WO2023286417A1 - 分散剤および水処理方法 - Google Patents

分散剤および水処理方法 Download PDF

Info

Publication number
WO2023286417A1
WO2023286417A1 PCT/JP2022/019072 JP2022019072W WO2023286417A1 WO 2023286417 A1 WO2023286417 A1 WO 2023286417A1 JP 2022019072 W JP2022019072 W JP 2022019072W WO 2023286417 A1 WO2023286417 A1 WO 2023286417A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
dispersant
polymer
treated
treatment method
Prior art date
Application number
PCT/JP2022/019072
Other languages
English (en)
French (fr)
Inventor
孝博 川勝
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2023286417A1 publication Critical patent/WO2023286417A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/52Natural or synthetic resins or their salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to dispersants and water treatment methods. This application claims priority based on Japanese Patent Application No. 2021-117767 filed in Japan on July 16, 2021, the contents of which are incorporated herein.
  • Aromatic polyamide reverse osmosis membranes are widely used as selective permeable membranes for water treatment because they are capable of low-pressure operation and have excellent desalination performance.
  • aromatic polyamide-based reverse osmosis membranes have low resistance to chlorine. Therefore, unlike the cellulose acetate reverse osmosis membrane, it cannot be brought into contact with chlorine under operating conditions. is likely to occur. If the membrane is contaminated with organic substances, there is a problem that performance such as permeation flux, differential pressure, and rejection is lowered.
  • Membrane cleaning is a method to restore the performance of membranes whose performance has deteriorated.
  • styrenesulfonic acid and/or styrenesulfonate are included as a monomer component as a cleaning agent for restoring membrane performance when the membrane is contaminated and performance such as permeation flux is reduced.
  • a cleaning agent containing a polymer is disclosed.
  • the sulfonic acid and benzene ring in the polymer of Patent Document 1 have a high affinity for the cationic surfactant (contaminant) adhering to the membrane, so the cationic surfactant easily adsorbs the polymer.
  • Patent Literature 2 discloses an aromatic sulfonic acid-formalin condensate and a phosphorus compound as agents for suppressing a decrease in permeation flux when water containing organic matter is treated with a reverse osmosis membrane.
  • Patent Document 3 discloses a dispersant containing a polymer having a sulfo group, such as a copolymer of acrylic acid and acrylamido-2-methylpropanesulfonic acid, in order to prevent membrane contamination.
  • the present invention was made in view of the above circumstances, and aims to provide a dispersant that suppresses contamination of the selectively permeable membrane by proteins and peptides, and a water treatment method.
  • a dispersant according to an aspect of the present invention is a dispersant added to water to be treated containing at least one or more proteins and peptides before treating the water to be treated with a selectively permeable membrane.
  • the dispersant contains a polymer containing at least one of styrenesulfonic acid and styrenesulfonate as a monomer, and the polymer has a weight average molecular weight of more than 1,000.
  • the polymer may be a homopolymer.
  • the weight average molecular weight of the polymer may be less than 8,000.
  • the polymer may be sodium polystyrenesulfonate.
  • a water treatment method includes a dispersant addition step of adding a dispersant to water to be treated containing at least one or more proteins and peptides, and after the dispersant addition step, a selective permeable membrane treatment step of treating treated water with a selectively permeable membrane, wherein the dispersant contains a polymer containing at least one of styrene sulfonic acid and styrene sulfonate as a monomer, and the polymer has a weight average molecular weight of more than 1,000.
  • the polymer may be a homopolymer.
  • the weight average molecular weight of the polymer may be less than 8,000.
  • the polymer may be sodium polystyrenesulfonate.
  • the selectively permeable membrane may be a reverse osmosis membrane.
  • the reverse osmosis membrane may be a polyamide membrane.
  • the amount of the polymer added to the water to be treated may be 0.01 to 100 mg/L.
  • the amount of the polymer added to the water to be treated may be 0.1 to 10 mg/L.
  • FIG. 2 is a cross-sectional view showing the structure of the sealed container of the testing apparatus of FIG. 1;
  • FIG. 10 is a graph showing changes over time in permeation fluxes of Comparative Examples 1-1, 1-2, 1-3 and 1-4 and Example 1-1.
  • FIG. 10 is a graph showing temporal changes in permeation fluxes of Comparative Examples 2-1 and 2-2 and Examples 2-1, 2-2, 2-3, 2-4 and 2-5.
  • FIG. 10 is a graph showing temporal changes in permeation fluxes of Comparative Examples 3-1 and 3-2 and Examples 3-1 and 3-2;
  • the dispersant and water treatment method of the present disclosure are described below.
  • the water treatment method of the present disclosure includes a dispersant addition step of adding the dispersant of the present disclosure to water to be treated containing at least one or more proteins and peptides, and after the dispersant addition step, the selective permeation membrane. a selective permeable membrane treatment step for treating the treated water.
  • a dispersant addition step of adding the dispersant of the present disclosure to water to be treated containing at least one or more proteins and peptides
  • the selective permeation membrane after the dispersant addition step, the selective permeation membrane.
  • a selective permeable membrane treatment step for treating the treated water Each element will be described below.
  • ⁇ Dispersant addition step> a dispersant is added to water containing at least one of proteins and peptides.
  • the dispersant used in the water treatment method of the present disclosure is a dispersant added to the water to be treated, which contains at least one or more proteins and peptides, before treating the water to be treated with a selectively permeable membrane.
  • the dispersant used in the water treatment method of the present disclosure contains a polymer containing at least one of styrenesulfonic acid and styrenesulfonate as a monomer (hereinafter sometimes referred to as a styrenesulfonic acid-based polymer).
  • a styrenesulfonic acid-based polymer is, for example, a polymer containing the following formula (1) as a structural unit.
  • M + represents a proton, an ammonium ion, an alkali metal cation, or an alkaline earth metal cation.
  • a styrenesulfonic acid-based polymer is a negatively charged polymer, and can suppress adsorption to a selectively permeable membrane by adsorbing and dispersing on proteins and peptides. Since the styrenesulfonic acid-based polymer contains at least one of styrenesulfonic acid and styrenesulfonate as a monomer (as a structural unit of the polymer), it has a high dispersing effect on proteins and peptides.
  • the styrenesulfonic acid-based polymer is not particularly limited as long as it contains at least one of styrenesulfonic acid and styrenesulfonate as monomers. That is, a styrenesulfonic acid-based polymer is a polymer having repeating units derived from styrenesulfonic acid and/or polystyrenesulfonate.
  • the styrenesulfonic acid-based polymer may be a homopolymer of styrenesulfonic acid and/or polystyrenesulfonate, or a copolymer of styrenesulfonic acid or styrenesulfonate with other monomers.
