane carboxylate (eg Celloxide (CEL) 2021P, manufactured by Daicel), and ⁇ -caprolactone modification.
  • 3′,4′-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate (Celoxide 2081, manufactured by Daicel Corporation) and (3,3′,4,4′-diepoxy)bicyclohexyl (Celoxide 8010, manufactured by Daicel Corporation) are mentioned.
  • aromatic epoxy compounds include glycidyl compounds having aromatic ring conjugated systems such as bisphenol skeletons, fluorene skeletons, biphenyl skeletons, naphthalene rings, and anthracene rings.
  • the aromatic epoxy compound is preferably a compound having a bisphenol skeleton, more preferably a bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin and bisphenol S type epoxy resin. and more preferably at least one of bisphenol F type epoxy resin (eg YL983U, manufactured by Mitsui Chemicals) and bisphenol E type epoxy resin (eg R1710, manufactured by Printec).
  • Aromatic epoxy compounds having a bisphenol skeleton can be obtained, for example, by a condensation reaction between bisphenols such as bisphenol A, bisphenol E, bisphenol F, bisphenol S and fluorene bisphenol and epihalohydrin.
  • the oxetane compound is a compound having one or more oxetanyl groups in one molecule, and specific examples thereof include monooxetane compounds, bifunctional oxetane compounds, and trifunctional or higher oxetane compounds. From the viewpoint of improving curability, the oxetane compound is preferably a bifunctional oxetane compound.
  • the oxetane compound is preferably one or more bifunctional oxetane compounds selected from the group consisting of compounds represented by the following general formula (5) or (6).
  • R 5 is independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, an aryl group, an aralkyl group, a furyl group or a thienyl group, preferably is an alkyl group having 1 to 6 carbon atoms.
  • R6 is a divalent organic residue.
  • the alkyl group having 1 to 6 carbon atoms specifically includes a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group and a cyclohexyl group.
  • aryl groups include phenyl, naphthyl, tolyl, and xylyl groups.
  • Specific examples of the aralkyl group include a benzyl group and a phenethyl group.
  • R 6 examples include an alkylene group, a polyoxyalkylene group, a phenylene group, a xylylene group, and structures represented by the following general formulas.
  • R 3 is an oxygen atom, a sulfur atom, —CH 2 —, —NH—, —SO—, —SO 2 —, —C(CF 3 ) 2 — or —C(CH 3 ) 2 —.
  • R 4 is an alkylene or arylene group having 1 to 6 carbon atoms. Specific examples of the alkylene group having 1 to 6 carbon atoms include methylene group, ethylene group, propylene group, butylene group and cyclohexylene group.
  • the polyoxyalkylene group preferably has 4 to 30 carbon atoms, more preferably 4 to 8 carbon atoms.
  • Specific examples of polyoxyalkylene groups include polyoxyethylene groups and polyoxypropylene groups.
  • the oxetane compound is preferably an oxetane compound represented by general formula (6), more preferably 3-ethyl-3 ⁇ [(3-ethyloxetan-3-yl)methoxy]methyl ⁇ .
  • Oxetane for example, OXT-221 (manufactured by Toagosei Co., Ltd.)).
  • radically polymerizable functional groups include one or more groups selected from the group consisting of (meth)acryloyl groups and vinyl groups.
  • the radically polymerizable functional group preferably contains a compound containing a (meth)acryloyl group (also referred to herein as a "(meth)acrylic compound"), more preferably is a (meth)acrylic compound.
  • a (meth)acryloyl group means at least one of an acryloyl group and a methacryloyl group.
  • (Meth)acrylic means at least one of acrylic and methacrylic.
  • (Meth)acrylate means at least one of acrylate and methacrylate.
  • the (meth)acrylic compound is a compound having one or more (meth)acryloyl groups in one molecule, and specifically includes a mono(meth)acrylic compound, a di(meth)acrylic compound, a (Meth)acrylic compounds are mentioned. From the viewpoint of improving curability, the (meth)acrylic compound includes bifunctional (meth)acrylic compounds, more preferably di(meth)acrylic compounds.
  • Classification based on the hydrocarbon structure in (meth)acrylic compounds includes (meth)acrylic compounds having a chain structure; and (meth)acrylic compounds having a cyclic structure.
  • the chain structure may be a straight chain structure or a branched structure.
  • the number of carbon atoms in the chain structure is, for example, 1 or more, preferably 2 or more, more preferably 4 or more, from the viewpoint of monomer availability. From the viewpoint of improving heat resistance, the number of carbon atoms in the shaped structure is preferably 20 or less, more preferably 14 or less.
  • (meth)acrylic compounds having a chain structure include trifunctional or higher (meth)acrylic compounds.
  • the tri- or higher functional (meth)acrylic compound is preferably a trifunctional (meth)acrylic compound such as trimethylolpropane triacrylate (eg Light Acrylate TMP-A, manufactured by Kyoeisha Chemical Co., Ltd.).
  • Examples of the cyclic structure in the (meth)acrylic compound having a cyclic structure include an alicyclic hydrocarbon structure and an aromatic hydrocarbon structure.
  • the cyclic structure may be a monocyclic structure or a polycyclic structure such as a condensed cyclic hydrocarbon structure or a bridged cyclic hydrocarbon group structure.
  • the (meth)acrylic compound preferably has a cyclic hydrocarbon skeleton in its molecular structure.
  • cyclic hydrocarbon skeleton examples include an alicyclic hydrocarbon skeleton and an aromatic hydrocarbon skeleton.
  • the hydrocarbon skeleton is preferably an aromatic hydrocarbon skeleton, more preferably at least one selected from the group consisting of a bisphenol skeleton and a fluorene skeleton.
  • (meth)acrylic compounds having a bisphenol skeleton in the molecular structure include compounds having an alkylene oxide-modified bisphenol skeleton, preferably EO-modified bisphenol A diacrylate, EO-modified bisphenol A dimethacrylate, One or more compounds selected from the group consisting of PO-modified bisphenol A diacrylate, PO-modified bisphenol A methacrylate, propoxylated ethoxylated bisphenol A diacrylate and propoxylated ethoxylated bisphenol A dimethacrylate.
  • the compound having a bisphenol skeleton modified with alkylene oxide may be represented by the following general formula (7).
  • R 7 and R 8 are each independently a hydrogen atom or a methyl group.
  • R 9 and R 10 are each independently a hydrogen atom, a methyl group or an aryl group.
  • p and q are each independently a number of 1 or more and 20 or less.
  • R 7 and R 8 are preferably hydrogen atoms, and R 9 and R 10 are methyl groups, from the viewpoint of improving curability.
  • p and q are each independently preferably a number of 1 or more and 10 or less, more preferably a number of 1 or more and 5 or less, and still more preferably 1 or more and 3 It is below. From the same point of view, p+q is preferably 1 or more, more preferably 2 or more, preferably 20 or less, more preferably 10 or less, and still more preferably 6 or less.
  • Examples of commercially available products of the compound represented by the general formula (7) include NK ester A-BPE-2.2, ABE-300, A-BPE-4, A-BPE-10, A-BPE-20, A -BPP-3 (manufactured by Shin-Nakamura Chemical Co., Ltd.), light acrylate BP-4EAL and BP-4PA (manufactured by Kyoeisha Chemical Co., Ltd.).
  • the (meth)acrylic compound having a fluorene skeleton specifically, a (meth)acrylate having a fluorene skeleton such as OGSOL EA-0200, EA-0300 (manufactured by Osaka Gas Chemical Co., Ltd.); OGSOL Epoxy (meth)acrylates having a fluorene skeleton such as GA-5060P and GA-2800 (manufactured by Osaka Gas Chemical Co., Ltd.) can be mentioned.
  • (meth)acrylic compounds having other aromatic skeletons specifically, ethoxylated-o-phenylphenol acrylate (a compound represented by the following formula (8), such as A-LEN-10, Shin-Nakamura Kagaku Kogyo Co., Ltd.), compounds represented by the following formula (9) (eg POB-A, manufactured by Kyoeisha Chemical Co., Ltd.), benzyl acrylate (compounds represented by the following formula (10), such as Viscoat #160, Osaka Organic Chemical manufactured by Kogyosha).
  • the content of component (A) in the composition is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 20% by mass or more, relative to the total composition of the composition. is 30% by mass or more, more preferably 40% by mass or more, still more preferably 50% by mass or more, and still more preferably 60% by mass or more.
  • the content of component (A) in the composition is preferably 90% by mass or less, more preferably 80% by mass or less, based on the total composition of the composition. , more preferably 70% by mass or less.
  • the refractive index at 25° C. of component (A) is preferably 1.40 or higher, more preferably 1.45 or higher, and still more preferably 1.50 or higher, from the viewpoint of improving the transparency of the composition. Further, from the viewpoint of improving the transparency of the composition, the refractive index at 25° C. of component (A) is preferably 1.80 or less, more preferably 1.75 or less, still more preferably 1.70 or less. It is more preferably 1.65 or less.
  • the refractive index of component (A) is the refractive index nd for d-line (wavelength 587.6 nm) at room temperature (25 ° C.), specifically Abbe refractometer (manufactured by Atago, DR-M4) measured in Moreover, when the component (A) contains a plurality of types of polymerizable compounds, the refractive index of the component (A) is determined as the sum of the refractive indices of the respective components multiplied by the mass fraction.
  • Component (B) is a filler.
  • the filler material is specifically an inorganic compound.
  • specific examples of inorganic fillers include metal hydroxides such as aluminum hydroxide and magnesium hydroxide; and talc.
  • the shape of the component (B) is, for example, particulate.
  • the average particle diameter d50 of component (B) is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, and still more preferably 2.5 ⁇ m or more, from the viewpoint of stably exhibiting thermal conductivity. be.
  • the average particle size d50 of the component (B) is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less. More preferably, it is 30 ⁇ m or less.
  • the average particle size d 50 of the component (B) is specifically obtained by measuring the particle size distribution of the particles of the component (B) on a volume basis by a laser diffraction method.
  • the thermal conductivity of component (B) is preferably 3 W/m ⁇ K or more, more preferably 5 W/m ⁇ K or more, still more preferably 10 W/m ⁇ K or more, from the viewpoint of improving the heat dissipation properties of the composition. is. Further, from the viewpoint of improving the transparency of the composition, the thermal conductivity of component (B) is preferably 100 W/m ⁇ K or less, more preferably 75 W/m ⁇ K or less, and even more preferably 50 W/m ⁇ K or less. K or less, and more preferably 20 W/m ⁇ K or less.
  • the refractive index at 25° C. of component (B) is preferably 1.40 or higher, more preferably 1.45 or higher, still more preferably 1.50 or higher, from the viewpoint of improving the transparency of the composition. Further, from the viewpoint of improving the transparency of the composition, the refractive index at 25° C. of component (B) is preferably 1.80 or less, more preferably 1.75 or less, and still more preferably 1.70 or less. .
  • the absolute value of the difference between the refractive index of component (A) at 25°C and the refractive index of component (B) at 25°C is preferably 0.15 or less from the viewpoint of improving the transparency of the cured product of the composition. , more preferably 0.10 or less, and still more preferably 0.05 or less.
  • the absolute value of the difference in refractive index between components (A) and (B) is preferably 0, and may be, for example, 0.01 or more.
  • Component (C) The composition may further comprise component (C): a photoinitiator.
  • component (C) include at least one selected from the group consisting of photocationic initiators and photoradical initiators.
  • the photocationic initiator may be a compound capable of generating cationic species upon irradiation with light such as ultraviolet rays and initiating the polymerization of component (A).
  • component (C) is a cationic photoinitiator
  • component (A) is specifically a cationic polymerizable compound, preferably at least one selected from the group consisting of epoxy compounds and oxetane compounds.
  • photocationic initiators include salts of onium ions (onium salts) represented by the following general formula (11). Such onium salts release Lewis acids upon photoreaction. [R 12 a R 13 b R 14 c R 15 d W] v+ [MX v+u ] u- (11)
  • W represents S, Se, Te, P, As, Sb, Bi, O, I, Br, Cl, or N ⁇ N.
  • R 12 , R 13 , R 14 and R 15 each independently represent an organic group, and a, b, c and d each independently represent an integer of 0-3. Note that "a+b+c+d" is equal to the valence of W.
  • M represents a metal or metalloid that constitutes the central atom of the halogenated complex [MX v+u ].
  • M include B, P, As, Sb, Fe, Sn, Bi, Al, Ca, In, Ti, Zn, Sc, V, Cr, Mn, and Co.
  • X represents a halogen atom such as F, Cl, Br
  • u represents the net charge of the halide complex ion
  • v represents the valence of M.
  • onium ion in the general formula (11) include diphenyliodonium, bis(4-methoxyphenyl)iodonium, 4-methylphenyl-4′-isopropylphenyliodonium, bis(4-methylphenyl)iodonium, bis(4- tert-butylphenyl)iodonium, bis(dodecylphenyl)iodonium, tolylcumyliodonium, triphenylsulfonium, diphenyl-4-thiophenoxyphenylsulfonium, bis[4-(diphenylsulfonio)-phenyl]sulfide, bis[4 -(Di(4-(2-hydroxyethyl)phenyl)sulfonio)-phenyl]sulfide, ⁇ 5-2,4-(cyclopentagenyl)[1,2,3,4,5,6- ⁇ -(methyl ethyl)benzene]-
  • anions in general formula (11) include tetrafluoroborate, tetrakis(pentafluorophenyl)borate, hexafluorophosphate, hexafluoroantimonate, hexafluoroarsenate, and hexachloroantimonate.
  • the anion in general formula (11) is preferably selected from the group consisting of tetrafluoroborate, tetrakis(pentafluorophenyl)borate and hexafluorophosphate in terms of excellent safety for living organisms.
  • photocationic initiators represented by general formula (11) include Irgacure250, Irgacure270, Irgacure290 (manufactured by BASF), CPI-100P, CPI-101A, CPI-200K, CPI-210S, and CPI-310B. , CPI-400PG (manufactured by San-Apro), SP-150, SP-170, SP-171, SP-056, SP-066, SP-130, SP-140, SP-601, SP-606, SP-701 ( ADEKA), PI-2074 (trade name, Rhodia), and the like.
  • the photocationic initiator represented by the general formula (11) is preferably Irgacure270, Irgacure290, CPI-100P, CPI-101A, CPI-200K, CPI-210S, CPI-310B , CPI-400PG, SP-150, SP-170, SP-171, SP-056, SP-066, SP-601, SP-606, SP-701 and PI-2074, or Two or more.
  • the photoradical initiator may be a compound capable of generating radicals and initiating polymerization of the component (A) by being irradiated with light such as ultraviolet rays.
  • component (C) is a photoradical generator
  • component (A) is specifically a radically polymerizable compound, preferably a (meth)acrylic compound.
  • photoradical generators include one or two selected from the group consisting of acyloxine phosphide compounds such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide, oxime ester compounds, alkylphenone compounds and benzophenone derivatives. The above are mentioned.
  • the content of component (C) in the composition is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, relative to 100 parts by mass of component (A), from the viewpoint of improving curability. More preferably 2 parts by mass or more, and even more preferably 3 parts by mass or more. Further, from the viewpoint of suppressing coloring of the composition, the content of component (C) in the composition is preferably 10 parts by mass or less, more preferably 8 parts by mass relative to 100 parts by mass of component (A). Below, more preferably 7 parts by mass or less.
  • the composition preferably does not contain a solvent, or when the composition contains a solvent, the content of the solvent is 0% by mass. It is more than 0.05% by mass, more preferably 0.03% by mass or less.
  • Specific embodiments in which the composition is solvent-free include those in which no solvent is intentionally included during preparation of the composition.
  • the composition may further contain components other than the components described above.
  • other components include photosensitizers, antioxidants, light resistance imparting agents, leveling agents, antifoaming agents, thixotropic agents, polymerization inhibitors, coupling agents and the like.
  • compositions include, for example, photocationic sensitizers.
  • the photosensitizer is preferably a compound that is excited by light with a wavelength of 350 nm to 450 nm from the viewpoint of being compatible with wavelength-selective light sources such as UV-LEDs.
  • sensitizers include polynuclear aromatics such as pyrene, perylene, triphenylene and anthracene; xanthenes such as fluorescein, eosin, erythrosine, rhodamine B and rose bengal; xanthones such as diethylthioxanthone; cyanines such as thiacarbocyanine and oxacarbocyanine; merocyanines such as merocyanine and carbomerocyanine; rhodacyanins; acridines such as flavin and acriflavin; acridones such as acridon and 10-butyl-2-chloroacridone; anthraquinones; squariums; styryls; is mentioned.
  • the photosensitizer is preferably polycyclic aromatics, acridones, coumarins or base styryls, more
  • the content of the photosensitizer in the composition is preferably 0.1% by mass or more, more preferably 0.1% by mass or more, relative to 100 parts by mass of component (A), from the viewpoint of making the curability of the composition more preferable. is 0.2% by mass or more, more preferably 0.3% by mass or more, preferably 3% by mass or less, more preferably 2% by mass or less, and still more preferably 1% by mass or less.
  • the adhesiveness between the cured product of the composition and the member adjacent to the cured product can be further enhanced.
  • coupling agents include silane coupling agents.
  • Silane coupling is preferably a silane coupling agent having a functional group common to the polymerizable functional group in the component (A) from the viewpoint of improving the adhesion between the cured product of the composition and the member adjacent to the cured product. or a silane coupling agent having a functional group capable of reacting with the polymerizable functional group in component (A).
  • the coupling agent is selected from the group consisting of a silane coupling agent having an epoxy group and a silane coupling agent having a functional group that reacts (for example, addition reaction) with the epoxy group. It is preferable to include one or more selected types.
  • silane coupling agents having epoxy groups include ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane.
  • silane coupling agents having functional groups capable of reacting with epoxy groups include amino groups such as primary amino groups and secondary amino groups; carboxyl groups, etc.; (meth)acryloyl groups; A ring agent is mentioned.
  • silane coupling agents include N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyltrimethoxysilane, N-2- (aminoethyl)-3-aminopropylmethyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl-3-aminopropyltrimethoxysilane or 3-(4-methylpiperazino)propyltrimethoxysilane, trimethoxysilylbenzoic acid, ⁇ -acryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ - Isocyanatoprop
  • Coupling agents may also include those other than those described above, such as other silane coupling agents.
  • Other silane coupling agents include, for example, vinyltriacetoxysilane and vinyltrimethoxysilane.
  • the molecular weight of the coupling agent is preferably 80 to 800 from the viewpoint of improving adhesion between the cured product of the composition and members adjacent to the cured product.
  • the content of the coupling agent in the composition is preferably 0.1 parts by mass with respect to 100 parts by mass of component (A) from the viewpoint of improving the adhesion between the cured product of the composition and the member adjacent to the cured product. parts or more, more preferably 0.5 parts by mass or more, preferably 5 parts by mass or less, more preferably 4 parts by mass or less, and even more preferably 3 parts by mass or less.
  • the method of making the composition is not limited and includes, for example, mixing components (A) and (B) and optionally other components.
  • a method for mixing each component for example, various known kneaders such as a planetary stirrer, homodisper, universal mixer, Banbury mixer, kneader, two-roll, three-roll, and extruder are used alone or in combination, Examples include a method of uniformly kneading under conditions such as normal temperature, heating, normal pressure, reduced pressure, increased pressure, or inert gas flow.
  • the composition should be: In the production of the product, it is important to select, combine, and control the amount of components (A) and (B) contained in the composition, for example.
  • the obtained composition can also be used to form a resin film or a heat dissipation member.
  • the composition may be applied onto a substrate and dried.
  • a known method such as an inkjet method, screen printing, or dispenser coating can be used for coating. Drying can be carried out by heating to a temperature at which component (A) does not polymerize, for example.
  • the shape of the heat radiating member to be obtained can be, for example, a film shape.
  • the composition obtained in the present embodiment is excellent in transparency and thermal conductivity, and can stably form a heat-dissipating member in a desired region. Therefore, for example, transparency (visibility) and heat dissipation are required. It can be widely used in the field of electronic components. More specifically, the composition obtained in the present embodiment includes semiconductor devices such as power devices, light emitting devices, electronic devices such as batteries; automobiles and parts thereof; heat radiation members in lighting and parts, adhesives, coating agents, etc. It can be suitably used for By using the composition of the present embodiment, for example, alignment of members and confirmation of components after mounting can be easily performed, and it is also possible to improve manufacturing stability of electronic devices and the like. In addition, since the composition of the present embodiment can be suitably used in combination with members that are vulnerable to heat, the degree of freedom in device design can be improved.
  • Polymerizable compound 1 an alicyclic epoxy compound represented by the following formula (12) (3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, bifunctional), CEL2021P, manufactured by Daicel Corporation, refractive index 1.0.
  • Polymerizable compound 2 bisphenol F type epoxy resin, YL983U, manufactured by Mitsubishi Chemical Corporation, refractive index 1.58
  • Polymerizable compound 3 Bisphenol E type epoxy resin, R1710, manufactured by Printec, refractive index 1.58
  • Polymerizable compound 4 bifunctional oxetane, OXT-221, manufactured by Toagosei Co., Ltd., refractive index 1.45
  • Polymerizable compound 5 EO-modified bisphenol A skeleton acrylic resin (ethoxylated bisphenol A diacrylate, bifunctional), A-BPE-4, manufactured by Shin-Nakamura Chemical Co., Ltd., refractive index 1.54
  • Polymerizable compound 6 monofunctional aromatic acrylic resin, POB-A, manufactured by Kyoeisha Chemical Co., Ltd., refractive index 1.57
  • Polymerizable compound 7 fluorene skeleton acrylic resin (bifunctional), Ogsol EA-0200, manufactured by Osaka Gas Chemical Co., Ltd., refr
  • Initiator 1 photo cationic initiator, CPI-210S, manufactured by Sun-Apro, diphenyl-4-(phenylthio)phenylsulfonium hexafluorophosphate initiator 2: photo radical initiator, Omnirad TPO-H, manufactured by IGM Resins, 2, 4,6-trimethylbenzoyl-diphenylphosphine oxide (sensitizer) Sensitizer 1: photosensitizer (anthracene compound), UVS-1331, manufactured by Kawasaki Kasei Co., Ltd.
  • Additive 1 Silane coupling agent (3-glycidoxypropyltrimethoxysilane), KBM-403, Shin-Etsu Chemical Co.
  • Additive 2 Silane coupling agent (3-acryloxypropyltrimethoxysilane), KBM- 5103, manufactured by Shin-Etsu Chemical Co., Ltd.
  • (B) Filler) Filler 1 Talc, SG-200, manufactured by Nippon Talc Co., Ltd., refractive index 1.54, thermal conductivity 5 W/m ⁇ K, average particle size d 50 2.7 ⁇ m
  • Filler 2 (aluminum hydroxide 1): aluminum hydroxide, CW-320LV, manufactured by Sumitomo Chemical Co., Ltd., refractive index 1.57, thermal conductivity 11 W/m K, average particle size d 50 18 ⁇ m
  • Filler 3 (aluminum hydroxide 2): aluminum hydroxide, CW-310LV, manufactured by Sumitomo Chemical Co., Ltd., refractive index 1.57, thermal conductivity 11 W/m K, average particle size d 50 10 ⁇ m
  • Filler 4 Alumina, ASFP20, manufactured by Denka, refractive index 1.76, thermal conductivity 25 W/m ⁇ K, average particle size d 50 0.3 ⁇ m
  • Filler 5 Silica, SO-C6, manufactured by Admatechs, ref
  • Examples 1 to 11, Comparative Examples 1 to 4 Each component was blended so as to have the blending composition shown in Table 1 to obtain a fluid composition containing no solvent. Specifically, each component was weighed into a 50 mL brown plastic bottle so that the composition would be 30 g, and stirred for 10 minutes with Awatori Rentaro (manufactured by Thinky Corporation). After that, the mixture was kneaded three times with three rolls to obtain a composition. The physical properties of the composition obtained in each example or its cured product were measured by the following methods. The measurement results are also shown in Table 1. In Comparative Examples 3 and 4, the following measurements were not performed because the composition remained powdery without being pasted when the composition was prepared by the above-described method.
  • a cured product of the composition was obtained by the following procedure. That is, using a 100 ⁇ m thick Teflon (registered trademark) sheet as a formwork, the uncured composition was sandwiched between PET films, and the UV-LED with a wavelength of 395 nm was used under the conditions of an illuminance of 1000 mW/cm 2 and an integrated light amount of 3000 mJ/cm 2 . to obtain a cured product. The density, specific heat and thermal diffusivity of the obtained cured product were measured by the following methods.
  • the obtained cured product was measured twice with an Accupic II 1340 automatic densitometer (manufactured by Shimadzu Corporation), and the average value was taken as the density.
  • Specific heat measurement About 5 mg of the cured product obtained in a pan (B014-3018/B014-3003) manufactured by PerkinElmer was weighed and heated at a rate of 10°C/sec using a Diamond DSC (manufactured by PerkinElmer) to 23°C.
  • the specific heat at The obtained cured product was measured three times with a periodic heating method diffusivity measuring device (FTC-RT, manufactured by Advance Riko Co., Ltd.), and the average value was taken as the thermal diffusivity.
  • FTC-RT periodic heating method diffusivity measuring device
  • Viscosity of composition The viscosity of the resulting composition was measured with an E-type viscometer (TVE-35L, manufactured by Toki Sangyo Co., Ltd.) using a cone of 3° ⁇ R9.7 at 25° C. at the following rotational speeds. Viscosity less than 1 Pa s: 100 rpm Viscosity 1 Pa s or more and less than 100 Pa s: 20 rpm Viscosity of 100 Pa s or more: 5 rpm
  • thermoset film The composition was coated on a No. 25 mm ⁇ 70 mm alkali-free glass. 6 bar coater, and cured by irradiating with a UV-LED with a wavelength of 395 nm under the conditions of an illuminance of 1000 mW/cm 2 and an integrated amount of light of 3000 mJ/cm 2 in the atmosphere. Further, in the examples other than Examples 3 and 8 to 11, after curing under the above conditions, further curing was performed on a hot plate at 80° C. for 30 minutes to obtain a thermoset film.
  • the obtained cured sample and the sample before curing were subjected to IR measurement using FT/IR-6600 (manufactured by JASCO Corporation), and the curing rate was obtained according to the following formula.
  • Curing rate [1- ⁇ reaction peak height (after curing)/reference peak height (after curing) ⁇ /reaction peak height (before curing)/reference peak height (before curing) ⁇ ] ⁇ 100
  • the reference and reaction peaks for the reaction rate samples were as follows. In the case of polymerizable compound 1, the reference peak is 1610 cm -1 and the reaction peak is 830 cm -1 . In the case of polymerizable compounds 2 and 3, the reference peak is 1610 cm -1 and the reaction peak is 910 cm -1 .
  • the reference peak is 1610 cm -1 and the reaction peak is 980 cm -1 In the case of polymerizable compounds 5, 6, 7 and 8, the reference peak is 1722 cm -1 and the reaction peak is 810 cm -1 .
  • Curing rate at 50 ⁇ m GAP A PET film is placed on a 2 cm ⁇ 5 cm ⁇ 700 ⁇ m thick non-alkali glass, a 50 ⁇ m thick Teflon (registered trademark) sheet is placed on the PET film as a GAP, and the gap between the Teflon (registered trademark) sheets is Place the composition on a PET film, place non-alkali glass on top of it, clip both ends, and apply UV-LED with a wavelength of 395 nm under the conditions of an illuminance of 1000 mW/cm 2 and an integrated amount of light of 3000 mJ/cm 2 . was irradiated and cured from non-adjacent alkali-free glass surfaces.
  • the surface of the obtained cured sample which was not irradiated with UV was measured by IR, and the curing rate at 50 ⁇ m GAP was obtained in the same manner as the above curing rate.
  • Curing rate at 200 ⁇ m GAP Curing rate at 200 ⁇ m GAP was obtained in the same manner as Curing rate at 50 ⁇ m GAP, except that the GAP was 200 ⁇ m thick.
  • Curing rate at 2 mm GAP The curing rate at 2 mm GAP was obtained in the same manner as the curing rate at 50 ⁇ m GAP, except that the GAP was 2 mm thick.
  • Cross-peel strength was measured as an index of the ability to stably form a cured film.
  • the composition is placed on a 25 mm ⁇ 70 mm non-alkali glass, a 50 ⁇ m thick Teflon (registered trademark) is placed as a spacer, and 25 mm ⁇ 70 mm non-alkali glass is stacked crosswise so that the area of the composition is 1.0. It was made to be ⁇ 5.0 mm 2 .
  • a UV-LED with a wavelength of 395 nm was used for curing under the conditions of an illuminance of 1000 mW/cm 2 and an integrated light amount of 3000 mJ/cm 2 .
  • thermoset samples For examples other than Examples 3 and 8 to 11, after the above curing, they were further cured on a hot plate at 80° C. for 30 minutes to obtain thermoset samples. The obtained sample was pulled with a 200X universal testing machine (manufactured by Intesco) at a speed of 5 mm/min to determine the strength. A case where the strength was 2.0 MPa or more was regarded as acceptable.
  • each example had an excellent balance between the excellent photocurability of the composition and the ability to stably form a cured film.

