WO2023284377A1 - 摄像头模组及电子设备 - Google Patents

摄像头模组及电子设备 Download PDF

Info

Publication number
WO2023284377A1
WO2023284377A1 PCT/CN2022/091110 CN2022091110W WO2023284377A1 WO 2023284377 A1 WO2023284377 A1 WO 2023284377A1 CN 2022091110 W CN2022091110 W CN 2022091110W WO 2023284377 A1 WO2023284377 A1 WO 2023284377A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
camera module
emitting
light source
reflective
Prior art date
Application number
PCT/CN2022/091110
Other languages
English (en)
French (fr)
Inventor
彭雄辉
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023284377A1 publication Critical patent/WO2023284377A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means

Definitions

  • the present application relates to the field of optical technology, in particular to a camera module and electronic equipment.
  • the supplementary light of electronic equipment is an important factor affecting the image quality, such as the supplementary light of the main camera flash, the supplementary light of macro photography, etc., through the supplementary light to adjust the brightness in the imaging range to form a higher quality image .
  • image quality such as the supplementary light of the main camera flash, the supplementary light of macro photography, etc.
  • the present application provides a camera module and an electronic device for supplementing light within a macro range to improve macro shooting effects.
  • the application provides a camera module, including:
  • annular lampshade has a first surface and a second surface opposite to each other, the annular lampshade also has a through hole passing through the first surface and the second surface, the lens of the camera module at least partly disposed in the through hole; the second surface has a plurality of light-emitting areas arranged at intervals along the circumference of the annular lampshade;
  • At least one light source the light source is arranged opposite to the first surface, the light emitted by the light source enters through the first surface and exits through a plurality of the light-emitting regions to form a plurality of outgoing light beams, wherein at least two The two outgoing beams converge in the macro range to form a converging beam, and the spot area of the converging beams in the macro shooting mode of the camera module is greater than or equal to the viewfinder area in the macro shooting mode of the macro range.
  • the present application provides an electronic device, including the camera module, the electronic device further includes a controller, and the controller is electrically connected to the camera module and the light source, so The controller is used to control the lighting of the light source when the camera module is in flash mode, flashlight mode or macro shooting mode;
  • the camera module also includes an image sensor, and the controller is further configured to adjust the brightness of the light source according to the light intensity collected by the image sensor.
  • FIG. 1 is a schematic structural diagram of a camera module provided in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the structural disassembly of the first camera module provided in this embodiment
  • Fig. 4 is a side view of the annular lampshade shown in Fig. 3;
  • Fig. 5 is a first partial perspective view of the camera module shown in Fig. 1;
  • Fig. 6 is a sectional view of the camera module shown in Fig. 5 along line B-B;
  • Fig. 7 is a schematic diagram of a partial optical path emitted by a light source in the camera module shown in Fig. 3;
  • Fig. 8 is a second partial perspective view of the camera module shown in Fig. 1;
  • Fig. 9 is a third partial perspective view of the camera module shown in Fig. 1;
  • Fig. 10 is a fourth partial perspective view of the camera module shown in Fig. 1;
  • Fig. 11 is a fifth partial perspective view of the camera module shown in Fig. 1;
  • Fig. 12 is a schematic diagram of a specific optical path emitted by a light source in a camera module shown in Fig. 7;
  • Fig. 13 is a partial perspective view of specific details of the camera module shown in Fig. 9;
  • Fig. 14 is a partial perspective view of specific details of the camera module shown in Fig. 5;
  • Fig. 15 is a schematic diagram of a specific optical path emitted by a light source in another camera module shown in Fig. 7;
  • Fig. 16 is a schematic diagram of the arrangement structure of the first boss in the second camera module provided by this embodiment.
  • Fig. 17 is a partial three-dimensional enlarged view of the first boss in the second camera module provided by this embodiment.
  • Fig. 18 is a schematic diagram of the disassembly structure of the second camera module provided in this embodiment.
  • Fig. 19 is a partial perspective view of the second camera module shown in Fig. 18;
  • Fig. 20 is a schematic diagram of a partial optical path of the annular lampshade in Fig. 18 when it is expanded to two dimensions;
  • Fig. 21 is a schematic diagram of a partial optical path of another annular lampshade in Fig. 18 when it is expanded to two dimensions;
  • Fig. 22 is a schematic perspective view of the annular lampshade in Fig. 21;
  • Fig. 23 is a schematic perspective view of the combination of the annular lampshade and the light source in Fig. 21;
  • Fig. 24 is a partial perspective view of the camera module where the annular lampshade shown in Fig. 23 is located;
  • Fig. 25 is a sectional view along Y1 of Fig. 23;
  • Fig. 26 is a sectional view along X1 of Fig. 23;
  • Figure 27 is a sectional view along line A-A of Figure 2;
  • Fig. 28 is a simulated spot diagram of two light sources and a circular lampshade at a distance of 1m from the object plane;
  • Fig. 29 is a simulated spot diagram of two light sources and a circular lampshade at a distance of 5mm from the object plane;
  • Fig. 30 is a simulated light spot diagram of two light sources and a circular lampshade at a distance of 10 mm from the object plane.
  • FIG. 1 shows a camera module 100 provided by an embodiment of the present application.
  • the camera module 100 is used for taking pictures, recording videos and so on.
  • FIG. 2 the camera module 100 is applied in an electronic device 1000 .
  • the electronic device 1000 includes but is not limited to mobile phones, cameras, tablet computers, personal digital assistants (Personal Digital Assistant, PDA), smart wearable devices, portable computers, and other products with camera functions.
  • PDA Personal Digital Assistant
  • the camera module 100 at least includes a lens 10 , a ring lampshade 20 and at least one light source 40 .
  • the camera module 100 further includes a lens base 11 and an image sensor 13 disposed in the lens base 11 (see FIG. 6 ).
  • a line along the axis of the lens 10 and passing through the center of the lens 10 is defined as the optical axis.
  • the side of the lens 10 facing the subject is the object side, and the side of the lens 10 away from the subject, that is, the side facing the image sensor 13 is the image side.
  • the optical axis direction of the camera module 100 is defined as the Z axis.
  • the direction of the Z-axis toward the object side is the positive direction of the Z-axis
  • the direction of the Z-axis toward the image side is the reverse direction of the Z-axis.
  • the annular lampshade 20 has a first surface 21 and a second surface 22 disposed opposite to each other.
  • the first surface 21 is a surface facing the image side
  • the second surface 22 is a surface facing the object side.
  • the first surface 21 is a surface on which light from the light source 40 enters
  • the second surface 22 is a surface on which light is emitted.
  • the annular lampshade 20 also has a through hole 20 a passing through the first surface 21 and the second surface 22 .
  • the through hole 20a penetrates along the Z-axis direction.
  • the present application does not specifically limit the shape and size of the through hole 20a.
  • the through hole 20a is a circular hole.
  • the material of the annular lampshade 20 is a light-transmitting material, such as a lens, whose light transmittance is over 98%, and the light transmission efficiency is high.
  • the annular lampshade 20 also has an outer ring surface 24 and an inner ring surface 25 surrounding the first surface 21 and the second surface 22 .
  • the outer annulus 24 and the inner annulus 25 are reflective surfaces, for example, atomization treatment is carried out on the outer annulus 24 and the inner annulus 25 to form a diffuse reflection structure, or the outer annulus 24 and the inner annulus Surface 25 is coated with reflective coating (such as metallic silver coating etc.), realizes the total reflection of light, to reduce the loss that light is emitted from unnecessary surfaces, and improve the emission rate of light emitted on first surface 21; or, the outer A light shielding layer (such as dark ink, etc.) is provided on the annular surface 24 and the inner annular surface 25 to reduce the loss of light emitted from unnecessary surfaces and improve the brightness of light emitted from the second surface 22 .
  • reflective coating such as metallic silver coating etc.
  • the lens 10 is disposed in the through hole 20 a.
  • the size of the lens 10 matches the size of the through hole 20a, and the lens 10 is accommodated in the through hole 20a.
  • the ring lampshade 20 surrounds the peripheral side of the lens 10 .
  • the present application does not specifically limit the number of light sources 40 .
  • the number of light sources 40 is two, and the two light sources 40 are evenly arranged under the first surface 21 (with reference to the orientation in FIG. 3 ).
  • the number of light sources 40 is multiple (more than two), and the multiple light sources 40 are arranged around the periphery of the lens 10 .
  • the arrangement of the plurality of light sources 40 includes uniform arrangement or non-uniform arrangement.
  • a plurality of light sources 40 are evenly arranged and arranged around the periphery of the lens 10 to improve the uniformity of light emitted from the ring lampshade 20 .
  • the light emitting surface of the light source 40 is set towards the first surface 21 of the annular lampshade 20 .
  • the light output direction of the light source 40 may be in the same direction as the optical axis, or deviate from the optical axis by a small angle, such as greater than 0° and less than 10°, wherein 10° is just an example and is not limited to this value.
  • the light emitted by the light source 40 enters through the first surface 21 (eg a part of the first surface 21 ) and exits through multiple regions of the second surface 22 .
  • the area where the second surface 22 emits light beams is called a light exit area (such as the first light exit area 22a in Figure 5, the second light exit area 22b, the first light exit area 22a in Figure 10, the second light exit area 22b, the third light exit area 22c).
  • one light source 40 corresponds to multiple light emitting areas, and the present application does not specifically limit the number of light emitting areas corresponding to one light source 40 , for example, two, three, four, five, etc.
  • the second surface 22 has a plurality of light emitting areas arranged at intervals along the circumferential direction of the annular lampshade 20 .
  • the light beams emitted from the multiple light emitting areas form multiple outgoing light beams (such as the light beam S1 and the light beam S2 in FIG. 7 ).
  • the emergent beams merge within the macro range H1 to form a merged beam (refer to the merged area of the beam S1 and the beam S2 in FIG. 7 ).
  • the spot area of the converging light beam (refer to the area indicated by M in FIG. 7 ) is greater than or equal to the viewing area of the macro range H1.
  • the size of the spot area in the macro range can be determined, and the spot area is set to be larger than the minimum viewing area of the macro range H1.
  • the camera module 100 is a camera with a macro shooting function.
  • macro shooting the distance between the electronic device and the object is very small, and the electronic device will block the light of the macro shooting, thus resulting in poor imaging effect of the macro shooting.
  • some electronic devices use flashlights to supplement light during macro shooting, but the brightness within the macro shooting range irradiated by the flashlight is uneven, for example, the brightness near the flashlight is high, and the brightness far away from the flashlight is low. In this way, the uniformity of the fill light is very poor, and the macro shooting effect is poor.
  • Some electronic devices use a light source with a lampshade to fill in the light by turning the light from the light source into a surface light source through the lampshade.
  • the position of the lampshade corresponding to the light source will be too bright, and the position far away from the light source will still be too small, which can only be achieved to a certain extent.
  • Improve fill light uniformity In order to further improve the uniformity of supplementary light, some electronic devices increase the number of light sources to reduce the distance between adjacent light sources. However, limited by the minimum drive current of electronic devices, the brightness of a single light source cannot be adjusted infinitely. Too much will make the center brightness of the fill light area of the lampshade too bright and cause overexposure, and too many light sources are not conducive to saving cost and power.
  • the camera module 100 by setting the ring lampshade 20 around the lens 10 and setting the light source under the ring lampshade 20, the light emitted by the light source 40 enters through the first surface 21 of the ring lampshade 20 and passes through a plurality of light output regions. Exit to form multiple outgoing beams, the outgoing beams converge within the macro range H1 to form a converging beam, the spot area of the converging beams is greater than or equal to the viewfinder area within the macro range H1, and the spot of the converging beams can completely cover the macro range H1
  • the framing screen of the camera module 100 can be used to fill in light in the macro range H1.
  • the spot in the macro range H1 is formed by the intersection of multiple beams, compared with a single beam, it effectively improves the brightness uniformity in the spot area, thereby improving the brightness uniformity of the supplementary light in the macro range H1.
  • Multiple light emitting areas disperse the light of one light source, which can effectively balance the brightness of the light spot irradiated into the macro range H1, avoid the central area from being too bright, and effectively save the number of light sources 40 and save costs.
  • the present application defines the region between two adjacent light-emitting regions on the second surface 22 as the transition region 26, wherein the transition region 26 theoretically does not emit light. It can be understood that due to the light emission angle of the light source 40 There is a certain range, and considering the processing of the annular lampshade 20, some light rays will also be emitted in the transition area 26, but the light output brightness of the transition area 26 is much smaller than the light output brightness of the light output areas (22a, 22b). For example, The ratio of the light emitting brightness of the light emitting regions ( 22 a , 22 b ) to the light emitting brightness of the transition region 26 is 9:1 ⁇ 7:3 or the like.
  • this application does not specifically limit the positions of the multiple light-emitting regions.
  • a plurality of light emitting areas are evenly distributed along the annular lampshade 20 to form a uniform supplementary light effect.
  • at least one group of the plurality of light emitting regions is distributed symmetrically, so as to realize symmetrical intersection of light beams and form light spots with relatively uniform brightness.
  • the plurality of light-emitting areas are symmetrically distributed in pairs to form multiple groups of symmetrically converging light beams, forming strong and uniform light spots, and improving the brightness and uniformity of supplementary light.
  • the macro range H1 described in this application refers to the range in which the distance between the object side and the object side of the lens 10 along the optical axis is 1 mm to 10 mm.
  • the macro range H1 is 3 mm to 10 mm.
  • the viewfinder area of the macro range H1 refers to the area of the camera module 100 corresponding to the captured object image at a certain distance.
  • the present application does not limit the specific value of the viewing area of the macro range H1.
  • the spot area of the converging beam is larger than the viewfinder area, or in other words, the spot area of the converging beam completely covers the viewfinder area when the macro distance is 5mm. Further, the spot area of the converging light beams at a macro distance of 3mm completely covers the viewfinder area.
  • the plurality of light-emitting regions include at least one first light-emitting region 22 a and at least one second light-emitting region 22 b.
  • a light source 40 as an example to illustrate the difference between the first light exit area 22a and the second light exit area 22b.
  • the orthographic projection on the two surfaces 22 is located within the first light-emitting area 22a and outside the second light-emitting area 22b.
  • the first light a1 emitted by the light source 40 is directly emitted along the first light emitting region 22 a to form a first light beam S1 .
  • the second light a2 is transmitted through the annular lampshade 20 and then emitted from the second light emitting region 22b to form a second light beam S2.
  • the reference line passing through the geometric center of the first light-emitting area 22a and along the Z-axis direction is the first light-emitting axis L1, and passing through the geometric center of the first sub-light-emitting area 22b and along the Z-axis direction
  • the reference line of is the second light output axis L2.
  • the emission range of the first light beam S1 can be within the range of ⁇ with the first light exit axis L1 as the center line in space, and viewed from the Z-Y plane, the emission range of the first light beam S1 is within the range of ⁇ with the first light exit axis L1 as the center line. within the range of ⁇ .
  • the present application does not specifically limit the value of ⁇ .
  • the value of ⁇ may be 30°-60°, and further, the value of ⁇ may be 45°-60°.
  • the value of ⁇ may be 30°, 40°, 45°, 50°, 60° and so on.
  • the above angles are only examples in this application, and other angles may also be used.
  • the emission range of the second light beam S2 can be within the range of ⁇ with the second light exit axis L2 as the centerline in space, and viewed from the Z-Y plane, the emission range of the second light beam S2 is within the range of ⁇ with the second light exit axis L2 as the centerline. within ⁇ range.
  • the present application does not specifically limit the value of ⁇ .
  • the value of ⁇ may be 30°-60°, and further, the value of ⁇ may be 45°-60°.
  • the value of ⁇ may be 30°, 40°, 45°, 50°, 60° and so on.
  • the above angles are only examples in this application, and other angles may also be used.
  • the first light beam S1 and the second light beam S2 meet at the object side, and the meeting place covers the macro range H1 (see FIG. 7 ).
  • the camera module 100 includes but is not limited to a camera with a macro shooting function, and the macro range H1 is the distance from the surface of the object to the lens 10 , which is 3mm ⁇ 10mm.
  • the first light beam S1 emitted from the first light emitting region 22a and the second light beam S2 emitted from the second light emitting region 22b converge within the macro distance range H1.
  • the area of the intersecting light rays (the area of the formed light spot) is larger than the area of the object surface for macro shooting, so as to achieve uniform fill light within the scope of the object plane for macro shooting or super macro shooting and improve the brightness of the fill light, thereby improving the macro Image quality for shooting or super macro shooting.