  • styrenesulfonates include alkali metal salts of styrenesulfonic acid such as sodium styrenesulfonate and potassium styrenesulfonate, alkaline earth metal salts, and ammonium salts.
  • the styrenesulfonic acid-based polymer is a copolymer of styrenesulfonic acid or styrenesulfonate and other monomers, it can be copolymerized with styrenesulfonic acid or styrenesulfonate as other monomers, and proteins or It is not particularly limited as long as it does not inhibit the dispersing effect of the peptide.
  • Other monomers include, for example, acrylic acid, acrylic acid esters, acrylamide, vinyl acetate, and the like.
  • One or two or more other monomers may be used in the polymerization of the styrenesulfonic acid-based polymer.
  • the content of repeating units derived from styrenesulfonic acid or styrenesulfonate is high.
  • the styrenesulfonic acid-based polymer is a copolymer of styrenesulfonic acid and/or polystyrenesulfonate and other monomers, repeating units derived from styrenesulfonic acid and/or polystyrenesulfonate in the styrenesulfonic acid-based polymer
  • the content is preferably 50 mol % or more. More preferably, it is 80 mol % or more.
  • homopolymers of styrenesulfonic acid and/or polystyrenesulfonate are preferred.
  • the homopolymer of styrenesulfonic acid and/or polystyrenesulfonate includes not only polystyrenesulfonic acid and polystyrenesulfonate but also copolymers of styrenesulfonic acid and styrenesulfonate.
  • examples of the styrenesulfonic acid-based polymer include polystyrenesulfonic acid, sodium polystyrenesulfonate, calcium polystyrenesulfonate, and ammonium polystyrenesulfonate.
  • sodium polystyrenesulfonate is particularly preferred.
  • the styrenesulfonic acid-based polymer may be used singly or in combination of two or more.
  • the weight average molecular weight of the styrene sulfonic acid-based polymer contained in the dispersant of the present disclosure is over 1000. More preferably, the weight average molecular weight of the polymer is 2000 or more. More preferably, the weight average molecular weight of the polymer is 3000 or more. Particularly preferred polymers have a weight average molecular weight of 4,000 or more.
  • the polymer contains at least one of styrenesulfonic acid and styrenesulfonate as monomers and has a weight average molecular weight of more than 1000, the charge repulsion makes it easier to disperse the protein or peptide in the water to be treated, and the permeation flow increases. A decrease in bundle can be suppressed.
  • the weight-average molecular weight of the styrenesulfonic acid-based polymer contained in the dispersant of the present disclosure is preferably less than 8,000. More preferably, the polymer has a weight average molecular weight of 7,000 or less. More preferably, the weight average molecular weight of the polymer is 6000 or less. If the weight average molecular weight of the polymer is less than 8000, the effect of aggregation on proteins or peptides can be reduced. As a result, it becomes easier to disperse the protein or peptide in the water to be treated, and a decrease in permeation flux can be suppressed. In addition, in the present disclosure, the weight average molecular weight can be measured by gel permeation chromatography.
  • the dispersant used in the water treatment method of the present disclosure may consist of a styrenesulfonic acid-based polymer, and may contain other components depending on the application.
  • Other ingredients include, for example, chelating agents and pH adjusters.
  • the water to be treated contains at least one or more proteins and peptides. Proteins and peptides are not particularly limited as long as they contaminate the selectively permeable membrane. Examples include leupeptin, lysozyme, polylysine, lactalbumin and the like.
  • the pH of the water to be treated it is preferable to adjust the pH of the water to be treated within the range of 5-8. If the pH is within this range, the dispersing effect of the styrenesulfonic acid-based polymer on proteins and peptides is further improved.
  • the pH may be adjusted by adding a pH adjuster to the water to be treated.
  • the amount of the styrenesulfonic acid-based polymer added to the water to be treated is preferably 0.01 mg/L or more relative to the water to be treated.
  • a more preferable addition amount is 0.1 mg/L or more.
  • a more preferable addition amount is 1 mg/L or more.
  • a particularly preferable addition amount is 5 mg/L or more.
  • the amount to be added is preferably 100 mg/L or less.
  • a more preferable addition amount is 50 mg/L or less.
  • a more preferable addition amount is 30 mg/L or less.
  • a particularly preferable addition amount is 10 mg/L or less.
  • the timing of addition of the styrenesulfonic acid-based polymer can be appropriately set within a range that does not impair the dispersion effect of proteins and peptides. It may be added continuously or intermittently.
  • continuous means that the water to be treated is being treated from the start to the end of the treatment, and the term “intermittent” is that the treatment is carried out at intervals of two or more times during the treatment period.
  • ⁇ Selective permeable membrane treatment step> the water to be treated is treated with the selective permeable membrane after the dispersant addition step.
  • the selectively permeable membrane is not particularly limited.
  • Selectively permeable membranes are, for example, microfiltration membranes, ultrafiltration membranes, and reverse osmosis membranes.
  • a reverse osmosis membrane is particularly preferable as the selectively permeable membrane.
  • the reverse osmosis membrane is not particularly limited.
  • Examples of reverse osmosis membranes include spiral, hollow fiber, and flat membrane-shaped skin layers made of resin such as cellulose acetate, aromatic polyamide, aliphatic polyamide, and aromatic polyimide. .
  • the reverse osmosis membrane is particularly preferably a polyamide membrane using an aromatic polyamide.
  • the conditions for treating (passing) the water to be treated may be appropriately set according to the treatment system.
  • the conditions in the examples are one example of conditions adopted for confirming the feasibility and effect of the present invention, and the present invention is based on this one example of conditions. It is not limited. Various conditions can be adopted in the present invention as long as the objects of the present invention are achieved without departing from the gist of the present invention.
  • FIG. 1 is a schematic diagram showing the configuration of the test apparatus 100.
  • FIG. 2 is a cross-sectional view showing the structure of the closed container of the testing apparatus of FIG.
  • the test apparatus 100 includes a pipe 11 and a pipe 13 through which water to be treated passes, a pump 12 connected to the pipe 11 and the pipe 13, a pressure gauge 14 installed in the pipe 13, a pipe 13, a pipe 16 and a pipe 17.
  • a valve 18 Connected closed container 1, stirrer 15 for rotating stirrer 5 in closed container 1, pipe 16 through which permeated water passes, pipes 17 and 19 through which concentrated water passes, and pipe 17 and pipe 19 are connected.
  • a valve 18 ;
  • the closed container 1 includes a porous support plate 2 , a reverse osmosis membrane 3 , an O-ring 4 , a stirrer 5 , an upper case 6 and a lower case 7 .
  • the sealed container 1 also includes a chamber 8, which is a space on the upper case 6 side, and a chamber 9, which is a space on the lower case 7 side, separated by the porous support plate 2 and the reverse osmosis membrane 3.
  • the water to be treated is sent through the pipe 11 to the pump 12, and is supplied to the chamber 9 of the sealed container 1 by the pump 12 from the pipe 13.
  • the stirrer 15 rotates the stirrer 5 to stir the water to be treated.
  • Permeated water that has passed through the reverse osmosis membrane 2 is taken out from the pipe 16 through the chamber 8 .
  • Concentrated water is taken out from the pipe 17 .
  • the pressure inside the closed container 1 is adjusted by a pressure gauge 14 and a valve 18 .
  • test membrane an aromatic polyamide-based reverse osmosis membrane “ES20” manufactured by Nitto Denko Corporation was cut into a circular shape and used, and this was set in the test apparatus 100 described above. Pure water was passed at a permeation flux of 1.0 [m/d] and a recovery rate of 80%, and the operating pressure P0 [MPa] was measured. After that, the water to be treated of Examples and Comparative Examples, which will be described later, was passed. The permeation flux was measured after 2, 5, 24, 48, 72 and 96 hours, and the pressure was adjusted so as to maintain 1.0 [m/d].
  • aqueous solution concentration: 1 mg/L
  • leupeptin Peptide Research Institute
  • water to be treated aqueous protein and peptide solution
  • a dispersant a copolymer of acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, and t-butylacrylamide (weight average molecular weight 5,000, Acumar 5000, Dow Chemical) is used, and the amount added to the water to be treated is 5 mg/L.
  • Example 1-1 An aqueous solution (concentration: 1 mg/L) of leupeptin (Peptide Research Institute) was used as water to be treated (aqueous protein and peptide solution) containing proteins and peptides.
  • a dispersant polystyrene sulfonate sodium salt (weight average molecular weight: 4,600, Polysciences, Inc.) was used, and the amount added to the water to be treated was 5 mg/L.
  • Example 2-1 An aqueous solution of lysozyme (derived from chicken egg white, Fuji Film Wako Pure Chemical Industries, Ltd.) (concentration: 1 mg/L) was used as the water to be treated containing proteins and peptides (aqueous protein and peptide solution).
  • Polystyrene sulfonate sodium salt weight average molecular weight 4,600, Polysciences, Inc. was used as a dispersant, and the amount added to the water to be treated was 5 mg/L.
  • Example 2-2 An aqueous solution of lysozyme (derived from chicken egg white, Fuji Film Wako Pure Chemical Industries, Ltd.) (concentration 1 mg/L) was used as the water to be treated (aqueous protein and peptide solution) containing proteins and peptides.
  • a dispersant polystyrene sulfonate sodium salt (weight average molecular weight 8,000, Polysciences, Inc.) was used, and the amount added to the water to be treated was 5 mg/L.
  • Example 2-3 An aqueous solution of lysozyme (derived from chicken egg white, Fuji Film Wako Pure Chemical Industries, Ltd.) (concentration 1 mg/L) was used as the water to be treated (aqueous protein and peptide solution) containing proteins and peptides.
  • Polystyrene sulfonate sodium salt weight average molecular weight 18,000, Polysciences, Inc. was used as a dispersant, and the amount added to the water to be treated was 5 mg/L.
  • Example 2-4 An aqueous solution of lysozyme (derived from chicken egg white, Fuji Film Wako Pure Chemical Industries, Ltd.) (concentration 1 mg/L) was used as the water to be treated (aqueous protein and peptide solution) containing proteins and peptides.
  • lysozyme derived from chicken egg white, Fuji Film Wako Pure Chemical Industries, Ltd.
  • Concentration 1 mg/L was used as the water to be treated (aqueous protein and peptide solution) containing proteins and peptides.
  • Polystyrene sulfonic acid sodium salt weight average molecular weight 70,000, Alfa Aesar
  • was used as a dispersant and the amount added to the water to be treated was 5 mg/L.
  • Example 2-5 An aqueous solution of lysozyme (derived from chicken egg white, Fuji Film Wako Pure Chemical Industries, Ltd.) (concentration 1 mg/L) was used as the water to be treated (aqueous protein and peptide solution) containing proteins and peptides.
  • lysozyme derived from chicken egg white, Fuji Film Wako Pure Chemical Industries, Ltd.
  • Concentration 1 mg/L was used as the water to be treated (aqueous protein and peptide solution) containing proteins and peptides.
  • Polystyrene sulfonate sodium salt weight average molecular weight 4,600, Polysciences, Inc.
  • Example 3-1 An aqueous solution of polylysine (MP Biomedicals, LLC) (concentration 1 mg/L) was used as the water to be treated (protein and peptide aqueous solution) containing proteins and peptides.
  • Polystyrene sulfonate sodium salt weight average molecular weight 4,600, Polysciences, Inc. was used as a dispersant, and the amount added to the water to be treated was 5 mg/L.
  • Example 3-2 An aqueous solution of lactalbumin (Sigma-Aldrich) (concentration: 1 mg/L) was used as water to be treated (aqueous protein and peptide solution) containing proteins and peptides. No dispersant was used. Polystyrene sulfonate sodium salt (weight average molecular weight 4,600, Polysciences, Inc.) was used as a dispersant, and the amount added to the water to be treated was 5 mg/L.
  • lactalbumin Sigma-Aldrich
  • FIG. 3 is a diagram showing changes over time in the permeation flux of Comparative Examples 1-1, 1-2, 1-3 and 1-4 and Example 1-1.
  • the vertical axis in FIG. 3 indicates relative permeation flux, and the horizontal axis in FIG. 3 indicates elapsed time (h).
  • Example 1-1 polystyrene sulfonic acid sodium salt
  • the relative permeation flux was maintained at 0.90 or more even after 96 hours.
  • Comparative Examples 1-2, 1-3 and 1-4 using other polymers having sulfone groups the relative permeation flux was 0.65 or less after 96 hours. From the above, it was found that sodium polystyrenesulfonate, which is a styrenesulfonic acid-based polymer, has an excellent dispersing effect on leupeptin, which is a peptide.
  • FIG. 4 is a diagram showing changes over time in permeation fluxes of Comparative Examples 2-1 and 2-2 and Examples 2-1, 2-2, 2-3, 2-4 and 2-5.
  • the vertical axis in FIG. 4 indicates relative permeation flux, and the horizontal axis in FIG. 4 indicates elapsed time (h).
  • the relative permeation flux was maintained at 0.85 or more even after 96 hours.
  • Example 2-1 with a weight average molecular weight of 4600 was highly effective.
  • FIG. 5 is a diagram showing changes over time in permeation fluxes of Comparative Examples 3-1 and 3-2 and Examples 3-1 and 3-2.
  • the vertical axis in FIG. 5 indicates relative permeation flux, and the horizontal axis in FIG. 5 indicates elapsed time (h).
  • Examples 3-1 and 3-2 using polystyrene sulfonic acid sodium salt having a weight average molecular weight of 4600 maintained the relative permeation flux at 0.85 or more even after 96 hours.
  • Comparative Examples 3-1 and 3-2 in which no dispersant was added the relative permeation flux decreased to 0.75 or less after 96 hours.
  • polystyrene sulfonate sodium salt having a weight-average molecular weight of more than 1000 which is a styrene sulfonate polymer, has a high dispersing effect also for polylysine and lactalbumin.
  • the isoelectric point of lactalbumin is 4.2 to 4.5, and it has a total negative charge near neutrality. is presumed to be at work.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