Abstract

An ultraviolet-curable composition which contains a component (A) which is a polymerizable compound and a component (B) which is a filler, wherein: the average value of the parallel light transmittance at a wavelength of 380-780nm through a cured film (thickness of 100μm) of the ultraviolet-curable composition is at least 40%; the thermal conductivity obtained from formula (100) of a cured film (thickness of 100μm) of the ultraviolet-curable composition is 0.25W/m·K or higher; and the viscosity of the ultraviolet-curable composition measured at 25°C by using an E-type viscometer is 0.1-1,000 Pa·s, inclusive. (100): thermal conductivity=density×specific heat×thermal diffusivity

Description

紫外線硬化性組成物UV curable composition
 本発明は、紫外線硬化性組成物に関する。 The present invention relates to an ultraviolet curable composition.
 発光ダイオード(LED)等の発光素子やパワーデバイスの出力が年々向上していることから、デバイスの放熱設計が重要になってきており、放熱材料として、放熱グリースや熱硬化型の放熱材が使用されている。 As the output of light-emitting elements such as light-emitting diodes (LEDs) and power devices is improving year by year, the heat dissipation design of devices is becoming more important. It is
 熱硬化型の放熱材に関する技術として、特許文献1(特開2017-78122号公報)に記載のものがある。
 特許文献1には、熱伝導性粒子の表面に屈折率制御層を設けた熱伝導性フィラー、および、これを含有する樹脂組成物について記載されており(請求項1、6)、かかる樹脂組成物は透明性と熱伝導性を兼ね備えているため、LED周りやディスプレー周りなどの透明部材の熱の問題を解決することにつながるとされている(段落0006)。同文献において、樹脂組成物中の樹脂として各種の熱可塑性樹脂やエポキシ樹脂等の熱硬化性樹脂、シリコーン樹脂等のゴム系樹脂などを用いることができるとされており(段落0027)、シリコーン樹脂を用いて熱硬化によりシート状の成形品を得た例が記載されている(段落0037~0039)。
As a technique related to a thermosetting heat dissipation material, there is one described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2017-78122).
Patent Document 1 describes a thermally conductive filler in which a refractive index control layer is provided on the surface of thermally conductive particles, and a resin composition containing the filler (claims 1 and 6). Since the object has both transparency and thermal conductivity, it is said that it leads to solving the heat problem of transparent members such as around LEDs and around displays (Paragraph 0006). In the same document, it is possible to use various thermoplastic resins, thermosetting resins such as epoxy resins, rubber resins such as silicone resins, and the like as resins in the resin composition (paragraph 0027). (Paragraphs 0037 to 0039).
 また、特許文献2(国際公開第2005/044875号)には、重合後の全ポリマー成分のガラス転移点温度が20℃以下となるように調整された(メタ)アクリル系モノマー又はその部分重合物、熱伝導性無機充填剤、光重合開始剤、熱重合開始剤を含有する重合性組成物について記載されている(請求項1)。同文献によれば、光重合開始剤に熱重合開始剤を併用することによって、積極的に重合性組成物を加熱しなくとも光照射とそのとき発生する熱によって充分高い重合率が達成できるとされている(第3頁第3~6行)。 Further, in Patent Document 2 (International Publication No. 2005/044875), a (meth)acrylic monomer or a partial polymer thereof adjusted so that the glass transition temperature of all polymer components after polymerization is 20° C. or less , a thermally conductive inorganic filler, a photopolymerization initiator, and a thermal polymerization initiator (claim 1). According to the document, by using a thermal polymerization initiator in combination with a photopolymerization initiator, a sufficiently high polymerization rate can be achieved by light irradiation and the heat generated at that time without actively heating the polymerizable composition. (page 3, lines 3-6).
特開2017-78122号公報JP 2017-78122 A 国際公開第2005/044875号WO2005/044875
 しかしながら、本発明者が検討したところ、放熱材料には不透明な材料が多く、不透明な材料を用いた部材の場合、部材のアライメントや実装後の部品の確認などができないという点で改善の余地があった。
 また、放熱部材とともに実装される部品が熱に弱い場合もあり、デバイスの設計の自由度においても改善の余地があった。
 そこで、本発明は、光硬化特性に優れ、所望の領域に放熱部材を安定的に形成できる組成物を提供する。
However, according to the inventor's study, many heat dissipating materials are opaque materials, and in the case of members using opaque materials, there is room for improvement in that it is not possible to align the members or check the components after mounting. there were.
In addition, the components mounted together with the heat dissipation member may be vulnerable to heat, and there is room for improvement in the degree of freedom in designing the device.
Accordingly, the present invention provides a composition that has excellent photocuring properties and that can stably form a heat radiating member in a desired region.
 本発明によれば、以下に示す紫外線硬化性組成物、樹脂膜および放熱部材が提供される。
[1] 以下の成分(A)および(B):
 (A)重合性化合物、
 (B)フィラー
 を含む紫外線硬化性組成物であって、
 当該紫外線硬化性組成物の硬化膜(厚さ100μm)の波長380~780nmの平行光線透過率の平均値が40%以上であり、
 当該紫外線硬化性組成物の硬化膜(厚さ100μm)について、以下の式(100)により得られる熱伝導率が0.25W/m・K以上であり、
 E型粘度計を用いて25℃にて測定される当該紫外線硬化性組成物の粘度が0.1Pa・s以上1000Pa・s以下である、紫外線硬化性組成物。
熱伝導率=密度×比熱×熱拡散率 (100)
[2] 当該紫外線硬化性組成物中の溶剤の含有量が、当該紫外線硬化性組成物全体に対して0.05質量%以下である、[1]に記載の紫外線硬化性組成物。
[3] 前記成分(B)の熱伝導率が3W/m・K以上100W/m・K以下である、[1]または[2]に記載の紫外線硬化性組成物。
[4] 前記成分(B)の25℃における屈折率が、1.40以上1.80以下である、[1]乃至[3]いずれか一つに記載の紫外線硬化性組成物。
[5] 前記成分(A)の25℃における屈折率が、1.40以上1.80以下である、[1]乃至[4]いずれか一つに記載の紫外線硬化性組成物。
[6] 成分(A)の25℃における屈折率と前記成分(B)の25℃における屈折率との差の絶対値が0.15以下である、[1]乃至[5]いずれか一つに記載の紫外線硬化性組成物。
[7] 以下の成分(C)をさらに含む、[1]乃至[6]いずれか一つに記載の紫外線硬化性組成物。
 (C)光重合開始剤
[8] 前記成分(C)が光カチオン開始剤である、[7]に記載の紫外線硬化性組成物。
[9] 前記成分(A)が、エポキシ化合物およびオキセタン化合物からなる群から選択される少なくとも一種である、[7]または[8]に記載の紫外線硬化性組成物。
[10] 前記成分(C)が光ラジカル開始剤である、[7]に記載の紫外線硬化性組成物。
[11] 前記成分(A)が、(メタ)アクリル化合物である、[7]または[10]に記載の紫外線硬化性組成物。
[12] [1]乃至[11]いずれか一つに記載の紫外線硬化性組成物の硬化物からなる、樹脂膜。
[13] [1]乃至[11]いずれか一つに記載の紫外線硬化性組成物の硬化物からなる、放熱部材。
According to the present invention, the following UV-curable composition, resin film, and heat-dissipating member are provided.
[1] The following components (A) and (B):
(A) a polymerizable compound,
(B) a UV curable composition comprising a filler,
The cured film (thickness 100 μm) of the ultraviolet curable composition has an average parallel light transmittance of 40% or more at a wavelength of 380 to 780 nm,
The cured film (thickness 100 μm) of the ultraviolet curable composition has a thermal conductivity of 0.25 W / m K or more, which is obtained by the following formula (100),
An ultraviolet curable composition having a viscosity of 0.1 Pa·s or more and 1000 Pa·s or less as measured at 25°C using an E-type viscometer.
Thermal conductivity = density x specific heat x thermal diffusivity (100)
[2] The UV-curable composition according to [1], wherein the content of the solvent in the UV-curable composition is 0.05% by mass or less relative to the entire UV-curable composition.
[3] The ultraviolet-curable composition according to [1] or [2], wherein the component (B) has a thermal conductivity of 3 W/m·K or more and 100 W/m·K or less.
[4] The ultraviolet curable composition according to any one of [1] to [3], wherein the component (B) has a refractive index of 1.40 or more and 1.80 or less at 25°C.
[5] The ultraviolet-curable composition according to any one of [1] to [4], wherein the component (A) has a refractive index at 25°C of 1.40 or more and 1.80 or less.
[6] Any one of [1] to [5], wherein the absolute value of the difference between the refractive index of component (A) at 25°C and the refractive index of component (B) at 25°C is 0.15 or less. The ultraviolet curable composition according to .
[7] The UV-curable composition according to any one of [1] to [6], further comprising component (C) below.
(C) Photopolymerization initiator [8] The ultraviolet curable composition according to [7], wherein the component (C) is a photocationic initiator.
[9] The UV-curable composition according to [7] or [8], wherein the component (A) is at least one selected from the group consisting of epoxy compounds and oxetane compounds.
[10] The ultraviolet-curable composition of [7], wherein the component (C) is a photoradical initiator.
[11] The UV-curable composition according to [7] or [10], wherein the component (A) is a (meth)acrylic compound.
[12] A resin film comprising a cured product of the ultraviolet-curable composition according to any one of [1] to [11].
[13] A heat dissipating member comprising a cured product of the ultraviolet curable composition according to any one of [1] to [11].
 本発明によれば、光硬化特性に優れ、所望の領域に放熱部材を安定的に形成できる組成物を提供することができる。 According to the present invention, it is possible to provide a composition that has excellent photocuring properties and that can stably form a heat-dissipating member in a desired region.
 以下、本発明の実施の形態に説明する。本実施形態において、各成分について、それぞれ、1種を用いてもよいし、2種以上を組み合わせて用いてもよい。また、数値範囲を表す「~」は、以上、以下を表し、上限値および下限値をいずれも含む。 An embodiment of the present invention will be described below. In this embodiment, each component may be used alone or in combination of two or more. In addition, "~" representing a numerical range represents above and below, including both the upper limit and the lower limit.
 (紫外線硬化性組成物)
 本実施形態において、紫外線硬化性組成物(以下、適宜単に「組成物」とも呼ぶ。)は、具体的には紫外線硬化性熱伝導組成物であって、以下の成分(A)および(B)を含む。
(A)重合性化合物
(B)フィラー
 紫外線硬化性組成物の硬化膜(厚さ100μm)の波長380~780nmの平行光線透過率の平均値が40%以上であり、紫外線硬化性組成物の硬化膜(厚さ100μm)について、以下の式(100)により得られる熱伝導率が0.25W/m・K以上であり、E型粘度計を用いて25℃にて測定される紫外線硬化性組成物の粘度が0.1Pa・s以上1000Pa・s以下である。
熱伝導率=密度×比熱×熱拡散率 (100)
(Ultraviolet curable composition)
In the present embodiment, the ultraviolet curable composition (hereinafter also simply referred to as the “composition” as appropriate) is specifically an ultraviolet curable thermally conductive composition, comprising the following components (A) and (B) including.
(A) Polymerizable compound (B) Filler The average value of parallel light transmittance at a wavelength of 380 to 780 nm of the cured film (thickness 100 μm) of the ultraviolet curable composition is 40% or more, and the ultraviolet curable composition is cured. For the film (thickness 100 μm), the thermal conductivity obtained by the following formula (100) is 0.25 W / m K or more, and an ultraviolet curable composition measured at 25 ° C. using an E-type viscometer The viscosity of the material is 0.1 Pa·s or more and 1000 Pa·s or less.
Thermal conductivity = density x specific heat x thermal diffusivity (100)
 本実施形態においては、組成物が成分(A)および(B)を含み、平行光線透過率、熱伝導率および粘度がそれぞれ特定の範囲に制御されているため、光硬化特性に優れる組成物を得ることができるとともに、所望の領域に放熱部材を安定的に形成できる。
 本実施形態における組成物を用いることにより、透明性および熱伝導性に優れるとともに、製造安定性に優れる樹脂膜および放熱部材を得ることができる。
 ここで、平行光線透過率、熱伝導率および粘度がそれぞれ上述の範囲にある組成物を得るためには、組成物の調製にあたり、組成物に含まれる成分(A)および(B)の選択および組み合わせ、配合量を調整することが重要である。
In the present embodiment, the composition contains components (A) and (B), and the parallel light transmittance, thermal conductivity and viscosity are each controlled within specific ranges, so that the composition has excellent photocuring properties. In addition, the heat dissipation member can be stably formed in a desired region.
By using the composition of the present embodiment, it is possible to obtain a resin film and a heat radiating member which are excellent in transparency and thermal conductivity and which are excellent in production stability.
Here, in order to obtain a composition whose parallel light transmittance, thermal conductivity and viscosity are each within the ranges described above, it is necessary to select components (A) and (B) contained in the composition and It is important to adjust the combination and blending amount.
 組成物の硬化膜(厚さ100μm)の波長380~780nmの平行光線透過率の平均値は、組成物の光硬化特性を向上する観点から、40%以上であり、好ましくは50%以上、より好ましくは60%以上である。
 また、上記平行光線透過率の平均値の上限値は、具体的には100%以下であり、また、たとえば80%以下であってもよい。
 ここで、上記硬化膜は、波長395nmのUV-LEDで照度1000mW/cm2、積算光量3000mJ/cm2の光照射条件で得られ、厚さ100μmである。平行光線透過率は、紫外可視分光光度計により測定される上記硬化膜の380~780nmの透過率の平均値である。
The average value of parallel light transmittance at a wavelength of 380 to 780 nm of a cured film (thickness of 100 μm) of the composition is 40% or more, preferably 50% or more, from the viewpoint of improving the photocuring properties of the composition. Preferably it is 60% or more.
Further, the upper limit of the average value of the parallel light transmittance is specifically 100% or less, and may be, for example, 80% or less.
Here, the above-mentioned cured film is obtained under light irradiation conditions of UV-LED of wavelength 395 nm, illuminance of 1000 mW/cm 2 and integrated light amount of 3000 mJ/cm 2 , and has a thickness of 100 μm. The parallel light transmittance is the average transmittance of the cured film at 380 to 780 nm measured with an ultraviolet-visible spectrophotometer.
 組成物の硬化膜(厚さ100μm)の熱伝導率は、組成物を用いて得られる部材の放熱特性を向上する観点から、0.25W/m・K以上であり、好ましくは0.30W/m・K以上、より好ましくは0.40W/m・K以上、さらに好ましくは0.50W/m・K以上、さらに好ましくは0.60W/m・K以上である。
 また、配合物の粘度が過度に高くなることを抑制する観点、および、組成物のハンドリング性を好ましいものとする観点から、組成物の熱伝導率は、好ましくは5.0W/m・K以下であり、より好ましくは3.0W/m・K以下、さらに好ましくは2.0W/m・K以下である。
 ここで、硬化膜は、波長395nmのUV-LEDで照度1000mW/cm2、積算光量3000mJ/cm2の条件で光硬化して得られ、厚さ100μmである。得られた硬化膜の密度、比熱および熱拡散率をそれぞれ測定し、得られた測定値に基づき下記式(100)により熱伝導率を求める。
熱伝導率=密度×比熱×熱拡散率 (100)
The thermal conductivity of the cured film (thickness 100 μm) of the composition is 0.25 W/m·K or more, preferably 0.30 W/m·K, from the viewpoint of improving the heat dissipation characteristics of the member obtained using the composition. m·K or more, more preferably 0.40 W/m·K or more, still more preferably 0.50 W/m·K or more, still more preferably 0.60 W/m·K or more.
In addition, from the viewpoint of suppressing the viscosity of the formulation from becoming excessively high, and from the viewpoint of making the handleability of the composition preferable, the thermal conductivity of the composition is preferably 5.0 W / m K or less. , more preferably 3.0 W/m·K or less, still more preferably 2.0 W/m·K or less.
Here, the cured film is obtained by photocuring with a UV-LED having a wavelength of 395 nm under the conditions of an illuminance of 1000 mW/cm 2 and an integrated amount of light of 3000 mJ/cm 2 , and has a thickness of 100 μm. The density, specific heat and thermal diffusivity of the resulting cured film are measured, and the thermal conductivity is determined by the following formula (100) based on the measured values.
Thermal conductivity = density x specific heat x thermal diffusivity (100)
 組成物の粘度は、配合物のフィラーの沈降抑制の観点から、0.1Pa・s以上であり、好ましくは0.5Pa・s以上、より好ましくは1.0Pa・s以上である。
 また、配合物の作業性の観点から、組成物の粘度は、1000Pa・s以下であり、好ましくは500Pa・s以下、より好ましくは300Pa・s以下、さらに好ましくは150Pa・s以下である。
 ここで、組成物の粘度は、E型粘度計で3°×R9.7のコーンを用いて25℃、以下の回転数にて測定される。
粘度1Pa・s未満:100rpm
粘度1Pa・s以上100Pa・s未満:20rpm
粘度100Pa・s以上:5rpm
The viscosity of the composition is 0.1 Pa·s or more, preferably 0.5 Pa·s or more, more preferably 1.0 Pa·s or more, from the viewpoint of suppressing sedimentation of the filler in the formulation.
From the viewpoint of workability of the formulation, the viscosity of the composition is 1000 Pa·s or less, preferably 500 Pa·s or less, more preferably 300 Pa·s or less, and still more preferably 150 Pa·s or less.
Here, the viscosity of the composition is measured with an E-type viscometer using a 3°×R9.7 cone at 25° C. at the following rotation speeds.