  • the orthographic projection of the light source 40 on the second surface 22 is located between two adjacent light emitting areas.
  • the first light a1 emitted by the light source 40 is transmitted through the annular lampshade 20 and then exits through a light exit area, and the second light a2 emitted by the light source 40 is transmitted through the annular lampshade 20 and then exits through another light exit area.
  • the range of the light source 40 is greater than 10 cm. Furthermore, the range of the converging light beam is greater than 10 cm, and can also be irradiated to the range of the flashlight and the flashlight, so the light source 40 provided by the embodiment of the present application can also be used as flashlight and flashlight supplementary light.
  • a light source 40 provided by the present application emits two light beams from the ring lampshade 20, which can not only meet and form a brighter light spot in the macro range H1 to supplement the light for macro shooting, but also can illuminate to the flashlight.
  • the flickering range (see the H2 range in FIG. 7, wherein the H2 range is greater than 10 cm from the optical axis of the lens 10) converges and forms a brighter spot to supplement light for shooting.
  • the converging light beams emitted by the light source 40 through the annular lampshade 20 can converge within the range of H2
  • the converging light beams emitted by the light source 40 through the annular lampshade 20 can also be applied to flashlights.
  • the light source 40 and the ring lampshade 20 can integrate supplementary light for macro shooting, supplementary light for flashes and supplementary light for flashlights. Integrating multiple functions in a limited space also improves the compactness of the device layout.
  • the light beam emitted by the camera module 100 can illuminate an area between 10 mm and 10 cm, so as to realize the functions of supplementary light and illumination in this area.
  • the electronic device 1000 when the camera module 100 is applied to the electronic device 1000 , the electronic device 1000 further includes a controller (not shown), and the controller is electrically connected to the camera module 100 and the light source 40 .
  • the controller is used to control the light source 40 to light up when the camera module 100 is in the flash mode (i.e. turn on the flashlight), flashlight mode (i.e. turn on the flashlight) or macro shooting mode, so as to respond to the electronic device 1000 when the flashlight Turning on the light source 40 in the flashing mode realizes the function of flashlight, turning on the light source 40 in the flashlight mode realizes the flashlight function, or turning on the light source 40 in the macro shooting mode realizes the macro shooting mode.
  • light source 40 includes but is not limited to light emitting diode (Light Emitting Diode, LED) lamp, metal halide lamp, fluorescent lamp, high pressure sodium, incandescent lamp, iodine tungsten lamp, etc. Any one or more of lamps, xenon lamps, etc.
  • the light source 40 is a flash lamp, also known as an electronic flash lamp or a high-speed flash lamp, for example, a xenon lamp is used.
  • the flashlight stores high-voltage electricity through the capacitor, and the pulse trigger discharges the flash tube to complete the flash to emit strong light in a short time.
  • the subject is partially filled with light, and the luminous efficiency is high.
  • the controller is electrically connected to the image sensor 13 of the camera module 100 (refer to FIG. 6 ).
  • the controller is also used to adjust the brightness of the light source 40 according to the light intensity collected by the image sensor 13 .
  • the image sensor 13 feeds back the collected light intensity to the controller, and the controller judges whether the current light intensity used by the image sensor 13 is too low or too high.
  • the controller adjusts the power of the light source 40, and then adjusts the supplementary light effect of the light source 40 for the macro shooting area, and then realizes that the light intensity collected by the image sensor 13 is suitable, and improves the camera mode. Group 100 image quality in macro shots.
  • the camera module 100 provided by the present application, by setting the ring lampshade 20 around the lens 10 and setting the light source 40 between the ring lampshade 20 and the flexible circuit board, the light emitted by the light source 40 is emitted through the ring lampshade 20 ,
  • the ring lampshade 20 directly emits a part of the light through the first light emitting region 22a, and emits another part of the light from the second light emitting region 22b after being reflected multiple times in the ring lampshade 20, wherein the first The light beam emitted by the first light-emitting area 22a and the light beam emitted by the second light-emitting area 22b converge, and the intersection area covers the macro range H1, so as to increase the uniform and high-brightness supplementary light of the camera module 100 for macro shooting; in addition, from the second The light beam emitted by a light emitting area 22a also covers the flashing area of the flashlight and
  • Integrating various functions such as supplementary light for macro shooting, supplementary light with flashes, and lighting with a flashlight, etc., also improves the compactness of the device layout of the camera module 100 and reduces the number of devices in the electronic device 1000 used in the camera module 100 , to promote miniaturization of the electronic device 1000 .
  • the annular lampshade 20 includes at least one emitting portion 211 and at least one light conducting portion 212 interconnected as one.
  • one light source 40 corresponds to one emitting portion 211 and one light transmission portion 212 .
  • the light emitted by the light source 40 is a light beam
  • the first light a1 refers to a part of the light beam emitted by the light source 40 .
  • the light angle emitted by the light source 40 is ⁇ 60°, that is, the emission angle range of the emission point of the light source 40 is 120°
  • the light a2 is the portion of the light beam emitted by the light source 40 with an emission angle of +45° ⁇ +60° and the portion of ⁇ 45° ⁇ 60°.
  • the surface of the emitting part 211 facing the image side is a part of the first surface 21 of the ring lampshade 20, the first surface 21 of this part is used to receive the first light a1 emitted by the light source 40, and the surface of the emitting part 211 facing the object side is a ring lampshade
  • the part of the second surface 22 of 20, the second surface 22 of this part is the first light emitting area 22a.
  • the first light a1 emitted by the light source 40 enters through the first surface 21 of the emitting portion 211 and is emitted from the first light emitting region 22 a.
  • the orthographic projection of the light source 40 on the second surface 22 is located in the first light emitting area 22a.
  • the orthographic projection of the light source 40 on the second surface 22 is located at the center of the first light emitting area 22a.
  • the central position of the light source 40 and the central position of the first light emitting area 22a are arranged along the direction of the optical axis. That is, the function of the emitting part 211 is to directly emit the first light a1 emitted by the light source 40 along the optical axis direction. It should be noted that, in the direction along the optical axis, not all light rays are emitted along the direction of the optical axis, but for the entire light beam of the first light a1, the direction of the light beam is the direction along the optical axis.
  • the function of the light conducting part 212 is to transmit the second light source 40 emitted by the light source 40 in the plane where the annular lampshade 20 is located for a period of time and then emit it.
  • the plane where the annular lampshade 20 is located is a plane perpendicular to the optical axis.
  • the light conducting portion 212 includes a first conducting body 213 and a second conducting body 214 integrally formed. Specifically, the first conductive body 213 and the second conductive body 214 are arranged along the plane where the annular lampshade 20 is located. In other words, the surface of the first conductive body 213 facing the image side is a part of the first surface 21 , and the surface of the first conductive body 213 facing the object side is a part of the second surface 22 . The surface of the second conductor 214 facing the image side is the other part of the first surface 21 , and the surface of the second conductor 214 facing the object side is the other part of the second surface 22 .
  • the second light a2 emitted by the light source 40 enters from the first surface 21 of the first conductive body 213 , is transmitted through the second conductive body 214 , and is emitted from the second light emitting region 22 b.
  • the first conductor 213 is located between the emitting portion 211 and the second conductor 214 .
  • the diameter of the emitting portion 211 is smaller than the dimension between the inner ring surface 25 and the outer ring face 24 of the annular lampshade 20, and the first conductive body 213 completely surrounds the peripheral side of the emitting portion 211, that is, the first conductive body 213 It is annular to receive the annular second light a2 in all directions, and fully transmit the second light a2 along the radial direction of the annular lampshade 20 to realize the brightness uniformity of the annular lampshade 20 in the radial direction.
  • the diameter of the emitting portion 211 is smaller than the dimension between the inner ring surface 25 and the outer ring face 24 of the annular lampshade 20, and the first conductive body 213 is in a semi-circular shape and half surrounds the circumference of the emitting portion 211. side, to receive the second light a2 around the first light a1, and transmit the second light a2 evenly along the radial direction of the annular lampshade 20.
  • Part of the second surface 22 of the second conductor 214 is the second light-emitting area 22b. Specifically, the part of the second surface 22 of the second conductive body 214 facing the object side is the second light emitting region 22b. The second surface 22 corresponding to the end of the second conductor 214 away from the first conductor 213 is the second light emitting area 22b.
  • the area between the first light emitting area 22a and the second light emitting area 22b is defined as the first transition area 26a.
  • the second light-emitting region 22b, the first transition region 26a, The first light exit area 22a, the first transition area 26a and the second light exit area 22b are sequentially arranged on the second surface 22 along the circumferential direction of the annular lampshade 20.
  • the number of the above-mentioned second light exit areas 22b can also be three or more.
  • the first conductive body 213 surrounds the peripheral side of the emitting portion 211 .
  • the first end 212a of the second conductor 214 corresponds to a second light-emitting area 22b (see 22c in FIG. and 214b) the second end 212b corresponds to another second light-emitting region 22b (see 22d in FIG. 13).
  • the first end 212 a of the second conductor 214 and the second end 212 b of the second conductor 214 are respectively located on two sides of the first conductor 213 and arranged along the circumferential direction of the annular lampshade 20 .
  • the first end 212a of the second conductor 214 corresponds to a complete second light-emitting area 22b (see 22c in FIG. 13 ), and the second conductor The second end 212b of the body 214 corresponds to another complete second light exit region 22b (see 22d in FIG. 13 ).
  • the first end 212a of the second conductor 214 of a light source 40 corresponds to a part of a second light-emitting region 22b (see 22c in FIG.
  • the second end 212b of 214 corresponds to a part of another second light emitting region 22b (see 22d in FIG. 13 ).
  • the cooperation of the two light sources 40 can realize the correspondence of two complete second light-emitting areas 22 b , and details can be referred to the description of the embodiment in FIG. 24 .
  • the present application does not specifically limit the number of the second conductors 214 in the light conducting portion 212 .
  • the number of the first conductor 213 in the light conducting part 212 is one, and the number of the second conductor 214 is two, which are respectively denoted as the first sub-conductor 214a and the second sub-conductor 214a.
  • the first sub-conductor 214 a and the second sub-conductor 214 b are respectively located on opposite sides of the first conductor 213 along the circumferential direction.
  • the first conductive body 213 is annularly surrounded on the peripheral side of the emitting portion 211, so that the first light a1 emitted by the light source 40 is emitted from the first light emitting area 22a along the optical axis direction through the emitting portion 211, and the light source 40
  • the emitted second light a2 is sufficiently transmitted on the peripheral side of the emitting portion 211 through the first conductor 213 , so that the rays in the radial direction near the emitting portion 211 are uniform.
  • the end of the first sub-conductor 214a away from the first conductor 213 and the end of the second sub-conductor 214b away from the first conductor 213 respectively correspond to the two second light-emitting regions 22b.
  • the two second light-exit regions 22b are respectively denoted as a first sub-light-exit region 22c and a second sub-light-exit region 22d.
  • the end 212a of the first sub-conductor 214a away from the first conductor 213 corresponds to the first sub-light-emitting area 22c.
  • the end 212b of the second sub-conductor 214b away from the first conductor 213 corresponds to the second sub-light emitting area 22d.
  • a part of the light incident on the second conductor 214 is transmitted counterclockwise in the circumferential direction toward the first sub-conductor 214a, and exits from the first sub-light-emitting region 22c.
  • Another part of the light incident on the second conductor 214 is transmitted clockwise in the circumferential direction toward the second sub-conductor 214b, and exits in the second sub-light-emitting area 22d.
  • the light emitted by the light source 40 can be emitted from the light-emitting areas at three different positions to form three light beams, and these three light beams can intersect within the macro range H1 to perform macro photography. fill light.
  • the number of the first conductor 213 and the second conductor 214 in the light conducting portion 212 are both one.
  • the first conductive body 213 surrounds at least part of the peripheral side of the emitting portion 211
  • the end of the second conductive body 214 away from the first conductive body 213 corresponds to a second light-emitting region 22 b.
  • the light emitted by the light source 40 can be emitted from the light emitting areas at two different positions to form two light beams, and the two light beams can intersect within the macro range H1 to perform macro photography. fill light.
  • the brightness of the area close to the irradiation direction may be high, while the brightness of the area far away from the irradiation direction is low, resulting in macro distance.
  • the problem of uneven brightness distribution in shooting; and the viewing area of macro shooting is extremely small, only a few millimeters by several millimeters, so the uneven distribution of light in a very small local area may cause the relative range of macro viewing The large difference in brightness will affect the imaging of macro shooting.
  • this application divides the light emitted by the light source 40 into multiple different positions by proposing the annular lampshade 20, and the light beams emitted from different positions can all converge in the macro range H1, so that one light source 40 can emit light from multiple directions to Multiple beams in the macro range H1 to improve brightness uniformity in the macro range H1. Further, multiple light beams emitted by one light source 40 can be evenly arranged around the circumference to irradiate to the macro range H1. For example, please refer to FIG. 8 , one light source 40 can emit two light beams, and the light emitting areas of the two light beams are symmetrically arranged on the second surface 22 with respect to the geometric center of the second surface 22 .
  • One light source 40 can emit three light beams, and the light emitting areas 2 of the three light beams are evenly distributed on the second surface 22 , and so on. Please refer to FIG. 11 , one light source 40 can emit four light beams, and the four light beams are symmetrically arranged on the second surface 22 with respect to the geometric center of the second surface 22 .
  • the light intensity of the first light a1 is greater than the light intensity of the second light a2. That is, the intensity of the light beam emitted from the first light emitting area 22a is greater than the intensity of the light beam emitted from the second light emitting area 22b.
  • Differentially designing the intensities of the first light a1 and the second light a2 can be applied to different usage scenarios.
  • the converging beam of the light beam emitted by the first light a1 and the light beam emitted by the second light a2 is not only used for macro shooting, but also used as a flashlight and a flashlight.
  • the intensity of the first light a1 can be greater than that of the second light
  • the intensity of a2 the first light a1 can ensure high brightness in the range of flash light and flashlight, and the light beam or multiple light beams emitted by the second light a2 are similar to the macro range H1 from different directions.
  • the intensity of the supplementary light in the macro range H1 needs to be within a certain range, so by designing the intensity of the second light a2 to be smaller than the intensity of the first light a1, it can ensure the brightness in the macro range H1
  • the suitable and multi-directional supplementary light also ensures high brightness in the range of the flash light and the flashlight, and realizes the multi-purpose of the light source 40 .
  • the ratio of the intensity of the second light a2 to the intensity of the first light a1 is greater than or equal to 2:8.
  • the ratio of the intensity of the second light a2 to the intensity of the first light a1 is 2:8 or 3:7. It can be understood that the ratio of the intensity of the second light beam S2 to the intensity of the first light beam S1 is greater than or equal to 2:8.
  • the intensity of the second light a2 and the intensity of the first light a1 can be controlled by controlling the size of the first surface 21 of the design emitting portion 211 and the emission angle of the light source 40 .
  • the emission angle of the light source 40 is ⁇ 60°
  • the first surface 21 of the emitting portion 211 is designed to receive light within the range of ⁇ 45°
  • the first surface 21 of the light transmission portion 212 is designed to receive +45° ⁇ +60° ° part and -45° ⁇ -60° part. It should be noted that the above description is based on a plane viewing angle.
  • the intensity of the first light a1 and the intensity of the second light a2 are about 7:3.
  • the light intensity of the first light a1 is equal to or less than the light intensity of the second light a2.
  • the intensity of the first light a1 is equal to the light intensity of the second light a2, which can be used for uniform supplementary light in the macro range H1 and also for flash supplementary light and flashlight illumination in a relatively close range.
  • the number of light sources 40 is one or more.