この分散剤は、タンパク質およびペプチドを少なくとも1種以上含有する被処理水を選択性透過膜で処理する前に、前記被処理水に添加される分散剤であって、前記分散剤が、モノマーとしてスチレンスルホン酸およびスチレンスルホン酸塩を少なくとも1種以上を含むポリマーを含有し、前記ポリマーの重量平均分子量が1000超である。

Description

分散剤および水処理方法
 本発明は、分散剤および水処理方法に関する。
 本願は、2021年7月16日に、日本に出願された特願2021-117767号に基づき優先権を主張し、その内容をここに援用する。
 世界的に水の供給が不足している。この水供給の不足に対して、精密ろ過(MF)、限外ろ過(UF)、逆浸透(RO)膜などの選択性透過膜システムを用いた海水、かん水の淡水化や排水回収が行われている。
 水処理用選択性透過膜として、低圧運転が可能で、脱塩性能に優れる芳香族ポリアミド系逆浸透膜が広く使われている。しかし、芳香族ポリアミド系逆浸透膜は、塩素に対する耐性が低い。そのため、酢酸セルロース系逆浸透膜のように、運転条件下で塩素と接触させることができないので、芳香族ポリアミド系逆浸透膜は、タンパク質やペプチドによる有機物汚染が酢酸セルロース系逆浸透膜と比較して起こりやすい。膜が有機物で汚染されると透過流束、差圧、阻止率などの性能が低下するという問題がある。
 性能が低下した膜の性能を回復する方法として、膜の洗浄がある。特許文献1には、膜が汚染し、透過流束などの性能が低下した際に、膜の性能を回復させるための洗浄剤として、スチレンスルホン酸及び/又はスチレンスルホン酸塩をモノマー成分として含むポリマーを含有する洗浄剤が開示されている。特許文献1のポリマー中のスルホン酸とベンゼン環とは、膜に付着したカチオン界面活性剤(汚染物)と親和性が高いので、カチオン界面活性剤に当該ポリマーが吸着しやすい。一方、カチオン界面活性剤に吸着したスルホン酸基以外の当該ポリマー中の他のスルホン酸基は、膜に対して荷電反発する。その結果、吸着したカチオン界面活性剤を膜から除去することができる。
 選択性透過膜システムを長時間安定的に運転するためには、膜の洗浄よりも膜の汚染そのものを抑制することが好ましい。特許文献2には、有機物を含んだ水を逆浸透膜で処理する際の透過流束の低下を抑制する薬剤として、芳香族スルホン酸ホルマリン縮合物及びリン化合物が開示されている。
 特許文献3には、膜の汚染を防止するために、アクリル酸とアクリルアミド-2-メチルプロパンスルホン酸との共重合体などのスルホ基を有する重合体を含む分散剤が開示されている。
日本国特開2018-15694号公報 日本国特開2020-110778号公報 日本国特開2014-188455号公報
 現在、特許文献2で開示された薬剤および特許文献3に開示されたアクリル酸とアクリルアミド-2-メチルプロパンスルホン酸との共重合体などのスルホ基を有する重合体よりも高い性能の分散剤が求められている。
 本発明は、上記の事情を鑑みてなされた発明であり、タンパク質やペプチドによる選択性透過膜の汚染を抑制する分散剤、および水処理方法を提供することを目的とする。
 本発明者は、上記課題を解決すべく鋭意検討した結果、所定の重量平均分子量を有し、かつ、所定のモノマーを含むポリマーを含む分散剤が、タンパク質やペプチドによる選択性透過膜の汚染抑制に有効であることを見出した。
 本発明は上記の知見に基づいて達成されたものであり、以下の手段を提案している。
(1)本発明の一態様に係る分散剤は、タンパク質およびペプチドを少なくとも1種以上含有する被処理水を選択性透過膜で処理する前に、前記被処理水に添加される分散剤であって、前記分散剤が、モノマーとしてスチレンスルホン酸およびスチレンスルホン酸塩を少なくとも1種以上を含むポリマーを含有し、前記ポリマーの重量平均分子量が1000超である。
(2)上記(1)に記載の分散剤は、前記ポリマーがホモポリマーであってもよい。
(3)上記(1)または(2)に記載の分散剤は、前記ポリマーの重量平均分子量が8000未満であってもよい。
(4)上記(1)~(3)のいずれか1つに記載の分散剤は、前記ポリマーがポリスチレンスルホン酸ナトリウム塩であってもよい。
(5)本発明の一態様に係る水処理方法は、タンパク質およびペプチドを少なくとも1種以上含有する被処理水に、分散剤を添加する分散剤添加工程と、前記分散剤添加工程後に、前記被処理水を選択性透過膜で処理する、選択性透過膜処理工程と、を備え、前記分散剤が、モノマーとしてスチレンスルホン酸およびスチレンスルホン酸塩を少なくとも1種以上含むポリマーを含有し、前記ポリマーの重量平均分子量が1000超である。
(6)上記(5)に記載の水処理方法は、前記ポリマーがホモポリマーであってもよい。
(7)上記(5)または(6)に記載の水処理方法は、前記ポリマーの重量平均分子量が8000未満であってもよい。
(8)上記(5)~(7)のいずれか1つに記載の水処理方法は、前記ポリマーがポリスチレンスルホン酸ナトリウム塩であってもよい。
(9)上記(5)~(8)のいずれか1項に記載の水処理方法は、前記選択性透過膜が逆浸透膜であってもよい。
(10)上記(9)に記載の水処理方法は、前記逆浸透膜がポリアミド膜であってもよい。
(11)上記(5)~(10)のいずれか1つに記載の水処理方法は、前記被処理水に対する前記ポリマーの添加量が0.01~100mg/Lであってもよい。
(12)上記(5)~(11)のいずれか1つに記載の水処理方法は、前記被処理水に対する前記ポリマーの添加量が0.1~10mg/Lであってもよい。
 本発明の上記態様によれば、タンパク質やペプチドによる選択性透過膜の汚染を抑制する分散剤、および水処理方法を提供することができる。
試験装置の構成を示す模式図である。 図1の試験装置の密閉容器の構造を示す断面図である。 比較例1-1、1-2、1-3および1-4と実施例1-1の透過流束の経時変化を示す図である。 比較例2-1、2-2と実施例2-1、2-2、2-3、2-4、2-5の透過流束の経時変化を示す図である。 比較例3-1、3-2と実施例3-1、3-2の透過流束の経時変化を示す図である。
 以下、本開示の分散剤および水処理方法について説明する。