Viscosity less than 1 Pa s: 100 rpm
Viscosity 1 Pa s or more and less than 100 Pa s: 20 rpm
Viscosity of 100 Pa s or more: 5 rpm
 次に、組成物の構成成分について具体例を挙げて説明する。 Next, the constituent components of the composition will be explained with specific examples.
(成分(A))
 成分(A)は、重合性化合物である。成分(A)として、具体的には、エポキシ基、オキセタニル基、ビニルエーテル基等のカチオン重合性の官能基を有する化合物(以下、「カチオン重合性化合物」とも呼ぶ。);および(メタ)アクリロイル基、ビニル基等のラジカル重合性官能基を有する化合物(以下、「ラジカル重合性化合物」とも呼ぶ。)が挙げられる。
(Component (A))
Component (A) is a polymerizable compound. Specific examples of component (A) include compounds having cationic polymerizable functional groups such as epoxy groups, oxetanyl groups, and vinyl ether groups (hereinafter also referred to as "cationically polymerizable compounds"); and (meth)acryloyl groups , a compound having a radically polymerizable functional group such as a vinyl group (hereinafter also referred to as a “radically polymerizable compound”).
(カチオン重合性化合物)
 カチオン重合性化合物は、硬化性向上の観点から、好ましくはエポキシ化合物およびオキセタン化合物からなる群から選択される少なくとも一種を含み、より好ましくはエポキシ化合物を含み、さらに好ましくはエポキシ化合物である。
(Cationically polymerizable compound)
From the viewpoint of improving curability, the cationically polymerizable compound preferably contains at least one selected from the group consisting of epoxy compounds and oxetane compounds, more preferably epoxy compounds, and still more preferably epoxy compounds.
(エポキシ化合物)
 エポキシ化合物は、一分子中に1または2以上のエポキシ基を有する化合物であり、具体的には、モノエポキシ化合物、2官能エポキシ化合物、3官能以上のエポキシ化合物が挙げられる。
 硬化性向上の観点から、エポキシ化合物は2官能以上のエポキシ化合物を含み、より好ましくは2官能エポキシ化合物を含む。
(epoxy compound)
Epoxy compounds are compounds having one or more epoxy groups in one molecule, and specific examples include monoepoxy compounds, difunctional epoxy compounds, and trifunctional or higher epoxy compounds.
From the viewpoint of improving curability, the epoxy compound includes a bifunctional or higher functional epoxy compound, more preferably a bifunctional epoxy compound.
 硬化性向上の観点から、エポキシ化合物は、好ましくは脂環式エポキシ化合物および芳香族エポキシ化合物からなる群から選択される少なくとも一種を含む。 From the viewpoint of improving curability, the epoxy compound preferably contains at least one selected from the group consisting of alicyclic epoxy compounds and aromatic epoxy compounds.
 脂環式エポキシ化合物は、具体的には分子中に脂環式炭化水素構造およびエポキシ基をそれぞれ1つ以上有する化合物である。脂環式エポキシ化合物は、分子内に1つのエポキシ基を有しても2以上のエポキシ基を有してもよいが、組成物の硬化性をより高める観点から、好ましくは2以上のエポキシ基を有する。 An alicyclic epoxy compound is specifically a compound having one or more alicyclic hydrocarbon structures and one or more epoxy groups in the molecule. The alicyclic epoxy compound may have one epoxy group or two or more epoxy groups in the molecule, but from the viewpoint of further enhancing the curability of the composition, it preferably contains two or more epoxy groups. have
 脂環式エポキシ化合物として、たとえば、エポキシシクロヘキサン構造等のシクロアルケンオキサイド構造を含む化合物、環状脂肪族炭化水素に直接または炭化水素基等を介してエポキシ基が結合した化合物が挙げられる。組成物の硬化性を高める観点から、脂環式エポキシ化合物は、好ましくはシクロアルケンオキサイド構造を有する化合物である。
 ここで、シクロアルケンオキサイド構造とは、シクロアルケンを過酸化物などの酸化剤でエポキシ化して得られる構造であり、脂肪族環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基である。シクロアルケンオキサイドは、たとえばシクロヘキセンオキサイド、シクロペンテンオキサイドであり、好ましくはシクロヘキセンオキサイドである。
Examples of alicyclic epoxy compounds include compounds containing a cycloalkene oxide structure such as an epoxycyclohexane structure, and compounds in which an epoxy group is bonded directly or via a hydrocarbon group to a cycloaliphatic hydrocarbon. From the viewpoint of enhancing the curability of the composition, the alicyclic epoxy compound is preferably a compound having a cycloalkene oxide structure.
Here, the cycloalkene oxide structure is a structure obtained by epoxidizing a cycloalkene with an oxidizing agent such as a peroxide, and is composed of two adjacent carbon atoms and an oxygen atom that constitute an aliphatic ring. It is an epoxy group. Cycloalkene oxide is, for example, cyclohexene oxide, cyclopentene oxide, preferably cyclohexene oxide.
 シクロアルケンオキサイド構造を有する脂環式エポキシ化合物の1分子中のシクロアルケンオキサイド構造の数は、1つであってもよく、2つ以上であってもよい。硬化物の透明性や耐熱性、耐光性等を高めるとの観点から、1分子中のシクロアルケンオキサイド構造の数は、好ましくは2つ以上である。 The number of cycloalkene oxide structures in one molecule of the alicyclic epoxy compound having a cycloalkene oxide structure may be one, or two or more. From the viewpoint of enhancing the transparency, heat resistance, light resistance, etc. of the cured product, the number of cycloalkene oxide structures in one molecule is preferably two or more.
 シクロアルケンオキサイド構造を有する脂環式エポキシ化合物として、たとえば、下記一般式(1)で表される化合物が挙げられる。 Examples of alicyclic epoxy compounds having a cycloalkene oxide structure include compounds represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、Xは、単結合または連結基である。連結基は、たとえば、2価の炭化水素基、カルボニル基、エーテル基(エーテル結合)、チオエーテル基(チオエーテル結合)、エステル基(エステル結合)、カーボネート基(カーボネート結合)およびアミド基(アミド結合)ならびにこれらが複数連結した基から選択することができる。 In general formula (1), X is a single bond or a linking group. Linking groups are, for example, divalent hydrocarbon groups, carbonyl groups, ether groups (ether bonds), thioether groups (thioether bonds), ester groups (ester bonds), carbonate groups (carbonate bonds) and amide groups (amide bonds). and groups in which a plurality of these are linked.
 2価の炭化水素基として、たとえば、炭素数が1~18のアルキレン基や2価の脂環式炭化水素基等が挙げられる。
 このうち、炭素数が1~18のアルキレン基の具体例として、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基が挙げられる。
 また、2価の脂環式炭化水素基の具体例として、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基等の2価のシクロアルキレン基(シクロアルキリデン基を含む)が挙げられる。
Examples of divalent hydrocarbon groups include alkylene groups having 1 to 18 carbon atoms and divalent alicyclic hydrocarbon groups.
Among these, specific examples of the alkylene group having 1 to 18 carbon atoms include methylene group, methylmethylene group, dimethylmethylene group, ethylene group, propylene group and trimethylene group.
Further, specific examples of divalent alicyclic hydrocarbon groups include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3 divalent cycloalkylene groups (including cycloalkylidene groups) such as -cyclohexylene group, 1,4-cyclohexylene group and cyclohexylidene group.
 Xは、硬化性を向上する観点から、好ましくは単結合または酸素原子を有する連結基であり、より好ましくは単結合である。
 同様の観点から、酸素原子を有する連結基は、好ましくは、-CO-(カルボニル基)、-O-CO-O-(カーボネート基)、-COO-(エステル基)、-O-(エーテル基)、-CONH-(アミド基)、これらの基が複数連結した基、またはこれらの基の1以上と2価の炭化水素基の1以上とが連結した基であり、より好ましくは-CO2CH2-基である。
From the viewpoint of improving curability, X is preferably a single bond or a linking group having an oxygen atom, more preferably a single bond.
From the same point of view, the linking group having an oxygen atom is preferably -CO- (carbonyl group), -O-CO-O- (carbonate group), -COO- (ester group), -O- (ether group ), -CONH- (amide group), a group in which a plurality of these groups are linked, or a group in which one or more of these groups are linked to one or more divalent hydrocarbon groups, more preferably -CO 2 It is a CH 2 - group.
 以下、一般式(1)で表される脂環式エポキシ化合物の具体例を示す。 Specific examples of the alicyclic epoxy compound represented by general formula (1) are shown below.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式中、lは、1~10の整数を表し、mは、1~30の整数を表す。Rは、炭素数1~8のアルキレン基を表し、好ましくはメチレン基、エチレン基、プロピレン基、イソプロピレン基等の炭素数1~3のアルキレン基である。また、n1およびn2は、それぞれ独立して1~30の整数を表す。 In the above formula, l represents an integer of 1-10, and m represents an integer of 1-30. R represents an alkylene group having 1 to 8 carbon atoms, preferably an alkylene group having 1 to 3 carbon atoms such as methylene, ethylene, propylene and isopropylene. n1 and n2 each independently represent an integer of 1 to 30;
 シクロアルケンオキサイド構造を有する脂環式エポキシ化合物の具体例として、3',4'-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート(たとえばセロキサイド(CEL)2021P、ダイセル社製)、ε-カプロラクトン変性 3',4'-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート(セロキサイド2081、ダイセル社製)、(3,3',4,4'-ジエポキシ)ビシクロヘキシル(セロキサイド8010、ダイセル社製)が挙げられる。 Specific examples of alicyclic epoxy compounds having a cycloalkene oxide structure include 3′,4′-epoxycyclohexylmethyl, 3,4-epoxycyclohexane carboxylate (eg Celloxide (CEL) 2021P, manufactured by Daicel), and ε-caprolactone modification. 3′,4′-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate (Celoxide 2081, manufactured by Daicel Corporation) and (3,3′,4,4′-diepoxy)bicyclohexyl (Celoxide 8010, manufactured by Daicel Corporation) are mentioned.
 芳香族エポキシ化合物の具体例として、ビスフェノール骨格、フルオレン骨格、ビフェニル骨格、ナフタレン環、アントラセン環等の芳香環共役系を有するグリシジル化合物が挙げられる。
 芳香族エポキシ化合物は、好ましくは、ビスフェノール骨格を有する化合物であり、より好ましくはビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などのビスフェノール型エポキシ樹脂であり、さらに好ましくはビスフェノールF型エポキシ樹脂(たとえばYL983U、三井ケミカル社製)およびビスフェノールE型エポキシ樹脂(たとえばR1710、プリンテック社製)の少なくとも一つである。ビスフェノール骨格を有する芳香族エポキシ化合物は、たとえば、ビスフェノールA、ビスフェノールE、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール等のビスフェノール類とエピハロヒドリンとの縮合反応により得られる。
Specific examples of aromatic epoxy compounds include glycidyl compounds having aromatic ring conjugated systems such as bisphenol skeletons, fluorene skeletons, biphenyl skeletons, naphthalene rings, and anthracene rings.
The aromatic epoxy compound is preferably a compound having a bisphenol skeleton, more preferably a bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin and bisphenol S type epoxy resin. and more preferably at least one of bisphenol F type epoxy resin (eg YL983U, manufactured by Mitsui Chemicals) and bisphenol E type epoxy resin (eg R1710, manufactured by Printec). Aromatic epoxy compounds having a bisphenol skeleton can be obtained, for example, by a condensation reaction between bisphenols such as bisphenol A, bisphenol E, bisphenol F, bisphenol S and fluorene bisphenol and epihalohydrin.
(オキセタン化合物)
 オキセタン化合物は、一分子中に1または2以上のオキセタニル基を有する化合物であり、具体的には、モノオキセタン化合物、2官能オキセタン化合物、3官能以上のオキセタン化合物が挙げられる。硬化性向上の観点から、オキセタン化合物は好ましくは2官能オキセタン化合物である。
(oxetane compound)
The oxetane compound is a compound having one or more oxetanyl groups in one molecule, and specific examples thereof include monooxetane compounds, bifunctional oxetane compounds, and trifunctional or higher oxetane compounds. From the viewpoint of improving curability, the oxetane compound is preferably a bifunctional oxetane compound.
 硬化性向上の観点から、オキセタン化合物は、好ましくは以下の一般式(5)または(6)で表される化合物からなる群から選択される1または2以上の2官能オキセタン化合物である。 From the viewpoint of improving curability, the oxetane compound is preferably one or more bifunctional oxetane compounds selected from the group consisting of compounds represented by the following general formula (5) or (6).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(5)および(6)中、R5は、独立して、水素原子、炭素原子数1~6のアルキル基、アリル基、アリール基、アラルキル基、フリル基またはチエニル基であり、好ましくは炭素原子数1~6のアルキル基である。R6は、2価の有機残基である。 In general formulas (5) and (6), R 5 is independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, an aryl group, an aralkyl group, a furyl group or a thienyl group, preferably is an alkyl group having 1 to 6 carbon atoms. R6 is a divalent organic residue.
 R5のうち、炭素原子数1~6のアルキル基として、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基が挙げられる。
 アリール基の例として、具体的には、フェニル基、ナフチル基、トリル基、キシリル基が挙げられる。
 アラルキル基として、具体的には、ベンジル基、フェネチル基が挙げられる。
Among R 5 , the alkyl group having 1 to 6 carbon atoms specifically includes a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group and a cyclohexyl group.
Specific examples of aryl groups include phenyl, naphthyl, tolyl, and xylyl groups.
Specific examples of the aralkyl group include a benzyl group and a phenethyl group.
 また、R6として、具体的には、アルキレン基、ポリオキシアルキレン基、フェニレン基、キシリレン基、下記一般式で示される構造が挙げられる。 Specific examples of R 6 include an alkylene group, a polyoxyalkylene group, a phenylene group, a xylylene group, and structures represented by the following general formulas.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記一般式中、R3は酸素原子、硫黄原子、-CH2-、-NH-、-SO-、-SO2-、-C(CF32-または-C(CH32-である。
 また、R4は、炭素原子数1~6のアルキレン基またはアリーレン基である。炭素原子数1~6のアルキレン基として、具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、シクロヘキシレン基が挙げられる。
In the general formula above, R 3 is an oxygen atom, a sulfur atom, —CH 2 —, —NH—, —SO—, —SO 2 —, —C(CF 3 ) 2 — or —C(CH 3 ) 2 —. be.
R 4 is an alkylene or arylene group having 1 to 6 carbon atoms. Specific examples of the alkylene group having 1 to 6 carbon atoms include methylene group, ethylene group, propylene group, butylene group and cyclohexylene group.
 また、R6のうち、ポリオキシアルキレン基の炭素原子数は、好ましくは4~30であり、より好ましくは4~8である。ポリオキシアルキレン基の具体例として、ポリオキシエチレン基、ポリオキシプロピレン基が挙げられる。 Among R 6 , the polyoxyalkylene group preferably has 4 to 30 carbon atoms, more preferably 4 to 8 carbon atoms. Specific examples of polyoxyalkylene groups include polyoxyethylene groups and polyoxypropylene groups.
 硬化性向上の観点から、オキセタン化合物は、好ましくは一般式(6)に示したオキセタン化合物であり、より好ましくは3-エチル-3{〔(3-エチルオキセタン-3-イル)メトキシ〕メチル}オキセタン(たとえば、OXT-221(東亞合成社製))である。 From the viewpoint of improving curability, the oxetane compound is preferably an oxetane compound represented by general formula (6), more preferably 3-ethyl-3{[(3-ethyloxetan-3-yl)methoxy]methyl}. Oxetane (for example, OXT-221 (manufactured by Toagosei Co., Ltd.)).
(ラジカル重合性化合物)
 ラジカル重合性官能基の具体例として、(メタ)アクリロイル基およびビニル基からなる群から選択される1または2以上の基が挙げられる。組成物の硬化性を向上させる観点から、ラジカル重合性官能基は、好ましくは(メタ)アクリロイル基を含む化合物(本明細書中、「(メタ)アクリル化合物」とも呼ぶ。)を含み、より好ましくは(メタ)アクリル化合物である。
 ここで、本明細書において、(メタ)アクリロイル基とは、アクリロイル基とメタクリロイル基のうちの少なくとも一方を意味する。また、(メタ)アクリルとは、アクリルまたはメタクリルのうちの少なくとも一方を意味する。また、(メタ)アクリレートとは、アクリレートとメタクリレートのうちの少なくとも一方を意味する。
(Radical polymerizable compound)
Specific examples of radically polymerizable functional groups include one or more groups selected from the group consisting of (meth)acryloyl groups and vinyl groups. From the viewpoint of improving the curability of the composition, the radically polymerizable functional group preferably contains a compound containing a (meth)acryloyl group (also referred to herein as a "(meth)acrylic compound"), more preferably is a (meth)acrylic compound.
Here, in the present specification, a (meth)acryloyl group means at least one of an acryloyl group and a methacryloyl group. (Meth)acrylic means at least one of acrylic and methacrylic. (Meth)acrylate means at least one of acrylate and methacrylate.
((メタ)アクリル化合物)
 (メタ)アクリル化合物は、一分子中に1または2以上の(メタ)アクリロイル基を有する化合物であり、具体的には、モノ(メタ)アクリル化合物、ジ(メタ)アクリル化合物、3官能以上の(メタ)アクリル化合物が挙げられる。
 硬化性向上の観点から、(メタ)アクリル化合物は2官能以上の(メタ)アクリル化合物を含み、より好ましくはジ(メタ)アクリル化合物である。
((meth)acrylic compound)
The (meth)acrylic compound is a compound having one or more (meth)acryloyl groups in one molecule, and specifically includes a mono(meth)acrylic compound, a di(meth)acrylic compound, a (Meth)acrylic compounds are mentioned.
From the viewpoint of improving curability, the (meth)acrylic compound includes bifunctional (meth)acrylic compounds, more preferably di(meth)acrylic compounds.
 (メタ)アクリル化合物中の炭化水素構造に基づく分類では、(メタ)アクリル化合物として、鎖状構造を有する(メタ)アクリル化合物;および環状構造を有する(メタ)アクリル化合物が挙げられる。
 鎖状構造は、直鎖構造であっても、分岐を有する構造であってもよい。鎖状構造における炭素数は、モノマー入手容易性の観点から、たとえば1以上であり、好ましくは2以上、より好ましくは4以上である。また、耐熱性向上の観点から、状構造における炭素数は、好ましくは20以下であり、より好ましくは14以下である。