  • the light sources 40 can be arranged uniformly or non-uniformly along the circumference to increase the number and brightness of light beams emitted from the ring lampshade 20, thereby improving the brightness and uniformity of the supplementary light.
  • the structure, material, etc. of the light-transmitting portion 212 will be specifically illustrated below in combination with specific embodiments.
  • the injection portion 211 includes a first boss 215 protruding from the first surface 21 .
  • the first boss 215 has a first table surface 215a and a first peripheral side surface 215b surrounding the first table surface 215a.
  • the first mesa 215a faces the light source 40 .
  • the angle between the line of intersection corresponding to the first peripheral side surface 215 b and the line of intersection corresponding to the first mesa 215 a is greater than 90°.
  • the longitudinal section is a section formed by cutting the first boss 215 along a direction parallel to the optical axis.
  • the present application does not specifically limit the specific shape of the first boss 215 , and optionally, the first terrace 215 a faces the light-emitting surface of the light source 40 .
  • the convex surface of the first boss 215 includes but is not limited to a flat surface, an arc-shaped convex surface or an arc-shaped concave surface.
  • the first boss 215 is a plane.
  • the first mesa 215a is in a direction perpendicular to the optical axis.
  • the shape of the first mesa 215a includes, but is not limited to, a circle, an ellipse, a square, a rhombus, a hexagon, a rectangle, and the like.
  • the first mesa 215a is circular, so as to form a circular uniform light beam in the first light emitting region 22a (see FIG. 7 ).
  • the first mesa 215 a is disposed opposite to the light emitting surface of the light source 40 to receive more light emitted by the light source 40 .
  • the distance between the first mesa 215a and the light emitting surface of the light source 40 is less than 1mm.
  • This application does not specifically limit the angle between the first peripheral side 215b and the first mesa 215a.
  • the angle at which the first peripheral side 215b guides the light to exit on the second surface 22 takes the first light output axis L1 as 0 °
  • the ⁇ 45° (not limited to this angle) angle of the reference line shoots out.
  • the light source 40 is a point light source.
  • the area of the first boss 215 corresponds to the area of the emission point of the light source 40 .
  • the area of the first boss 215 is the same as the area of the emitting point of the light source 40 .
  • the geometric center of the first boss 215 is directly opposite to the geometric center of the emission point of the light source 40 in the Z-axis direction.
  • the present application does not specifically limit the position of the first boss 215 .
  • the orthographic projection of the first boss 215 on the second surface 22 is located in the first light emitting region 22 a.
  • the first light a1 enters through the first mesa 215a and directly exits through the first light exit region 22a, increasing the brightness of the light emitted from the first light exit region 22a.
  • the first boss 215 is located in the middle of the annular band of the annular lampshade 20 .
  • the distance between the first boss 215 and the outer ring surface 24 is about 1.5 mm
  • the distance between the first boss 215 and the inner ring surface 25 is about 1.5 mm.
  • the line that defines the geometric center of the first mesa 215a and the geometric center of the through hole 20a in the second surface 22 is the first axis Y1, defines the geometric center of the second surface 22 that passes through the through hole 20a and is in line with the first axis Y1.
  • the line perpendicular to the axis Y1 is the second axis X1.
  • the shape of the first mesa 215a is symmetrical with respect to the first axis Y1, and also symmetrical with respect to a line parallel to the second axis X1, so that the light beam incident from the first mesa 215a forms a
  • the light spot is symmetrical on the first axis Y1 and symmetrical on the second axis X1, thereby improving the brightness uniformity of the light spot emitted from the emitting portion 211 .
  • the number of light sources 40 is two, and the two light sources 40 are arranged along the first axis Y1.
  • the number of the first light emitting regions 22a is two, and the two first light emitting regions 22a are arranged along the first axis Y1.
  • One light source 40 corresponds to two second light-emitting regions 22b, wherein one second light-emitting region 22b of one light source 40 and one second light-emitting region 22b of another light source 40 synthesize one second light-emitting region 22b (for example, Y1 left in FIG.
  • another second light emitting region 22b of one light source 40 and another second light emitting region 22b of another light source 40 synthesize another second light emitting region 22b such as 22b on the right side of Y1 in FIG. 19 .
  • the annular lampshade 20 forms four light beams, and the four beams respectively emit and converge at the positions of 0°, 90°, 180°, and 270° of the annular lampshade 20. The brightness uniformity of the spot.
  • the emitting part 211 is made of uniform material.
  • the present application illustrates the structure and material of the light-transmitting portion 212 with reference to the accompanying drawings.
  • the material of at least part of the light conducting part 212 is different from that of the emitting part 211 .
  • FIG. 20 is a schematic diagram of a two-dimensional light path of a ring-shaped lampshade 20 . It should be noted that FIG. 20 is for expanding the ring-shaped light path to form a strip-shaped light path.
  • the light transmission part 212 includes a first dielectric layer 231 and a second dielectric layer 232 stacked along the optical axis of the lens 10 . Wherein, both the first conductor 213 and the second conductor 214 include the above-mentioned first dielectric layer 231 and the second dielectric layer 232 , and the light transmission portion 212 at this time refers to the first conductor 213 and the second conductor 214 .
  • the second medium layer 232 is closer to the light source 40 than the first medium layer 231 .
  • the refractive index of the second dielectric layer 232 is greater than the refractive index of the first dielectric layer 231 .
  • At least part of the second light a2 is totally reflected in the second medium layer 232 .
  • the light enters the second medium layer 232 from the air and then exits the first medium layer 231 from the optically sparse layer to the optically dense layer, and then from the optically dense layer to the optically sparse layer.
  • the first interface 233 On the interface between the second medium layer 232 and the first medium layer 231 (referred to as the first interface 233 in this application), when at least part of the incident angle of the second light a2 is greater than that between the second medium layer 232 and the first medium layer 231 When the critical angle of total reflection is , at least part of the second light a2 will be totally reflected on the first interface 233 .
  • the critical angle of total reflection of the light emitted by the light source 40 in the second medium layer 232 is 45°-60°.
  • the material of the first dielectric layer 231 is different from that of the second dielectric layer 232 .
  • the material of the second medium layer 232 is different from that of the emitting portion 211 .
  • the materials of the first dielectric layer 231 and the emitting portion 211 can be the same or different.
  • the refractive index of the second medium layer 232 is greater than the refractive index of the emitting portion 211 .
  • the interface (first interface 233 ) between the first dielectric layer 231 and the second dielectric layer 232 includes a connected first plane 234 and a set of inclined surfaces 235 .
  • the first plane 234 corresponds to the area between two adjacent light emitting areas.
  • the first plane 234 corresponds to the first The area between the light exit area 22a and one second light exit area 22b, and the area between the first light exit area 22a and another second light exit area 22b.
  • the second surface 22 is a surface of the first dielectric layer 231 facing away from the second dielectric layer 232 .
  • the second surface 22 is a plane perpendicular to the optical axis, and the first plane 234 may be parallel to the second surface 22 .
  • the surface of the second dielectric layer 232 facing away from the first dielectric layer 231 is a plane, denoted as the second plane 236 .
  • the first plane 234 can be parallel to the second plane 236, so the incident angle of the second light a2 from the first plane 234 to the second plane 236 is also greater than the total reflection critical angle from the second medium layer 232 to the air medium layer, so , the second light a2 may be totally reflected multiple times between the first plane 234 and the second plane 236 .
  • the surface of the first medium layer 231 facing away from the second medium layer 232 is the second surface 22 of the light transmission part 212, and the second surface 22 of the light transmission part 212.
  • the surface of the second dielectric layer 232 facing away from the first dielectric layer 231 is the first surface 21 of the light conducting portion 212 .
  • the present application is not limited to the fact that the light transmission part 212 only includes the above-mentioned first medium layer 231 and the second medium layer 232, wherein the light transmission part 212 can also be on the side of the first medium layer 231 away from the second medium layer 232.
  • a medium layer with a small refractive index is provided, or a medium layer with a small refractive index is provided on the side of the second medium layer 232 away from the first medium layer 231 .
  • the inclined face group 235 is connected to an end of the first plane 234 away from the emitting portion 211 .
  • the orthographic projection of the inclined surface group 235 on the second surface 22 is located in the second light emitting region 22b.
  • the set of inclined surfaces 235 includes at least one first inclined surface 235a.
  • the first inclined surface 235 a extends from the first plane 234 along the direction from the first dielectric layer 231 to the second dielectric layer 232 and away from the first plane 234 .
  • the incident angle of at least part of the light totally reflected in the second medium layer 232 on the first inclined surface 235 a is smaller than the critical angle of total reflection of the light emitted by the light source 40 in the second medium layer 232 . In this way, at least part of the light totally reflected in the second medium layer 232 is emitted from the second light-emitting region 22b through the inclined surface group 235 and the first medium layer 231 .
  • first inclined surfaces 235a there are multiple first inclined surfaces 235a, and the plurality of first inclined surfaces 235a are arranged in the circumferential direction and are parallel to each other, so that the second light a2 in a larger range can be emitted to form a relatively brighter beam.
  • the inclined surface group 235 further includes at least one second inclined surface 235b.
  • the second inclined surface 235b is connected between two adjacent first inclined surfaces 235a.
  • the second inclined surface 235b extends from the first inclined surface 235a along the direction from the second dielectric layer 232 to the second dielectric layer 232 and away from the first plane 234 .
  • the longitudinal section of the inclined surface group 235 is a serrated surface.
  • the second inclined surface 235b plays the role of connecting two adjacent first inclined surfaces 235a; a2 converges from both sides of the second light output area 22b along the circumferential direction, at this time, the second inclined surface 235b can be used as the "first inclined surface 235a" of another light source 40, for destroying the second light a2 of another light source 40
  • the light inside the second medium layer 232 is totally reflected and emitted from the second light emitting region 22b.
  • the first inclined surface 235a may extend radially or form a certain angle with the radial direction.
  • the critical angle of total reflection of the second dielectric layer 232 as 45° as an example.
  • the second ray a2 enters the second medium layer 232, wherein, the first sub-ray a21 whose incident angle is greater than or equal to 45° when incident on the first plane 234 or the second plane 236 in the second ray a2 is on the first plane 234 total reflection with the second plane 236 until the total reflection reaches the first inclined surface 235a, at this time, the total reflection in the second medium layer 232 is destroyed, and the first sub-ray a21 shoots to the first medium layer 231 and is The second light emitting area 22b emits.
  • the second sub-rays a22 whose incidence angles are smaller than 45° when striking the first plane 234 or the second plane 236 are directed from the second medium layer 232 to the image side.
  • the third sub-ray a23 whose incident angle is less than 45° when it hits the first plane 234 or the second plane 236 shoots from the second medium layer 232 to the first medium layer 231, and passes through the first medium layer 231 The first side 21 of the ejection.
  • the first surface 21 of the first dielectric layer 231 is also the first transition region 26a (and/or the second transition region 26b).
  • the first transition area 26a (and/or the second transition area 26b) also has a small amount of light emitted, and the light emitted from the first transition area 26a (and/or the second transition area 26b) is different from the light emitted from the first light exit area. 22a and the light emitted from the second light emitting area 22b, the brightness of the light is lower.
  • the light rays emitted by the light source 40 are incident on the first surface 21 at an angle of less than 45° through the first table surface 215a of the first boss 215 of the emitting portion 211, the light rays emitted by the light source 40 have an incident angle greater than or Light rays equal to 45° are incident from the first surface 21 of the light conducting portion 212, so the second light a2 entering the light conducting portion 212 can be controlled so that the incident angles of as many light rays as possible are greater than or equal to 45°, so that The more light rays of the second light a2 are totally reflected in the second medium layer 232, and make as few light rays as possible exit from the image side of the second medium layer 232 or exit from the first transition region 26a/second transition region 26b , to increase the intensity of the light beam emitted from the second light-emitting region 22b.
  • the second plane 236 is an area on the first surface 21 of the light conducting part 212 that does not directly receive the second light a2 emitted by the light source 40 .
  • at least one incident slope inclined with respect to the second plane 236 can be set on the first surface 21 of the light guide part 212 to directly receive the second light a2 emitted by the light source 40 (the incident slope can refer to the reflective ring at the back) reflective surface), specifically, the incident slope extends from the direction close to the incident part to the direction away from the incident part along the direction gradually approaching the image side.
  • the second light a2 is on the incident slope
  • the incident angle above is greater than or equal to (45+ ⁇ )°, thereby ensuring that the incident angle of the second light a2 entering the second medium layer 232 is greater than or equal to 45°, thereby realizing as many as possible of the second light a2 Part or all of them can be totally reflected in the second medium layer 232 to increase the intensity of the light beam emitted from the second light emitting area 22b, thereby improving the effect of supplementing light in the macro range H1.
  • the incident slope is an annular surface disposed around the emitting portion 211 . Further, there are multiple incident slopes.
  • FIG. 21 is a schematic diagram of another kind of optical path of the annular lampshade 20 expanded to two dimensions. It should be noted that FIG. 21 is for expanding the annular optical path to form a strip-shaped optical path.
  • the light conducting part 212 further includes a third dielectric layer 237 .
  • the third dielectric layer 237 , the second dielectric layer 232 and the first dielectric layer 231 are sequentially stacked.
  • the refractive index of the third medium layer 237 is smaller than that of the second medium layer 232 , so the second light a2 emitted by the light source 40 can enter the second medium layer 232 through the third medium layer 237 .
  • the surface of the third dielectric layer 237 facing away from the second dielectric layer 232 is the first surface 21 .
  • the interface between the third dielectric layer 237 and the second dielectric layer 232 is the second interface (ie, the second plane 236 ).
  • the refractive index of the third medium layer 237 is greater than that of air, and the second sub-ray a22 is totally reflected on the first surface 21 of the third medium layer 237 after being emitted from the second medium layer 232 or passed through the first surface of the third medium layer 237. Face 21 shoots out.
  • the third dielectric layer 237 has a reflective portion 238 .
  • the reflective part 238 is used to reflect the light in the third medium layer 237 to the second medium layer 232, and at least part of the reflected light is incident on the second medium layer 232 at an angle greater than the total reflection threshold in the second medium layer 232. horn.
  • the reflective part 238 is arranged in the area of the third medium layer 237 that does not directly receive the second light a2 emitted by the light source 40, so that the reflective part 238 is used to reflect the light emitted from the third medium layer 237 toward the image side (that is, the first Two sub-rays a22), and change the incident angle of this part of the light on the first interface 233, so that the incident angle of this part of the light on the first interface 233 is greater than or equal to the total reflection critical in the second medium layer 232 Angle, to further increase the intensity of light totally reflected in the second medium layer 232, and further increase the overall brightness of the light beam emitted from the second light emitting region 22b.
  • the reflection part 238 is used to convert the second sub-ray a22 into the first sub-ray a21. That is, the content of the first sub-ray a21 in the second light a2 is increased and the content of the second sub-ray a22 is decreased.
  • a reflection portion 238 similar to that in the third dielectric layer 237 may be provided in the first dielectric layer 231 to reduce the content of the third sub-ray a23 and further increase the content of the first sub-ray a21.
  • a light transmission part 212 in the present application.
  • a light source 40 and a light transmission part 212 with a 1/4 ring can be arranged, or a light source 40 and a light transmission part 212 with a 1/2 ring can be arranged.
  • the light transmission part 212 is provided with two light sources 40 and two 1/2 rings of the light transmission part 212 .
  • the reflection part 238 can occupy 1/4 ring area, 1/2 ring area, 3/4 area or the whole ring area on the first surface 21 of the ring lampshade 20 .
  • the above-mentioned 1/4, 1/2, and 3/4 are only examples, and other values, such as 1/5, 3/8, etc., may also be used.
  • the reflective portion 238 The specific implementation manners of the reflective portion 238 provided in the present application will be illustrated below with reference to the accompanying drawings.
  • two light sources 40 are arranged symmetrically, and the reflecting portion 238 can occupy the entire annular area of the first surface 21 of the annular lampshade 20 as an example for illustration.
  • the reflective portion 238 includes a plurality of reflective strips 251 protruding from the first surface 21 of the second conductor 214 .
  • One end of the reflective strip 251 is connected to the outer annular surface 24 of the annular lampshade 20, and the other end of the reflective strip 251 extends toward the inner annular surface 25 of the annular lampshade 20, so that the reflective strip 251 can uniformly reflect the second light a2 in the radial direction .
  • One end of the reflective strip 251 and the other end extend in a straight line, in a curve, in a bent line, in a zigzag line, or in an S-shaped curve. In Fig. 22, it extends along a curve.
  • a plurality of reflective strips 251 are arranged along the circumferential direction of the annular lampshade 20 to uniformly reflect and transmit the second light a2 in the circumferential direction.
  • the outer surface of the reflective strip 251 includes a first reflective surface 252 and a second reflective surface 253 .
  • Both the first reflective surface 252 and the second reflective surface 253 are inclined relative to the interface (the second interface (ie, the second plane 236)) between the third dielectric layer 237 and the second dielectric layer 232, so that the first reflective surface 252 and the second reflective surface 253 change the incident angle of the second light a2 on the interface by reflecting the second light a2, so that the light in the third medium layer 237 enters the second medium with a larger incident angle layer 232, so that more second light a2 is totally reflected in the second medium layer 232, and a small amount of second light a2 is transmitted inside the third medium layer 237, thereby reducing the second light a2 in the third medium layer 237
  • the loss of the second light a2 is increased through the light transmission part 212 to improve the efficiency.
  • the present application does not specifically limit the shape of the reflective strip 251
  • the longitudinal cross-sectional shape of the reflective strip 251 includes, but is not limited to, triangle, trapezoid, semicircle, and the like.
  • the longitudinal cross-sectional shapes of the first reflective surface 252 and the second reflective surface 253 can be two hypotenuses of a triangle, two trapezoidal hypotenuses of a trapezoid, or two 1/4 arc sides of a semicircle, etc.
  • FIG. 21 and FIG. 22 take the longitudinal cross-sectional shape of the reflective strip 251 as a triangle for example.
  • the reflecting portion 238 further includes a plurality of reflecting rings 254 surrounding the emitting portion 211 and disposed on the first surface 21 of the first conductor 213 .
  • a plurality of reflective rings 254 are arranged in sequence along the radially outward direction of the reflective rings 254 .
  • the reflection rings 254 are all concentric rings, and the center of the circles is the center of the first boss 215 .
  • the outer surface of the reflective ring 254 includes a third reflective surface 255 and a fourth reflective surface 256 . Both the third reflective surface 255 and the fourth reflective surface 256 are inclined relative to the interface (the second interface (ie, the second plane 236 )) between the third dielectric layer 237 and the second dielectric layer 232 .
  • the size of the emitting portion 211 is smaller than the size of the annular zone of the annular lampshade 20 (ie, the distance between the inner ring surface and the outer ring surface).
  • the reflection ring 254 surrounds the periphery of the emitting portion 211 and is located between the inner ring surface 25 and the outer ring surface 24 of the annular lampshade 20 .
  • the reflection ring 254 is used to receive the second light a2 on the one hand, and on the other hand is used to uniformly transmit the second light a2 along the ring.
  • the third reflection surface 255 and the fourth reflection surface 256 of the reflection ring 254 are changed in this The incident angle on the boundary surface further allows the light in the third medium layer 237 to use a larger incident angle to the second medium layer 232 to improve the efficiency of light exiting from the second light-emitting region 22b.
  • the present application does not specifically limit the number and size of the reflective rings 254 .
  • the distance between adjacent reflecting rings 254 is about 0.01mm.
  • multiple reflective rings 254 form water ripples on the first surface 21 and spread outward.
  • a plurality of reflective rings 254 are centered on the first boss 215 and spread out with a pitch of 0.01 mm.
  • the center of the circle where the reflection strip 251 is located is the same as the center of the circle of the reflection ring 254 .
  • the sawtooth structure of the reflective strip 251 is the same as that of the reflective ring 254, and the distance between two adjacent reflective strips 251 is the same as the distance between the reflective ring 254, so that the second light a2 (see FIG. 12 ) first
  • the reflection process between the surface 21 and the second surface 22 is continuous and uniform.
  • the two light sources 40 there are two light sources 40 , which are respectively denoted as a first light source 41 and a second light source 42 .
  • There are two emitting portions 211 respectively denoted as a first emitting portion 211 a and a second emitting portion 211 b , and the two light sources 40 are uniformly distributed around the optical axis of the lens 10 .
  • the two light sources 40 are arranged along a first direction, wherein the first direction is the Y-axis direction in the figure, which is also the above-mentioned first axis Y1 direction.
  • the first direction is also the length direction of the electronic device 1000 .
  • the optical axis direction of the camera module 100 is the thickness direction of the electronic device 1000 .
  • Each light transmission part 212 There are two light transmission parts 212, and the two light transmission parts 212 are respectively denoted as a first transmission part 212a and a second transmission part 212b.
  • Each light conducting portion 212 is semi-circular.
  • Each emitting portion 211 is located at a symmetrical center of a light conducting portion 212 .
  • the two emitting portions 211 are arranged symmetrically along the second direction.
  • each emitting portion 211 corresponds to a first light emitting region 22a.
  • the two first light emitting regions 22a are arranged symmetrically along the first direction.
  • Each emitting portion 211 has an axisymmetric structure in the first direction and the second direction.
  • the second direction is a direction perpendicular to the first direction on the second surface 22 .
  • the second direction is also the width direction of the electronic device 1000 .
  • the light source 40 is provided at the position where the emitting part 211 is located.
  • a plurality of reflection rings 254 are arranged on the first surface 21 of the first conducting body 213 (combining with FIG. 12 ), and the second conducting body 214 (combining with FIG. 12 ) is provided with a plurality of reflective strips 251 on the first surface 21.
  • the quantity of the second conductor 214 in one light conducting part 212 is two, denoted as the first sub-conductor 214a and the second sub-conductor 214b, and the first sub-conductor 214a and the second sub-conductor 214b are set respectively On opposite sides of the first conductive body 213 , the second light a2 emitted from the light source 40 is respectively transmitted clockwise and counterclockwise along the circumferential direction.
  • both the first sub-conductor 214 a and the second sub-conductor 214 b are curved reflective strips 251 .
  • the arc-shaped reflective strips 251 of the first sub-conductor 214a and the arc-shaped reflective strips 251 of the second sub-conductor 214b are symmetrical about the first axis Y1.
  • Orthographic projections of the first conduction portion 212 a and the second conduction portion 212 b on the second surface 22 are axisymmetric structures. That is, the first conduction portion 212 a and the second conduction portion 212 b are symmetrically disposed on the second surface 22 with respect to the second direction.
  • One end of the first conducting portion 212a is connected to one end of the second conducting portion 212b and corresponds to a second light emitting area 22b.
  • the other end of the first conduction portion 212a is connected to the other end of the second conduction portion 212b and corresponds to another second light-emitting area 22b.
  • the two second light emitting regions 22b are arranged along the second direction.
  • the arc-shaped reflective strip 251 at one end of the first conducting portion 212a is opposite to the arc-shaped extending direction of the arc-shaped reflecting strip 251 at one end of the second conducting portion 212b.
  • the arc-shaped reflective strip 251 at one end of the first conducting portion 212a intersects with the arc-shaped reflecting strip 251 at one end of the second conducting portion 212b at the first boundary line.
  • the arc-shaped reflective strip 251 at the other end of the first conducting portion 212a intersects the arc-shaped reflecting strip 251 at the other end of the second conducting portion 212b at the second boundary line.
  • both the first boundary line and the second boundary line are collinear with the second axis X1.
  • the light emitted by the first light source 41 and the light emitted by the second light source 42 are mainly transmitted to the first light-emitting area 22a, the first sub-light-exiting area 22c, and the second sub-light-emitting area through three paths. Area 22d.
  • the two first light beams S1, the second light beam S2 and the third light beam S3 merge to form a converging beam.
  • the spot area of the converging beam in the macro range H1 is larger than the viewfinder area in the macro range H1. Since the converging beams have many spots The beams in a group of symmetrical directions are converged, so it can form a spot with a relatively uniform brightness, so as to achieve high-brightness and uniform fill light in the macro range H1. Further, the converging beam can also be used as a flashlight and a flashlight. , through the structural design of the ring lampshade 20, the light is distributed reasonably, and the brightness of the supplementary light for the macro shooting of the camera module 100 is improved.
  • Integrating various functions such as supplementary light for macro shooting, supplementary light with flashes, flashlight illumination, etc., it also improves the compactness of the device layout of the camera module 100 and reduces the number of devices in the electronic device 1000 used in the camera module 100 quantity, promoting the miniaturization of the electronic device 1000.
  • the two light sources 40 provided in this application combined with the ring lampshade 20 supplement the light for macro shooting.
  • the ring lampshade 20 optimizes the two-point light emission to four-point light emission, which has higher uniformity and has a good supplement light effect for macro shooting.
  • the two The light source 40 will not cause overexposure of the central brightness of the macro shooting, and can also save costs. By arranging the two light sources 40 symmetrically, it can also improve the uniformity of the supplementary light.
  • the area of the intersection spot can be calculated.
  • the radial dimension is about 34mm, while the radial dimension of the effective imaging size (viewing area) of the macro is 5mm, so the area of the intersection spot is much larger than the effective imaging size (viewing area) of the macro. Fill light evenly.
  • the application does not specifically limit the number of the light source 40 and the number of the emitting part 211 .
  • those skilled in the art can extend the following embodiments to 4 light sources 40 and 4 emitting units 211, 6 light sources 40 and 6 emitting units 211, 8 light sources 40 and 8 emitting units 211, 5 Embodiments such as the light source 40 and five emission units 211 .
  • the number of light sources 40 may be an even number, and the plurality of light sources 40 are symmetrically arranged in pairs.
  • a plurality of emitting parts 211 are symmetrically arranged in pairs, and the first sub-light-emitting regions 22c (see FIG.
  • the second sub-light-emitting regions 22d are arranged symmetrically, so that the first sub-light-emitting regions 22c (see FIG. 24 ), the second sub-light-emitting regions
  • the light rays from the two sub-light emitting areas 22d are emitted symmetrically and merged to improve the uniformity of the object plane irradiated in the macro range H1 (see FIG. 24 ).
  • the camera module 100 provided in this application through the design of the structure of the ring lampshade 20, realizes that after the two light sources 40 pass through the ring lampshade 20, the light is not only emitted at the position where the two light sources 40 are facing, but also in the middle of the two light sources 40.
  • the position of the light is emitted, and the position of the light is increased without increasing the number of light sources 40, and the uniformity of the light emitted by the ring lampshade 20 is improved while reducing the cost and structural complexity, thereby improving the camera module 100 in macro photography. brightness and uniformity.
  • the first surface 21 is further provided with an annular boss 233 disposed around the through hole 20a.
  • the injection portion 211 is disposed on the outer periphery of the annular boss 233 .
  • the height of the annular boss 233 along the Z-axis direction is greater than the height of the injection portion 211 .
  • the end of the annular boss 233 away from the first surface 21 is connected to the support surface of the mirror base 11 , specifically, the end of the annular boss 233 away from the first surface 21 is bonded to the mirror holder 11 through the adhesive layer 56 supporting surface.
  • the camera module 100 further includes a flexible circuit board 51 and a support plate 52 supporting the flexible circuit board 51 .
  • the support plate 52 can also be called a steel complement of the flexible circuit board 51 .
  • the flexible circuit board 51 and the supporting board 52 are respectively provided with a first opening 51 a and a second opening 52 a which are connected to the through hole 20 a.
  • the mirror base 11 is disposed in the through hole 20a.
  • the first surface 21 , the peripheral surface of the annular boss 233 and the flexible circuit board 51 surround and form an accommodating space 53 a.
  • the light source 40 is disposed on the flexible circuit board 51 and located in the accommodating space 53 a.
  • the material of the support plate 52 is a heat dissipation material, including but not limited to aluminum, so as to prevent the local temperature near the light source 40 from being too high and causing the performance of the light source 40 to degrade.
  • the embodiment of the present application provides an electronic device 1000 , including a rear cover 54 , a light-transmitting cover plate 55 , and a camera module 100 provided in any one of the above-mentioned implementation manners.
  • the rear cover 54 has a mounting hole 54a.
  • the transparent cover 55 is disposed in the installation hole 54a.
  • Both the lens 10 and the ring lampshade 20 face the light-transmitting cover plate 55 .
  • At least one positioning protrusion 241 is disposed on the outer ring surface 24 of the annular lampshade 20 .
  • the positioning protrusion 241 is used for fool-proofing and positioning of the ring lampshade 20 during the installation process, which is beneficial to the accurate alignment and assembly of the light source 40 and the ring lampshade 20, and ensures that the emission point of the light source 40 and the first sub-light incident of the ring lampshade 20 portion 212 (first boss 215) is aligned.
  • the number of positioning protrusions 241 is two, and the two positioning protrusions 241 respectively correspond to the first sub-light-exiting area 22c and the second sub-light-exiting area 22d.
  • the back cover 54 is provided with at least one positioning groove 54 b matching with the positioning protrusion 241 .
  • the annular lampshade 20 is mounted on the rear cover 54 through the positioning protrusion 241 and the positioning groove 54b.
  • Positioning protrusions 241 are provided on the outer ring surface 24 of the annular lampshade 20 to facilitate the installation of the annular lampshade 20 on the rear cover 54 in a correct posture, so as to align the emitting portion 211 on the annular lampshade 20 with the light source 40 .
  • the camera module 100 and the light source 40 components are installed on the middle frame of the electronic device 1000; Installed in the mounting hole 54a of the back cover 54, the positioning protrusion 241 of the annular lampshade 20 is installed corresponding to the positioning groove 54b on the back cover 54, and then the back cover 54 is installed on the middle frame of the electronic device 1000.
  • the ring lampshade 20 is sleeved on the lens 10 , and the end of the ring boss 233 of the ring lampshade 20 is adhered to the lens base 11 of the camera module 100 through the adhesive layer 56 .
  • the intensity of the beam irradiated to the macro range H1 of the camera module 100 accounts for more than 20% of the total emitted beam intensity.
  • the light beam intensity irradiated to the macro range H1 of the camera module 100 is 30%
  • the light beam intensity irradiated to the flashing area or the area illuminated by the flashlight is 70%.
  • the design greatly improves the utilization rate and reduces the cost.
  • the diameter of the light source 40 in the present application may be about 9.5 mm, which is smaller than the diameter of the annular lampshade 20 and the light source 40 that also achieve uniform light emission.
  • FIG. 28 , FIG. 29 and FIG. 30 are the simulated spot diagrams of the two light sources 40 and the annular lampshade 20 at object plane distances of 1m, 5mm and 10mm respectively.
  • the object plane distance is 1m, which can be used for applications such as flash lighting and flashlight lighting.
  • Object distance of 5mm and 10mm can be used for macro shooting.
  • the brightness is relatively high within the object plane range of 5mm*5mm, and the center brightness of the supplementary light effect of macro shooting is 1mA It can reach 1425LUX, and the center uniformity can reach more than 90%, which shows that the light source 40 and the annular lampshade 20 provided by the application have high luminous efficiency in the application of supplementary light for macro shooting, and have high brightness and good uniformity, which are better than those in the general technology.
  • Light guide column fill light solution.
  • a bright spot is formed within the range of the object plane of 5mm*5mm, and the center of the supplementary light effect for macro photography is 1mA.
  • the brightness can reach 1070LUX, and the center uniformity can reach more than 90%, which shows that the light source 40 and the ring lampshade 20 provided by the application have high luminous efficiency in the application of supplementary light for macro shooting, and the brightness is high and the uniformity is good, which is better than that in the general technology.
  • the light guide column fill light scheme.
  • the annular lampshade 20 provided by the embodiment of the present application has small size, does not affect the layout of the mobile phone, simple process, high production yield, low cost, adjustable fill light brightness, sufficient screen brightness, and fill light uniformity of 90%.
  • the effect is easy to debug, reducing the difficulty of software debugging and other technical effects.
  • the light source 40 and the camera module 100 with the annular lampshade 20 are designed to be compatible with supplementary light effects for macro shooting, flashlights and flashlights, greatly improving utilization and reducing costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Stroboscope Apparatuses (AREA)
  • Studio Devices (AREA)

Abstract

本申请提供了一种摄像头模组及电子设备。摄像头模组包括镜头、环形灯罩及至少一个光源。环形灯罩具有相背设置的第一面和第二面,环形灯罩还具有贯穿第一面与第二面的通孔,镜头的至少部分设于通孔内。第二面具有沿环形灯罩的周向间隔设置的多个出光区域。光源与第一面相对设置,光源发射的光线经第一面射入并经多个出光区域射出,形成多个出射光束,出射光束在微距范围内交汇形成交汇光束,交汇光束的光斑面积大于或等于微距范围的取景面积。本申请能够在微距范围内进行补光,提升微距拍摄效果。

Description

摄像头模组及电子设备
本申请要求于2021年07月16日提交中国专利局、申请号为202110811590.6申请名称为“摄像头模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学技术领域,具体涉及一种摄像头模组及电子设备。
背景技术
电子设备的拍摄补光是影响成像质量的重要因素,例如主摄闪光灯补光、微距拍摄的微距拍摄补光等等,通过补光调节成像范围内的亮度,以形成较高质量的图像。随着电子设备的轻薄化的发展,如何在微距范围内进行补光,提升微距拍摄效果,成为需要解决的技术问题。
发明内容
本申请提供一种在微距范围内进行补光,提升微距拍摄效果的摄像头模组及电子设备。
第一方面,本申请提供了一种摄像头模组,包括:
摄像头模组镜头;
环形灯罩,所述环形灯罩具有相背设置的第一面和第二面,所述环形灯罩还具有贯穿所述第一面与所述第二面的通孔,所述摄像头模组的镜头的至少部分设于所述通孔内;所述第二面具有沿所述环形灯罩的周向间隔设置的多个出光区域;以及
至少一个光源,所述光源与所述第一面相对设置,所述光源发射的光线经所述第一面射入并经多个所述出光区域射出,形成多个出射光束,其中,至少两个所述出射光束在微距范围内交汇形成交汇光束,所述交汇光束在所述摄像头模组的微距拍摄模式下的光斑面积大于或等于所述微距范围微距拍摄模式的取景面积。
第二方面,本申请提供了一种电子设备,包括所述的摄像头模组摄像头模组,所述电子设备还包括控制器,所述控制器电连接所述摄像头模组和所述光源,所述控制器用于在所述摄像头模组处于闪光灯打闪模式、手电筒模式或微距拍摄模式时控制所述光源点亮;
所述摄像头模组还包括图像传感器,所述控制器还用于根据所述图像传感器所采集的光线强度而调节所述光源的亮度。
附图说明
图1是本申请实施例提供的一种摄像头模组的结构示意图;
图2是本申请实施例提供的一种电子设备的结构示意图;
图3是本实施例提供的第一种摄像头模组的结构拆分示意图;
图4是图3所示的环形灯罩的侧视图;
图5是图1所示的摄像头模组的第一种局部透视图;
图6是图5所示的摄像头模组沿B-B线的剖面图;
图7是图3所示的摄像头模组中光源发射的局部光路示意图;
图8是图1所示的摄像头模组的第二种局部透视图;
图9是图1所示的摄像头模组的第三种局部透视图;
图10是图1所示的摄像头模组的第四种局部透视图;
图11是图1所示的摄像头模组的第五种局部透视图;
图12是图7所示的一种摄像头模组中光源发射的具体光路示意图;
图13是图9所示的摄像头模组的具体细节局部透视图;
图14是图5所示的摄像头模组的具体细节局部透视图;
图15是图7所示的另一种摄像头模组中光源发射的具体光路示意图;
图16是本实施例提供的第二种摄像头模组中第一凸台的排布结构示意图;
图17是本实施例提供的第二种摄像头模组中第一凸台的局部立体放大图;
图18是本实施例提供的第二种摄像头模组的结构拆分示意图;
图19是图18所示的第二种摄像头模组的局部透视图;
图20是图18中的一种环形灯罩在展开到二维的局部光路示意图;
图21是图18中的另一种环形灯罩在展开到二维的局部光路示意图;
图22是图21中的环形灯罩的立体示意图;
图23是图21中的环形灯罩及光源的组合立体示意图;
图24是图23所示的环形灯罩所在的摄像头模组的局部透视图;
图25是图23沿Y1的剖面图;
图26是图23沿X1的剖面图;
图27是图2沿A-A线的剖面图;
图28是两个光源和环形灯罩在物面距离为1m的仿真光斑图;
图29是两个光源和环形灯罩在物面距离为5mm的仿真光斑图;
图30是两个光源和环形灯罩在物面距离10mm的仿真光斑图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。本申请所列举的实施例之间可以适当的相互结合。
请参见图1,本申请实施例提供的一种摄像头模组100。摄像头模组100用于拍照、录像等等。请参见图2,该摄像头模组100应用于电子设备1000中。电子设备1000包括但不限于手机、照相机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、智能可穿戴设备和便携计算机等等具有摄像功能的产品。
请参见图3,摄像头模组100至少包括镜头10、环形灯罩20及至少一个光源40。
请参见图3,可选的,摄像头模组100还包括镜座11、设于镜座11内的图像传感器13(请参阅图6)。本申请中,定义沿镜头10的轴向并通过镜头10中心的线为光轴。镜头10朝向被拍摄对象的一侧为物侧,镜头10背离被拍摄对象的一侧即朝向图像传感器13的一侧为像侧。为了便于后续的描述参考,定义摄像头模组100的光轴方向为Z轴。其中,Z轴朝向物侧的方向为Z轴正方向,Z轴朝向像侧的方向为Z轴反方向。
请参见图3及图4,环形灯罩20具有相背设置的第一面21和第二面22。第一面21为朝向像侧的面,第二面22为朝向物侧的面。第一面21为光源40的光线射入的面,第二面22为光线射出的面。环形灯罩20还具有贯穿第一面21与第二面22的通孔20a。通孔20a沿Z轴方向贯穿。本申请对于通孔20a的形状、大小不做具体的限定,可选的,通孔20a为圆形孔。
可选的,环形灯罩20的材质为透光材质,例如透镜,其透光率达到98%以上,光传导效率高。
请参见图3及图4,环形灯罩20还具有围接于第一面21与第二面22之间的外环面24及内环面25。可选的,外环面24和内环面25为反射面,例如,在外环面24和内环面25进行的雾化处理,以形成漫反射结构,或者在外环面24和内环面25上涂布反射涂层(例如金属银涂层等),实现光线的全反射,以减少光线从不需要的面射出的损耗,提高光线在第一面21射出的射出率;或者,外环面24和内环面25设置光线遮挡层(例如深色油墨等等),以减少光线从不需要的面射出的损耗,提高光线从第二面22射出的亮度。
请参见图5及图6,镜头10的至少部分设于通孔20a内。具体的,镜头10大小与通孔20a的尺寸相适配,镜头10收容于通孔20a内。环形灯罩20环绕于镜头10周侧。
本申请对于光源40的数量不做具体的限定。请参阅图3,光源40的数量为两个,两个光源40均匀排布于第一面21下方(以图3所在的方位为参考)。
在其他实施方式中,光源40的数量为多个(两个以上),多个光源40围绕于镜头10的周侧设置。多个光源40的排布方式包括均匀排布或非均匀排布。本实施方式中,多个光源40均匀排布且围绕镜头10的周侧设置,以提高从环形灯罩20射出光线的均匀性。
可选的,光源40的出光面朝向环形灯罩20的第一面21设置。具体的,光源40的出光方向可与光轴同向,或偏移光轴稍小角度,例如大于0°小于10°,其中,10°仅仅是举例,并不限于此数值。
可选的,对于多个光源40中的一个光源而言,光源40发射的光线经第一面21(例如第一面21的局部)射入并经第二面22的多个区域射出。将第二面22射出光束的区域称为出光区域(例如图5中的第一出光区域22a、第二出光区域22b、图10中的第一出光区域22a、第二出光区域22b、第三出光区域22c)。换言之,一个光源40对应于多个出光区域,本申请对于一个光源40所对应的出光区域的数量不做具体的限定,例如为两个、三个、四个、五个等。
第二面22具有沿环形灯罩20的周向间隔设置的多个出光区域。从多个出光区域射出的光束形成多个出射光束(例如图7中的光束S1和光束S2)。出射光束在微距范围H1内交汇形成交汇光束(参见图7中光束S1和光束S2的交汇区域)。所述交汇光束的光斑面积(参见图7中M所指示的区域面积)大于或等于所述微距范围H1的取景面积。
通过设置出光区域的间距、从出光区域射出的光束的射出角度,可以确定出微距范围内的光斑面积大小,设置该光斑面积大于所述微距范围H1的最小取景面积。
摄像头模组100为具有微距拍摄功能的摄像头。在微距拍摄下,电子设备与拍摄对象之间的距离很小,电子设备会对于微距拍摄的光线进行遮挡,如此,导致微距拍摄的成像效果差。现有技术中,部分电子设备采用闪光灯在微距拍摄时进行补光,但闪光灯所照射至微距拍摄范围内的亮度不均匀,例如,靠近闪光灯处的亮度高,远离闪光灯处的亮度低,如此,导致补光均匀度很差,微距拍摄效果差。部分电子设备采用光源配合灯罩,通过灯罩将光源的光线变为面光源的方式进行补光,但灯罩对应光源的位置会过亮,而远离光源的位置仍会过小,只能在一定程度上改善补光均匀性。为了进一步改善补光均匀性,部分电子设备增加光源的数量以减小相邻光源之间的距离,但是,受限于电子设备的最小驱动电流,单个光源的亮度不能无限制调小,光源数量过多时会使得灯罩补光区域的中心亮度过亮而导致过曝,且光源数量过多不利于节省成本以及电量。
本申请提供的摄像头模组100,通过在镜头10周侧设置环形灯罩20并在环形灯罩20下方设置光源,光源40发射的光线经环形灯罩20的第一面21射入并经多个出光区域射出,形成多个出射光束,出射光束在微距范围H1内交汇形成交汇光束,交汇光束的光斑面积大于或等于微距范围H1内的取景面积,交汇光束的光斑可完全覆盖微距范围H1内的取景画面,以实现摄像头模组100在微距范围H1进行补光。由于微距范围H1内的光斑为多个光束交汇形成,相对于单光束而言,有效地提高了光斑区域内的亮度均匀性,进而提高微距范围H1内的补光亮度均匀性,同时,多个出光区域将一个光源的光线进行分散射出,可有效地平衡照射至微距范围H1内的光斑亮度,避免中心区域过亮,还能够有效地节省光源40的数量,节省成本。
请参阅图5,本申请定义第二面22上相邻的两个出光区域之间的区域为过渡区域26,其中,过渡区域26理论上不出光,可以理解地,由于光源40的光线出射角度具有一定范围,且考虑到环形灯罩20的加工,过渡区域26内也会有部分光线射出,但是,过渡区域26的出光亮度远远小于出光区域(22a、22b)的出光亮度,举例而言,出光区域(22a、22b)的出光亮度于过渡区域26的出光亮度之比为9∶1~7∶3等。
可选的,本申请对于多个出光区域的位置不做具体的限定,请参阅图5、图8~图11,多个出光区域可均匀分布或非均匀分布。可选的,多个出光区域沿环形灯罩20均匀分布,以形成均匀的补光效果。进一步地,多个出光区域中至少有一组对称分布,以实现光束对称交汇,进行形成亮度相对均匀的光斑。进一步地,请参阅图10,多个出光区域皆两两对称分布,以形成多组对称交汇的光束,形成光照强且均匀的光斑,提高补光的亮度和均匀性。
需要说明的是,本申请所述的微距范围H1是指物侧沿光轴方向离镜头10的物侧面的距离为1mm~10mm的范围,可选的,微距范围H1为3mm~10mm,举例而言,微距可选取3mm、3.1mm、4mm、5mm、8mm、9.9mm、10mm等。可以理解的,交汇光束的交汇点与镜头10的物侧面之间的距离小于微距范围H1的最小值。
所述微距范围H1的取景面积是指摄像头模组100在某一距离对应采集物体图像的面积。本申请对于微距范围H1的取景面积的具体数值不做限定。交汇光束在微距为5mm时的光斑面积大于取景面积,或者说交汇光束在微距为5mm时的光斑区域完全覆盖取景区域。进一步地,交汇光束在微距为3mm时的光斑区域完全覆盖取景区域。
请参阅图5、图8~图11,多个出光区域包括至少一个第一出光区域22a及至少一个第二出光区域22b。以一个光源40为例说明第一出光区域22a和第二出光区域22b的区别,第一出光区域22a和第二出光区域22b皆为一个光源40发射的光线的出光区域,其中,光源40在第二面22上的正投影位于所述第一出光区域22a内,且位于第二出光区域22b之外。
请参阅图12,光源40发射的第一光线a1沿所述第一出光区域22a直接射出,形成第一光束S1。第二光线a2在环形灯罩20内传导后从第二出光区域22b射出,形成第二光束S2。
为了便于说明,请参阅图7,以过第一出光区域22a的几何中心且沿Z轴方向的参考线为第一出光轴线L1,以过第一子出光区域22b的几何中心且沿Z轴方向的参考线为第二出光轴线L2。其中,第一光束S1的射出范围可以为空间内以第一出光轴线L1为中心线的α范围内,以Z-Y平面看,第一光束S1的射出范围为以第一出光轴线L1为中心线的±α范围内。本申请对于α的值不做具体的限定,可选的,α的值可取30°~60°,进一步地,α的值可取45°~60°。可选的,α的值可取30°、40°、45°、50°、60°等等。以上的角度仅仅是本申请中的举例,还可以为其他角度。其中,第二光束S2的射出范围可以为空间内以第二出光轴线L2为中心线的β范围内,以Z-Y平面看,第二光束S2的射出范围为以第二出光轴线L2为中心线的±β范围内。本申请对于β的值不做具体的限定,可选的,β的值可取30°~60°,进一步地,β的值可取45°~60°。可选的,β的值可取30°、40°、45°、50°、60°等等。以上的角度仅仅是本申请中的举例,还可以为其他角度。第一光束S1和第二光束S2在物侧交汇,交汇之处覆盖微距范围H1(请参见图7)。
可以理解的,请参见图7,摄像头模组100包括但不限于为具有微距拍摄功能的摄像头,该微距范围H1为被摄物体表面至镜头10之间的距离,为3mm~10mm。从第一出光区域22a射出的第一光束S1和从第二出光区域22b射出的第二光束S2在微距范围H1内交汇。交汇的光线面积(形成的光斑的面积)大于微距拍摄的物面面积,以实现对于微距拍摄或超微距拍摄的物面范围内的均匀补光且提高补光亮度,进而提高微距拍摄或超微距拍摄的成像质量。
当然,在其他实施方式中,光源40在第二面22上的正投影位于相邻的两个出光区域之间。光源40发射的第一光线a1在环形灯罩20内传导后经过一个出光区域射出,光源40发射的第二光线a2在环形灯罩20内传导后经过另一个出光区域射出。
可选的,光源40的射程大于10cm。进一步地,交汇光束的射程大于10cm,还能够照射至闪光灯打闪范围和手电筒照射范围,故本申请实施例提供的光源40还能够作为闪光灯打闪补光及手电筒补光。
请参见图7,本申请提供的一个光源40从环形灯罩20射出两个光束不仅仅能够在微距范围H1内交汇及形成较亮的光斑以对微距拍摄补光,还能够照射至闪光灯打闪范围(参见图7中的H2范围,其中,H2范围为与镜头10的光轴方向距离大于10cm)内交汇并形成较亮的光斑以对拍摄补光。进一步地,当摄像头模组100设于电子设备1000内时,由于光源40经环形灯罩20射出的交汇光束能够交汇于H2范围内,故光源40经环形灯罩20射出的交 汇光束还能够应用于手电筒功能,如此,可在光源40及环形灯罩20中集成微距拍摄补光、闪光灯打闪补光及手电筒补光,在有限的空间内集成多种功能的还提高器件布局的紧凑性。当然,摄像头模组100射出的光束能够照亮10mm至10cm之间的区域,以实现该区域内的补光、照亮的作用。
本申请中,当摄像头模组100应用于电子设备1000时,电子设备1000还包括控制器(未图示),控制器电连接摄像头模组100和光源40。控制器用于在摄像头模组100处于闪光灯打闪模式(即打开闪光灯补光)、手电筒模式(即打开手电筒照亮)或微距拍摄模式时控制光源40点亮,以便于响应电子设备1000在闪光灯打闪模式点亮光源40实现闪光灯打闪功能、在手电筒模式下点亮光源40实现手电筒功能或在微距拍摄模式下点亮光源40实现微距拍摄模式。
本申请对于光源40的具体类型不做具体的限定,可选的,光源40包括但不限于为发光二极管(Light Emitting Diode,LED)灯、金卤灯、荧光灯、高压钠、白炽灯、碘钨灯、氙气灯等中的任意一种或多种。在一实施方式中,光源40为闪光灯,也称为电子闪光灯、高速闪光灯,例如采用氙气灯。闪光灯通过电容器存储高压电,脉冲触发使闪光管放电,完成瞬间闪光,以在很短时间内发出很强的光线,可用于光线较暗的场合瞬间照明,也用于光线较亮的场合给被拍摄对象局部补光,发光效率高。
进一步地,控制器电连接摄像头模组100的图像传感器13(请参阅图6)。控制器还用于根据图像传感器13所采集的光线强度而调节光源40的亮度。具体为,当在微距拍摄模式下,图像传感器13将采集到的光线强度反馈至控制器,控制器判断当前图像传感器13所采用到的光线强度是否过低或过高,当图像传感器13所采用到的光线强度是否过低或过高时,控制器调整光源40的功率,进而调节光源40对于微距拍摄区域的补光效果,进而实现图像传感器13所采集的光线强度适合,提高摄像头模组100在微距拍摄的成像质量。
请参见图7,本申请提供的摄像头模组100,通过在镜头10周侧设置环形灯罩20并在环形灯罩20与柔性电路板之间设置光源40,光源40发射的光线经环形灯罩20射出,光线在射出环形灯罩20的过程中,环形灯罩20将一部分光线直接经第一出光区域22a射出,及将另一部分光线在环形灯罩20内多次反射后从第二出光区域22b射出,其中,第一出光区域22a射出的光束和第二出光区域22b射出的光束交汇,该交汇区域覆盖微距范围H1,以增加摄像头模组100在进行微距拍摄的均匀且高亮度补光;此外,从第一出光区域22a射出的光束还覆盖闪光灯打闪区域和手电筒照射区域,故该光源40和环形灯罩20还可以用于闪光灯打闪和手电筒照亮,实现了一物多用,在有限地的空间内集成微距拍摄补光、闪光灯打闪补光、手电筒照亮等多种功能的同时还提高摄像头模组100的器件布局的紧凑性,减少摄像头模组100所应用的电子设备1000内的器件数量,促进电子设备1000的小型化。
请参阅图12,环形灯罩20包括互连为一体的至少一个射出部211及至少一个光线传导部212。其中,一个光源40对应一个射出部211和一个光线传导部212。光源40发射的光线为光束,第一光线a1是指光源40发射的光束的一部分。例如,光源40发射的光线角度为±60°,即光源40的发射点的发射角范围为120°,第一光线a1为光源40发射的光束中发射角度为±45°的光线部分,第二光线a2为光源40发射的光束中发射角度为+45°~+60°的部分及-45°~-60°的部分。
射出部211朝向像侧的表面为环形灯罩20的第一面21的部分,该部分的第一面21用于接收光源40发射的第一光线a1,射出部211朝向物侧的表面为环形灯罩20的第二面22的部分,该部分的第二面22是第一出光区域22a。光源40射出的第一光线a1经射出部211的第一面21射入并从由第一出光区域22a射出。光源40在第二面22上的正投影位于第一出光区域22a内。进一步地,光源40在第二面22上的正投影位于第一出光区域22a的中心位置。光源40的中心位置与第一出光区域22a的中心位置沿光轴所在的方向排列。即,射出部211的作用是将光源40发射的第一光线a1沿光轴方向直接射出。需要说明的是,该沿光轴方向并不是所有的光线皆沿光轴方向射出,而是对于第一光线a1的整个光束而言,光束的方向为沿光轴的方向。
光线传导部212的作用是将光源40发射的第二光源40在环形灯罩20所在平面内传导一段后射出。其中,环形灯罩20所在平面为垂直于光轴的平面。
请参阅图12,光线传导部212包括一体成型的第一传导体213及第二传导体214。具体的,第一传导体213与第二传导体214沿环形灯罩20所在平面排列。换言之,第一传导体213朝向像侧的表面为第一面21的一部分,第一传导体213朝向物侧的表面为第二面22的一部分。第二传导体214朝向像侧的表面为第一面21的其他一部分,第二传导体214朝向物侧的表面为第二面22的其他一部分。光源40射出的第二光线a2从第一传导体213的第一面21射入、经第二传导体214传导并由第二出光区域22b射出。
第一传导体213位于射出部211与第二传导体214之间。可选的,射出部211的直径尺寸小于环形灯罩20的内环面25与外环面24之间的尺寸,第一传导体213全包围于射出部211的周侧,即第一传导体213呈环形,以全方位接收环形的第二光线a2,并将第二光线a2沿环形灯罩20的径向方向上充分传导,以实现环形灯罩20在径向方向上的亮度均匀性。当然,在其他实施方式中,射出部211的直径尺寸小于环形灯罩20的内环面25与外环面24之间的尺寸,第一传导体213呈半环形,半包围于射出部211的周侧,以接收第一光线a1周侧 的第二光线a2,并将第二光线a2沿环形灯罩20的径向方向均匀传导,本实施方式不限于第一传导体213的半环形为180°的半环形、小于180°的小半环形、或大于180°的大半环形等。
第二传导体214的部分第二面22为第二出光区域22b。具体的,第二传导体214朝向物侧的部分第二面22为第二出光区域22b。第二传导体214远离所述第一传导体213的一端所对应的第二面22为第二出光区域22b。
请参阅图9,为了便于描述,定义第一出光区域22a与第二出光区域22b之间的区域为第一过渡区域26a。本实施方式中,一个光线传导部212对应的第二出光区域22b为一个或多个。当一个光线传导部212对应的第二出光区域22b的数量为多个时,至少包括以下的几种情况,一种情况是,请参阅图9,第二出光区域22b、第一过渡区域26a、第一出光区域22a、第一过渡区域26a及第二出光区域22b依次在第二面22上沿环形灯罩20的周向排列,当然,上述的第二出光区域22b的数量还可以为3个或以上;另一种情况是,请参阅图10,第二出光区域22b、第二过渡区域26b、第二出光区域22b、第一过渡区域26a及第一出光区域22a依次在第二面22上沿环形灯罩20的周向排列,当然,请参阅图4,上述的第二出光区域22b的数量还可以为3个或以上,其中,第二过渡区域26b为第二面22上相邻的两个第二出光区域22b之间的部分。
本实施方式中,请参阅图13,第一传导体213包围于射出部211的周侧。第二传导体214(见图13中214a和214b所示的部分)的第一端212a对应一个第二出光区域22b(见图13中的22c),第二传导体214(见图13中214a和214b所示的部分)的第二端212b对应另一个第二出光区域22b(见图13中的22d)。其中,第二传导体214的第一端212a与第二传导体214的第二端212b分别位于第一传导体213的两侧且沿环形灯罩20的周向排布。
需要说明的是,请参阅图13,当光源40的数量为一个时,第二传导体214的第一端212a对应一个完整的第二出光区域22b(见图13中的22c),第二传导体214的第二端212b对应另一个完整的第二出光区域22b(见图13中的22d)。当光源40的数量为两个时,一个光源40的第二传导体214的第一端212a对应一个第二出光区域22b(见图13中的22c)的一部分,一个光源40的第二传导体214的第二端212b对应另一个第二出光区域22b(见图13中的22d)的一部分。两个光源40相配合可以实现两个完整的第二出光区域22b的对应,详细可参考图24的实施方式的描述。本申请对于光线传导部212中的第二传导体214的数量不做具体的限定。
在一种实施方式中,请参阅图13,光线传导部212中的第一传导体213的数量为一个,第二传导体214的数量为两个,分别记为第一子传导体214a和第二子传导体214b。第一子传导体214a和第二子传导体214b沿周向分别位于第一传导体213的相对两侧。
请参阅图13,第一传导体213呈环形包围于射出部211的周侧,以便于光源40射出的第一光线a1经射出部211沿光轴方向从第一出光区域22a射出,以及光源40射出的第二光线a2经第一传导体213在射出部211的周侧充分传导,以使射出部211附近的径向方向的光线均匀。第一子传导体214a远离第一传导体213的端部和第二子传导体214b远离第一传导体213的端部分别对应两个第二出光区域22b。两个第二出光区域22b分别记为第一子出光区域22c和第二子出光区域22d。第一子传导体214a远离第一传导体213的端部212a对应第一子出光区域22c。第二子传导体214b远离第一传导体213的端部212b对应第二子出光区域22d。
入射至第二传导体214的一部分光线沿周向的逆时针朝向第一子传导体214a传导,并在第一子出光区域22c射出。入射至第二传导体214的另一部分光线沿周向的顺时针朝向第二子传导体214b传导,并在第二子出光区域22d射出。
通过上述的设计,以使光源40所射出的光线能够实现在三个不同位置的出光区域射出,形成三道光束,而这三道光束可在微距范围H1内交汇,以对微距拍摄进行补光。
在另一实施方式中,请参阅图14,光线传导部212中的第一传导体213和第二传导体214的数量皆为一个。具体的,第一传导体213包围于射出部211的至少部分周侧,第二传导体214远离第一传导体213的一端(见图14中212a)对应一个第二出光区域22b。
通过上述的设计,以使光源40所射出的光线能够实现在两个不同位置的出光区域射出,形成两道光束,而这两道光束可在微距范围H1内交汇,以对微距拍摄进行补光。
可以理解的,上述是对于一个光源40的光线从两处射出或三处射出进行的实施方式举例,当然,本领域技术人员还可以参考上述的实施方式设计一个光源40的光线从四处射出、五处射出等等其他多处射出的实施方式。
相较于光源40以单个光束射出的场景,由于单个光束从单个方向照射至微距范围H1内,可能导致靠近照射方向的区域的亮度高,而远离照射方向的区域的亮度低,导致微距拍摄的亮度分布不均匀的问题;而微距拍摄的取景面积极小,只有几个毫米乘以几个毫米,因此非常小的局部面积内的光线分布不均匀可能会导致微距取景范围的相对较大的亮度差异,进而对于微距拍摄成像造成影响。
而本申请通过提出环形灯罩20将光源40发射的光线分成多处不同位置射出,且从不同位置射出的光束都可以交汇于微距范围H1,实现了一个光源40可以发射从多个方向照射至微距范围H1内的多个光束,以提高微距范围H1内的亮度均匀性。进一步地,一个光源40 射出的多个光束可绕周侧均匀排布地照射至微距范围H1。举例而言,请参阅图8,一个光源40可射出两个光束,两个光束的出光区域在第二面22上关于第二面22的几何中心对称设置。一个光源40可射出三个光束,三个光束的出光区域2在第二面22上均匀分布,等等。请参阅图11,一个光源40可射出四个光束,四个光束第二面22上关于第二面22的几何中心对称设置。
可选的,第一光线a1的光线强度大于第二光线a2的光线强度。即从第一出光区域22a射出的光束强度大于从第二出光区域22b射出的光束强度。通过将第一光线a1和第二光线a2的强度差异化设计,以应用于不用的使用场景。
在一实施方式中,第一光线a1射出的光束和第二光线a2射出的光束的交汇光束既用于微距拍摄,还用作闪光灯及手电筒,通过设置第一光线a1的强度大于第二光线a2的强度,第一光线a1能够确保在闪光灯照射范围、手电筒照射范围内具有较高的亮度,第二光线a2射出的一个光束或多个光束类似于从不同的方向在微距范围H1内进行进一步地补光,而微距范围H1内的补光光强需要在一定范围内,故通过设计第二光线a2的强度小于第一光线a1的强度,即可确保在微距范围H1内具有亮度适合且多方向的补光,还确保在闪光灯照射范围、手电筒照射范围内具有较高的亮度,实现光源40的一物多用。
可选的,第二光线a2的强度与第一光线a1的强度之比大于或等于2∶8。例如,第二光线a2的强度与第一光线a1的强度之比为2∶8或3∶7等。可以理解的,第二光束S2的强度与第一光束S1的强度之比大于或等于2∶8。
可选的,可通过控制设计射出部211的第一面21的大小、光源40的发射角度等控制第二光线a2强度与第一光线a1强度。例如,通过设计光源40的发射角度为±60°,并设计射出部211的第一面21接收±45°范围内的光线,设计光线传导部212的第一面21接收+45°~+60°的部分及-45°~-60°的部分。需要说明的是,以上为以平面视角为参考的说明。通过以上的设计,以使第一光线a1的强度与第二光线a2的强度约为7∶3。
当然,在其他实施方式中,第一光线a1的光线强度等于或小于第二光线a2的光线强度。第一光线a1的强度等于第二光线a2的光线强度,可用于对微距范围H1内进行均匀补光还用于对相对较近的范围内进行闪光灯补光及手电筒照亮。
对于环形灯罩20而言,光源40的数量为一个或多个。当光源40的数量为多个时,光源40可沿周向均匀排布或非均匀排布,以提高从环形灯罩20射出的光束数量和光束亮度,进而提高补光亮度和补光均匀性。
以下结合具体的实施方式对于光线传导部212的结构、材质等进行具体的举例说明。
可选的,请参图15、图16及图17,射出部211包括凸设于第一面21的第一凸台215。第一凸台215具有第一台面215a及围接于第一台面215a周侧的第一周侧面215b。第一台面215a朝向光源40。在第一凸台215的纵截面上,第一周侧面215b对应的截交线与第一台面215a对应的截交线之间的角度大于90°。纵截面为沿平行于光轴方向切第一凸台215形成的截面。
本申请对于第一凸台215的具体形状不做具体的限定,可选的,第一台面215a朝向光源40的出光面。第一凸台215的凸面包括但不限于为平面、弧形凸面或弧形凹面。本申请实施方式中,第一凸台215为平面。进一步地,第一台面215a为垂直于光轴的方向。
第一台面215a的形状包括但不限于为圆形、椭圆形、正方形、菱形、六边形、矩形等。可选的,第一台面215a呈圆形,以在第一出光区域22a(参见图7)形成圆形均匀光束。第一台面215a与光源40的发光面相对设置,以接收更多光源40发射的光线。可选的,第一台面215a与光源40的发光面之间的间距小于1mm。
本申请对于第一周侧面215b与第一台面215a之间的角度不做具体的限定,本申请中的第一周侧面215b引导光线在第二面22射出的角度以第一出光轴线L1为0°参考线的±45°(不限于此角度)角度射出。
本申请对于第一凸台215的面积不做具体的限定。可选的,光源40为点光源。第一凸台215的面积与光源40的发射点的面积相对应。可选的,第一凸台215的面积与光源40的发射点的面积相同。进一步地,第一凸台215的几何中心与光源40的发射点的几何中心在Z轴方向上正对。
本申请对于第一凸台215的位置不做具体的限定。请参见图15及图16,第一凸台215在第二面22上的正投影位于第一出光区域22a内。第一光线a1经第一台面215a射入及经第一出光区域22a直接射出,增加其从第一出光区域22a射出光线的亮度。
可选的,第一凸台215位于环形灯罩20的环形带中间位置。具体的,第一凸台215距离外环面24之间的距离约为1.5mm,第一凸台215距离内环面25之间的距离约为1.5mm。
为了便于描述,定义第二面22内过第一台面215a的几何中心及通孔20a的几何中心的线为第一轴线Y1,定义第二面22内过通孔20a的几何中心且与第一轴线Y1垂直的线为第二轴线X1。
可选的,请参阅图16,第一台面215a的形状关于第一轴线Y1对称,也关于与第二轴线X1平行的线对称,以使从第一台面215a射入的光束在射出时形成的光斑在第一轴线Y1上对称,及在第二轴线X1上对称,进而提高从射出部211射出的光斑的亮度均匀性。
进一步地,请参阅图18及图19,光源40的数量为两个,两个光源40沿第一轴线Y1设 置。第一发光区域22a的数量为两个,两个第一发光区域22a沿第一轴线Y1设置。一个光源40对应两个第二发光区域22b,其中,一个光源40的一个第二发光区域22b与另一光源40的一个第二发光区域22b合成一个第二发光区域22b(例如图19中Y1左侧的22b),一个光源40的另一个第二发光区域22b与另一光源40的另一个第二发光区域22b合成另一个第二发光区域22b例如图19中Y1右侧的22b)。那么,第二发光区域22b为两个,两个第二发光区域22b沿第二轴线X1设置。进而,环形灯罩20形成四个光束,四个光束分别在环形灯罩20的0°、90°、180°、270°的位置射出并交汇,光束从四个方向均匀地交汇,进一步地提高交汇光线的光斑的亮度均匀性。
可选的,射出部211为均匀的材质。
本申请结合附图对于光线传导部212的结构和材质进行举例说明。
可选的,光线传导部212的至少部分的材质与射出部211的材质不同。
请参阅图20,图20是一种环形灯罩20展开到二维的光路示意图,需要说明的是,图20是为了将环形的光路展开形成条形的光路。光线传导部212包括沿镜头10的光轴方向层叠设置的第一介质层231及第二介质层232。其中,第一传导体213和第二传导体214皆包括上述的第一介质层231和第二介质层232,此时的光线传导部212是指第一传导体213及第二传导体214。
第二介质层232相对于第一介质层231靠近光源40。第二介质层232的折射率大于第一介质层231的折射率。第二光线a2中的至少部分在第二介质层232内发生全反射。光线从光源40射出的过程中,从空气射入第二介质层232再从第一介质层231射出是从光疏层射向光密层,再从光密层射向光疏层。在第二介质层232与第一介质层231的分界面(本申请中称为第一界面233)上,当第二光线a2的至少部分入射角度大于第二介质层232与第一介质层231的全反射临界角时,第二光线a2的至少部分会在第一界面233上发生全反射。
可选的,光源40发射的光线在第二介质层232内的全反射临界角为45°~60°。
第一介质层231的材质与第二介质层232的材质不同。可选的,第二介质层232的材质与射出部211的材质不同。第一介质层231与射出部211的材质可相同或不同。可选的,第二介质层232的折射率大于射出部211的折射率。
可选的,请参阅图20,第一介质层231与第二介质层232之间的分界面(第一界面233)包括相连的第一平面234及倾斜面组235。第一平面234对应于相邻的两个出光区域之间的区域。当一个光源40的第一光线a1从一个第一出光区域22a射出,第二光线a2分别从第一出光区域22a两侧的两个第二出光区域22b射出时,第一平面234对应于第一出光区域22a与一个第二出光区域22b之间的区域,以及第一出光区域22a与另一个第二出光区域22b之间的区域。
可选的,第二面22为第一介质层231背离第二介质层232的表面。第二面22为垂直于光轴的平面,第一平面234可平行于第二面22。
可选的,第二介质层232背离第一介质层231的表面为平面,记为第二平面236。第一平面234可平行于第二平面236,那么第二光线a2从第一平面234全反射至第二平面236的入射角也大于第二介质层232至空气介质层的全反射临界角,如此,第二光线a2可以在第一平面234与第二平面236之间发生多次的全反射。
需要说明的是,在光线传导部212仅包括第一介质层231和第二介质层232时,第一介质层231背离第二介质层232的表面为光线传导部212的第二面22,第二介质层232背离第一介质层231的表面为光线传导部212的第一面21。当然,本申请并不限于光线传导部212仅包括上述的第一介质层231和第二介质层232,其中,光线传导部212还可以在第一介质层231背离第二介质层232的一侧设置折射率较小的介质层,或者在第二介质层232背离第一介质层231的一侧设置折射率较小的介质层。
倾斜面组235连接于第一平面234远离射出部211的一端。倾斜面组235在第二面22上的正投影位于第二出光区域22b内。
请参阅图20,倾斜面组235包括至少一个第一倾斜面235a。第一倾斜面235a自第一平面234沿第一介质层231至第二介质层232且远离第一平面234的方向延伸。在第二介质层232内全反射的光线中的至少部分光线在第一倾斜面235a的入射角小于光源40发射的光线在第二介质层232内的全反射临界角。如此,在第二介质层232内全反射的光线中的至少部分光线经倾斜面组235及第一介质层231从第二出光区域22b射出。
可选的,第一倾斜面235a的数量为多个,多个第一倾斜面235a沿周向排列且相互平行,如此,以使较大范围内的第二光线a2射出,形成相对较亮的光束。
请参阅图20,倾斜面组235还包括至少一个第二倾斜面235b。第二倾斜面235b连接于相邻的两个第一倾斜面235a之间。第二倾斜面235b自第一倾斜面235a沿第二介质层232至第二介质层232且远离第一平面234的方向延伸。换言之,倾斜面组235的纵向截面为锯齿面。第二倾斜面235b一方面起到连接相邻的两个第一倾斜面235a的作用,另一方面,当一个环形灯罩20对应多个光源40时,相邻的两个光源40的第二光线a2沿周向从第二出光区域22b的两侧汇聚,此时,第二倾斜面235b可作为另一个光源40的“第一倾斜面235a”,用于破坏另一个光源40的第二光线a2在第二介质层232内部的全反射并从第二出光区域22b射出。在沿环形灯罩20的径向方向上,第一倾斜面235a可沿径向延伸或与径向形成一定的 夹角。
举例而言,以第二介质层232的全反射临界角为45°为例。第二光线a2射入第二介质层232,其中,第二光线a2中射向第一平面234或第二平面236时的入射角度大于或等于45°的第一子光线a21在第一平面234和第二平面236之间全反射,直至全反射至第一倾斜面235a,此时,第二介质层232内的全反射被破坏,第一子光线a21射向第一介质层231并在第二出光区域22b射出。第二光线a2中射向第一平面234或第二平面236时的入射角度小于45°的第二子光线a22从第二介质层232射向像侧。第二光线a2中射向第一平面234或第二平面236时的入射角度小于45°的第三子光线a23从第二介质层232射向第一介质层231,并经第一介质层231的第一面21射出。其中,第一介质层231的第一面21也是第一过渡区域26a(和/或第二过渡区域26b)。换言之,第一过渡区域26a(和/或第二过渡区域26b)也会有少量的光线射出,从第一过渡区域26a(和/或第二过渡区域26b)射出的光线与从第一出光区域22a、第二出光区域22b射出的光线相比,光线亮度较低。
本申请中,由于光源40射出的光线在第一面21上入射角小于45°角度通过射出部211的第一凸台215的第一台面215a射入,光源40射出的光线中入射角大于或等于45°的光线从光线传导部212的第一面21射入,那么,如此可控制射入光线传导部212的第二光线a2尽可能多的光线的入射角度大于或等于45°,以使第二光线a2较多的光线在第二介质层232中进行全反射,及使得尽可能少的光线从第二介质层232的像侧射出或从第一过渡区域26a/第二过渡区域26b射出,提高第二出光区域22b的射出光束的强度。
可选的,第二平面236为光线传导部212的第一面21上未直接接收光源40发射的第二光线a2的区域。进一步地,可在光线传导部212的第一面21上直接接收光源40发射的第二光线a2的区域设置与相对于第二平面236倾斜的至少一个入射斜面(入射斜面可参考后面的反射环的反射面),具体的,该入射斜面从靠近入射部至远离入射部的方向上,沿逐渐靠近像侧的方向延伸,如此,通过设置上述倾斜的入射斜面,使得第二光线a2在入射斜面上的入射角度大于或等于(45+θ)°,进而确保射入第二介质层232内的第二光线a2的入射角大于或等于45°,进而实现第二光线a2中的尽可能多的部分或全部皆可以在第二介质层232内进行全反射,提高从第二出光区域22b射出光束的强度,进而提高对于微距范围H1内的补光效果。
可以理解的,入射斜面为环绕射出部211设置的环形面。进一步地,入射斜面的数量为多个。
在一实施方式中,请参阅图21,图21是另一种环形灯罩20展开到二维的光路示意图,需要说明的是,图21是为了将环形的光路展开形成条形的光路。光线传导部212还包括第三介质层237。第三介质层237、第二介质层232及第一介质层231依次层叠设置。第三介质层237的折射率小于第二介质层232的折射率,故光源40发射的第二光线a2能够经第三介质层237射入第二介质层232中。第三介质层237背离第二介质层232的表面为第一面21。第三介质层237与第二介质层232之间的分界面为第二界面(即第二平面236)。第三介质层237的折射率大于空气的折射率,第二子光线a22从第二介质层232射出后在第三介质层237的第一面21全反射或经第三介质层237的第一面21射出。
请参阅图21,第三介质层237具有反射部238。反射部238用于将第三介质层237内的光线反射至第二介质层232,且至少部分的反射光线在入射至第二介质层232的角度大于在第二介质层232内的全反射临界角。
进一步地,反射部238设于第三介质层237未直接接收光源40发射的第二光线a2的区域,以实现反射部238用于反射从第三介质层237朝向像侧射出的光线(即第二子光线a22),并改变这部分的光线在第一界面233上的入射角度,使得这部分的光线在第一界面233上的入射角度大于或等于在第二介质层232内的全反射临界角,进一步提高在第二介质层232内发生全反射的光线强度,进而提高从第二出光区域22b射出的光束整体亮度。换言之,反射部238用于将第二子光线a22转换成第一子光线a21。即提高第二光线a2中第一子光线a21的含量以及减少第二子光线a22含量。当然,在其他实施方式中,可以在第一介质层231内设置与第三介质层237中类似的反射部238,以减少第三子光线a23的含量,进一步提高第一子光线a21的含量。
以上为本申请中的一种光线传导部212的实施方式,在环形灯罩20,可以设置一个光源40及配置1/4环的光线传导部212,或者设置一个光源40及配置1/2环的光线传导部212,或者设置两个光源40及配置2个1/2环的光线传导部212。
反射部238可占据环形灯罩20的第一面21上的1/4环区域、1/2环区域、3/4区域或整个环形区域。上述的1/4、1/2、3/4仅仅为举例,还可以是其他的数值,例如1/5、3/8等。
以下结合附图对于本申请提供的反射部238的具体实施方式进行举例说明。以下以两个光源40对称设置,反射部238可占据环形灯罩20的第一面21整个环形区域为例进行说明。
请参阅图22,反射部238包括凸设于第二传导体214的第一面21上的多个反射条251。反射条251的一端连接环形灯罩20的外环面24,反射条251的另一端朝向环形灯罩20的内环面25延伸,以便于反射条251能够对于第二光线a2在径向方向进行均匀反射。反射条251的一端与另一端之间呈直线延伸、曲线延伸、弯折线延伸、锯齿线延伸、S型曲线延伸等。图22中是沿曲线延伸。
结合参考图21,多个反射条251沿环形灯罩20的周向排布,以对第二光线a2在周向均匀反射并传导。反射条251的外表面包括第一反射面252和第二反射面253。第一反射面252及第二反射面253皆相对于第三介质层237与第二介质层232之间的分界面(第二界面(即第二平面236))倾斜,以使第一反射面252和第二反射面253通过反射第二光线a2,以改变第二光线a2在该分界面上的入射角,进而让第三介质层237内的光线以较大的入射角入射至第二介质层232,进而实现更多的第二光线a2在第二介质层232进行全反射,少量的第二光线a2在第三介质层237内部传导,进而减少第二光线a2在第三介质层237内的损耗,提高第二光线a2经光线传导部212射出的效率。
本申请对于反射条251的形状不做具体的限定,反射条251的纵向截面形状包括但不限于为三角形、梯形、半圆形等等。其中,第一反射面252和第二反射面253的纵向截面形状可以分别为三角形的两个斜边、梯形的两个梯形斜边、或半圆形的两个1/4的弧形边等。图21及图22以反射条251的纵向截面形状为三角形进行举例。
请参阅图22,反射部238还包括环绕射出部211且设于第一传导体213的第一面21的多个反射环254。多个反射环254沿反射环254的径向向外方向依次设置。多个反射环254皆为同心圆环,其圆心为第一凸台215的中心。
反射环254的外表面包括第三反射面255和第四反射面256。第三反射面255及第四反射面256皆相对于第三介质层237与第二介质层232之间的分界面(第二界面(即第二平面236))倾斜。
具体的,射出部211的大小小于环形灯罩20的环形带尺寸(即内环面至外环面之间的距离)。反射环254环绕于射出部211的外围,并位于环形灯罩20的内环面25至外环面24之间。反射环254一方面用于接收第二光线a2,另一方面用于将第二光线a2沿环形均匀传导,再一方面,反射环254的第三反射面255和第四反射面256改变在该分界面上的入射角,进而让第三介质层237内的光线以较大的入射角第二介质层232,提高光线从第二出光区域22b射出的效率。
本申请对于反射环254的数量和大小不做具体的限定。相邻的反射环254之间的间距约为0.01mm。可选的,多个反射环254在第一面21上形成类似水波纹向外扩散。多个反射环254以第一凸台215为中心以0.01mm间距向外扩散。
可选的,反射条251所在圆的圆心与反射环254的圆心相同。反射条251的锯齿结构与反射环254的锯齿结构相同,相邻的两个反射条251之间的间距与反射环254之间的间距相同,以使第二光线a2(参见图12)第一面21和第二面22之间的反射过程连续且均匀。
在一实施方式中,请参阅图22~图24,光源40的数量为两个,分别记为第一光源41和第二光源42。射出部211的数量为两个,分别记为第一射出部211a和第二射出部211b,且两个光源40环绕镜头10的光轴均匀分布。两个光源40沿第一方向排列,其中,第一方向为图示中的Y轴方向,也是上述的第一轴线Y1方向。当摄像头模组100用于手机等电子设备1000时,第一方向也是电子设备1000的长度方向。摄像头模组100的光轴方向是电子设备1000的厚度方向。
光线传导部212的数量为两个,两个光线传导部212分别记为第一传导部212a和第二传导部212b。每个光线传导部212呈半环形。每个射出部211位于一个光线传导部212的对称中心。两个射出部211沿第二方向对称设置。
结合参考图23及图24,每个射出部211对应一个第一发光区域22a。两个第一发光区域22a沿第一方向对称设置。每个射出部211在第一方向和第二方向皆呈轴对称结构。其中,第二方向为第二面22上与第一方向垂直的方向。当摄像头模组100用于手机等电子设备1000时,第二方向也是电子设备1000的宽度方向。
光源40设于射出部211所在的位置。每个光线传导部212中,以第二传导部212b为例,第一传导体213(结合图12)的第一面21上设有多个反射环254,第二传导体214(结合图12)的第一面21上设有多个反射条251。其中,一个光线传导部212中第二传导体214的数量为两个,记为第一子传导体214a和第二子传导体214b,第一子传导体214a和第二子传导体214b分别设于第一传导体213的相对两侧,以将光源40射出的第二光线a2沿周向分别顺时针、逆时针传导。其中,第一子传导体214a和第二子传导体214b皆为弧形的反射条251。第一子传导体214a的弧形反射条251和第二子传导体214b的弧形反射条251关于第一轴线Y1对称。
第一传导部212a和第二传导部212b在第二面22上的正投影为轴对称结构。即第一传导部212a和第二传导部212b在第二面22上关于第二方向对称设置。第一传导部212a的一端和第二传导部212b的一端相连并共同对应一个第二出光区域22b。第一传导部212a的另一端和第二传导部212b的另一端相连并共同对应另一个第二出光区域22b。两个第二出光区域22b沿第二方向排列。第一传导部212a的一端的弧形反射条251与第二传导部212b的一端的弧形反射条251的弧形延伸方向相反。第一传导部212a的一端的弧形反射条251与第二传导部212b的一端的弧形反射条251相交于第一分界线。第一传导部212a的另一端的弧形反射条251与第二传导部212b的另一端的弧形反射条251相交于第二分界线。其中,第一分界线、第二分界线皆与第二轴线X1共线。
请参阅图24~图26,第一光源41所发射的光线、第二光源42所发射的光线皆主要从三 个路径传导至第一出光区域22a、第一子出光区域22c、第二子出光区域22d。其中,第一光源41所对应的第一出光区域22a射出的第一光束S1、第二光源42所对应的第一出光区域22a射出的第一光束S1、第一光源41的部分光线和第二光源42的部分光线在第一子出光区域22c共同射出的第二光束S2、第一光源41的部分光线和第二光源42的部分光线在第二子出光区域22d共同射出的第三光束S3。两个第一光束S1、第二光束S2及第三光束S3交汇形成交汇光束,该交汇光束在微距范围H1内的光斑面积大于微距范围H1内的取景面积,由于交汇光束的光斑为多组对称方向的光束汇聚形成,故能够形成亮度较为均匀为光斑,以实现对微距范围H1内的高亮度且均匀补光,进一步地,该交汇光束还可以用作闪光灯打闪及手电筒照亮,通过对环形灯罩20的结构设计,合理分配光线,提高对于摄像头模组100的微距拍摄的补光亮度,还可以应用于多种补光场景,实现了一物多用,在有限地的空间内集成微距拍摄补光、闪光灯打闪补光、手电筒照亮等多种功能的同时还提高摄像头模组100的器件布局的紧凑性,减少摄像头模组100所应用的电子设备1000内的器件数量,促进电子设备1000的小型化。
本申请提供的两个光源40结合环形灯罩20对微距拍摄进行补光,环形灯罩20将两点发光优化为4点发光,均匀度更高,微距拍摄补光效果好,此外,两个光源40不会导致微距拍摄的中心亮度过曝,还能够节省成本,通过将两个光源40对称设置,还能够提高补光均匀性。
可选的,当两个光源40的发射角度皆为120°,两个光源40之间的距离为12~20mm,取值12mm,微距拍摄的物距为10mm,可以计算出交汇光斑面积的径向尺寸大约为34mm,而微距的有效成像尺寸(取景面积)的径向尺寸为5mm,故交汇光斑面积远远大于微距的有效成像尺寸(取景面积),实现对于微距范围内的均匀补光。
本申请对于光源40和射出部211的数量不做具体的限定。当然,本领域技术人员可以根据以下的实施方式扩展到对于4个光源40和4个射出部211、6个光源40和6个射出部211、8个光源40和8个射出部211、5个光源40和5个射出部211等实施方式。可选的,光源40的数量可以为偶数个,多个光源40两两对称设置。相应的,多个射出部211两两对称设置,第一子出光区域22c(参见图24)与第二子出光区域22d对称设置,以使从第一子出光区域22c(参见图24)、第二子出光区域22d的光线对称射出并交汇,提高照射至微距范围H1(请参见图24)内的物面的均匀性。
本申请提供的摄像头模组100,通过对环形灯罩20的结构进行设计,实现两个光源40经过环形灯罩20射出后,不仅在两个光源40正对的位置出光,还在两个光源40中间的位置进行出光,在未增设光源40数量的情况下增加了出光位置,在减少成本和结构复杂度的情况下提高环形灯罩20的出光均匀性,进而提高摄像头模组100在微距拍摄时的亮度和均匀度。
进一步的,请参阅图27,第一面21还设有围绕通孔20a设置的环形凸台233。射出部211设于环形凸台233的外周。环形凸台233沿Z轴方向的高度大于射出部211的高度。
请参阅图27,环形凸台233远离第一面21的端部连接镜座11的支撑面,具体的,环形凸台233远离第一面21的端部通过胶层56粘接镜座11的支撑面。
请参阅图3及图27,摄像头模组100还包括柔性电路板51及支撑柔性电路板51的支撑板52。支撑板52也可以称为柔性电路板51的钢补。柔性电路板51及支撑板52分别设有与通孔20a导通的第一开孔51a和第二开孔52a。镜座11设于通孔20a内。第一面21、环形凸台233的外周面及柔性电路板51包围形成容置空间53a,光源40设于柔性电路板51上,且位于容置空间53a内。其中,支撑板52的材质为散热材质,包括但不限于为铝等,防止光源40附近的局部温度太高而导致光源40性能下降。
请参阅图2及图27,本申请实施例提供了一种电子设备1000,包括后盖54、透光盖板55及上述任意一种实施方式提供的摄像头模组100。后盖54具有安装孔54a。透光盖板55设于安装孔54a内。镜头10和环形灯罩20皆正对透光盖板55。环形灯罩20的外环面24上设有至少一个定位凸起241。定位凸起241用于对环形灯罩20在安装过程中的防呆和定位,有利于光源40与环形灯罩20的准确对位和装配,保证光源40发射点和环形灯罩20的第一子入光部212(第一凸台215)对齐。可选的,定位凸起241的数量为两个,且,两个定位凸起241分别对应于第一子出光区域22c和第二子出光区域22d。后盖54设有至少一个与定位凸起241相适配的定位槽54b。环形灯罩20通过定位凸起241和定位槽54b安装于后盖54。在环形灯罩20的外环面24设置定位凸起241以便于环形灯罩20以正确的姿态安装于后盖54,以便于环形灯罩20上的射出部211与光源40的位置对准。
在摄像头模组100的安装过程中,先将摄像头模组100及光源40组件(包括光源40、柔性电路板51及支撑板52)安装于电子设备1000的中框上;将透光盖板55安装于后盖54的安装孔54a中,环形灯罩20的定位凸起241与后盖54上的定位槽54b对应安装,再将后盖54安装于电子设备1000的中框上,此过程中,环形灯罩20套设于镜头10上,且环形灯罩20的环形凸台233的端部通过胶层56粘接于摄像头模组100的镜座11上。
可选的,照射至摄像头模组100的微距范围H1的光束强度占射出总的光束强度的20%以上。例如,照射至摄像头模组100的微距范围H1的光束强度为30%,照射至闪光灯打闪区域或手电筒照射区域的光束强度为70%。实现微距拍摄补光效果与闪光灯打闪、手电筒照射效果兼容设计,极大提高了利用率,降低了成本。
可选的,本申请中的光源40的直径可为9.5mm左右,该尺寸相较于同样实现均匀发光 的环形灯罩20及光源40的直径小。
请参阅图28、图29及图30,请参阅图28、图29及图30分别是两个光源40和环形灯罩20在物面距离为1m、5mm及10mm的仿真光斑图。其中,物面距离为1m可用于闪光灯打闪、手电筒照亮等应用。物面距离为5mm及10mm可用于微距拍摄。
以闪光灯打闪的距离为1m为例,根据图28及表格1可以看出,在1007mm*1343mm的物面范围内形成了较亮的光斑,其中,闪光灯打闪的中心亮度为95LUX,均匀度在38%以上,相较于一般技术中的中心亮度80LUX,均匀度在25%,中心亮度和均匀度皆具有很大的提高。
以微距拍摄补光的距离为5mm为例,根据图29及表格1可以看出,在5mm*5mm的物面范围内具有较高的亮度,其中,微距拍摄补光效果1mA的中心亮度可以达到1425LUX,中心均匀度达到90%以上,说明本申请提供的光源40及环形灯罩20在微距拍摄补光应用方面的发光效率高,且亮度高、均匀度好,优于一般技术中的导光柱补光方案。
以微距拍摄补光的距离为10mm为例,根据图30及表格1可以看出,在5mm*5mm的物面范围内形成了较亮的光斑,其中,微距拍摄补光效果1mA的中心亮度可以达到1070LUX,中心均匀度达到90%以上,说明本申请提供的光源40及环形灯罩20在微距拍摄补光应用方面的发光效率高,且亮度高、均匀度好,优于一般技术中的导光柱补光方案。
表格1
Figure PCTCN2022091110-appb-000001
由上可知,本申请实施例提供的环形灯罩20具有尺寸小、不影响手机布局、工艺简单,生产良率高,成本低、补光亮度可调,画面亮度充裕,补光均匀度90%,效果易于调试,减轻软件调试难度等技术效果。具有该环形灯罩20的光源40、摄像头模组100实现微距拍摄补光效果与闪光灯打闪、手电筒照射效果兼容设计,极大提高了利用率,降低了成本。
以上所述是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种摄像头模组,包括:
    镜头;
    环形灯罩,所述环形灯罩具有相背设置的第一面和第二面,所述环形灯罩还具有贯穿所述第一面与所述第二面的通孔,所述镜头的至少部分设于所述通孔内;所述第二面具有沿所述环形灯罩的周向间隔设置的多个出光区域;以及
    至少一个光源,所述光源与所述第一面相对设置,所述光源发射的光线经所述第一面射入并经多个所述出光区域射出,形成多个出射光束,所述出射光束在微距范围内交汇形成交汇光束,所述交汇光束的光斑面积大于或等于所述微距范围的取景面积。
  2. 如权利要求1所述的摄像头模组,多个所述出光区域包括至少一个第一出光区域及至少一个第二出光区域;所述环形灯罩包括互连为一体的至少一个射出部及至少一个光线传导部,所述射出部的所述第二面为所述第一出光区域,所述光线传导部包括第一传导体及第二传导体,且所述第一传导体位于所述射出部与所述第二传导体之间,所述第二传导体的部分所述第二面为所述第二出光区域,所述光源射出的第一光线经所述射出部的所述第一面射入并从由所述第一出光区域射出,所述光源射出的第二光线从所述第一传导体的所述第一面射入、经所述第二传导体传导并由所述第二出光区域射出。
  3. 如权利要求2所述的摄像头模组,所述第一传导体包围于所述射出部的周侧,所述第二传导体的第一端对应一个所述第二出光区域;所述第二传导体的第二端对应另一个所述第二出光区域,所述第二传导体的第一端与所述第二传导体的第二端分别位于所述第一传导体的两侧且沿所述环形灯罩的周向排布。
  4. 如权利要求2所述的摄像头模组,所述第一传导体包围于所述射出部的至少部分周侧,所述第二传导体远离所述第一传导体的一端对应一个所述第二出光区域。
  5. 如权利要求2所述的摄像头模组,所述第一光线的光线强度大于所述第二光线的光线强度。
  6. 如权利要求2所述的摄像头模组,所述射出部包括凸设于所述第一面的第一凸台,所述第一凸台具有第一台面及围接于所述第一台面周侧的第一周侧面,所述第一台面朝向所述光源,在所述第一凸台的纵截面上,所述第一周侧面对应的截交线与所述第一台面对应的截交线之间的角度大于90°。
  7. 如权利要求2所述的摄像头模组,所述光线传导部包括沿所述镜头的光轴方向层叠设置的第一介质层及第二介质层,所述第二介质层相对于所述第一介质层靠近所述光源,所述第二介质层的折射率大于所述第一介质层的折射率;所述第二光线中的至少部分在所述第二介质层内发生全反射。
  8. 如权利要求7所述的摄像头模组,所述光源发射的光线在所述第二介质层内的全反射临界角为45°~60°。
  9. 如权利要求7所述的摄像头模组,所述第一介质层与所述第二介质层之间的分界面包括相连的第一平面及倾斜面组,所述第一平面对应于所述第一出光区域与所述第二出光区域之间的区域,所述倾斜面组在所述第二面上的正投影位于所述第二出光区域内;所述倾斜面组包括至少一个第一倾斜面,所述第一倾斜面自所述第一平面沿所述第一介质层至所述第二介质层且远离所述第一平面的方向延伸。
  10. 如权利要求9所述的摄像头模组,所述倾斜面组还包括至少一个第二倾斜面,所述第二倾斜面连接于相邻的两个所述第一倾斜面之间,所述第二倾斜面自所述第一倾斜面沿所述第二介质层至所述第二介质层且远离所述第一平面的方向延伸。
  11. 如权利要求9所述的摄像头模组,所述第二介质层背离所述第一介质层的表面为第二平面,所述第二平面与所述第一平面平行。
  12. 如权利要求7至11任一项所述的摄像头模组,所述光线传导部还包括第三介质层,所述第三介质层、所述第二介质层及所述第一介质层依次层叠设置,所述第三介质层的折射率小于所述第二介质层的折射率;所述第三介质层具有反射部,所述反射部用于将所述第三介质层内的光线反射至所述第二介质层,且至少部分的反射光线在入射至所述第二介质层的角度大于在所述第二介质层内的全反射临界角。
  13. 如权利要求12所述的摄像头模组,所述反射部包括设于所述第二传导体的第一面上的多个反射条,所述反射条的一端连接所述环形灯罩的外环面,所述反射条的另一端朝向所述环形灯罩的内环面延伸,多个所述反射条沿所述环形灯罩的周向排布;所述反射条的外表面包括第一反射面和第二反射面,所述第一反射面及所述第二反射面皆相对于所述第三介质层与所述第二介质层之间的分界面倾斜。
  14. 如权利要求13所述的摄像头模组,所述反射部还包括环绕所述射出部且设于所述第一传导体的第一面的多个反射环,且多个所述反射环沿所述反射环的径向向外方向依次设置;所述反射环的外表面包括第三反射面和第四反射面,所述第三反射面及所述第四反射面皆相对于所述第三介质层与所述第二介质层之间的分界面倾斜。
  15. 如权利要求3所述的摄像头模组,所述光源的数量为两个,所述射出部的数量为两个,且两个所述光源环绕所述镜头的光轴均匀分布;所述光线传导部的数量为两个,每个所述射 出部位于一个所述光线传导部的对称中心;两个所述光线传导部为第一传导部和第二传导部,所述第一传导部和所述第二传导部在所述第二面上的正投影为轴对称结构,所述第一传导部的一端和所述第二传导部的一端相连并共同对应一个所述第二出光区域;所述第一传导部的另一端和所述第二传导部的另一端相连并共同对应另一个所述第二出光区域。
  16. 如权利要求1~11任意一项所述的摄像头模组,所述微距范围为3mm~10mm。
  17. 如权利要求3~11任意一项所述的摄像头模组,所述第一面还设有围绕所述通孔设置的环形凸台,所述射出部及所述光线传导部设于所述环形凸台的外周;
    所述摄像头模组还包括镜座、柔性电路板及支撑所述柔性电路板的支撑板,所述镜座承载所述镜头,所述环形凸台远离所述第一面的端部连接所述镜座;
    所述柔性电路板及所述支撑板皆设有开孔,所述镜座设于所述开孔内;所述第一面、所述环形凸台的外周面及所述柔性电路板包围形成容置空间,所述光源设于所述柔性电路板上,且位于所述容置空间内;所述支撑板的材质为散热材质。
  18. 如权利要求1~11任意一项所述的摄像头模组,所述光源的射程大于10cm。
  19. 一种电子设备,包括如权利要求1~18任意一项所述的摄像头模组,所述电子设备还包括控制器,所述控制器电连接所述摄像头模组和所述光源,所述控制器用于控制所述光源点亮;
    所述摄像头模组还包括图像传感器,所述控制器还用于根据所述图像传感器所采集的光线强度而调节所述光源的亮度。
  20. 如权利要求19所述的电子设备,所述电子设备还包括后盖及透光盖板,所述后盖具有安装孔,所述透光盖板设于所述安装孔内,所述摄像头模组的镜头和所述环形灯罩皆正对所述透光盖板,所述环形灯罩的外周侧面上设有至少一个定位凸起,所述后盖设有至少一个与所述定位凸起相适配的定位槽,所述环形灯罩通过所述定位凸起和所述定位槽安装于所述后盖。
PCT/CN2022/091110 2021-07-16 2022-05-06 摄像头模组及电子设备 WO2023284377A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110811590.6 2021-07-16
CN202110811590.6A CN113542569B (zh) 2021-07-16 2021-07-16 摄像头模组及电子设备

Publications (1)

Publication Number Publication Date
WO2023284377A1 true WO2023284377A1 (zh) 2023-01-19

Family

ID=78100193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091110 WO2023284377A1 (zh) 2021-07-16 2022-05-06 摄像头模组及电子设备

Country Status (2)

Country Link
CN (1) CN113542569B (zh)
WO (1) WO2023284377A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113542569B (zh) * 2021-07-16 2023-08-22 Oppo广东移动通信有限公司 摄像头模组及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060245750A1 (en) * 2005-03-03 2006-11-02 Liem Ronnie K Camera flash diffuser for macro photography
US20150331300A1 (en) * 2012-12-20 2015-11-19 Nokia Technologies Oy An Apparatus Comprising Flash Light Circuitry
CN111314586A (zh) * 2020-02-19 2020-06-19 北京小米移动软件有限公司 补光组件及其控制方法、摄像模组及移动终端
CN111510610A (zh) * 2020-05-22 2020-08-07 Oppo广东移动通信有限公司 移动终端
CN211454632U (zh) * 2020-03-27 2020-09-08 深圳市商汤科技有限公司 人脸识别设备
CN113542569A (zh) * 2021-07-16 2021-10-22 Oppo广东移动通信有限公司 摄像头模组及电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173380A (ja) * 2003-12-12 2005-06-30 Canon Inc 照明光学系および撮像装置
US9411212B2 (en) * 2013-01-25 2016-08-09 Canon Kabushiki Kaisha Illumination apparatus which is arrangeable so as to surround an image capturing lens
JP6176930B2 (ja) * 2013-01-25 2017-08-09 キヤノン株式会社 撮影用照明装置
CN110276227A (zh) * 2018-03-14 2019-09-24 印象认知(北京)科技有限公司 一种显示屏
CN110278332A (zh) * 2019-06-30 2019-09-24 Oppo广东移动通信有限公司 电子设备及电子设备的控制方法
CN110708456A (zh) * 2019-11-27 2020-01-17 Oppo广东移动通信有限公司 外挂镜头组件及电子设备
CN212381271U (zh) * 2020-05-22 2021-01-19 Oppo广东移动通信有限公司 移动终端
CN212850689U (zh) * 2020-07-30 2021-03-30 北京小米移动软件有限公司 摄像头模组及终端设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060245750A1 (en) * 2005-03-03 2006-11-02 Liem Ronnie K Camera flash diffuser for macro photography
US20150331300A1 (en) * 2012-12-20 2015-11-19 Nokia Technologies Oy An Apparatus Comprising Flash Light Circuitry
CN111314586A (zh) * 2020-02-19 2020-06-19 北京小米移动软件有限公司 补光组件及其控制方法、摄像模组及移动终端
CN211454632U (zh) * 2020-03-27 2020-09-08 深圳市商汤科技有限公司 人脸识别设备
CN111510610A (zh) * 2020-05-22 2020-08-07 Oppo广东移动通信有限公司 移动终端
CN113542569A (zh) * 2021-07-16 2021-10-22 Oppo广东移动通信有限公司 摄像头模组及电子设备

Also Published As

Publication number Publication date
CN113542569B (zh) 2023-08-22
CN113542569A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
TW568989B (en) Linear illuminating device
JP6821064B2 (ja) 極薄直接点灯バックライト用の光学レンズ
US7422353B2 (en) Light-emitting device for image taking and image-taking apparatus having same
US8807789B2 (en) LED illumination device for projecting light downward and to the side
US20070263388A1 (en) Illumination device of flexible lighting angle
EP2655957B1 (en) Led light bulb with light scattering optics structure
JP2007234385A (ja) バックライト装置
JP2012160666A (ja) 光源モジュール及び照明装置
WO2023284377A1 (zh) 摄像头模组及电子设备
CN214846154U (zh) 直下式背光模组及显示装置
JP2007235079A (ja) 発光装置
US20230075148A1 (en) Camera module and mobile terminal
JP2007163876A (ja) 照明装置及び撮影装置
JP2006228710A (ja) 面発光装置
KR100782565B1 (ko) 광도파관을 적용한 휴대 단말기용 플래시 모듈
JP2017050187A (ja) 照明器具
KR20130003835A (ko) 카메라 플래시 모듈
KR20100068313A (ko) 발광체 플래시 렌즈
KR102424947B1 (ko) 플래시 모듈 및 이를 포함하는 휴대용 단말기
WO2010146664A1 (ja) Led照明器及び薄型面出光装置
CN213934395U (zh) 增强现实设备及其导光结构
TW202017204A (zh) 直下式導光結構
JP2010217881A (ja) 原稿照明装置、原稿照明方法及び画像読取装置
CN220154778U (zh) 补光灯和电子设备
JP2013197007A (ja) Led照明用光学モジュール及び照明用光学モジュールを用いた局部照明灯具

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE