WO2023284451A1 - 气溶胶基质结构和气溶胶产生装置 - Google Patents

气溶胶基质结构和气溶胶产生装置 Download PDF

Info

Publication number
WO2023284451A1
WO2023284451A1 PCT/CN2022/097722 CN2022097722W WO2023284451A1 WO 2023284451 A1 WO2023284451 A1 WO 2023284451A1 CN 2022097722 W CN2022097722 W CN 2022097722W WO 2023284451 A1 WO2023284451 A1 WO 2023284451A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol
section
air inlet
matrix
segment
Prior art date
Application number
PCT/CN2022/097722
Other languages
English (en)
French (fr)
Inventor
郭聪慧
梁峰
Original Assignee
深圳麦时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦时科技有限公司 filed Critical 深圳麦时科技有限公司
Priority to EP22841091.6A priority Critical patent/EP4371428A1/en
Publication of WO2023284451A1 publication Critical patent/WO2023284451A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/20Cigarettes specially adapted for simulated smoking devices
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the invention relates to the technical field of electronic atomization devices, in particular to an aerosol matrix structure and an aerosol generating device.
  • a heat not burn (Heat Not Burning, HNB) device is a combination of a heating device and an aerosol-generating substrate (treated plant leaf products).
  • the external heating device heats the aerosol-generating substrate through high temperature to a temperature at which the aerosol-generating substrate can generate aerosol but is not high enough to burn, so that the aerosol-generating substrate can generate the aerosol required by the user without burning.
  • the aerosol-generating substrate tends to leave residue or adhere to the heating device after the suction is completed. This not only easily leads to difficulty in cleaning the heating device, miscellaneous and peculiar smells, and seriously affects the user's smoking experience, but also affects the heating efficiency and temperature control accuracy, resulting in poor reliability of the aerosol generating device and poor user experience.
  • the external cold air flows through the aerosol-generating matrix, causing the temperature of the aerosol-generating matrix to change drastically, making the cracking reaction of the aerosol-generating matrix unstable, and the material composition of the generated aerosol is poor. , which in turn affects the user's inhalation taste.
  • the aerosol matrix structure and aerosol generating device provided by the present application can solve the problems that the residue of the aerosol generating matrix is easily left in the heating device, the material composition of the generated aerosol is poor, and the user has poor taste when inhaling.
  • the first technical solution adopted by the present application is to provide an aerosol matrix structure, at least comprising a matrix section, and an airway section arranged at one end of the matrix section, and an airway section arranged at one end of the airway section away from the matrix section a filter segment at one end;
  • the substrate section includes an aerosol generating substrate and a heating element, the heating element has a closed cavity, and the aerosol generating substrate is arranged in the closed cavity; one end of the closed cavity has a first opening, and the other end is a sealed end;
  • the airway section has a suction channel and a number of first air inlets; wherein, the suction channel communicates with the closed cavity through the first opening; and the number of first air inlets communicates the suction channel with the outside atmosphere.
  • first air inlet holes are arranged on the side wall of the airway section, and are located at the end of the airway section close to the matrix section.
  • first air inlet holes are distributed at intervals along the circumferential direction of the air passage section.
  • first air inlets are located at the end of the airway section close to the matrix section; the airway section also includes several second airholes, and several second airholes are located at the end of the airway section away from the matrix section, for pumping During the inhalation process, the aerosol entering the aspiration channel is cooled.
  • second air inlet holes are arranged at intervals along the circumferential direction of the air passage section.
  • the airway segment includes a plurality of second air inlet holes, and the plurality of second air inlet holes are located at the end of the airway segment away from the matrix segment; the plurality of second air inlet hole sets are arranged at intervals along the axial direction of the airway segment.
  • the aperture diameter of the second air inlet hole is smaller than the aperture diameter of the first air inlet hole.
  • a cooling medium is arranged in the airway section for cooling the aerosol entering the airway section.
  • the cooling medium is arranged on the inner side wall of the air passage section and avoids the position where the first air inlet is located; and the cooling medium penetrates the air passage section along the axial direction of the air passage section, and the inside of the cooling medium is hollow, The space surrounded by the inner surface forms a suction channel.
  • the cooling medium is filled in the suction channel and is located at the end of the airway segment away from the matrix segment.
  • the cooling medium is made of polylactic acid or acetate fiber.
  • the filter section communicates with the airway section for filtering the aerosol sucked by the airway section, and the filter section is filled with a filter medium for filtering the aerosol sucked by the airway section.
  • the shape of the first air inlet hole is circular, oval, rhombus or square.
  • the diameter of the first air inlet hole is 0.2mm-1mm.
  • the diameter of the first air inlet hole is 0.6mm-0.8mm.
  • the end of the airway segment and the matrix segment having the first opening abuts, and the linear distance between the first air inlet hole and the first opening is 2mm-14mm.
  • the linear distance between the first air inlet and the first opening is 4mm-10mm.
  • the number of the first air intake holes is 4-10.
  • the first air inlet is circular, and the diameter of the circular first air inlet is 0.6mm-0.8mm; the linear distance between the first air inlet and the first opening is 4mm-10mm.
  • the second technical solution adopted by the present application is to provide an aerosol generating device, including an aerosol matrix structure and a heating device.
  • the aerosol matrix structure is the above-mentioned aerosol matrix structure;
  • the heating device includes a power supply component and a heating component; wherein, the power supply component is connected with the heating component to supply power to the heating component; the heating component is used to make the aerosol matrix
  • the heating body in the structure generates heat to heat and atomize the aerosol generating substrate to form an aerosol.
  • the aerosol matrix structure is provided with a matrix section, the heating body of the matrix section has a closed cavity, one end of the closed cavity has a first opening, and the other end is a sealed end, through the airtight
  • the chamber accommodates the aerosol-generating substrate, so that when the aerosol-generating substrate is accommodated in the airtight chamber, the aerosol-generating substrate can be kept in a sealed state, so as to prevent the aerosol-generating substrate from falling out of the aerosol during or after suction Matrix structure; at the same time, after the suction is completed, the residue of the aerosol-generating matrix can be taken out together with the aerosol matrix structure, avoiding the problem of leaving or sticking to the heating device, and facilitating the cleaning of the heating device; in addition, During the suction process, the airflow does not pass through the aerosol-generating matrix in the matrix section, the cracking reaction of the aerosol-generating matrix will not be affected by the cold air, and the cracking reaction is stable,
  • a suction passage and a number of first air inlets communicating with the airtight chamber are formed on the air passage section, so that the air can be pumped through the number of first air inlet holes.
  • suction the air is drawn in, thereby sucking the aerosols formed in the matrix segment.
  • FIG. 1 is a cross-sectional view of the aerosol matrix structure provided by the first embodiment of the present application.
  • FIG. 2 is a cross-sectional view of the aerosol matrix structure provided by the second embodiment of the present application.
  • FIG. 3 is a cross-sectional view of the aerosol matrix structure provided by the third embodiment of the present application.
  • FIG. 4 is a cross-sectional view of the aerosol matrix structure provided by the fourth embodiment of the present application.
  • FIG. 5 is a cross-sectional view of the aerosol matrix structure provided by the fifth embodiment of the present application.
  • Fig. 6 is a cross-sectional view of an aerosol generating device provided by an embodiment of the present application.
  • first”, “second”, and “third” in the present invention are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second” and “third” may explicitly or implicitly include at least one of said features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present invention are only used to explain the relative positional relationship between the components in a certain posture (as shown in the accompanying drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
  • FIG. 1 provides a cross-sectional view of an aerosol matrix structure 100 according to a first embodiment of the present application.
  • an aerosol matrix structure 100 is provided.
  • the aerosol matrix structure 100 includes a matrix section 111 , an airway section 112 and a filter section 113 connected in sequence.
  • the substrate segment 111 includes an aerosol generating substrate 120 and a heat generating body 121 .
  • the heating element 121 has a closed cavity 111d, and the closed cavity 111d is used to accommodate the aerosol generating substrate 120, that is, the aerosol generating substrate 120 is arranged in the closed cavity 111d of the heating element 121, and one end of the closed cavity 111d has a first opening 111b.
  • the side wall of the heating element 121 is ring-shaped to form a tubular body, and the end of the tubular body connected to the airway section 112 is an open end. In this embodiment, the open end serves as the first opening 111b.
  • the diameter of the first opening 111b is consistent with the diameter of the closed cavity 111d.
  • the caliber of the first opening 111b may be smaller than the caliber of the sealed cavity 111d.
  • the airway section 112 is used to draw aerosols formed in the matrix section 111 .
  • the airway section 112 is arranged at one end of the matrix section 111 having the first opening 111b, and the interior of the airway section 112 has a suction channel 112a, and the suction channel 112a communicates with the closed cavity 111d of the matrix section 111 through the first opening 111b.
  • the filter section 113 communicates with the end of the suction channel 112a of the airway section 112 away from the matrix section 111, so that the aerosol in the suction channel 112a can enter the filter section 113, thereby sucking the airway section 112 through the filter section 113.
  • Inhaled aerosols are filtered.
  • the filter section 113 can be arranged on the side of the airway section 112 away from the matrix section 111, and the filter section 113 can be filled with a filter medium 114, which can filter tar and suspended particles in the aerosol,
  • the aerosol drawn by the airway segment 112 is filtered through the filter medium 114 to reduce unwanted substances in the aerosol inhaled by the user.
  • the material of the filter medium 114 may be acetate fiber.
  • the end of the filter section 113 facing away from the air passage section 112 has a second opening 113a, so that the inner space of the filter section 113 communicates with the outside atmosphere. The user can inhale the aerosol from the end of the filter segment 113 having the second opening 113a.
  • the air passage section 112 and the filter section 113 can be made of paper-based or foil-based materials.
  • the heating element 121 can heat the aerosol generating substrate 120 to generate an aerosol, and the heating element 121 can generate heat through electromagnetic induction, or can generate heat through resistance.