Classification based on the hydrocarbon structure in (meth)acrylic compounds includes (meth)acrylic compounds having a chain structure; and (meth)acrylic compounds having a cyclic structure.
The chain structure may be a straight chain structure or a branched structure. The number of carbon atoms in the chain structure is, for example, 1 or more, preferably 2 or more, more preferably 4 or more, from the viewpoint of monomer availability. From the viewpoint of improving heat resistance, the number of carbon atoms in the shaped structure is preferably 20 or less, more preferably 14 or less.
 鎖状構造を有する(メタ)アクリル化合物の具体例として、3官能以上の(メタ)アクリル化合物が挙げられる。3官能以上の(メタ)アクリル化合物は、好ましくは、トリメチロールプロパントリアクリレート(たとえばライトアクリレートTMP-A、共栄社化学社製)等の3官能(メタ)アクリル化合物である。 Specific examples of (meth)acrylic compounds having a chain structure include trifunctional or higher (meth)acrylic compounds. The tri- or higher functional (meth)acrylic compound is preferably a trifunctional (meth)acrylic compound such as trimethylolpropane triacrylate (eg Light Acrylate TMP-A, manufactured by Kyoeisha Chemical Co., Ltd.).
 環状構造を有する(メタ)アクリル化合物における環状構造として、脂環式炭化水素構造、芳香族炭化水素構造が挙げられる。また、環状構造は、単環式であってもよいし、縮合環式炭化水素構造や橋架環式炭化水素基構造の多環式構造であってもよい。
 屈折率向上の観点から、(メタ)アクリル化合物は、好ましくは、分子構造中に環状炭化水素骨格を有する。
Examples of the cyclic structure in the (meth)acrylic compound having a cyclic structure include an alicyclic hydrocarbon structure and an aromatic hydrocarbon structure. Moreover, the cyclic structure may be a monocyclic structure or a polycyclic structure such as a condensed cyclic hydrocarbon structure or a bridged cyclic hydrocarbon group structure.
From the viewpoint of improving the refractive index, the (meth)acrylic compound preferably has a cyclic hydrocarbon skeleton in its molecular structure.
 上記環状炭化水素骨格の具体例として、脂環式炭化水素骨格および芳香族炭化水素骨格が挙げられる。炭化水素骨格は、好ましくは芳香族炭化水素骨格であり、より好ましくはビスフェノール骨格およびフルオレン骨格からなる群から選択される少なくとも一つである。 Specific examples of the cyclic hydrocarbon skeleton include an alicyclic hydrocarbon skeleton and an aromatic hydrocarbon skeleton. The hydrocarbon skeleton is preferably an aromatic hydrocarbon skeleton, more preferably at least one selected from the group consisting of a bisphenol skeleton and a fluorene skeleton.
 分子構造中にビスフェノール骨格を有する(メタ)アクリル化合物として、具体的には、アルキレンオキサイド変性されたビスフェノール骨格を有する化合物が挙げられ、好ましくはEO変性ビスフェノールAジアクリレート、EO変性ビスフェノールAジメタクリレート、PO変性ビスフェノールAジアクリレート、PO変性ビスフェノールAメタクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレートおよびプロポキシ化エトキシ化ビスフェノールAジメタクリレートからなる群から選択される1または2以上の化合物が挙げられる。 Specific examples of (meth)acrylic compounds having a bisphenol skeleton in the molecular structure include compounds having an alkylene oxide-modified bisphenol skeleton, preferably EO-modified bisphenol A diacrylate, EO-modified bisphenol A dimethacrylate, One or more compounds selected from the group consisting of PO-modified bisphenol A diacrylate, PO-modified bisphenol A methacrylate, propoxylated ethoxylated bisphenol A diacrylate and propoxylated ethoxylated bisphenol A dimethacrylate.
 また、アルキレンオキサイド変性されたビスフェノール骨格を有する化合物は、下記一般式(7)で表されるものであってもよい。 In addition, the compound having a bisphenol skeleton modified with alkylene oxide may be represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(上記一般式(7)中、R7およびR8は、互いに独立して水素原子またはメチル基である。R9およびR10は互いに独立して水素原子、メチル基またはアリール基である。pおよびqは、互いに独立して1以上20以下の数である。) (In general formula (7) above, R 7 and R 8 are each independently a hydrogen atom or a methyl group. R 9 and R 10 are each independently a hydrogen atom, a methyl group or an aryl group. p and q are each independently a number of 1 or more and 20 or less.)
 一般式(7)中、硬化性向上の観点から、R7およびR8は、好ましくは水素原子であり、R9およびR10はメチル基である。
 また、フィラーの結束性向上の観点から、pおよびqは、互いに独立して、好ましくは1以上10以下の数であり、より好ましくは1以上5以下の数であり、さらに好ましくは1以上3以下である。
 同様の観点から、p+qは、好ましくは1以上、より好ましくは2以上であり、また、好ましくは20以下であり、より好ましくは10以下、さらに好ましくは6以下である。
In general formula (7), R 7 and R 8 are preferably hydrogen atoms, and R 9 and R 10 are methyl groups, from the viewpoint of improving curability.
In addition, from the viewpoint of improving the binding property of the filler, p and q are each independently preferably a number of 1 or more and 10 or less, more preferably a number of 1 or more and 5 or less, and still more preferably 1 or more and 3 It is below.
From the same point of view, p+q is preferably 1 or more, more preferably 2 or more, preferably 20 or less, more preferably 10 or less, and still more preferably 6 or less.
 一般式(7)で表される化合物の市販品の例として、NKエステルA-BPE-2.2、ABE-300、A-BPE-4、A-BPE-10、A-BPE-20、A-BPP-3(以上、新中村化学工業社製)、ライトアクリレートBP-4EAL、BP-4PA(以上、共栄社化学社製)が挙げられる。 Examples of commercially available products of the compound represented by the general formula (7) include NK ester A-BPE-2.2, ABE-300, A-BPE-4, A-BPE-10, A-BPE-20, A -BPP-3 (manufactured by Shin-Nakamura Chemical Co., Ltd.), light acrylate BP-4EAL and BP-4PA (manufactured by Kyoeisha Chemical Co., Ltd.).
 また、フルオレン骨格を有する(メタ)アクリル化合物として、具体的には、OGSOL(オグソール) EA-0200、EA-0300(以上、大阪ガス化学社製)等のフルオレン骨格を有する(メタ)アクリレート;OGSOL GA-5060P、GA-2800(以上、大阪ガス化学社製)等のフルオレン骨格を有するエポキシ(メタ)アクリレートが挙げられる。
 また、他の芳香族骨格を有する(メタ)アクリル化合物として、具体的には、エトキシ化-o-フェニルフェノールアクリレート(下記式(8)で表される化合物、たとえばA-LEN-10、新中村化学工業社製)、下記式(9)で表される化合物(たとえばPOB-A、共栄社化学社製)、ベンジルアクリレート(下記式(10)で表される化合物、たとえばビスコート#160、大阪有機化学工業社製)が挙げられる。
Further, as the (meth)acrylic compound having a fluorene skeleton, specifically, a (meth)acrylate having a fluorene skeleton such as OGSOL EA-0200, EA-0300 (manufactured by Osaka Gas Chemical Co., Ltd.); OGSOL Epoxy (meth)acrylates having a fluorene skeleton such as GA-5060P and GA-2800 (manufactured by Osaka Gas Chemical Co., Ltd.) can be mentioned.
Further, as (meth)acrylic compounds having other aromatic skeletons, specifically, ethoxylated-o-phenylphenol acrylate (a compound represented by the following formula (8), such as A-LEN-10, Shin-Nakamura Kagaku Kogyo Co., Ltd.), compounds represented by the following formula (9) (eg POB-A, manufactured by Kyoeisha Chemical Co., Ltd.), benzyl acrylate (compounds represented by the following formula (10), such as Viscoat #160, Osaka Organic Chemical manufactured by Kogyosha).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 組成物中の成分(A)の含有量は、硬化物の強度を向上する観点から、組成物の全組成に対し、好ましくは10質量%以上であり、より好ましくは20質量%以上、さらに好ましくは30質量%以上、さらに好ましくは40質量%以上、さらに好ましくは50質量%以上、さらに好ましくは60質量%以上である。
 また、組成物の放熱特性を向上する観点から、組成物中の成分(A)の含有量は、組成物の全組成に対し、好ましくは90質量%以下であり、より好ましくは80質量%以下、さらに好ましくは70質量%以下である。
From the viewpoint of improving the strength of the cured product, the content of component (A) in the composition is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 20% by mass or more, relative to the total composition of the composition. is 30% by mass or more, more preferably 40% by mass or more, still more preferably 50% by mass or more, and still more preferably 60% by mass or more.
Further, from the viewpoint of improving the heat dissipation properties of the composition, the content of component (A) in the composition is preferably 90% by mass or less, more preferably 80% by mass or less, based on the total composition of the composition. , more preferably 70% by mass or less.
 成分(A)の25℃における屈折率は、組成物の透明性向上の観点から、好ましくは1.40以上であり、より好ましくは1.45以上、さらに好ましくは1.50以上である。
 また、組成物の透明性向上の点から、成分(A)の25℃における屈折率は、好ましくは1.80以下であり、より好ましくは1.75以下、さらに好ましくは1.70以下、さらにより好ましくは1.65以下である。
 ここで、成分(A)の屈折率は、室温(25℃)でのd線(波長587.6nm)に対する屈折率ndであり、具体的にはアッベ屈折計(アタゴ社製、DR-M4)にて測定される。
 また、成分(A)が複数の種類の重合性化合物を含むとき、成分(A)の屈折率は、各成分の屈折率に質量分率を乗じたものの総和として求められる。
The refractive index at 25° C. of component (A) is preferably 1.40 or higher, more preferably 1.45 or higher, and still more preferably 1.50 or higher, from the viewpoint of improving the transparency of the composition.
Further, from the viewpoint of improving the transparency of the composition, the refractive index at 25° C. of component (A) is preferably 1.80 or less, more preferably 1.75 or less, still more preferably 1.70 or less. It is more preferably 1.65 or less.
Here, the refractive index of component (A) is the refractive index nd for d-line (wavelength 587.6 nm) at room temperature (25 ° C.), specifically Abbe refractometer (manufactured by Atago, DR-M4) measured in
Moreover, when the component (A) contains a plurality of types of polymerizable compounds, the refractive index of the component (A) is determined as the sum of the refractive indices of the respective components multiplied by the mass fraction.
(成分(B))
 成分(B)は、フィラーである。
 フィラーの材料は、具体的には、無機化合物である。無機フィラーの具体例として、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物;タルクが挙げられる。
(Component (B))
Component (B) is a filler.
The filler material is specifically an inorganic compound. Specific examples of inorganic fillers include metal hydroxides such as aluminum hydroxide and magnesium hydroxide; and talc.
 また、成分(B)の形状はたとえば粒子状である。
 成分(B)の平均粒径d50は、熱伝導性をより安定的に発現する観点から、好ましくは0.5μm以上であり、より好ましくは1.0μm以上、さらに好ましくは2.5μm以上である。
 また、組成物を接着層として使用する際の接着層の厚みの自由度を向上する観点から、成分(B)の平均粒径d50は、好ましくは100μm以下であり、より好ましくは50μm以下、さらに好ましくは30μm以下である。
 ここで、成分(B)の平均粒径d50は、具体的には、レーザー回折法により成分(B)の粒子の粒度分布を体積基準で測定することにより得られる。
Moreover, the shape of the component (B) is, for example, particulate.
The average particle diameter d50 of component (B) is preferably 0.5 μm or more, more preferably 1.0 μm or more, and still more preferably 2.5 μm or more, from the viewpoint of stably exhibiting thermal conductivity. be.
In addition, from the viewpoint of improving the flexibility of the adhesive layer thickness when the composition is used as an adhesive layer, the average particle size d50 of the component (B) is preferably 100 μm or less, more preferably 50 μm or less. More preferably, it is 30 μm or less.
Here, the average particle size d 50 of the component (B) is specifically obtained by measuring the particle size distribution of the particles of the component (B) on a volume basis by a laser diffraction method.
 成分(B)の熱伝導率は、組成物の放熱特性向上の観点から、好ましくは3W/m・K以上であり、より好ましくは5W/m・K以上、さらに好ましくは10W/m・K以上である。
 また、組成物の透明性向上の観点から、成分(B)の熱伝導率は、好ましくは100W/m・K以下であり、より好ましくは75W/m・K以下、さらに好ましくは50W/m・K以下、さらにより好ましくは20W/m・K以下である。
The thermal conductivity of component (B) is preferably 3 W/m·K or more, more preferably 5 W/m·K or more, still more preferably 10 W/m·K or more, from the viewpoint of improving the heat dissipation properties of the composition. is.
Further, from the viewpoint of improving the transparency of the composition, the thermal conductivity of component (B) is preferably 100 W/m·K or less, more preferably 75 W/m·K or less, and even more preferably 50 W/m·K or less. K or less, and more preferably 20 W/m·K or less.
 成分(B)の25℃における屈折率は、組成物の透明性向上の観点から、好ましくは1.40以上であり、より好ましくは1.45以上、さらに好ましくは1.50以上である。
 また、組成物の透明性向上の観点から、成分(B)の25℃における屈折率は、好ましくは1.80以下であり、より好ましくは1.75以下、さらに好ましくは1.70以下である。
The refractive index at 25° C. of component (B) is preferably 1.40 or higher, more preferably 1.45 or higher, still more preferably 1.50 or higher, from the viewpoint of improving the transparency of the composition.
Further, from the viewpoint of improving the transparency of the composition, the refractive index at 25° C. of component (B) is preferably 1.80 or less, more preferably 1.75 or less, and still more preferably 1.70 or less. .
 成分(A)の25℃における屈折率と成分(B)の25℃における屈折率との差の絶対値は、組成物の硬化物の透明性向上の観点から、好ましくは0.15以下であり、より好ましくは0.10以下、さらに好ましくは0.05以下である。
 また、成分(A)および(B)の屈折率の上記差の絶対値は、好ましくは0であり、また、たとえば0.01以上であってもよい。
The absolute value of the difference between the refractive index of component (A) at 25°C and the refractive index of component (B) at 25°C is preferably 0.15 or less from the viewpoint of improving the transparency of the cured product of the composition. , more preferably 0.10 or less, and still more preferably 0.05 or less.
The absolute value of the difference in refractive index between components (A) and (B) is preferably 0, and may be, for example, 0.01 or more.
(成分(C))
 組成物は、成分(C):光重合開始剤をさらに含んでもよい。成分(C)として、具体的には、光カチオン開始剤および光ラジカル開始剤からなる群から選択される少なくとも1種が挙げられる。
(Component (C))
The composition may further comprise component (C): a photoinitiator. Specific examples of component (C) include at least one selected from the group consisting of photocationic initiators and photoradical initiators.
 光カチオン開始剤は、紫外線等の光が照射されることによってカチオン種を発生し、成分(A)の重合を開始させることが可能な化合物であればよい。成分(C)が光カチオン開始剤であるとき、成分(A)は具体的にはカチオン重合性化合物であり、好ましくはエポキシ化合物およびオキセタン化合物からなる群から選択される少なくとも一種である。 The photocationic initiator may be a compound capable of generating cationic species upon irradiation with light such as ultraviolet rays and initiating the polymerization of component (A). When component (C) is a cationic photoinitiator, component (A) is specifically a cationic polymerizable compound, preferably at least one selected from the group consisting of epoxy compounds and oxetane compounds.
 光カチオン開始剤の具体例として、下記一般式(11)で表されるオニウムイオンの塩(オニウム塩)が挙げられる。かかるオニウム塩は、光反応によってルイス酸を放出する。
[R12 a13 b14 c15 dW]v+[MXv+uu- (11)
Specific examples of photocationic initiators include salts of onium ions (onium salts) represented by the following general formula (11). Such onium salts release Lewis acids upon photoreaction.
[R 12 a R 13 b R 14 c R 15 d W] v+ [MX v+u ] u- (11)
 一般式(11)中、Wは、S、Se、Te、P、As、Sb、Bi、O、I、Br、Cl、またはN≡Nを示す。R12、R13、R14およびR15は、それぞれ独立に有機基を示し、a、b、cおよびdは、それぞれ独立に0~3の整数を示す。なお、「a+b+c+d」はWの価数に等しい。 In general formula (11), W represents S, Se, Te, P, As, Sb, Bi, O, I, Br, Cl, or N≡N. R 12 , R 13 , R 14 and R 15 each independently represent an organic group, and a, b, c and d each independently represent an integer of 0-3. Note that "a+b+c+d" is equal to the valence of W.
 また、一般式(11)中、Mは、ハロゲン化錯体[MXv+u]の中心原子を構成する金属、またはメタロイドを示す。Mの具体例として、B、P、As、Sb、Fe、Sn、Bi、Al、Ca、In、Ti、Zn、Sc、V、Cr、Mn、Coが挙げられる。一般式(11)中、XはF、Cl、Br等のハロゲン原子を示し、uはハロゲン化錯体イオンの正味の電荷を示し、vはMの原子価を示す。 In general formula (11), M represents a metal or metalloid that constitutes the central atom of the halogenated complex [MX v+u ]. Specific examples of M include B, P, As, Sb, Fe, Sn, Bi, Al, Ca, In, Ti, Zn, Sc, V, Cr, Mn, and Co. In general formula (11), X represents a halogen atom such as F, Cl, Br, u represents the net charge of the halide complex ion, and v represents the valence of M.
 一般式(11)におけるオニウムイオンの具体例として、ジフェニルヨードニウム、ビス(4-メトキシフェニル)ヨードニウム、4-メチルフェニル-4'-イソプロピルフェニルヨードニウム、ビス(4-メチルフェニル)ヨードニウム、ビス(4-tert-ブチルフェニル)ヨードニウム、ビス(ドデシルフェニル)ヨードニウム、トリルクミルヨードニウム、トリフェニルスルホニウム、ジフェニル-4-チオフェノキシフェニルスルホニウム、ビス〔4-(ジフェニルスルフォニオ)-フェニル〕スルフィド、ビス〔4-(ジ(4-(2-ヒドロキシエチル)フェニル)スルホニオ)-フェニル〕スルフィド、η5-2,4-(シクロペンタジェニル)〔1,2,3,4,5,6-η-(メチルエチル)ベンゼン〕-鉄(1+)が挙げられる。 Specific examples of the onium ion in the general formula (11) include diphenyliodonium, bis(4-methoxyphenyl)iodonium, 4-methylphenyl-4′-isopropylphenyliodonium, bis(4-methylphenyl)iodonium, bis(4- tert-butylphenyl)iodonium, bis(dodecylphenyl)iodonium, tolylcumyliodonium, triphenylsulfonium, diphenyl-4-thiophenoxyphenylsulfonium, bis[4-(diphenylsulfonio)-phenyl]sulfide, bis[4 -(Di(4-(2-hydroxyethyl)phenyl)sulfonio)-phenyl]sulfide, η5-2,4-(cyclopentagenyl)[1,2,3,4,5,6-η-(methyl ethyl)benzene]-iron(1+).