 本開示の水処理方法は、タンパク質およびペプチドを少なくとも1種以上含有する被処理水に、本開示の分散剤を添加する分散剤添加工程と、分散剤添加工程後に、選択性透過膜で前記被処理水を処理する、選択性透過膜処理工程と、を備える。以下、各要素について説明する。
<分散剤添加工程>
 分散剤添加工程では、タンパク質およびペプチドを少なくとも1種以上含有する被処理水に分散剤を添加する。
(分散剤)
 本開示の水処理方法に用いられる分散剤は、タンパク質およびペプチドを少なくとも1種以上含有する被処理水を選択性透過膜で処理する前に、被処理水に添加される分散剤である。本開示の水処理方法に用いられる分散剤は、モノマーとしてスチレンスルホン酸およびスチレンスルホン酸塩を少なくとも1種以上含むポリマー(以下、スチレンスルホン酸系ポリマーと称する場合がある)を含有する。スチレンスルホン酸系ポリマーは、例えば、下記式(1)を構成単位として含むポリマーである。
Figure JPOXMLDOC01-appb-C000001
(式(1)中、Mはプロトン、アンモニウムイオン、アルカリ金属カチオン又はアルカリ土類金属カチオンを示す。)
 選択性透過膜の多くは負の荷電を有し、タンパク質やペプチドの正の荷電の部位が膜に吸着すると想定される。スチレンスルホン酸系ポリマーは負の荷電を有するポリマーであり、タンパク質やペプチドに吸着分散することで、選択性透過膜への吸着を抑制することができる。スチレンスルホン酸系ポリマーは、モノマーとして(ポリマーの構成単位として)、スチレンスルホン酸およびスチレンスルホン酸塩を少なくとも1種以上含むので、タンパク質やペプチドに対し高い分散効果を有する。
 スチレンスルホン酸系ポリマーは、モノマーとしてスチレンスルホン酸およびスチレンスルホン酸塩を少なくとも1種以上含むポリマーであれば、特に限定されない。即ち、スチレンスルホン酸系ポリマーは、スチレンスルホン酸および/またはポリスチレンスルホン酸塩に由来する繰り返し単位を有するポリマーである。スチレンスルホン酸系ポリマーは、スチレンスルホン酸および/またはポリスチレンスルホン酸塩のホモポリマーであってもよく、スチレンスルホン酸またはスチレンスルホン酸塩とその他のモノマーとのコポリマーであってもよい。
 スチレンスルホン酸塩としては、スチレンスルホン酸ナトリウム塩、スチレンスルホン酸カリウム塩等のスチレンスルホン酸のアルカリ金属塩や、アルカリ土類金属塩、アンモニウム塩等が挙げられる。
 スチレンスルホン酸系ポリマーが、スチレンスルホン酸またはスチレンスルホン酸塩と他のモノマーとのコポリマーである場合、他のモノマーとしては、スチレンスルホン酸またはスチレンスルホン酸塩と共重合が可能であり、タンパク質またはペプチドの分散効果を阻害しないものであれば、特に限定されない。他のモノマーとしては、例えば、アクリル酸、アクリル酸エステル、アクリルアミド、酢酸ビニル等が挙げられる。スチレンスルホン酸系ポリマーの重合に用いられる他のモノマーは1種又は2種以上であってもよい。
 タンパク質またはペプチドの分散には、スチレンスルホン酸またはスチレンスルホン酸塩に由来する繰り返し単位の含有量が多いことが好ましい。スチレンスルホン酸系ポリマーがスチレンスルホン酸および/またはポリスチレンスルホン酸塩と他のモノマーとのコポリマーである場合、スチレンスルホン酸系ポリマー中のスチレンスルホン酸および/またはポリスチレンスルホン酸塩に由来する繰り返し単位の含有量は50モル%以上が好ましい。さらに好ましくは、80モル%以上である。スチレンスルホン酸および/またはポリスチレンスルホン酸塩のホモポリマーであることが好ましい。なお、ここで、スチレンスルホン酸および/またはポリスチレンスルホン酸塩のホモポリマーには、ポリスチレンスルホン酸及びポリスチレンスルホン酸塩だけでなく、スチレンスルホン酸とスチレンスルホン酸塩のコポリマーを含むものとする。
 スチレンスルホン酸系ポリマーがホモポリマーの場合、スチレンスルホン酸系ポリマーとしては、ポリスチレンスルホン酸、ポリスチレンスルホン酸ナトリウム塩、ポリスチレンスルホン酸カルシウム塩、ポリスチレンスルホン酸アンモニウム塩などが挙げられる。特にスチレンスルホン酸系ポリマーとしては、ポリスチレンスルホン酸ナトリウム塩が好ましい。また、スチレンスルホン酸系ポリマーは、1種または2種以上併用してもよい。
 本開示の分散剤に含まれるスチレンスルホン酸系ポリマーの重量平均分子量は1000超である。より好ましいポリマーの重量平均分子量は、2000以上である。さらに好ましいポリマーの重量平均分子量は、3000以上である。特に好ましいポリマーの重量平均分子量は4000以上である。ポリマーがモノマーとしてスチレンスルホン酸およびスチレンスルホン酸塩を少なくとも1種以上含み、かつ、重量平均分子量が1000超であれば、荷電反発によって、タンパク質またはペプチドを被処理水中で分散させやすくなり、透過流束の低下を抑制することができる。
 本開示の分散剤に含まれるスチレンスルホン酸系ポリマーの重量平均分子量は8000未満であることが好ましい。より好ましいポリマーの重量平均分子量は、7000以下である。さらに好ましいポリマーの重量平均分子量は、6000以下である。ポリマーの重量平均分子量が8000未満であれば、タンパク質またはペプチドに対して、凝集する効果を低減できる。その結果、タンパク質またはペプチドをより被処理水中で分散させやすくなり、透過流束の低下を抑制することができる。なお、本開示において、重量平均分子量は、ゲル浸透クロマトグラフィにより測定することができる。
 本開示の水処理方法に用いられる分散剤は、スチレンスルホン酸系ポリマーから構成されていてもよいし、用途に応じて、他の成分を含有してもよい。他の成分としては、例えば、キレート剤、pH調整剤などがある。
(被処理水)
 被処理水は、タンパク質およびペプチドを少なくとも1種以上含有する。タンパク質およびペプチドは、選択性透過膜を汚染するものであれば、特に限定されない。例えば、ロイペプチン、リゾチーム、ポリリジン、ラクトアルブミンなどが挙げられる。
 被処理水のpHは5~8の範囲に調整することが好ましい。pHがこの範囲であれば、スチレンスルホン酸系ポリマーのタンパク質およびペプチドに対する分散効果がより向上する。pH調整剤を被処理水に添加することでpHを調整してもよい。
(添加量)
 被処理水へのスチレンスルホン酸系ポリマーの添加量は、被処理水に対して、0.01mg/L以上であることが好ましい。より好ましい添加量は、0.1mg/L以上である。さらに好ましい添加量は1mg/L以上である。特に好ましい添加量は、5mg/L以上である。添加量は、100mg/L以下が好ましい。より好ましい添加量は、50mg/L以下である。さらに好ましい添加量は、30mg/L以下である。特に好ましい添加量は10mg/L以下である。
 スチレンスルホン酸系ポリマーの添加のタイミングは、タンパク質およびペプチドの分散効果を損なわない範囲で適宜設定することができる。連続的に添加してもよいし、断続的に添加してもよい。ここで、被処理水の処理開始から処理終了までの処理中に行うことを「連続的」といい、又は処理期間中に2回以上の間隔を開けて行うことを「断続的」という。
<選択性透過膜処理工程>
 選択性透過膜処理工程において、分散剤添加工程後に、被処理水を選択性透過膜で処理する。
(選択性透過膜)
 選択性透過膜は、特に限定されない。選択性透過膜は、例えば、精密ろ過膜、限外ろ過膜、逆浸透膜である。特に選択性透過膜としては逆浸透膜が好ましい。
 逆浸透膜は、特に限定されない。逆浸透膜は、例えば、スパイラル状、中空糸状、平膜状等の形状で、スキン層が酢酸セルロース、芳香族ポリアミド、脂肪族ポリアミド、芳香族ポリイミド等の樹脂製のものを用いるものが挙げられる。逆浸透膜は、特に芳香族ポリアミドを用いたポリアミド膜が好ましい。
(処理条件)
 選択性透過膜処理工程において、被処理水を処理(通水)する条件は、処理系に応じて適宜設定すればよい。
 以上、本開示の分散剤および水処理方法について詳説した。その他、本発明の趣旨に逸脱しない範囲で、本開示の水処理方法における要素を周知の要素に置き換えることは適宜可能であり、また、前記の要素を適宜組み合わせてもよい。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 以下の実施例及び比較例では、図1および図2に示す試験装置100を用いて、タンパク質およびペプチドに対する分散効果を調べた。図1は、試験装置100の構成を示す模式図である。図2は、図1の試験装置の密閉容器の構造を示す断面図である。
 試験装置100は、被処理水が通る配管11および配管13と、配管11および配管13と接続されるポンプ12と、配管13に設置される圧力計14と、配管13、配管16および配管17と接続される密閉容器1と、密閉容器1中の攪拌子5を回転させるスターラー15と、透過水が通る配管16と、濃縮水が通る配管17および19と、配管17および配管19と接続されるバルブ18とを備える。
 密閉容器1は、多孔質支持板2と、逆浸透膜3と、Oリング4と、攪拌子5と、上部ケース6と、下部ケース7と、を備える。また、密閉容器1は、多孔質支持板2および逆浸透膜3で分けられた上部ケース6側の空間である室8と、下部ケース7側の空間である室9とを備える。
 試験装置100において、被処理水は、配管11を通ってポンプ12に送られ、配管13よりポンプ12で、密閉容器1の室9に供給される。室9では、スターラー15によって、攪拌子5が回転し、被処理水が攪拌される。逆浸透膜2を透過した透過水は、室8を経て配管16より取り出される。濃縮水は、配管17から取り出される。密閉容器1内の圧力は、圧力計14とバルブ18により調整される。
 供試膜としては、日東電工社製 芳香族ポリアミド系逆浸透膜「ES20」を円形に切り取って用い、これを上記の試験装置100にセットした。透過流束1.0[m/d]、回収率80%で純水を通水して、運転圧力P0[MPa]を測定した。その後、後述する実施例、比較例の被処理水を通水した。2、5、24、48、72、96時間後の透過流束を測定し、1.0[m/d]を維持できるように圧力を調整した。調整後の圧力をP1[MPa]とすると、相対透過流束J1[m/(m・d)]は以下の式(A)で求めた。なお、通水実験は25℃で行った。
 相対透過流束[-]=P0/P1・・・(A)
(比較例1-1)
 タンパク質およびペプチドを含有する被処理水(タンパク質、ペプチド水溶液)として、ロイペプチン(ペプチド研究所)の水溶液(濃度1mg/L)を用いた。分散剤は添加しなかった。
(比較例1-2)
 タンパク質およびペプチドを含有する被処理水(タンパク質、ペプチド水溶液)として、ロイペプチン(ペプチド研究所)の水溶液(濃度1mg/L)を用いた。分散剤として、アクリル酸と2-アクリルアミド-2-メチルプロパンスルホン酸の共重合ポリマー(重量平均分子量11,000、アキュゾール587、ダウケミカル)を用い、被処理水に対する添加量は5mg/Lとした。
(比較例1-3)
 タンパク質およびペプチドを含有する被処理水(タンパク質、ペプチド水溶液)として、ロイペプチン(ペプチド研究所)の水溶液(濃度1mg/L)を用いた。分散剤として、アクリル酸、2-アクリルアミド-2-メチルプロパンスルホン酸、t-ブチルアクリルアミドの共重合ポリマー(重量平均分子量5,000、アキュマー5000、ダウケミカル)を用い、被処理水に対する添加量は5mg/Lとした。
(比較例1-4)
 タンパク質およびペプチドを含有する被処理水(タンパク質、ペプチド水溶液)として、ロイペプチン(ペプチド研究所)の水溶液(濃度1mg/L)を用いた。分散剤として、アミノトリメチレンホスホン酸(ベルクレン640、BWA)を用い、被処理水に対する添加量は5mg/Lとした。
(実施例1-1)
 タンパク質およびペプチドを含有する被処理水(タンパク質、ペプチド水溶液)として、ロイペプチン(ペプチド研究所)の水溶液(濃度1mg/L)を用いた。分散剤として、ポリスチレンスルホン酸ナトリウム塩(重量平均分子量4,600、Polysciences, Inc)を用い、被処理水に対する添加量は5mg/Lとした。
(比較例2-1)
 タンパク質およびペプチドを含有する被処理水(タンパク質、ペプチド水溶液)として、リゾチーム(ニワトリ卵白由来、富士フィルム和光純薬)の水溶液(濃度1mg/L)を用いた。分散剤は使用しなかった。
(比較例2-2)
 タンパク質およびペプチドを含有する被処理水(タンパク質、ペプチド水溶液)として、リゾチーム(ニワトリ卵白由来、富士フィルム和光純薬)の水溶液(濃度1mg/L)を用いた。分散剤として、ポリスチレンスルホン酸ナトリウム塩(重量平均分子量~1,000、Polysciences, Inc)を用い、被処理水に対する添加量は5mg/Lとした。
(実施例2-1)
 タンパク質およびペプチドを含有する被処理水(タンパク質、ペプチド水溶液)として、リゾチーム(ニワトリ卵白由来、富士フィルム和光純薬)の水溶液(濃度1mg/L)を用いた。分散剤としてポリスチレンスルホン酸ナトリウム塩(重量平均分子量4,600、Polysciences, Inc)を用い、被処理水に対する添加量は5mg/Lとした。
(実施例2-2)
 タンパク質およびペプチドを含有する被処理水(タンパク質、ペプチド水溶液)として、リゾチーム(ニワトリ卵白由来、富士フィルム和光純薬)の水溶液(濃度1mg/L)を用いた。分散剤として、ポリスチレンスルホン酸ナトリウム塩(重量平均分子量8,000、Polysciences, Inc)を用い、被処理水に対する添加量は5mg/Lとした。
(実施例2-3)
 タンパク質およびペプチドを含有する被処理水(タンパク質、ペプチド水溶液)として、リゾチーム(ニワトリ卵白由来、富士フィルム和光純薬)の水溶液(濃度1mg/L)を用いた。分散剤としてポリスチレンスルホン酸ナトリウム塩(重量平均分子量18,000、Polysciences, Inc)を用い、被処理水に対する添加量は5mg/Lとした。
(実施例2-4)
 タンパク質およびペプチドを含有する被処理水(タンパク質、ペプチド水溶液)として、リゾチーム(ニワトリ卵白由来、富士フィルム和光純薬)の水溶液(濃度1mg/L)を用いた。分散剤としてポリスチレンスルホン酸ナトリウム塩(重量平均分子量70,000、Alfa Aesar)を用い、被処理水に対する添加量は5mg/Lとした。
(実施例2-5)
 タンパク質およびペプチドを含有する被処理水(タンパク質、ペプチド水溶液)として、リゾチーム(ニワトリ卵白由来、富士フィルム和光純薬)の水溶液(濃度1mg/L)を用いた。分散剤としてポリスチレンスルホン酸ナトリウム塩(重量平均分子量4,600、Polysciences, Inc)を用い、被処理水に対する添加量は1mg/Lとした。
(比較例3-1)
 タンパク質およびペプチドを含有する被処理水(タンパク質、ペプチド水溶液)として、ポリリジン(MP Biomedicals, LLC)の水溶液(濃度1mg/L)を用いた。分散剤は使用しなかった。
(比較例3-2)
 タンパク質およびペプチドを含有する被処理水(タンパク質、ペプチド水溶液)として、ラクトアルブミン(シグマアルドリッチ)の水溶液(濃度1mg/L)を用いた。分散剤は使用しなかった。
(実施例3-1)
 タンパク質およびペプチドを含有する被処理水(タンパク質、ペプチド水溶液)として、ポリリジン(MP Biomedicals, LLC)の水溶液(濃度1mg/L)を用いた。分散剤としてポリスチレンスルホン酸ナトリウム塩(重量平均分子量4,600、Polysciences, Inc)を用い、被処理水に対する添加量は5mg/Lとした。
(実施例3-2)
 タンパク質およびペプチドを含有する被処理水(タンパク質、ペプチド水溶液)として、ラクトアルブミン(シグマアルドリッチ)の水溶液(濃度1mg/L)を用いた。分散剤は使用しなかった。分散剤としてポリスチレンスルホン酸ナトリウム塩(重量平均分子量4,600、Polysciences, Inc)を用い、被処理水に対する添加量は5mg/Lとした。
 図3は、比較例1-1、1-2、1-3および1-4と実施例1-1の透過流束の経時変化を示す図である。図3の縦軸は相対透過流束を示し、図3の横軸は、経過時間(h)を示す。実施例1-1(ポリスチレンスルホン酸ナトリウム塩)の場合、96時間経過しても相対透過流束を0.90以上に保っていた。一方、他のスルホン基を有するポリマーを用いた比較例1-2、1-3、1-4は、96時間経過した後、相対透過流束は0.65以下となっていた。以上より、スチレンスルホン酸系ポリマーであるポリスチレンスルホン酸ナトリウム塩は、ペプチドであるロイペプチンに対して優れた分散効果があることが分かった。
 図4は、比較例2-1、2-2と実施例2-1、2-2、2-3、2-4、2-5の透過流束の経時変化を示す図である。図4の縦軸は相対透過流束を示し、図4の横軸は、経過時間(h)を示す。実施例2-1~2-5(ポリスチレンスルホン酸ナトリウム塩)の場合、96時間経過しても相対透過流束を0.85以上に保っていた。特に重量平均分子量が4600の実施例2-1は、高い効果が得られていた。一方、分散剤を添加しなかった比較例2-1および重量平均分子量が1000以下のポリスチレンスルホン酸ナトリウム塩を用いた比較例2-2は、96時間経過した後、相対透過流束が0.70以下にまで低下していた。以上より、スチレンスルホン酸系ポリマーである重量平均分子量1000超であるポリスチレンスルホン酸ナトリウム塩は、リゾチーム対して、高い分散効果があることが分かった。
 図5は、比較例3-1、3-2と実施例3-1、3-2の透過流束の経時変化を示す図である。図5の縦軸は相対透過流束を示し、図5の横軸は、経過時間(h)を示す。重量平均分子量が4600のポリスチレンスルホン酸ナトリウム塩を用いた実施例3-1および3-2は、96時間経過しても相対透過流束を0.85以上に保っていた。一方、分散剤を添加しなかった比較例3-1および3-2は、96時間経過後、相対透過流束が0.75以下にまで低下していた。以上より、ポリリジン、ラクトアルブミンに対してもスチレンスルホン酸系ポリマーである重量平均分子量1000超のポリスチレンスルホン酸ナトリウム塩は高い分散効果を有することが分かった。ラクトアルブミンの等電点は4.2~4.5であり、中性付近では負の荷電をトータルとして有するが、負荷電のポリスチレンスルホン酸ナトリウムの効果があることから、吸着時には正の荷電基が作用していることが推察される。
 以上の結果より、タンパク質およびペプチドを少なくとも1種以上含有する被処理水に対し、スチレンスルホン酸系ポリマーを含有する分散剤を添加することで、タンパク質やペプチドによる選択性透過膜の汚染を抑制できることが確認された。
1 密閉容器、 2 多孔質支持板、3 逆浸透膜、4 Oリング、5 攪拌子、6 上部ケース、7 下部ケース、8、9 室、11、13、16、17、19 配管、12 ポンプ、14 圧力計、15 スターラー、18 バルブ、100 試験装置

Claims (12)

  1.  タンパク質およびペプチドを少なくとも1種以上含有する被処理水を選択性透過膜で処理する前に、前記被処理水に添加される分散剤であって、
     前記分散剤が、モノマーとしてスチレンスルホン酸およびスチレンスルホン酸塩を少なくとも1種以上を含むポリマーを含有し、
     前記ポリマーの重量平均分子量が1000超である、分散剤。
  2.  前記ポリマーがホモポリマーである、請求項1に記載の分散剤。
  3.  前記ポリマーの重量平均分子量が8000未満である、請求項1または2に記載の分散剤。
  4.  前記ポリマーがポリスチレンスルホン酸ナトリウム塩である、請求項1~3のいずれか1項に記載の分散剤。
  5.  タンパク質およびペプチドを少なくとも1種以上含有する被処理水に、分散剤を添加する分散剤添加工程と、
     前記分散剤添加工程後に、前記被処理水を選択性透過膜で処理する、選択性透過膜処理工程と、
    を備え、
     前記分散剤が、モノマーとしてスチレンスルホン酸およびスチレンスルホン酸塩を少なくとも1種以上含むポリマーを含有し、
     前記ポリマーの重量平均分子量が1000超である、水処理方法。
  6.  前記ポリマーがホモポリマーである、請求項5に記載の水処理方法。
  7.  前記ポリマーの重量平均分子量が8000未満である、請求項5または6に記載の水処理方法。
  8.  前記ポリマーがポリスチレンスルホン酸ナトリウム塩である、請求項5~7のいずれか1項に記載の水処理方法。
  9.  前記選択性透過膜が逆浸透膜である、請求項5~8のいずれか1項に記載の水処理方法。
  10.  前記逆浸透膜がポリアミド膜である、請求項9に記載の水処理方法。
  11.  前記被処理水に対する前記ポリマーの添加量が0.01~100mg/Lである、請求項5~10のいずれか1項に記載の水処理方法。
  12.  前記被処理水に対する前記ポリマーの添加量が0.1~10mg/Lである、請求項5~11のいずれか1項に記載の水処理方法。
PCT/JP2022/019072 2021-07-16 2022-04-27 分散剤および水処理方法 WO2023286417A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-117767 2021-07-16
JP2021117767A JP7138219B1 (ja) 2021-07-16 2021-07-16 分散剤および水処理方法

Publications (1)

Publication Number Publication Date
WO2023286417A1 true WO2023286417A1 (ja) 2023-01-19

Family

ID=83282300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019072 WO2023286417A1 (ja) 2021-07-16 2022-04-27 分散剤および水処理方法

Country Status (2)

Country Link
JP (1) JP7138219B1 (ja)
WO (1) WO2023286417A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040168980A1 (en) * 2002-01-04 2004-09-02 Musale Deepak A. Combination polymer treatment for flux enhancement in MBR
JP2005058934A (ja) * 2003-08-18 2005-03-10 Kurita Water Ind Ltd 生物処理水含有水の処理方法
JP2010053108A (ja) * 2008-08-29 2010-03-11 Asahi Kasei Corp 荷電を有する限外濾過膜を用いた生体成分の分離方法およびモジュール、装置
WO2013160429A1 (en) * 2012-04-27 2013-10-31 Kemira Oyj Method for a membrane bioreactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040168980A1 (en) * 2002-01-04 2004-09-02 Musale Deepak A. Combination polymer treatment for flux enhancement in MBR
JP2005058934A (ja) * 2003-08-18 2005-03-10 Kurita Water Ind Ltd 生物処理水含有水の処理方法
JP2010053108A (ja) * 2008-08-29 2010-03-11 Asahi Kasei Corp 荷電を有する限外濾過膜を用いた生体成分の分離方法およびモジュール、装置
WO2013160429A1 (en) * 2012-04-27 2013-10-31 Kemira Oyj Method for a membrane bioreactor

Also Published As

Publication number Publication date
JP2023013524A (ja) 2023-01-26
JP7138219B1 (ja) 2022-09-15

Similar Documents

Publication Publication Date Title
Jafarinejad et al. Concentrating ammonium in wastewater by forward osmosis using a surface modified nanofiltration membrane
US8528746B2 (en) Method of manufacturing hydrophilic membrane having improved antifouling property and hydrophilic membrane manufactured by the method
Park et al. Highly chlorine‐tolerant polymers for desalination
JP5568835B2 (ja) 逆浸透膜、逆浸透膜装置及び逆浸透膜の親水化処理方法
JP5286785B2 (ja) 淡水製造方法
WO2014103822A1 (ja) 逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜
La et al. Enhanced desalination performance of polyamide bi-layer membranes prepared by sequential interfacial polymerization
CN110975622A (zh) 一种新型荷电纳滤膜及其制备方法
US20150218017A1 (en) Methods for Reducing Ion Exchange and Reverse Salt Flux Phenomena in Membranes for Osmotically Driven Membrane Processes
KR20090104007A (ko) 역침투막 처리 방법
CN112844046A (zh) 一种荷正电纳滤膜及其制备方法
JP6303837B2 (ja) 逆浸透膜の耐汚染化処理方法
KR101938009B1 (ko) 소수성 분리막의 개질 방법 및 개질 시스템
AU2013365015B2 (en) Method for hydrophilizing reverse osmosis membrane
JP2008161818A (ja) 純水の製造方法及び装置
JP2015174082A (ja) 水処理用分散剤及び水処理方法
TWI793280B (zh) 選擇性透過膜、其製造方法以及水處理方法
WO2023286417A1 (ja) 分散剤および水処理方法
ES2906437T3 (es) Método para mejorar el rendimiento de inhibición de membrana semipermeable
CN116510525B (zh) 一种基于胍基化合物的高通量纳滤膜及其制备方法和应用
CN108043233B (zh) 一种耐氧化聚酰胺反渗透膜及其制备方法和应用
WO2008059824A1 (fr) Appareil de traitement d'eau et procédé de traitement d'eau
JP2024034812A (ja) 水処理方法
KR102549065B1 (ko) 막용 수처리 약품 및 막 처리 방법
JP7200552B2 (ja) 分離膜のファウリング防止剤及びファウリング防止方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22841764

Country of ref document: EP

Kind code of ref document: A1