  • the material of the heating element 121 can include a ferromagnetic material with a Curie point temperature, and the ferromagnetic material can be, for example, an iron-nickel alloy, so that the heating element 121 has a Curie point by electromagnetic induction.
  • the ferromagnetic material at temperature heats up and atomizes the aerosol-generating substrate 120 inside it to form an aerosol.
  • an electromagnetic coil can be wound around the periphery of the matrix segment 111 in a circumferential direction, so as to generate a magnetic field when the electromagnetic coil is energized, so that the ferromagnetic material with a Curie point temperature on the heating element 121 generates heat.
  • the material of the heating element may include a ferromagnetic material with a Curie point temperature means: the material of the heating element 121 may only be a ferromagnetic material with a Curie point temperature, and the heating element 121 is all used as a heating element to generate a substrate for the aerosol 120 heat.
  • the material of the heating element 121 may also include ferromagnetic materials with a Curie point temperature and other materials except the ferromagnetic materials with a Curie point temperature, and the other materials are only the same as the ferromagnetic materials with a Curie point temperature. It is a physical combination, that is, ferromagnetic materials do not chemically react with other materials.
  • the heat generated by the heating element is conducted to the aerosol generating substrate 120 through a series of media, such as air and paper material wrapped around the aerosol generating substrate 120.
  • the aerosol-generating substrate 120 is directly disposed in the heating element 121 , and the heating element 121 can be directly used as a heating element to generate heat to heat the aerosol-generating substrate 120 inside the heating element 121 .
  • the heat is directly transferred from the heating element 121 to the aerosol generating substrate 120, reducing the heat transfer medium, thereby reducing heat loss during heat conduction.
  • the material of the heating element 121 is a ferromagnetic material with a Curie point temperature. Because the heating element 121 is heated by a ferromagnetic material with a Curie point temperature, and the ferromagnetic material with a Curie point temperature is below the Curie point temperature, the ferromagnetic material is ferromagnetic and can vibrate Under the action of the coil, the electromagnetic induction continues to generate heat, so as to realize the heating and baking of the aerosol generating substrate 120 .
  • the ferromagnetic material transforms from ferromagnetism to paramagnetism, that is, the heating element 121 no longer has magnetism at this time, and the heating element 121 stops electromagnetically inductively heating the aerosol generating substrate 120, thereby making the aerosol generating substrate 120
  • the heating element 121 can automatically stop heating when the heating temperature exceeds the Curie point temperature, so as to accurately control the temperature of the aerosol-generating substrate 120 within a certain temperature range, and prevent the heating temperature of the aerosol-generating substrate 120 from being too high, resulting in gas
  • the aerosol generating substrate 120 is scorched and the like, so that the temperature of the aerosol generating substrate 120 can be precisely controlled, thereby eliminating the need for additional temperature measuring components in the heating device, effectively reducing production costs.
  • this embodiment uses a heating element 121 to wrap the aerosol-generating matrix 120, which can further prevent baking during the suction process.
  • the taste of paper improves the user's taste of smoking.
  • At least one side of the heating element 121 facing the aerosol generating substrate 120 is made of a ferromagnetic material with a Curie point temperature.
  • the matrix segment 111 may be a double-layer structure, wherein the material of the outer wall of the heating element 121 is a heat insulating material, and the material of the inner wall of the heating element 121 is a ferromagnetic material with a Curie point temperature. Therefore, the distance between the heating element 121 and the aerosol generating substrate 120 is closer, and the heat loss during heat transfer is less.
  • the aerosol generating substrate 120 when the aerosol generating substrate 120 is accommodated in the heating element 121, the aerosol generating substrate 120 can be in direct contact with the inner surface of the heating element 121, so that the heat generated by the heating element 121 Can be delivered directly to the aerosol-generating substrate 120 .
  • the heat needs to be transferred from the heating element 121 to the aerosol generating substrate 120 through the air medium, and the aerosol generating substrate 120 is in direct contact with the inner surface of the heating element 121, The heat does not need to be transferred in the air medium, which further reduces the heat loss during the heat transfer process.
  • the shape of the heating element 121, the airway section 112 and the filter section 113 can be hollow tubular, and can be cylindrical.
  • the matrix section 111, the airway section 112 and the filter section The shape of segment 113 can also be other shapes. Further, the shapes of the matrix section 111 , the airway section 112 and the filter section 113 may be the same, and may all be cylindrical.
  • the inner and outer diameters of the heating element 121, the airway section 112, and the filter section 113 can be the same, so that the sidewalls of the matrix section 111, the sidewalls of the airway section 112, and the sidewalls of the filter section 113 Butt in turn.
  • the airtight cavity 111d of the matrix segment 111 may only include the first opening 111b, that is, all ends of the airtight cavity 111d except the first opening 111b are sealed so that the airflow cannot enter the matrix segment 111 .
  • one end of the airtight cavity 111d has a first opening 111b, and the other end is a sealed end.
  • the air passage section 112 is provided with a first air intake hole 112b, and the number of the first air intake hole 112b is at least one.
  • the first air intake hole 112b connects the outside atmosphere with the suction channel 112a, so that the airflow can enter the suction channel 112a from the first air intake hole 112b, thereby carrying the aerosol generated in the matrix segment 111, and passing through the suction channel 112a enter the inner space of the filter section 113, and flow out from the second opening 113a of the filter section 113, so as to realize the user's suction process.
  • the aerosol matrix structure 100 makes the matrix segment 111 form a closed cavity 111d to accommodate the aerosol generating matrix 120 through the closed cavity 111d, so that when the aerosol generating matrix 120 is accommodated in the heating element 121, the aerosol can be generated.
  • the matrix 120 is in a sealed state to prevent the aerosol-generating matrix 120 in the aerosol matrix structure 100 from falling out into the heating device during or after the suction is completed.
  • the residue of the aerosol-generating substrate 120 can be taken out together with the aerosol-substrate structure 100, so as to avoid the problem of leaving or adhering to the heating device and facilitate the cleaning of the heating device.
  • the cracking reaction of the aerosol-generating matrix 120 will not be affected by the cold air, and the cracking reaction is stable, which is beneficial to the generation of aerosol substances.
  • the consistency of the ingredients is conducive to improving the user's smoking taste.
  • the heating temperature of the aerosol-generating substrate 120 can be further increased to fully release the aroma components in the aerosol-generating substrate 120 and improve the user's puffing taste.
  • the heating element 121 has an annular side wall 111e and a bottom wall 111f.
  • the bottom wall 111f is arranged at the end of the annular side wall 111e away from the air passage section 112, and is connected to the annular side wall 111e.
  • a closed cavity 111d is formed around it.
  • the annular side wall 111e and the bottom wall 111f can seal the end of the heating element 121 away from the airway section 112 through close cooperation, or the annular side wall 111e and the bottom wall 111f can be integrally formed, that is, the heating element 121 is integrally formed, and the airtight cavity 111d is Integral molding makes the end of the matrix segment 111 away from the airway segment 112 airtight.
  • the integral formation of the airtight cavity 111d can make the inside of the matrix segment 111 better sealed, and in the case of handling, moving, unpacking and other external forces, the bottom
  • the wall 111f is also not easy to loosen and fall off, which can prevent the aerosol-generating substrate 120 from falling out and make the heating device difficult to clean, and at the same time prevent the airflow from entering the substrate segment 111, causing the problem of poor consistency of the generated aerosol.
  • the annular side wall 111 e and the bottom wall 111 f of the matrix segment 111 are integrally formed.
  • the aerosol matrix structure 100 sucks the aerosol through several first air inlet holes 112b.
  • the matrix section 111 of the first embodiment is a closed structure, and the airflow does not pass through the matrix section 111. Therefore, the outflow of the aerosol generated in the matrix section 111 is relatively difficult for the open structure at both ends of the matrix section 111, and the airflow cannot carry The amount of aerosol produced or brought out is small, which affects the user's inhalation experience.
  • the specific number of first air intake holes 112b can be selected and set according to actual conditions.
  • the number of first air inlet holes 112b is several, and several first air outlet holes are distributed at intervals along the circumferential direction of the air passage section 112.
  • the directions are evenly distributed at intervals, so that the air intake in each radial direction of the air passage section 112 is relatively uniform.
  • the shape of the first air inlet 112b can be circular, oval, diamond, square, etc., and the shape of the first air inlet 112b should be selected according to the production process and cost of the aerosol matrix structure 100 .
  • the aperture size of the first air inlet hole 112b can be selected and set according to actual conditions.
  • the number and aperture size of the first air inlet holes 112b should be designed in combination with the diameter of the air passage section 112, so as to avoid the air passage section 112 being easily damaged due to the large opening area. deformation and collapse, thereby causing a problem of clogging the suction passage 112a.
  • the diameter of the first air inlet hole 112b may be 0.2mm-1mm.
  • the linear distance between the first air inlet 112b and the first opening 111b can be 2mm-14mm, so as to shorten the linear distance between the first air inlet 112b and the first opening 111b, so that the aerosol matrix structure
  • the first air inlet 112b may be disposed at an end of the airway segment 112 close to the matrix segment 111 , of course, the first air inlet 112b may also be disposed at other positions of the airway segment 112 .
  • the position of the opening can be designed according to the structure of the aerosol generating device 200 (see Figure 6 below). It should be noted that the design of the opening position should prevent the aerosol generating device 200 from blocking the first air inlet 112b, thus affecting the aerosol Intake of matrix structure 100 .
  • the number of the first air outlet holes is 4-10
  • the shapes of the first air outlet holes are all circular
  • the diameter of the circular first air inlet hole 112b is 0.6mm- 0.8 mm
  • the average straight line distance between the plurality of first air inlets 112 b and the first opening 111 b is 4 mm-10 m, and are evenly spaced in the circumferential direction of the air passage section 112 .
  • the design of the first air outlet can make the amount of sucked aerosol relatively sufficient, the suction resistance is moderate, and the temperature of the airflow is moderate, and the user's suction experience is better.
  • the heating temperature of the aerosol-generating substrate 120 is higher than that of the non-closed structure, and the opening position of the first air inlet 112b is usually farther away from the substrate section 111.
  • the temperature of the aerosol that causes the user to inhale is usually high, which may bring a bad inhalation experience to the user.
  • FIG. 2 is a cross-sectional view of the aerosol matrix structure 100 provided in the second embodiment.
  • the airway section While the side wall of 112 is provided with some first air inlets 112b, also be provided with some second air inlets 112c, the second air inlets 112c is by introducing outside cold air in the suction process, to enter the suction passage 112a. The aerosol inside is cooled.
  • first air inlets 112b are arranged at the end of the airway section 112 close to the matrix section 111
  • second airholes 112c are arranged at the end of the airway section 112 away from the matrix section 111. one end.
  • the aperture of the second air inlet 112c is smaller than the aperture of the first air inlet 112b, so that most of the airflow enters through the first air inlet 112b, and drives the aerosol generated by the matrix section 111 to pass through the suction channel 112a and the filter section 113 is for the user to inhale to realize the aerosol inhalation process.
  • a small part of the airflow enters through the second air inlet 112c, because the aperture of the second air inlet 112c is relatively small, and the air flow entering through the second air inlet 112c is less, which will not produce significant dilution on the aerosol.
  • the temperature of the aerosol entering the filter section 113 can be appropriately reduced, so that the temperature of the aerosol inhaled by the user is moderate, thereby satisfying the user's inhalation experience.
  • second air inlet holes 112c are arranged at intervals along the circumferential direction of the air passage section 112 .
  • the plurality of first air outlet holes and the plurality of second air inlet holes 112c are evenly spaced along the circumferential direction of the air passage section 112, so that the air intake in each radial direction of the air passage section 112 is relatively uniform.
  • the airway segment 112 includes a plurality of second air inlet holes 112c, and the plurality of second air inlet holes 112c are located at an end of the airway segment 112 away from the matrix segment 111 .
  • a plurality of second air inlet holes 112c are arranged at intervals along the axial direction of the air passage section 112 .
  • the plurality of second air intake holes 112c are evenly distributed along the axial direction of the air passage section 112 .
  • a plurality of second air inlets 112c are evenly distributed at the end of the airway segment 112 away from the matrix segment 111 .
  • the airway section 112 includes a plurality of second air inlet hole sets 112d, and the plurality of second air inlet hole sets 112d are located at an end of the airway section 112 away from the matrix section 111 .
  • a plurality of second air intake hole sets 112d are arranged at intervals along the axial direction of the air channel segment 112, and several second air intake holes 112c in each second air intake hole set 112d are arranged at intervals along the circumferential direction of the air channel segment 112 .
  • first air inlet holes 112b and two second air inlet hole sets 112d are provided on the side wall of the air passage section 112, and the two second air inlet hole sets 112d Each includes a number of second air inlets 112c.
  • a number of first air inlet holes 112b are uniformly arranged on the side of the air passage section 112 close to the matrix section 111, and two sets of second air inlet holes 112d are arranged on the side of the air passage section 112 near the filter section 113, each Several second air inlet holes 112c in the second air inlet hole sets 112d are evenly spaced along the circumferential direction of the air passage section 112 .
  • FIG. 3 is a cross-sectional view of a third embodiment of the aerosol matrix structure 100 .
  • FIG. 4 is a cross-sectional view of a fourth embodiment of an aerosol matrix structure 100 .
  • the airway section 112 may also be provided with a cooling medium 112e for cooling the aerosol entering the airway section 112 to improve the user's suction experience.
  • the material of the cooling medium 112e may be polylactic acid or acetate fiber.
  • the cooling medium 112e is disposed on the inner sidewall of the air passage section 112 along the axial direction of the air passage section 112 and avoids the position where the first air inlet hole 112b is located.
  • the cooling medium 112e may be arranged on part of the inner wall of the air passage section 112 , or on all the inner walls of the air passage section 112 . In other embodiments, the cooling medium 112e may also be arranged in the side wall of the air passage section 112 , or the cooling medium 112e may also be arranged on the outer side wall of the air passage section 112 .
  • the cooling medium 112e runs through the airway section 112 along the axial direction of the airway section 112, that is, the cooling medium 112e extends from the first opening 111b to the airway section 112 and the filter section. 113 connected locations.
  • the cooling medium 112e is arranged on the entire inner wall of the air passage section 112, and avoids the position where the first air inlet 112b is located.
  • the cooling medium 112e is a hollow cavity, and the space surrounded by the inner surface of the cooling medium 112e forms a suction channel 112a. During the suction process, when the airflow flows through the suction channel 112a, the cooling medium 112e can cool the airflow from all directions.
  • the airflow can pass through the cooling medium 112e, and the aerosol in the air passage section 112 can flow through the cooling medium 112e, so that the cooling medium 112e can evenly cool down the aerosol in the air passage section 112.
  • the cooling medium 112 e is filled in the suction channel 112 a and located at the end of the airway segment 112 away from the matrix segment 111 .
  • the aerosol produced by the matrix section 111 is carried through the cooling medium 112e, and the cooling medium 112e can evenly cool the aerosol, so that the aerosol inhaled by the end user
  • the temperature is relatively moderate, which improves the user's suction experience.
  • the filter section 113 may also be filled with a cooling medium 112 e, so as to cool down the aerosol flowing through the filter section 113 .
  • the sidewall of the air passage section 112 may be made of a cooling medium 112e to cool the airflow in the suction channel 112a.
  • the above methods for cooling the airflow in the suction channel 112a may be used in combination, and are not limited to the manner of using each separately.
  • FIG. 5 is a cross-sectional view of an aerosol matrix structure 100 according to a fifth embodiment of the present application.
  • the inner wall of the airway section 112 can also be provided with a support medium 112f for supporting the airway section 112, preventing the airway section 112 from deforming, collapsing, or even blocking the suction channel 112a, which affects the suction of the aerosol matrix structure 100. suction process.
  • the supporting medium 112f is disposed on the inner sidewall of the air passage section 112 along the axial direction of the air passage section 112 and avoids the position where the first air inlet hole 112b is located.
  • the supporting medium 112f can be arranged on part of the inner wall of the airway section 112 , and can also be arranged on all the inner sidewalls of the airway section 112 .
  • the supporting medium 112f runs through the airway section 112 along the axial direction of the airway section 112, that is, the supporting medium 112f extends from the first opening 111b to the airway section 112 and the filter section. 113 connected locations.
  • the support medium 112f is arranged on all inner side walls of the air passage section 112, and avoids the position where the first air inlet 112b is located.
  • the inside of the support medium 112f is hollow, that is, the support medium 112f is a hollow cavity, and the inner surface of the support medium 112f The enclosed space forms a suction channel 112a.
  • the material of the airway section 112 is paper material
  • the support medium 112f is acetate fiber
  • the support medium 112f can effectively prevent deformation and collapse of the paper material.
  • the acetate fiber in addition to being used as the support medium 112f, can also be used as the cooling medium 112e to cool down the airflow in the suction channel 112a.
  • the present application also provides an aerosol generating device 200 , please refer to FIG. 6 , which is a schematic structural diagram of the aerosol generating device 200 provided in the present application.
  • the aerosol generating device 200 is used to heat and bake the aerosol matrix structure 100 and generate aerosol for the user to inhale.
  • the aerosol generating device 200 includes a heating device 210 and an aerosol matrix structure 100 .
  • the heating device 210 includes a power supply component 211 and a heating component 212 , and the power supply component 211 is connected to the heating component 212 for supplying power to the heating component 212 .
  • the heating element 212 can heat the heating element 121 in the aerosol matrix structure 100 after being energized, so as to heat the aerosol generating matrix 120 to form an aerosol.
  • the aerosol matrix structure 100 in the aerosol generating device 200 can also refer to the structure and function of the aerosol matrix structure 100 involved in any of the above embodiments, and can achieve the same or similar technical effects, and will not be repeated here.
  • the power supply assembly 211 includes a battery (not shown) and a controller (not shown), and the controller is electrically connected to the battery and the heating assembly 212.
  • the battery is used to power the heating assembly 212 to heat the aerosol matrix structure 100 .
  • the controller is used to control the start and stop of the heating of the heating component 212, and can control parameters such as heating power and temperature.
  • the heat generated by the heating element passes through a series of media, such as air, paper material wrapped around the aerosol generating substrate 120, and The heat is conducted to the aerosol generating substrate 120.
  • the aerosol generating substrate 120 is arranged in the heating element 121, and the heating element 121 can directly generate heat as a heating element to heat the aerosol generating substrate 120 inside the heating element 121.
  • the heat is directly transferred from the heating element 121 to the aerosol generating substrate 120, reducing the heat transfer medium, thereby reducing heat loss during heat conduction.
  • the matrix segment 111 of the aerosol matrix structure 100 in the aerosol generating device 200 has a closed cavity 111d, and the aerosol generating matrix 120 is disposed in the closed cavity 111d.
  • the aerosol-generating substrate 120 may be in direct contact with the inner surface of the closed cavity 111d.
  • the aerosol generating matrix 120 accommodated in the closed cavity 111d can be in a sealed state, so that when using the aerosol matrix structure 100 During the process, the aerosol generating substrate 120 will not drop from the aerosol substrate structure 100 into the heating device 210 . After the suction is completed, the residue of the aerosol generating substrate 120 can be taken out together with the aerosol substrate structure 100 and will not remain or adhere to the heating device 210 , which facilitates the cleaning of the heating device 210 .
  • the cracking reaction of the aerosol-generating matrix 120 will not be affected by the cold air, and the cracking reaction is stable, which is beneficial to the generation of aerosol substances.
  • the consistency of the ingredients is conducive to improving the user's smoking taste.
  • the heating temperature of the aerosol-generating substrate 120 can be further increased to fully release the aroma components in the aerosol-generating substrate 120 and improve the user's puffing taste.

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

本申请公开了一种气溶胶基质结构和气溶胶产生装置。该气溶胶基质结构至少包括基质段,和设置在基质段一端的气道段,以及设置在气道段远离基质段一端的滤嘴段;基质段包括气溶胶产生基质和发热体,发热体具有密闭腔,气溶胶产生基质设于密闭腔中;密闭腔的一端具有第一开口,另一端为密封端;气道段具有抽吸通道和若干第一进气孔;其中,抽吸通道通过第一开口与密闭腔连通;若干第一进气孔将抽吸通道与外界大气连通。本申请的气溶胶基质结构和气溶胶产生装置中,气溶胶产生基质的残渣不容易遗留在加热装置中,并且,生成的气溶胶的物质成分一致性好,用户抽吸口感较好。

Description

气溶胶基质结构和气溶胶产生装置
相关申请的交叉引用
本申请基于2021年07月15日提交的中国专利申请2021108019260主张其优先权,此处通过参照引入其全部的记载内容。
【技术领域】
本发明涉及电子雾化装置技术领域,尤其涉及一种气溶胶基质结构和气溶胶产生装置。
【背景技术】
加热不燃烧(Heat Not Burning,HNB)装置,是一种加热装置加上气溶胶产生基质(经过处理的植物叶类制品)的组合设备。外部加热装置通过高温加热到气溶胶产生基质可以产生气溶胶但是却不足以燃烧的温度,能在不燃烧的前提下,让气溶胶产生基质产生用户所需要的气溶胶。
其中,气溶胶产生基质在抽吸完毕后,容易将残渣遗留或粘附在加热装置中。这不仅容易造成加热装置清洁困难、出现杂味和异味,严重影响用户的抽吸体验,而且还影响加热效率以及控温精度,造成气溶胶产生装置的可靠性变差,用户口感体验变差。此外,在抽吸过程中,外部的冷空气从气溶胶产生基质流过,使得气溶胶产生基质的温度变化剧烈,使得气溶胶产生基质的裂解反应不稳定,生成的气溶胶的物质成分一致性差,继而影响了用户的抽吸口感。
【发明内容】
本申请提供的气溶胶基质结构和气溶胶产生装置能解决气溶胶产生基质的残渣容易遗留在加热装置中,以及生成的气溶胶的物质成分一致性差,用户抽吸口感差的问题。
为解决上述技术问题,本申请采用的第一个技术方案是:提供一种气溶胶基质结构,至少包括基质段,和设置在基质段一端的气道段,以及设置在气道段远离基质段一端的滤嘴段;
基质段包括气溶胶产生基质和发热体,发热体具有密闭腔,气溶胶产生基 质设于密闭腔中;密闭腔的一端具有第一开口,另一端为密封端;
气道段具有抽吸通道和若干第一进气孔;其中,抽吸通道通过第一开口与密闭腔连通;若干第一进气孔将抽吸通道与外界大气连通。
其中,若干第一进气孔设置于气道段的侧壁,并位于气道段靠近基质段的一端。
其中,其中,若干第一进气孔沿气道段的周向方向间隔分布。
其中,若干第一进气孔位于气道段靠近基质段的一端;气道段还包括若干第二进气孔,若干第二进气孔位于气道段远离基质段的一端,用于在抽吸过程中对进入抽吸通道内的气溶胶进行降温。
其中,若干第二进气孔沿气道段的周向方向间隔设置。
其中,气道段包括多个第二进气孔,多个第二进气孔位于气道段远离基质段的一端;多个第二进气孔集沿气道段的轴向方向间隔设置。
其中,第二进气孔的孔径小于第一进气孔的孔径。
其中,气道段内设置有降温介质,用于对进入气道段内的气溶胶进行降温。
其中,降温介质设置在气道段的内侧壁上并避开第一进气孔所在的位置;且降温介质沿气道段的轴向方向贯穿气道段,且降温介质的内部中空,降温介质的内表面围设的空间形成抽吸通道。
其中,降温介质填充在抽吸通道内,并位于气道段远离基质段的一端。
其中,降温介质的材料为聚乳酸或醋酸纤维。
其中,滤嘴段与气道段连通,用于对气道段抽吸的气溶胶进行过滤,滤嘴段内填充有过滤介质,用于对气道段抽吸的气溶胶进行过滤。
其中,第一进气孔的形状为圆形、椭圆形、菱形或方形。
其中,第一进气孔的孔径为0.2mm-1mm。
其中,第一进气孔的孔径为0.6mm-0.8mm。
其中,气道段与基质段具有第一开口的一端抵接,且第一进气孔与第一开口的直线距离为2mm-14mm。
其中,第一进气孔与第一开口的直线距离为4mm-10mm。
其中,第一进气孔的数量为4个-10个。
其中,第一进气孔为圆形,圆形的第一进气孔的直径为0.6mm-0.8mm;第一进气孔与第一开口的直线距离为4mm-10mm。
为解决上述技术问题,本申请采用的第二个技术方案是:提供一种气溶胶产生装置,包括气溶胶基质结构和加热装置。气溶胶基质结构为上述所涉及的气溶胶基质结构;加热装置包括电源组件和加热组件;其中,电源组件与加热组件连接,用于向加热组件供电;加热组件用于在通电后使气溶胶基质结构中的发热体发热,以加热并雾化气溶胶产生基质形成气溶胶。
本申请提供的气溶胶基质结构和气溶胶产生装置,该气溶胶基质结构通过设置基质段,基质段的发热体中具有密闭腔,密闭腔的一端具有第一开口,另一端为密封端,通过密闭腔收容气溶胶产生基质,从而在气溶胶产生基质收容于该密闭腔时,能使气溶胶产生基质处于密闭状态,以在抽吸过程中或抽吸完成之后,防止气溶胶产生基质掉出气溶胶基质结构;同时,能够在抽吸完成之后,使气溶胶产生基质的残渣能随着气溶胶基质结构一起取出,避免遗留或粘附在加热装置上的问题发生,便于加热装置的清洁;另外,在抽吸过程中,气流不通过基质段内的气溶胶产生基质,气溶胶产生基质的裂解反应不会受到冷空气的影响,裂解反应稳定,有利于生成的气溶胶的物质成分的一致性,进而有利于提升用户的抽吸口感,最后,通过设置气道段,在气道段上形成与密闭腔连通的抽吸通道和若干第一进气孔,以通过若干第一进气孔在抽吸过程中进气,从而抽吸基质段中形成的气溶胶。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请第一实施例提供的气溶胶基质结构的剖视图;
图2为本申请第二实施例提供的气溶胶基质结构的剖视图;
图3为本申请第三实施例提供的气溶胶基质结构的剖视图;
图4为本申请第四实施例提供的气溶胶基质结构的剖视图;
图5为本申请第五实施例提供的气溶胶基质结构的剖视图;
图6为本申请一实施例提供的气溶胶产生装置的剖视图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。
本发明中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个所述特征。本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果所述特定姿态发生改变时,则所述方向性指示也相应地随之改变。本申请实施例中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或组件。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现所述短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图和实施例对本申请进行详细的说明。
请参阅图1,图1提供了本申请第一实施例中气溶胶基质结构100的剖视图。在本实施例中,提供一种气溶胶基质结构100,气溶胶基质结构100包括依次连接的基质段111、气道段112和滤嘴段113。
基质段111包括气溶胶产生基质120和发热体121。发热体121具有密闭腔111d,密闭腔111d用于收容气溶胶产生基质120,即,气溶胶产生基质120设 置于发热体121的密闭腔111d内,且密闭腔111d的一端具有第一开口111b。具体地,发热体121的侧壁环形围设形成管状体,管状体与气道段112连接的一端为敞口端。在该实施例中,敞口端作为第一开口111b。需要说明的是敞口端作为第一开口111b时,第一开口111b的口径与密闭腔111d的口径一致。当然,在其实施例中,第一开口111b的口径可小于密闭腔111d的口径。
气道段112用于抽吸基质段111内形成的气溶胶。气道段112设于基质段111具有第一开口111b的一端,且气道段112的内部具有抽吸通道112a,抽吸通道112a通过第一开口111b与基质段111的密闭腔111d连通。
滤嘴段113与气道段112的抽吸通道112a背离基质段111的一端连通,以使抽吸通道112a内的气溶胶能进入滤嘴段113,从而通过滤嘴段113对气道段112抽吸的气溶胶进行过滤。具体的,滤嘴段113可设于气道段112远离基质段111的一侧,且滤嘴段113内可填充有过滤介质114,过滤介质114能过滤气溶胶内的焦油、悬浮粒子等,以通过过滤介质114对气道段112抽吸的气溶胶进行过滤,减少用户吸入的气溶胶中的不需要的物质。其中,过滤介质114的材料可以是醋酸纤维。进一步地,滤嘴段113背离气道段112的一端具有第二开口113a,以使滤嘴段113的内部空间与外界大气连通。用户能从滤嘴段113具有第二开口113a的一端吸食气溶胶。
其中,气道段112和滤嘴段113的材质可以为纸基或箔基材料。发热体121可以对气溶胶产生基质120加热以产生气溶胶,发热体121可以通过电磁感应发热,也可以通过电阻式发热。当发热体121通过电磁感应发热时,发热体121的材质可以包括具有居里点温度的铁磁性材料,铁磁性材料例如可以是铁镍合金,以通过电磁感应使发热体121上具有居里点温度的铁磁性材料发热,从而加热并雾化其内部的气溶胶产生基质120以形成气溶胶。具体的,可在基质段111的外围周向方向上绕设电磁线圈,以在电磁线圈通电时产生磁场,以使发热体121上具有居里点温度的铁磁性材料发热。
其中,发热体的材质可以包括具有居里点温度的铁磁性材料是指:发热体121的材质可以仅为具有居里点温度的铁磁性材料,发热体121全部作为加热件对气溶胶产生基质120加热。当然,发热体121的材质也可以包括具有居里点温度的铁磁性材料以及除具有居里点温度的铁磁性材料外的其他材料,且该其 他材料与具有居里点温度的铁磁性材料仅为物理组合,即铁磁性材料不与其他材料发生化学反应。
相比于现有技术中加热件设置于加热装置中,加热件产生的热量通过一系列介质,如空气、包裹气溶胶产生基质120的纸质材料,将热量传导至气溶胶产生基质120,本实施例将气溶胶产生基质120直接设于发热体121中,发热体121能直接作为加热件发热,以对发热体121内部的气溶胶产生基质120加热。热量从发热体121直接传递至气溶胶产生基质120,减少了热量传递的介质,从而降低了热量在传导过程中的热损失。
此外,当发热体121的材质为具有居里点温度的铁磁性材料时。由于该发热体121是通过具有居里点温度的铁磁性材料进行加热,而具有居里点温度的铁磁性材料,由于其在居里点温度以下,该铁磁性材料为铁磁性,能在振荡线圈的作用下持续电磁感应发热,实现对气溶胶产生基质120的加热烘烤。但在超过居里点温度后,铁磁性材料由铁磁性转化为顺磁性,即此时该发热体121不再具备磁性,发热体121停止对气溶胶产生基质120进行电磁感应加热,从而使得该发热体121在加热温度超过居里点温度时能够自动停止加热,以将气溶胶产生基质120的温度精确控制在某一温度范围之内,防止气溶胶产生基质120的加热温度过高,出现气溶胶产生基质120烧焦等问题,从而能够对气溶胶产生基质120的温度进行精确控制,进而使加热装置中无需另设测温组件,有效降低了生产成本。
再者,上述气溶胶基质结构100相比于气溶胶产生基质120外部包裹纸质材料的方案,本实施例使用发热体121包裹气溶胶产生基质120,还能进一步防止抽吸过程中存在烘烤的纸的味道,提升了用户的吸食口感。
在一种实施例中,发热体121至少朝向气溶胶产生基质120的一侧的材质为具有居里点温度的铁磁性材料。例如,可以是基质段111为双层结构,其中,发热体121的外侧壁的材料为一种隔热材料,发热体121的内侧壁的材料为具有居里点温度的铁磁性材料。由此,发热体121与气溶胶产生基质120的距离更接近,热量传递过程中的热损失更少。
在一种实施例中,如图1所示,发热体121内收容有气溶胶产生基质120时,气溶胶产生基质120可与发热体121的内表面直接接触,以使发热体121 产生的热量能直接传递给气溶胶产生基质120。当气溶胶产生基质120与发热体121的内表面有间隙时,热量需要通过空气介质从发热体121传递至气溶胶产生基质120,而气溶胶产生基质120与发热体121的内表面直接接触,热量无需在空气介质中传递,进一步地降低了热量传递过程中的热损失。
在一种实施例中,发热体121、气道段112和滤嘴段113的形状可以是空心管状,且可以是圆柱状,在其他实施例中,基质段111、气道段112和滤嘴段113的形状也可以是其他形状。进一步地,基质段111、气道段112和滤嘴段113的形状可以相同,可以均呈圆柱状。
在一种实施例中,发热体121、气道段112和滤嘴段113内外径大小可以相同,以使基质段111的侧壁、气道段112的侧壁和滤嘴段113的侧壁依次抵接。
在本实施例中,如图1所示,图1中的箭头表示了气流的流动方向。基质段111的密闭腔111d可以仅包括第一开口111b,即,密闭腔111d除第一开口111b外的其他端均为密封端,以使气流不能从基质段111中进气。本实施例中,密闭腔111d的一端具有第一开口111b,另一端为密封端。
具体的,在该实施例中,气道段112上设置有第一进气孔112b,第一进气孔112b的数量为至少一个。第一进气孔112b将外界大气与抽吸通道112a连通,以使气流能从第一进气孔112b进入抽吸通道112a,从而携带基质段111内产生的气溶胶,并通过抽吸通道112a进入滤嘴段113的内部空间中,并从滤嘴段113的第二开口113a流出,以实现用户的抽吸过程。
其中,该气溶胶基质结构100通过使基质段111形成密闭腔111d,以通过密闭腔111d收容气溶胶产生基质120,从而在气溶胶产生基质120收容于发热体121内时,能使气溶胶产生基质120处于密闭状态,以在抽吸过程中或抽吸完成之后,防止气溶胶基质结构100中的气溶胶产生基质120掉出至加热装置中。同时,能够在抽吸完成之后,使气溶胶产生基质120的残渣能随着气溶胶基质结构100一起取出,避免遗留或粘附在加热装置上的问题发生,便于加热装置的清洁。
此外,在抽吸过程中,气流不通过基质段111内的气溶胶产生基质120,气溶胶产生基质120的裂解反应不会受到冷空气的影响,裂解反应稳定,有利于生成的气溶胶的物质成分的一致性,进而有利于提升用户的抽吸口感。
由于形成的气溶胶对密闭腔111d内的气体有置换作用,基质段111内的氧气含量会随着加热过程的进行而降低,此时,即使升高加热温度,气溶胶产生基质120也不会发生燃烧现象。因此,可以进一步提高气溶胶产生基质120的加热温度,以充分释放气溶胶产生基质120中香味成分的释放,提升用户的抽吸口感。
最后,通过设置气道段113,在气道段113上形成与密闭腔111d连通的抽吸通道112a和若干第一进气孔112b,以通过若干第一进气孔112b在抽吸过程中进气,从而抽吸基质段111中形成的气溶胶。
在一具体的实施例中,如图1所示,发热体121具有环形侧壁111e和底壁111f,底壁111f设于环形侧壁111e远离气道段112的一端,并与环形侧壁111e围设形成密闭腔111d。环形侧壁111e和底壁111f可以通过紧密配合使发热体121远离气道段112的一端密闭,也可以是环形侧壁111e与底壁111f一体成型,即发热体121一体成型,密闭腔111d为一体成型,使基质段111远离气道段112的一端密闭。相比于环形侧壁111e和底壁111f紧密配合,密闭腔111d为一体成型能使基质段111内部的密封性更好,且在搬运、移动、拆封以及其他受到外力作用的情况下,底壁111f也不容易松动脱落,能防止气溶胶产生基质120掉出使得加热装置难以清洁的问题,同时能防止气流进入基质段111,引起产生的气溶胶的一致性差的问题。
在第一种实施例中,如图1所示,基质段111的环形侧壁111e和底壁111f一体成型。气溶胶基质结构100通过若干第一进气孔112b进气抽吸气溶胶。
第一种实施例的基质段111为密闭结构,气流不经过基质段111,因此,基质段111内产生的气溶胶的流出相对基质段111两端敞口的结构而言较为困难,气流无法带出气溶胶或者带出的气溶胶的量少,影响用户的抽吸体验。
鉴于第一进气孔112b的数量越多,气溶胶基质结构100内的气流温度越低、抽吸阻力越低,且气溶胶基质结构100抽吸的气溶胶的量随着第一进气孔112b的数量的增多呈现先增大后减小的趋势,因此,第一进气孔112b的具体数量可根据实际情况进行选择设置。具体的,第一进气孔112b的数量取若干个,若干个第一出气孔沿气道段112的周向方向间隔分布,优选地,若干个第一出气孔沿气道段112的周向方向均匀地间隔分布,以使气道段112的各个径向方向的 进气较为均匀。
具体的,第一进气孔112b的形状可以是圆形、椭圆形、菱形和方形等,第一进气孔112b的形状应根据气溶胶基质结构100的生产加工工艺和成本选择。
具体的,由于第一进气孔112b的孔径越大,气溶胶基质结构100内的气流温度越低,用户抽吸的气溶胶的量越大,抽吸阻力越小。因此,第一进气孔112b的孔径大小可根据实际情况进行选择设置。当然,考虑到气道段112的支撑效果,可使第一进气孔112b的数量、孔径大小应和气道段112的直径相结合设计,避免因开孔区域过大而造成气道段112容易变形和坍塌,进而导致堵塞抽吸通道112a的问题。在一具体实施例中,第一进气孔112b的孔径大小可为0.2mm-1mm。
在一种实施例中,第一进气孔112b与第一开口111b的直线距离可为2mm-14mm,以缩短第一进气孔112b与第一开口111b的直线距离,从而在气溶胶基质结构100内的气流温度越高时,能够使用户抽吸的气溶胶的量越大。
在具体实施例中,第一进气孔112b可设于气道段112靠近基质段111的一端,当然,第一进气孔112b也可设于气道段112的其他位置。开孔位置可根据气溶胶产生装置200(见下图6)的结构设计,需要说明的是,开孔位置的设计应避免气溶胶产生装置200将第一进气孔112b堵塞,从而影响气溶胶基质结构100的进气。
优选地,在一具体的实施例中,第一出气孔的数量为4个-10个,第一出气孔的形状均为圆形,圆形的第一进气孔112b的直径为0.6mm-0.8mm,多个第一进气孔112b与第一开口111b的直线均距离为4mm-10m,且均匀地间隔分布在气道段112的周向方向。这种第一出气孔的设计能使抽吸的气溶胶的量较为充分,抽吸阻力适中,且气流的温度适中,用户的抽吸体验较优。
从上文分析中可知,基质段111为密闭结构时,气溶胶产生基质120的加热温度比非密闭结构的加热温度更高,且第一进气孔112b的开孔位置通常距离基质段111较近,导致用户抽吸的气溶胶的温度通常偏高,可能会给用户带来不佳的抽吸体验。
鉴于此,在一种实施例中,请参考图2,图2为第二实施例提供的气溶胶基质结构100的剖视图,考虑到用户抽吸的气溶胶的温度偏高的问题,气道段112 的侧壁上设置若干第一进气孔112b的同时,还设有若干第二进气孔112c,第二进气孔112c通过在抽吸过程中引入外界冷空气,对进入抽吸通道112a内的气溶胶进行降温。
在一种实施例中,如图2所示,若干第一进气孔112b设于气道段112靠近基质段111的一端,若干第二进气孔112c设于气道段112远离基质段111的一端。第二进气孔112c的孔径小于第一进气孔112b的孔径,以使大部分气流通过第一进气孔112b进入,并带动基质段111产生的气溶胶经过抽吸通道112a和滤嘴段113供用户吸食,实现气溶胶的抽吸过程。小部分的气流通过第二进气孔112c进入,因为第二进气孔112c的孔径较小,通过第二进气孔112c进入的气流量较少,不会对气溶胶产生明显的稀释作用,同时能适当地降低进入滤嘴段113的气溶胶的温度,以使用户抽吸的气溶胶的温度适中,从而满足用户的抽吸体验。
在一种实施例中,若干第二进气孔112c沿气道段112的周向方向间隔设置。优选地,若干个第一出气孔和若干第二进气孔112c均沿气道段112的周向方向均匀地间隔分布,以使气道段112的各个径向方向的进气较为均匀。
在一种实施例中,如图2所示,气道段112包括多个第二进气孔112c,多个第二进气孔112c位于气道段112远离基质段111的一端。多个第二进气孔112c沿气道段112的轴向方向间隔设置。优选地,多个第二进气孔112c沿气道段112的轴向方向均匀地间隔分布。通过将多个第二进气孔112c沿气道段112的轴向方向间隔设置,能进一步降低气道段112中的气流温度,提高用户的抽吸体验。
在一种实施例中,多个第二进气孔112c均匀分布于气道段112远离基质段111的一端。具体地,气道段112包括多个第二进气孔集112d,多个第二进气孔集112d位于气道段112远离基质段111的一端。每个第二进气孔集112d中具有若干个第二进气孔112c。多个第二进气孔集112d沿气道段112的轴向方向间隔设置,每个第二进气孔集112d中的若干第二进气孔112c沿气道段112的周向方向间隔设置。通过设置多个第二进气孔集112d,能更大程度地降低气道段112内气流的温度,提高用户的抽吸体验。
在第二实施例中,如图2所示,气道段112的侧壁上设置有若干第一进气孔112b和两个第二进气孔集112d,两个第二进气孔集112d均包括若干第二进 气孔112c。若干第一进气孔112b均匀地周向设置于气道段112靠近基质段111的一侧,两个第二进气孔集112d设置于气道段112靠近滤嘴段113的一侧,每个第二进气孔集112d中的若干第二进气孔112c沿气道段112的周向方向均匀间隔设置。
在一种实施例中,请参考图3和图4,图3为气溶胶基质结构100的第三实施例的剖视图。图4为气溶胶基质结构100的第四实施例的剖视图。气道段112内还可以设置有降温介质112e,用于对进入气道段112内的气溶胶进行降温,提高用户的抽吸体验。降温介质112e的材料可以是聚乳酸或醋酸纤维。
在一种实施例中,请参考图3,降温介质112e沿气道段112的轴线方向设置在气道段112的内侧壁上,并避开第一进气孔112b所在的位置。降温介质112e可以设置在气道段112的部分内侧壁上,也可以设置在气道段112的全部内侧壁上。其他实施方式中,降温介质112e也可以设置在气道段112的侧壁中,或者,降温介质112e也可以设置在气道段112的外侧壁上。
在第三实施例中,如图3所示,降温介质112e沿气道段112的轴线方向贯穿气道段112,即降温介质112e从第一开口111b处延伸至气道段112与滤嘴段113连接的位置。降温介质112e设置在气道段112的全部内侧壁上,并避开第一进气孔112b所在的位置,降温介质112e为中空腔体,降温介质112e的内表面围设的空间形成抽吸通道112a。在抽吸过程中,气流流经抽吸通道112a时,降温介质112e能从各个方向对气流进行降温。
在一种实施例中,降温介质112e内能通过气流,气道段112内的气溶胶能流经降温介质112e,从而降温介质112e能气道段112内的气溶胶进行均匀地降温。在第四实施例中,如图4所示,降温介质112e填充在所述抽吸通道112a内,并位于所述气道段112远离所述基质段111的一端。气流从第一进气孔112b进入抽吸通道112a后,携带基质段111产生的气溶胶流经降温介质112e,降温介质112e对气溶胶能均匀地进行降温,以使最终用户抽吸的气溶胶的温度较为适中,提升了用户的抽吸体验。
在一种实施例中,滤嘴段113内除了填充过滤介质114,也可以填充降温介质112e,从而对流经滤嘴段113内的气溶胶进行降温。
在一种实施例中,气道段112的侧壁可以由降温介质112e构成,以对抽吸 通道112a内的气流进行降温。以上对抽吸通道112a内的气流进行降温的方法可以组合使用,不限于各自单独使用的方式。
在一种实施例中,如图5所示,图5为本申请提供的第五实施例的气溶胶基质结构100的剖视图。气道段112的内侧壁上还可以设有支撑介质112f,用于对气道段112进行支撑,防止气道段112变形、坍塌,甚至堵塞抽吸通道112a,影响气溶胶基质结构100的抽吸过程。
在一种实施方式中,如图5所示,支撑介质112f沿气道段112的轴线方向设置在气道段112的内侧壁上,并避开第一进气孔112b所在的位置。支撑介质112f可以设置在气道段112的部分内侧壁上,也可以设置在气道段112的全部内侧壁上。
在第五实施例中,如图5所示,支撑介质112f沿气道段112的轴线方向贯穿气道段112,即支撑介质112f从第一开口111b处延伸至气道段112与滤嘴段113连接的位置。支撑介质112f设置在气道段112的全部内侧壁上,并避开第一进气孔112b所在的位置,支撑介质112f的内部中空,即支撑介质112f为中空腔体,支撑介质112f的内表面围设成的空间形成抽吸通道112a。第五实施例中,气道段112的材料为纸质材料,支撑介质112f为醋酸纤维,支撑介质112f能有效地防止纸质材料的变形和坍塌。醋酸纤维在第六实施例中除了作为支撑介质112f,还可以作为降温介质112e对抽吸通道112a中的气流进行降温。
本申请还提供了一种气溶胶产生装置200,请参考图6,图6为本申请提供的气溶胶产生装置200的一种结构示意图。气溶胶产生装置200用于加热烘烤气溶胶基质结构100并产生气溶胶,以供用户吸食。
气溶胶产生装置200包括加热装置210和气溶胶基质结构100。其中,加热装置210包括电源组件211和加热组件212,电源组件211与加热组件212连接,用于向加热组件212供电。加热组件212在通电后能使气溶胶基质结构100中的发热体121发热,以对气溶胶产生基质120加热形成气溶胶。
气溶胶产生装置200中的气溶胶基质结构100还可参见上文中任一实施例所涉及的气溶胶基质结构100的结构与功能,且可实现相同或相似的技术效果,在此不再赘述。
电源组件211包括电池(图未示)和控制器(图未示),控制器与电池和加 热组件212均电连接。电池用于为加热组件212提供电源,以对气溶胶基质结构100进行加热。控制器用于控制加热组件212的加热的开始与停止,并能控制加热的功率、温度等参数。
该气溶胶产生装置200中,相比于现有技术中加热件121设置于加热装置210中,加热件产生的热量通过一系列介质,如空气、包裹气溶胶产生基质120的纸质材料,将热量传导至气溶胶产生基质120,本实施例将气溶胶产生基质120设于发热体121中,发热体121能直接作为加热件发热,以对发热体121内部的气溶胶产生基质120加热。热量从发热体121直接传递至气溶胶产生基质120,减少了热量传递的介质,从而降低了热量在传导过程中的热损失。
在本实施例中,气溶胶产生装置200中的气溶胶基质结构100的基质段111具有密闭腔111d,气溶胶产生基质120设于密闭腔111d内。气溶胶产生基质120可以与密闭腔111d的内表面直接接触。
通过在气溶胶产生装置200中的气溶胶基质结构100的基质段111内设置密闭腔111d,能使收容于密闭腔111d中的气溶胶产生基质120处于密闭状态,从而在使用气溶胶基质结构100的过程中,气溶胶产生基质120不会从气溶胶基质结构100中掉落至加热装置210中。抽吸完毕后,气溶胶产生基质120的残渣能随着气溶胶基质结构100一起取出,不会遗留或粘附在加热装置210中,便于加热装置210的清洁。
此外,在抽吸过程中,气流不通过基质段111内的气溶胶产生基质120,气溶胶产生基质120的裂解反应不会受到冷空气的影响,裂解反应稳定,有利于生成的气溶胶的物质成分的一致性,进而有利于提升用户的抽吸口感。
由于形成的气溶胶对密闭腔111d内的气体有置换作用,基质段111内的氧气含量会随着加热过程的进行而降低,此时,即使升高加热温度,气溶胶产生基质120也不会发生燃烧现象。因此,可以进一步提高气溶胶产生基质120的加热温度,以充分释放气溶胶产生基质120中香味成分的释放,提升用户的抽吸口感。
最后,通过设置气道段113,在气道段113上形成与密闭腔111d连通的抽吸通道112a和若干第一进气孔112b,以通过若干第一进气孔112b在抽吸过程中进气,从而抽吸基质段111中形成的气溶胶。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种气溶胶基质结构,其中,至少包括:
    基质段,和设置在所述基质段一端的气道段,以及设置在所述气道段远离所述基质段一端的滤嘴段;
    所述基质段包括气溶胶产生基质和发热体,所述发热体具有密闭腔,所述气溶胶产生基质设于所述密闭腔中;所述密闭腔的一端具有第一开口,另一端为密封端;
    所述气道段具有抽吸通道和若干第一进气孔;其中,所述抽吸通道通过所述第一开口与所述密闭腔连通;所述若干第一进气孔将所述抽吸通道与外界大气连通。
  2. 根据权利要求1所述的气溶胶基质结构,其中,所述若干第一进气孔设置于所述气道段的侧壁,并位于所述气道段靠近所述基质段的一端。
  3. 根据权利要求1所述的气溶胶基质结构,其中,所述若干第一进气孔沿所述气道段的周向方向间隔分布。
  4. 根据权利要求1所述的气溶胶基质结构,其中,所述若干第一进气孔位于所述气道段靠近所述基质段的一端;所述气道段还包括若干第二进气孔,所述若干第二进气孔位于所述气道段远离所述基质段的一端,用于在抽吸过程中对进入所述抽吸通道内的所述气溶胶进行降温。
  5. 根据权利要求4所述的气溶胶基质结构,其中,所述若干第二进气孔沿所述气道段的周向方向间隔设置。
  6. 根据权利要求4所述的气溶胶基质结构,其中,所述气道段包括多个第二进气孔,所述多个第二进气孔位于所述气道段远离所述基质段的一端;所述多个第二进气孔沿所述气道段的轴向方向间隔设置。
  7. 根据权利要求4所述的气溶胶基质结构,其中,所述第二进气孔的孔径小于所述第一进气孔的孔径。
  8. 根据权利要求1所述的气溶胶基质结构,其中,所述气道段内设置有降温介质,用于对进入所述气道段内的气溶胶进行降温。
  9. 根据权利要求8所述的气溶胶基质结构,其中,所述降温介质设置在所 述气道段的内侧壁上并避开所述第一进气孔所在的位置;且所述降温介质沿所述气道段的轴向方向贯穿所述气道段,且所述降温介质的内部中空,所述降温介质的内表面围设的空间形成所述抽吸通道。
  10. 根据权利要求8所述的气溶胶基质结构,其中,所述降温介质填充在所述抽吸通道内,并位于所述气道段远离所述基质段的一端。
  11. 根据权利要求8所述的气溶胶基质结构,其中,所述降温介质的材料为聚乳酸或醋酸纤维。
  12. 根据权利要求1所述的气溶胶基质结构,其中,所述滤嘴段与所述气道段连通,用于对所述气道段抽吸的所述气溶胶进行过滤,所述滤嘴段内填充有过滤介质,用于对所述气道段抽吸的所述气溶胶进行过滤。
  13. 根据权利要求1所述的气溶胶基质结构,其中,所述第一进气孔的形状为圆形、椭圆形、菱形或方形。
  14. 根据权利要求1所述的气溶胶基质结构,其中,所述第一进气孔的孔径为0.2mm-1mm。
  15. 根据权利要求14所述的气溶胶基质结构,其中,所述第一进气孔的孔径为0.6mm-0.8mm。
  16. 根据权利要求1所述的气溶胶基质结构,其中,所述气道段与所述基质段具有所述第一开口的一端抵接,且所述第一进气孔与所述第一开口的直线距离为2mm-14mm。
  17. 根据权利要求16所述的气溶胶基质结构,其中,所述第一进气孔与所述第一开口的直线距离为4mm-10mm。
  18. 根据权利要求1所述的气溶胶基质结构,其中,所述第一进气孔的数量为4个-10个。
  19. 根据权利要求18所述的气溶胶基质结构,其中,所述第一进气孔为圆形,所述圆形的第一进气孔的直径为0.6mm-0.8mm;所述第一进气孔与所述第一开口的直线距离为4mm-10mm。
  20. 一种气溶胶产生装置,其中,包括:
    气溶胶基质结构;所述气溶胶基质结构为如权利要求1所述的气溶胶基质结构;
    加热装置,包括电源组件和加热组件;其中,所述电源组件与所述加热组件连接,用于向所述加热组件供电;所述加热组件用于在通电后使所述气溶胶基质结构中的所述发热体发热,以加热并雾化所述气溶胶产生基质形成气溶胶。
PCT/CN2022/097722 2021-07-15 2022-06-08 气溶胶基质结构和气溶胶产生装置 WO2023284451A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22841091.6A EP4371428A1 (en) 2021-07-15 2022-06-08 Aerosol substrate structure and aerosol generation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110801926.0 2021-07-15
CN202110801926.0A CN113598418A (zh) 2021-07-15 2021-07-15 气溶胶基质结构和气溶胶产生装置

Publications (1)

Publication Number Publication Date
WO2023284451A1 true WO2023284451A1 (zh) 2023-01-19

Family

ID=78304727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097722 WO2023284451A1 (zh) 2021-07-15 2022-06-08 气溶胶基质结构和气溶胶产生装置

Country Status (3)

Country Link
EP (1) EP4371428A1 (zh)
CN (1) CN113598418A (zh)
WO (1) WO2023284451A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113598419A (zh) * 2021-07-15 2021-11-05 深圳麦时科技有限公司 气溶胶基质结构和气溶胶产生装置
CN113598418A (zh) * 2021-07-15 2021-11-05 深圳麦时科技有限公司 气溶胶基质结构和气溶胶产生装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114052296A (zh) * 2021-11-23 2022-02-18 深圳麦时科技有限公司 气溶胶基质结构和气溶胶产生装置
CN114403509A (zh) * 2021-12-21 2022-04-29 深圳市吉迩科技有限公司 一种气溶胶生成制品及气溶胶生成系统
CN114931238A (zh) * 2022-06-14 2022-08-23 深圳麦克韦尔科技有限公司 气溶胶生成基质
CN218354570U (zh) * 2022-07-01 2023-01-24 深圳麦时科技有限公司 加热不燃烧型气溶胶生成制品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207626562U (zh) * 2017-12-22 2018-07-20 安徽中烟工业有限责任公司 一种外围电加热气雾产生系统
CN207870268U (zh) * 2018-01-04 2018-09-18 胡旺顺 金属烟弹
CN210538928U (zh) * 2019-08-27 2020-05-19 深圳市吉迩科技有限公司 一种用于涡流加热的烟支
CN212414751U (zh) * 2020-06-17 2021-01-29 云南中烟工业有限责任公司 一种电磁加热烟具及配套烟支
CN112772975A (zh) * 2020-12-15 2021-05-11 深圳香满路健康科技有限公司 一种设有金属圈的烟弹及电子烟
CN113598419A (zh) * 2021-07-15 2021-11-05 深圳麦时科技有限公司 气溶胶基质结构和气溶胶产生装置
CN113598418A (zh) * 2021-07-15 2021-11-05 深圳麦时科技有限公司 气溶胶基质结构和气溶胶产生装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY190203A (en) * 2016-03-09 2022-04-04 Philip Morris Products Sa Aerosol-generating article
CN216019100U (zh) * 2021-07-15 2022-03-15 深圳麦时科技有限公司 气溶胶基质结构和气溶胶产生装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207626562U (zh) * 2017-12-22 2018-07-20 安徽中烟工业有限责任公司 一种外围电加热气雾产生系统
CN207870268U (zh) * 2018-01-04 2018-09-18 胡旺顺 金属烟弹
CN210538928U (zh) * 2019-08-27 2020-05-19 深圳市吉迩科技有限公司 一种用于涡流加热的烟支
CN212414751U (zh) * 2020-06-17 2021-01-29 云南中烟工业有限责任公司 一种电磁加热烟具及配套烟支
CN112772975A (zh) * 2020-12-15 2021-05-11 深圳香满路健康科技有限公司 一种设有金属圈的烟弹及电子烟
CN113598419A (zh) * 2021-07-15 2021-11-05 深圳麦时科技有限公司 气溶胶基质结构和气溶胶产生装置
CN113598418A (zh) * 2021-07-15 2021-11-05 深圳麦时科技有限公司 气溶胶基质结构和气溶胶产生装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113598419A (zh) * 2021-07-15 2021-11-05 深圳麦时科技有限公司 气溶胶基质结构和气溶胶产生装置
CN113598418A (zh) * 2021-07-15 2021-11-05 深圳麦时科技有限公司 气溶胶基质结构和气溶胶产生装置

Also Published As

Publication number Publication date
EP4371428A1 (en) 2024-05-22
CN113598418A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
WO2023284451A1 (zh) 气溶胶基质结构和气溶胶产生装置
WO2023284452A1 (zh) 气溶胶基质结构和气溶胶产生装置
CN216019099U (zh) 气溶胶基质结构和气溶胶产生装置
CN216019100U (zh) 气溶胶基质结构和气溶胶产生装置
JP2022549209A (ja) 管状基体層を備えた中空のエアロゾル発生物品
WO2023093482A1 (zh) 气溶胶基质结构和气溶胶产生装置
JP7357776B2 (ja) 横方向の気流を可能にする誘導ヒーター
KR20180071321A (ko) 에어로졸 발생 물품, 에어로졸 발생 시스템 및 에어로졸 발생 물품을 제조하기 위한 방법
CN105286089B (zh) 一种电子烟雾化器
JP7361895B2 (ja) 中央および周辺サセプタを備える誘導ヒーター
JP7356584B2 (ja) 別個の空気吸込み口を備えたエアロゾル発生装置
WO2023020405A1 (zh) 电子雾化装置
WO2023024812A1 (zh) 加热器件及电子雾化装置
WO2024001795A1 (zh) 加热不燃烧型气溶胶生成制品
WO2023005991A1 (zh) 调味部件及电子雾化装置
CN108634371A (zh) 一种复合抽吸效果的低温烘烤烟具
WO2023115959A1 (zh) 一种气溶胶生成制品及气溶胶生成系统
CN108634376B (zh) 一种全磁加热的低温烘烤烟具
CN216674689U (zh) 气溶胶基质结构和气溶胶产生装置
WO2022161029A1 (zh) 具有外壳的一体式雾化芯
CN208609922U (zh) 一种复合抽吸效果的低温烘烤烟具
WO2023077765A1 (zh) 一种电子雾化装置及电子雾化系统
WO2023077767A1 (zh) 一种电子雾化装置及电子雾化系统
CN219537438U (zh) 气溶胶产生装置及气溶胶产生系统
WO2024124580A1 (zh) 气溶胶产生装置及气溶胶产生系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024501952

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022841091

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022841091

Country of ref document: EP

Effective date: 20240215