 また、一般式(11)における陰イオンの具体例として、テトラフルオロボレート、テトラキス(ペンタフルオロフェニル)ボレート、ヘキサフルオロホスフェート、ヘキサフルオロアンチモネート、ヘキサフルオロアルセネート、ヘキサクロロアンチモネートが挙げられる。 Further, specific examples of anions in general formula (11) include tetrafluoroborate, tetrakis(pentafluorophenyl)borate, hexafluorophosphate, hexafluoroantimonate, hexafluoroarsenate, and hexachloroantimonate.
 生体に対する安全性に優れるという点で、一般式(11)における陰イオンは、テトラフルオロボレート、テトラキス(ペンタフルオロフェニル)ボレートおよびヘキサフルオロホスフェートからなる群から選択されるものが好ましい。 The anion in general formula (11) is preferably selected from the group consisting of tetrafluoroborate, tetrakis(pentafluorophenyl)borate and hexafluorophosphate in terms of excellent safety for living organisms.
 一般式(11)で表される光カチオン開始剤の市販品の例として、Irgacure250、Irgacure270、Irgacure290(BASF社製)、CPI-100P、CPI-101A、CPI-200K、CPI-210S、CPI-310B、CPI-400PG(サンアプロ社製)、SP-150、SP-170、SP-171、SP-056、SP-066、SP-130、SP-140、SP-601、SP-606、SP-701(ADEKA社製)、PI-2074(商品名、ローディア社製)などが挙げられる。中でも、硬化性を向上する観点から、一般式(11)で表される光カチオン開始剤は、好ましくはIrgacure270、Irgacure290、CPI-100P、CPI-101A、CPI-200K、CPI-210S、CPI-310B、CPI-400PG、SP-150、SP-170、SP-171、SP-056、SP-066、SP-601、SP-606、SP-701およびPI-2074からなる群から選択される1種または2種以上である。 Commercially available examples of photocationic initiators represented by general formula (11) include Irgacure250, Irgacure270, Irgacure290 (manufactured by BASF), CPI-100P, CPI-101A, CPI-200K, CPI-210S, and CPI-310B. , CPI-400PG (manufactured by San-Apro), SP-150, SP-170, SP-171, SP-056, SP-066, SP-130, SP-140, SP-601, SP-606, SP-701 ( ADEKA), PI-2074 (trade name, Rhodia), and the like. Among them, from the viewpoint of improving curability, the photocationic initiator represented by the general formula (11) is preferably Irgacure270, Irgacure290, CPI-100P, CPI-101A, CPI-200K, CPI-210S, CPI-310B , CPI-400PG, SP-150, SP-170, SP-171, SP-056, SP-066, SP-601, SP-606, SP-701 and PI-2074, or Two or more.
 光ラジカル開始剤は、紫外線等の光が照射されることによってラジカルを発生し、成分(A)の重合を開始させることが可能な化合物であればよい。成分(C)が光ラジカル発生剤であるとき、成分(A)は具体的にはラジカル重合性化合物であり、好ましくは(メタ)アクリル化合物である。
 光ラジカル発生剤の具体例として、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等のアシルオキシンホスフィド化合物、オキシムエステル化合物、アルキルフェノン化合物およびベンゾフェノン誘導体からなる群から選択される1種または2種以上が挙げられる。
The photoradical initiator may be a compound capable of generating radicals and initiating polymerization of the component (A) by being irradiated with light such as ultraviolet rays. When component (C) is a photoradical generator, component (A) is specifically a radically polymerizable compound, preferably a (meth)acrylic compound.
Specific examples of photoradical generators include one or two selected from the group consisting of acyloxine phosphide compounds such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide, oxime ester compounds, alkylphenone compounds and benzophenone derivatives. The above are mentioned.
 組成物中の成分(C)の含有量は、硬化性を向上する観点から、成分(A)100質量部に対して好ましくは0.1質量部以上であり、より好ましくは1質量部以上、さらに好ましくは2質量部以上、さらにより好ましくは3質量部以上である。
 また、組成物の着色を抑制する観点から、組成物中の成分(C)の含有量は、成分(A)100質量部に対して好ましくは10質量部以下であり、より好ましくは8質量部以下、さらに好ましくは7質量部以下である。
The content of component (C) in the composition is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, relative to 100 parts by mass of component (A), from the viewpoint of improving curability. More preferably 2 parts by mass or more, and even more preferably 3 parts by mass or more.
Further, from the viewpoint of suppressing coloring of the composition, the content of component (C) in the composition is preferably 10 parts by mass or less, more preferably 8 parts by mass relative to 100 parts by mass of component (A). Below, more preferably 7 parts by mass or less.
(溶剤)
 組成物を使用する工程の簡便化の観点から、本実施形態において、組成物は、好ましくは溶剤を含有しないものであり、または、組成物が溶剤を含むときの溶剤の含有量は0質量%超であり、また、0.05質量%以下であり、より好ましくは0.03質量%以下である。組成物が溶剤を含有しないものである具体的な態様として、組成物の調製時に溶剤が意図的に配合されないものが挙げられる。
(solvent)
From the viewpoint of simplification of the process of using the composition, in the present embodiment, the composition preferably does not contain a solvent, or when the composition contains a solvent, the content of the solvent is 0% by mass. It is more than 0.05% by mass, more preferably 0.03% by mass or less. Specific embodiments in which the composition is solvent-free include those in which no solvent is intentionally included during preparation of the composition.
 本実施形態において、組成物は、上述した成分以外の成分をさらに含んでもよい。他の成分の具体例として、光増感剤、酸化防止剤、耐光性付与剤、レベリング剤、消泡剤、チクソ付与剤、重合禁止剤、カップリング剤などが挙げられる。 In this embodiment, the composition may further contain components other than the components described above. Specific examples of other components include photosensitizers, antioxidants, light resistance imparting agents, leveling agents, antifoaming agents, thixotropic agents, polymerization inhibitors, coupling agents and the like.
 組成物が光増感剤を含むことにより、組成物の硬化性をさらに向上することができる。組成物として、たとえば光カチオン増感剤が挙げられる。
 光増感剤は、UV-LED等の波長選択的な光源に対応する観点から、好ましくは波長350nm~450nmの光によって励起状態となる化合物である。このような増感剤の具体例として、ピレン、ペリレン、トリフェニレン、アントラセン等の多核芳香族類;フルオレッセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル等のキサンテン類;キサントン、チオキサントン、ジメチルチオキサントン、ジエチルチオキサントン等のキサントン類;チアカルボシアニン、オキサカルボシアニン等のシアニン類;メロシアニン、カルボメロシアニン等のメロシアニン類;ローダシアニン類;オキソノール類;チオニン、メチレンブルー、トルイジンブルー等のチアジン類;アクリジンオレンジ、クロロフラビン、アクリフラビン等のアクリジン類;アクリドン、10-ブチル-2-クロロアクリドン等のアクリドン類;アントラキノン類;、スクアリウム類;スチリル類;ベーススチリル類;7-ジエチルアミノ4-メチルクマリン等のクマリン類が挙げられる。これらの中でも、光増感剤は、硬化性向上の観点から、好ましくは多環芳香族類、アクリドン類、クマリン類またはベーススチリル類であり、より好ましくはアントラセン化合物である。
By including a photosensitizer in the composition, the curability of the composition can be further improved. Compositions include, for example, photocationic sensitizers.
The photosensitizer is preferably a compound that is excited by light with a wavelength of 350 nm to 450 nm from the viewpoint of being compatible with wavelength-selective light sources such as UV-LEDs. Specific examples of such sensitizers include polynuclear aromatics such as pyrene, perylene, triphenylene and anthracene; xanthenes such as fluorescein, eosin, erythrosine, rhodamine B and rose bengal; xanthones such as diethylthioxanthone; cyanines such as thiacarbocyanine and oxacarbocyanine; merocyanines such as merocyanine and carbomerocyanine; rhodacyanins; acridines such as flavin and acriflavin; acridones such as acridon and 10-butyl-2-chloroacridone; anthraquinones; squariums; styryls; is mentioned. Among these, the photosensitizer is preferably polycyclic aromatics, acridones, coumarins or base styryls, more preferably an anthracene compound, from the viewpoint of improving curability.
 組成物中の光増感剤の含有量は、組成物の硬化性をより好ましいものとする観点から、成分(A)100質量部に対し、好ましくは0.1質量%以上であり、より好ましくは0.2質量%以上、さらに好ましくは0.3質量%以上であり、また、好ましくは3質量%以下であり、より好ましくは2質量%以下、さらに好ましくは1質量%以下である。 The content of the photosensitizer in the composition is preferably 0.1% by mass or more, more preferably 0.1% by mass or more, relative to 100 parts by mass of component (A), from the viewpoint of making the curability of the composition more preferable. is 0.2% by mass or more, more preferably 0.3% by mass or more, preferably 3% by mass or less, more preferably 2% by mass or less, and still more preferably 1% by mass or less.
 また、組成物がカップリング剤を含むことにより、組成物の硬化物と硬化物に隣接する部材との密着性をさらに高めることができる。
 カップリング剤として、たとえばシランカップリング剤が挙げられる。シランカップリングは、組成物の硬化物と硬化物に隣接する部材との密着性を向上する観点から、好ましくは成分(A)中の重合性官能基と共通の官能基を有するシランカップリング剤、または、成分(A)中の重合性官能基と反応可能な官能基を有するシランカップリング剤である。たとえば、成分(A)がエポキシ化合物を含むとき、カップリング剤が、エポキシ基を有するシランカップリング剤およびエポキシ基と反応(たとえば、付加反応)する官能基を有するシランカップリング剤からなる群から選択される一種または二種以上を含むことが好ましい。
In addition, when the composition contains a coupling agent, the adhesiveness between the cured product of the composition and the member adjacent to the cured product can be further enhanced.
Examples of coupling agents include silane coupling agents. Silane coupling is preferably a silane coupling agent having a functional group common to the polymerizable functional group in the component (A) from the viewpoint of improving the adhesion between the cured product of the composition and the member adjacent to the cured product. or a silane coupling agent having a functional group capable of reacting with the polymerizable functional group in component (A). For example, when component (A) contains an epoxy compound, the coupling agent is selected from the group consisting of a silane coupling agent having an epoxy group and a silane coupling agent having a functional group that reacts (for example, addition reaction) with the epoxy group. It is preferable to include one or more selected types.
 エポキシ基を有するシランカップリング剤の具体例として、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランが挙げられる。 Specific examples of silane coupling agents having epoxy groups include γ-glycidoxypropyltrimethoxysilane and β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane.
 エポキシ基と反応可能な官能基を有するシランカップリング剤の具体例として、1級アミノ基や2級アミノ基等のアミノ基;カルボキシル基等;(メタ)アクリロイル基;イソシアネート基等を含むシランカップリング剤が挙げられる。 Specific examples of silane coupling agents having functional groups capable of reacting with epoxy groups include amino groups such as primary amino groups and secondary amino groups; carboxyl groups, etc.; (meth)acryloyl groups; A ring agent is mentioned.
 これらのシランカップリング剤の具体例として、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン又は3-(4-メチルピペラジノ)プロピルトリメトキシシラン、トリメトキシシリル安息香酸、γ-アクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-イソシアナトプロピルトリエトキシシランが挙げられる。 Specific examples of these silane coupling agents include N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyltrimethoxysilane, N-2- (aminoethyl)-3-aminopropylmethyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl-3-aminopropyltrimethoxysilane or 3-(4-methylpiperazino)propyltrimethoxysilane, trimethoxysilylbenzoic acid, γ-acryloxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ- Isocyanatopropyltriethoxysilane can be mentioned.
 また、カップリング剤は、上述のもの以外のもの、たとえば他のシランカップリング剤を含んでもよい。他のシランカップリング剤として、たとえば、ビニルトリアセトキシシラン、ビニルトリメトキシシランが挙げられる。
 なお、カップリング剤の分子量は、組成物の硬化物と硬化物に隣接する部材との密着性を向上する観点から、好ましくは80~800である。
Coupling agents may also include those other than those described above, such as other silane coupling agents. Other silane coupling agents include, for example, vinyltriacetoxysilane and vinyltrimethoxysilane.
The molecular weight of the coupling agent is preferably 80 to 800 from the viewpoint of improving adhesion between the cured product of the composition and members adjacent to the cured product.
 組成物中のカップリング剤の含有量は、組成物の硬化物と硬化物に隣接する部材との密着性を向上する観点から、成分(A)100質量部に対し、好ましくは0.1質量部以上であり、より好ましくは0.5質量部以上であり、また、好ましくは5質量部以下であり、より好ましくは4質量部以下、さらに好ましくは3質量部以下である。 The content of the coupling agent in the composition is preferably 0.1 parts by mass with respect to 100 parts by mass of component (A) from the viewpoint of improving the adhesion between the cured product of the composition and the member adjacent to the cured product. parts or more, more preferably 0.5 parts by mass or more, preferably 5 parts by mass or less, more preferably 4 parts by mass or less, and even more preferably 3 parts by mass or less.
 次に、組成物の製造方法を説明する。
 組成物の製造方法は限定されず、たとえば、成分(A)および(B)ならびに適宜その他の成分を混合することを含む。各成分を混合する方法として、たとえば、遊星式撹拌装置、ホモディスパー、万能ミキサー、バンバリーミキサー、ニーダー、2本ロール、3本ロール、押出機等の公知の各種混練機を単独または併用して、常温下または加熱下で、常圧下、減圧下、加圧下または不活性ガス気流下等の条件下で均一に混練する方法が挙げられる。
Next, a method for producing the composition will be described.
The method of making the composition is not limited and includes, for example, mixing components (A) and (B) and optionally other components. As a method for mixing each component, for example, various known kneaders such as a planetary stirrer, homodisper, universal mixer, Banbury mixer, kneader, two-roll, three-roll, and extruder are used alone or in combination, Examples include a method of uniformly kneading under conditions such as normal temperature, heating, normal pressure, reduced pressure, increased pressure, or inert gas flow.
 ここで、組成物の屈折率、熱伝導率および粘度を前述の範囲内により安定的に制御して、前述の屈折率、熱伝導率および粘度の条件を満たす組成物を得るためには、組成物の製造にあたり、たとえば、組成物に含まれる成分(A)および(B)の選択および組み合わせ、配合量を制御することが重要である。 Here, in order to more stably control the refractive index, thermal conductivity and viscosity of the composition within the ranges described above and obtain a composition that satisfies the conditions of the refractive index, thermal conductivity and viscosity described above, the composition should be: In the production of the product, it is important to select, combine, and control the amount of components (A) and (B) contained in the composition, for example.
 本実施形態において、得られた組成物を用いて樹脂膜や放熱部材を形成することもできる。たとえば、組成物を基材上に塗布し、乾燥してもよい。塗布には、インクジェット法、スクリーン印刷、ディスペンサー塗布等の公知の手法を用いることができる。また、乾燥は、たとえば成分(A)が重合しない温度に加熱すること等によりおこなうことができる。得られる放熱部材の形状に制限はなく、たとえば膜状とすることができる。 In this embodiment, the obtained composition can also be used to form a resin film or a heat dissipation member. For example, the composition may be applied onto a substrate and dried. A known method such as an inkjet method, screen printing, or dispenser coating can be used for coating. Drying can be carried out by heating to a temperature at which component (A) does not polymerize, for example. There is no limitation on the shape of the heat radiating member to be obtained, and it can be, for example, a film shape.
 本実施形態において得られる組成物は、透明性および熱伝導性に優れており、所望の領域に放熱部材を安定的に形成できるため、たとえば、透明性(視認性)および放熱が必要とされる電子部品の分野で幅広く活用することができる。さらに具体的には、本実施形態において得られる組成物は、パワーデバイス等の半導体装置、発光装置、電池等の電子装置;自動車およびその部品;照明および部品における放熱部材、接着剤、コーティング剤等に好適に用いることができる。
 本実施形態における組成物を用いることにより、たとえば、部材のアライメントや実装後の部品の確認を容易におこなうことができ、電子装置等の製造安定性を向上することも可能となる。
 また、本実施形態における組成物は、熱に弱い部材とも好適に組み合わせて用いることができるため、デバイスの設計の自由度を向上させることができる。
The composition obtained in the present embodiment is excellent in transparency and thermal conductivity, and can stably form a heat-dissipating member in a desired region. Therefore, for example, transparency (visibility) and heat dissipation are required. It can be widely used in the field of electronic components. More specifically, the composition obtained in the present embodiment includes semiconductor devices such as power devices, light emitting devices, electronic devices such as batteries; automobiles and parts thereof; heat radiation members in lighting and parts, adhesives, coating agents, etc. It can be suitably used for
By using the composition of the present embodiment, for example, alignment of members and confirmation of components after mounting can be easily performed, and it is also possible to improve manufacturing stability of electronic devices and the like.
In addition, since the composition of the present embodiment can be suitably used in combination with members that are vulnerable to heat, the degree of freedom in device design can be improved.
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。 The present invention will be described below with examples and comparative examples, but the present invention is not limited to these.
 はじめに、以下の例において用いた材料を示す。
((A)重合性化合物)
重合性化合物1:下記式(12)に示す脂環式エポキシ化合物(3',4'-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、2官能)、CEL2021P、ダイセル社製、屈折率1.52
重合性化合物2:ビスフェノールF型エポキシ樹脂、YL983U、三菱ケミカル社製、屈折率1.58
重合性化合物3:ビスフェノールE型エポキシ樹脂、R1710、プリンテック社製、屈折率1.58
重合性化合物4:2官能オキセタン、OXT-221、東亞合成社製、屈折率1.45
重合性化合物5:EO変性ビスフェノールA骨格アクリル樹脂(エトキシ化ビスフェノールAジアクリレート、2官能)、A-BPE-4、新中村化学工業社製、屈折率1.54
重合性化合物6:単官能芳香族アクリル樹脂、POB-A、共栄社化学社製、屈折率1.57
重合性化合物7:フルオレン骨格アクリル樹脂(2官能)、オグソールEA-0200、大阪ガス化学社製、屈折率1.63
重合性化合物8:多官能アクリル樹脂(トリメチルロールプロパントリアクリレート、3官能)、TMP-A、共栄社化学社製、屈折率1.47
First, the materials used in the following examples are presented.
((A) polymerizable compound)
Polymerizable compound 1: an alicyclic epoxy compound represented by the following formula (12) (3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, bifunctional), CEL2021P, manufactured by Daicel Corporation, refractive index 1.0. 52
Polymerizable compound 2: bisphenol F type epoxy resin, YL983U, manufactured by Mitsubishi Chemical Corporation, refractive index 1.58
Polymerizable compound 3: Bisphenol E type epoxy resin, R1710, manufactured by Printec, refractive index 1.58
Polymerizable compound 4: bifunctional oxetane, OXT-221, manufactured by Toagosei Co., Ltd., refractive index 1.45
Polymerizable compound 5: EO-modified bisphenol A skeleton acrylic resin (ethoxylated bisphenol A diacrylate, bifunctional), A-BPE-4, manufactured by Shin-Nakamura Chemical Co., Ltd., refractive index 1.54
Polymerizable compound 6: monofunctional aromatic acrylic resin, POB-A, manufactured by Kyoeisha Chemical Co., Ltd., refractive index 1.57
Polymerizable compound 7: fluorene skeleton acrylic resin (bifunctional), Ogsol EA-0200, manufactured by Osaka Gas Chemical Co., Ltd., refractive index 1.63
Polymerizable compound 8: Polyfunctional acrylic resin (trimethylolpropane triacrylate, trifunctional), TMP-A, manufactured by Kyoeisha Chemical Co., Ltd., refractive index 1.47
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
((C)光重合開始剤)
開始剤1:光カチオン開始剤、CPI-210S、サンアプロ社製、ジフェニル-4-(フェニルチオ)フェニルスルホニウムヘキサフルオロホスフェート
開始剤2:光ラジカル開始剤、Omnirad TPO-H、IGM Resins社製、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド
(増感剤)
増感剤1:光増感剤(アントラセン化合物)、UVS-1331、川崎化成社製
(添加剤)
添加剤1:シランカップリング剤(3-グリシドキシプロピルトリメトキシシラン)、KBM-403、信越化学工業社製
添加剤2:シランカップリング剤(3-アクリロキシプロピルトリメトキシシラン)、KBM-5103、信越化学工業社製
((C) photoinitiator)
Initiator 1: photo cationic initiator, CPI-210S, manufactured by Sun-Apro, diphenyl-4-(phenylthio)phenylsulfonium hexafluorophosphate initiator 2: photo radical initiator, Omnirad TPO-H, manufactured by IGM Resins, 2, 4,6-trimethylbenzoyl-diphenylphosphine oxide (sensitizer)
Sensitizer 1: photosensitizer (anthracene compound), UVS-1331, manufactured by Kawasaki Kasei Co., Ltd. (additive)
Additive 1: Silane coupling agent (3-glycidoxypropyltrimethoxysilane), KBM-403, Shin-Etsu Chemical Co. Additive 2: Silane coupling agent (3-acryloxypropyltrimethoxysilane), KBM- 5103, manufactured by Shin-Etsu Chemical Co., Ltd.
((B)フィラー)
フィラー1:タルク、SG-200、日本タルク社製、屈折率1.54、熱伝導率5W/m・K、平均粒径d502.7μm
フィラー2(水酸化アルミニウム1):水酸化アルミニウム、CW-320LV、住友化学社製、屈折率1.57、熱伝導率11W/m・K、平均粒径d5018μm
フィラー3(水酸化アルミニウム2):水酸化アルミニウム、CW-310LV、住友化学社製、屈折率1.57、熱伝導率11W/m・K、平均粒径d5010μm
フィラー4:アルミナ、ASFP20、デンカ社製、屈折率1.76、熱伝導率25W/m・K、平均粒径d500.3μm
フィラー5:シリカ、SO-C6、アドマテックス社製、屈折率1.46、熱伝導率2W/m・K、平均粒径d502.0μm
フィラー6(水酸化アルミニウム3):水酸化アルミニウム、CL―303、住友化学社製、屈折率1.57、熱伝導率11W/m・K、平均粒径d504μm
((B) Filler)
Filler 1: Talc, SG-200, manufactured by Nippon Talc Co., Ltd., refractive index 1.54, thermal conductivity 5 W/m·K, average particle size d 50 2.7 μm
Filler 2 (aluminum hydroxide 1): aluminum hydroxide, CW-320LV, manufactured by Sumitomo Chemical Co., Ltd., refractive index 1.57, thermal conductivity 11 W/m K, average particle size d 50 18 μm
Filler 3 (aluminum hydroxide 2): aluminum hydroxide, CW-310LV, manufactured by Sumitomo Chemical Co., Ltd., refractive index 1.57, thermal conductivity 11 W/m K, average particle size d 50 10 μm
Filler 4: Alumina, ASFP20, manufactured by Denka, refractive index 1.76, thermal conductivity 25 W/m·K, average particle size d 50 0.3 μm
Filler 5: Silica, SO-C6, manufactured by Admatechs, refractive index 1.46, thermal conductivity 2 W/m·K, average particle size d 50 2.0 μm
Filler 6 (aluminum hydroxide 3): aluminum hydroxide, CL-303, manufactured by Sumitomo Chemical Co., Ltd., refractive index 1.57, thermal conductivity 11 W/m·K, average particle size d 50 4 μm
 (実施例1~11、比較例1~4)
 表1に示した配合組成となるように各成分を配合し、流動性を有し溶剤を含まない組成物である組成物を得た。具体的には、50mLの茶色ポリ瓶に組成物が30gとなるように各成分を秤量して、泡取り錬太郎(シンキー社製)で10分攪拌した。その後、3本ロールで3回混錬して、組成物を得た。
 各例で得られた組成物またはその硬化物の物性を以下の方法で測定した。測定結果を表1にあわせて示す。なお、比較例3および4については、上述の方法で組成物の調製を試みた際にペースト化せずに粉状のままとなったことから、以下の測定をおこなわなかった。
(Examples 1 to 11, Comparative Examples 1 to 4)
Each component was blended so as to have the blending composition shown in Table 1 to obtain a fluid composition containing no solvent. Specifically, each component was weighed into a 50 mL brown plastic bottle so that the composition would be 30 g, and stirred for 10 minutes with Awatori Rentaro (manufactured by Thinky Corporation). After that, the mixture was kneaded three times with three rolls to obtain a composition.
The physical properties of the composition obtained in each example or its cured product were measured by the following methods. The measurement results are also shown in Table 1. In Comparative Examples 3 and 4, the following measurements were not performed because the composition remained powdery without being pasted when the composition was prepared by the above-described method.
(平行光線透過率)
 100μm厚のテフロン(登録商標)をスペーサーとして、組成物を25mm×70mmの無アルカリガラスに挟みこんだ。波長395nmのUV-LEDで照度1000mW/cm2、積算光量3000mJ/cm2の条件で両面に照射し、硬化させ、平行光線透過率測定用のサンプルを得た。
 得られたサンプルを紫外可視分光光度計 UV-2550(島津製作所社製)で測定して、380~780nmの透過率の平均を求めた。
(parallel light transmittance)
Using 100 μm thick Teflon (registered trademark) as a spacer, the composition was sandwiched between non-alkali glasses of 25 mm×70 mm. Both surfaces were irradiated with a UV-LED with a wavelength of 395 nm under the conditions of an illuminance of 1000 mW/cm 2 and an integrated light amount of 3000 mJ/cm 2 to cure and obtain a sample for parallel light transmittance measurement.
The obtained sample was measured with a UV-visible spectrophotometer UV-2550 (manufactured by Shimadzu Corporation) to obtain an average transmittance of 380 to 780 nm.
(熱伝導率)
 まず、以下の手順で組成物の硬化物を得た。すなわち、100μm厚のテフロン(登録商標)シートを型枠として、PETフィルム間に未硬化の組成物を挟みこみ、波長395nmのUV-LEDで照度1000mW/cm2、積算光量3000mJ/cm2の条件で硬化させ、硬化物を得た。得られた硬化物の密度、比熱および熱拡散率をそれぞれ以下の方法で測定した。
(Thermal conductivity)
First, a cured product of the composition was obtained by the following procedure. That is, using a 100 μm thick Teflon (registered trademark) sheet as a formwork, the uncured composition was sandwiched between PET films, and the UV-LED with a wavelength of 395 nm was used under the conditions of an illuminance of 1000 mW/cm 2 and an integrated light amount of 3000 mJ/cm 2 . to obtain a cured product. The density, specific heat and thermal diffusivity of the obtained cured product were measured by the following methods.
(密度測定)
 得られた硬化物をアキュピックII 1340 自動密度計(島津製作所社製)で2回測定して、平均値を密度とした。
(比熱測定)
 パーキンエルマー社製のパン(B014-3018/B014-3003)に得られた硬化物を約5mg秤量して、Diamond DSC(パーキンエルマー社製)にて10℃/秒で昇温して、23℃での比熱を求めた。
(熱拡散率測定)
 得られた硬化物を周期加熱法拡散率測定装置(FTC-RT アドバンス理工社製)で3回測定して、平均値を熱拡散率とした。
(density measurement)
The obtained cured product was measured twice with an Accupic II 1340 automatic densitometer (manufactured by Shimadzu Corporation), and the average value was taken as the density.
(Specific heat measurement)
About 5 mg of the cured product obtained in a pan (B014-3018/B014-3003) manufactured by PerkinElmer was weighed and heated at a rate of 10°C/sec using a Diamond DSC (manufactured by PerkinElmer) to 23°C. The specific heat at
(Thermal diffusivity measurement)
The obtained cured product was measured three times with a periodic heating method diffusivity measuring device (FTC-RT, manufactured by Advance Riko Co., Ltd.), and the average value was taken as the thermal diffusivity.
(熱伝導率の算出)
 以上により得られた測定値を用いて、以下の式(100)により、硬化物の熱伝導率を求めた。
熱伝導率=密度×比熱×熱拡散率 (100)
(Calculation of thermal conductivity)
Using the measured values obtained above, the thermal conductivity of the cured product was obtained by the following formula (100).
Thermal conductivity = density x specific heat x thermal diffusivity (100)
(組成物の粘度)
 得られた組成物の粘度を、E型粘度計(TVE-35L、東機産業社製)で3°×R9.7のコーンを用いて25℃、以下の回転数にて測定した。
粘度1Pa・s未満:100rpm
粘度1Pa・s以上100Pa・s未満:20rpm
粘度100Pa・s以上:5rpm
(Viscosity of composition)
The viscosity of the resulting composition was measured with an E-type viscometer (TVE-35L, manufactured by Toki Sangyo Co., Ltd.) using a cone of 3°×R9.7 at 25° C. at the following rotational speeds.
Viscosity less than 1 Pa s: 100 rpm
Viscosity 1 Pa s or more and less than 100 Pa s: 20 rpm
Viscosity of 100 Pa s or more: 5 rpm
(硬化率)
 組成物を25mm×70mmの無アルカリガラス上にNo.6のバーコーターで塗布し、大気下で波長395nmのUV-LEDで照度1000mW/cm、積算光量3000mJ/cmの条件で照射し、硬化させた。
 また、実施例3および8~11以外の例については、上記条件で硬化後、さらにホットプレート上で80℃、30分硬化させ、熱硬化膜を得た。
 得られた硬化サンプルと硬化前のサンプルをFT/IR-6600(日本分光社製)でIR測定し、以下の式により硬化率を得た。
硬化率=[1-{反応ピーク高さ(硬化後)/基準ピーク高さ(硬化後)}/反応ピーク高さ(硬化前)/基準ピーク高さ(硬化前)}]×100
 反応率サンプルのための、基準ピークと反応ピークは以下の通りとした。
重合性化合物1の場合、基準ピークを1610cm-1、反応ピークを830cm-1
重合性化合物2、3の場合、基準ピークを1610cm-1、反応ピークを910cm-1
重合性化合物4の場合、基準ピークを1610cm-1、反応ピークを980cm-1
重合性化合物5、6、7、8の場合、基準ピークを1722cm-1、反応ピークを810cm-1
 50μmGAPにおける硬化率:2cm×5cm×700μm厚の無アルカリガラス上にPETフィルムを載せ、PETフィルム上にGAPとして50μm厚のテフロン(登録商標)シートを配置し、テフロン(登録商標)シートの間のPETフィルム上に組成物を載せ、その上から無アルカリガラスを載せ、両端をクリップで止めて、波長395nmのUV-LEDで照度1000mW/cm2、積算光量3000mJ/cm2の条件で、PETフィルムが隣接していない無アルカリガラス面から照射し、硬化させた。得られた硬化サンプルのUV照射をしていない面をIRで測定し、上記の硬化率と同様の方法で50μmGAPにおける硬化率を得た。
 200μmGAPにおける硬化率:GAPを200μm厚とする以外は、50μmGAPにおける硬化率と同様の方法200μmGAPにおける硬化率を得た。
 2mmGAPにおける硬化率:GAPを2mm厚とする以外は、50μmGAPにおける硬化率と同様の方法2mmGAPにおける硬化率を得た。
(hardening rate)
The composition was coated on a No. 25 mm×70 mm alkali-free glass. 6 bar coater, and cured by irradiating with a UV-LED with a wavelength of 395 nm under the conditions of an illuminance of 1000 mW/cm 2 and an integrated amount of light of 3000 mJ/cm 2 in the atmosphere.
Further, in the examples other than Examples 3 and 8 to 11, after curing under the above conditions, further curing was performed on a hot plate at 80° C. for 30 minutes to obtain a thermoset film.
The obtained cured sample and the sample before curing were subjected to IR measurement using FT/IR-6600 (manufactured by JASCO Corporation), and the curing rate was obtained according to the following formula.
Curing rate = [1-{reaction peak height (after curing)/reference peak height (after curing)}/reaction peak height (before curing)/reference peak height (before curing)}] × 100
The reference and reaction peaks for the reaction rate samples were as follows.
In the case of polymerizable compound 1, the reference peak is 1610 cm -1 and the reaction peak is 830 cm -1 .
In the case of polymerizable compounds 2 and 3, the reference peak is 1610 cm -1 and the reaction peak is 910 cm -1 .
In the case of polymerizable compound 4, the reference peak is 1610 cm -1 and the reaction peak is 980 cm -1
In the case of polymerizable compounds 5, 6, 7 and 8, the reference peak is 1722 cm -1 and the reaction peak is 810 cm -1 .
Curing rate at 50 μm GAP: A PET film is placed on a 2 cm × 5 cm × 700 μm thick non-alkali glass, a 50 μm thick Teflon (registered trademark) sheet is placed on the PET film as a GAP, and the gap between the Teflon (registered trademark) sheets is Place the composition on a PET film, place non-alkali glass on top of it, clip both ends, and apply UV-LED with a wavelength of 395 nm under the conditions of an illuminance of 1000 mW/cm 2 and an integrated amount of light of 3000 mJ/cm 2 . was irradiated and cured from non-adjacent alkali-free glass surfaces. The surface of the obtained cured sample which was not irradiated with UV was measured by IR, and the curing rate at 50 μm GAP was obtained in the same manner as the above curing rate.
Curing rate at 200 μm GAP: Curing rate at 200 μm GAP was obtained in the same manner as Curing rate at 50 μm GAP, except that the GAP was 200 μm thick.
Curing rate at 2 mm GAP: The curing rate at 2 mm GAP was obtained in the same manner as the curing rate at 50 µm GAP, except that the GAP was 2 mm thick.
(クロスピール強度)
 硬化膜を安定的に形成できることの指標として、クロスピール強度を測定した。
 25mm×70mmの無アルカリガラス上に組成物をのせ、50μm厚のテフロン(登録商標)をスペーサーとして配置して、25mm×70mmの無アルカリガラスを十字に重ねて、組成物の面積が1.0~5.0mm2となるようにした。波長395nmのUV-LEDで照度1000mW/cm2、積算光量3000mJ/cm2の条件で照射し、硬化させた。実施例3および8~11以外の例については、上記硬化後さらにホットプレート上で80℃、30分硬化させ、熱硬化サンプルを得た。
 得られたサンプルを200X型万能試験機(インテスコ社製)で5mm/分の速度で引張って、強度を求めた。強度が2.0MPa以上の場合を合格とした。
(cross peel strength)
Cross-peel strength was measured as an index of the ability to stably form a cured film.
The composition is placed on a 25 mm × 70 mm non-alkali glass, a 50 µm thick Teflon (registered trademark) is placed as a spacer, and 25 mm × 70 mm non-alkali glass is stacked crosswise so that the area of the composition is 1.0. It was made to be ~5.0 mm 2 . A UV-LED with a wavelength of 395 nm was used for curing under the conditions of an illuminance of 1000 mW/cm 2 and an integrated light amount of 3000 mJ/cm 2 . For examples other than Examples 3 and 8 to 11, after the above curing, they were further cured on a hot plate at 80° C. for 30 minutes to obtain thermoset samples.
The obtained sample was pulled with a 200X universal testing machine (manufactured by Intesco) at a speed of 5 mm/min to determine the strength. A case where the strength was 2.0 MPa or more was regarded as acceptable.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1より、各実施例においては、組成物の光硬化性に優れることと、硬化膜を安定的に形成できることとの効果のバランスに優れていた。 From Table 1, each example had an excellent balance between the excellent photocurability of the composition and the ability to stably form a cured film.
 この出願は、2021年8月19日に出願された日本出願特願2021-134342号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2021-134342 filed on August 19, 2021, and the entire disclosure thereof is incorporated herein.

Claims (13)

  1.  以下の成分(A)および(B):
     (A)重合性化合物、
     (B)フィラー
     を含む紫外線硬化性組成物であって、
     当該紫外線硬化性組成物の硬化膜(厚さ100μm)の波長380~780nmの平行光線透過率の平均値が40%以上であり、
     当該紫外線硬化性組成物の硬化膜(厚さ100μm)について、以下の式(100)により得られる熱伝導率が0.25W/m・K以上であり、
     E型粘度計を用いて25℃にて測定される当該紫外線硬化性組成物の粘度が0.1Pa・s以上1000Pa・s以下である、紫外線硬化性組成物。
    熱伝導率=密度×比熱×熱拡散率 (100)
    The following components (A) and (B):
    (A) a polymerizable compound,
    (B) a UV curable composition comprising a filler,
    The cured film (thickness 100 μm) of the ultraviolet curable composition has an average parallel light transmittance of 40% or more at a wavelength of 380 to 780 nm,
    The cured film (thickness 100 μm) of the ultraviolet curable composition has a thermal conductivity of 0.25 W / m K or more, which is obtained by the following formula (100),
    An ultraviolet curable composition having a viscosity of 0.1 Pa·s or more and 1000 Pa·s or less as measured at 25°C using an E-type viscometer.
    Thermal conductivity = density x specific heat x thermal diffusivity (100)
  2.  当該紫外線硬化性組成物中の溶剤の含有量が、当該紫外線硬化性組成物全体に対して0.05質量%以下である、請求項1に記載の紫外線硬化性組成物。 The ultraviolet curable composition according to claim 1, wherein the content of the solvent in the ultraviolet curable composition is 0.05% by mass or less with respect to the entire ultraviolet curable composition.
  3.  前記成分(B)の熱伝導率が3W/m・K以上100W/m・K以下である、請求項1または2に記載の紫外線硬化性組成物。 The ultraviolet curable composition according to claim 1 or 2, wherein the component (B) has a thermal conductivity of 3 W/m·K or more and 100 W/m·K or less.
  4.  前記成分(B)の25℃における屈折率が、1.40以上1.80以下である、請求項1乃至3いずれか一項に記載の紫外線硬化性組成物。 The ultraviolet curable composition according to any one of claims 1 to 3, wherein the component (B) has a refractive index at 25°C of 1.40 or more and 1.80 or less.
  5.  前記成分(A)の25℃における屈折率が、1.40以上1.80以下である、請求項1乃至4いずれか一項に記載の紫外線硬化性組成物。 The ultraviolet curable composition according to any one of claims 1 to 4, wherein the component (A) has a refractive index of 1.40 or more and 1.80 or less at 25°C.
  6.  成分(A)の25℃における屈折率と前記成分(B)の25℃における屈折率との差の絶対値が0.15以下である、請求項1乃至5いずれか一項に記載の紫外線硬化性組成物。 The ultraviolet curing according to any one of claims 1 to 5, wherein the absolute value of the difference between the refractive index of component (A) at 25°C and the refractive index of component (B) at 25°C is 0.15 or less. sex composition.
  7.  以下の成分(C)をさらに含む、請求項1乃至6いずれか一項に記載の紫外線硬化性組成物。
     (C)光重合開始剤
    7. The ultraviolet curable composition according to any one of claims 1 to 6, further comprising component (C) below.
    (C) photoinitiator
  8.  前記成分(C)が光カチオン開始剤である、請求項7に記載の紫外線硬化性組成物。 The ultraviolet curable composition according to claim 7, wherein the component (C) is a photocationic initiator.
  9.  前記成分(A)が、エポキシ化合物およびオキセタン化合物からなる群から選択される少なくとも一種である、請求項7または8に記載の紫外線硬化性組成物。 The ultraviolet-curable composition according to claim 7 or 8, wherein the component (A) is at least one selected from the group consisting of epoxy compounds and oxetane compounds.
  10.  前記成分(C)が光ラジカル開始剤である、請求項7に記載の紫外線硬化性組成物。 The ultraviolet curable composition according to claim 7, wherein the component (C) is a photoradical initiator.
  11.  前記成分(A)が、(メタ)アクリル化合物である、請求項7または10に記載の紫外線硬化性組成物。 The ultraviolet curable composition according to claim 7 or 10, wherein the component (A) is a (meth)acrylic compound.
  12.  請求項1乃至11いずれか一項に記載の紫外線硬化性組成物の硬化物からなる、樹脂膜。 A resin film comprising a cured product of the ultraviolet curable composition according to any one of claims 1 to 11.
  13.  請求項1乃至11いずれか一項に記載の紫外線硬化性組成物の硬化物からなる、放熱部材。 A heat dissipating member comprising a cured product of the ultraviolet curable composition according to any one of claims 1 to 11.
PCT/JP2022/027585 2021-08-19 2022-07-13 Ultraviolet-curable composition WO2023021891A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021134342 2021-08-19
JP2021-134342 2021-08-19

Publications (1)

Publication Number Publication Date
WO2023021891A1 true WO2023021891A1 (en) 2023-02-23

Family

ID=85240565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027585 WO2023021891A1 (en) 2021-08-19 2022-07-13 Ultraviolet-curable composition

Country Status (2)

Country Link
TW (1) TW202309200A (en)
WO (1) WO2023021891A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100477A (en) * 2011-10-14 2013-05-23 Jnc Corp Heat dissipation member, and electronic part, motor, battery and article using the same
JP2013237734A (en) * 2012-05-11 2013-11-28 Showa Denko Kk Method for producing transparent composite material and transparent film
JP2014203971A (en) * 2013-04-04 2014-10-27 日東電工株式会社 Underfill film, sealing sheet, method for manufacturing semiconductor device, and semiconductor device
JP2020023672A (en) * 2018-07-27 2020-02-13 日東電工株式会社 Heat-conductive sheet
WO2020044964A1 (en) * 2018-08-31 2020-03-05 三井化学株式会社 Sealing agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100477A (en) * 2011-10-14 2013-05-23 Jnc Corp Heat dissipation member, and electronic part, motor, battery and article using the same
JP2013237734A (en) * 2012-05-11 2013-11-28 Showa Denko Kk Method for producing transparent composite material and transparent film
JP2014203971A (en) * 2013-04-04 2014-10-27 日東電工株式会社 Underfill film, sealing sheet, method for manufacturing semiconductor device, and semiconductor device
JP2020023672A (en) * 2018-07-27 2020-02-13 日東電工株式会社 Heat-conductive sheet
WO2020044964A1 (en) * 2018-08-31 2020-03-05 三井化学株式会社 Sealing agent

Also Published As

Publication number Publication date
TW202309200A (en) 2023-03-01

Similar Documents

Publication Publication Date Title
TWI509025B (en) Curable composition
JP4193343B2 (en) Photocurable resin composition for sealing agent and sealing method
JP6854431B2 (en) Ultraviolet curable resin composition, manufacturing method of organic EL light emitting device, organic EL light emitting device, and touch panel
TWI537299B (en) Epoxy polymerizable composition and organic el device
JP2001187812A (en) Reactive particle, and curable composition and cured matter containing the same
JP7412430B2 (en) Sealant for organic EL display elements and organic EL display devices
TWI553080B (en) Energy ray hardening resin composition
JP7385722B2 (en) Encapsulant, cured product, organic electroluminescent display device, and method for manufacturing the device
JP6922638B2 (en) Active energy ray-curable adhesive composition, polarizing plate adhesive composition, polarizing plate adhesive, and polarizing plate using the same.
JP6539488B2 (en) Method for producing cured product, cured product, curable composition and adhesive
JP7406193B2 (en) Curable resin composition for nanoimprint, method for producing cured product, and method for producing uneven structure
JPWO2018037565A1 (en) Epoxy resin composition and low cure shrinkable resin cured film excellent in adhesion
JP5479248B2 (en) Sealant for optical devices
WO2021167053A1 (en) Solventless photocurable liquid composition, cured product thereof, optical filler containing same, and display device including layer comprising said cured product
JP2020172649A (en) Ultraviolet curable resin composition, method for manufacturing light-emitting device and light-emitting device
WO2018181846A1 (en) Curable composition, method for producing cured product, cured product of same, and adhesive using same
KR102496513B1 (en) Actinicraycurable adhesive composition, adhesive composition for polarizer, adhesive for polarizer, and polarizer obtained using same
WO2005014686A1 (en) Photo-curable resin composition and sealing agent for flat panel display using the same
JP2015196783A (en) sheet-like composition
WO2023021891A1 (en) Ultraviolet-curable composition
JP2021064541A (en) UV curable resin composition, manufacturing method of light emitting device, light emitting device, and touch panel
WO2023286700A1 (en) Curable resin composition
JP7039391B2 (en) Sealant for display element, sealant for organic EL element and its cured product
JP6880809B2 (en) Composition for active energy ray-curable encapsulant
JP7196596B2 (en) Active energy ray-curable adhesive composition, adhesive composition for polarizing plate, adhesive for polarizing plate, and polarizing plate using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE