WO2023284110A1 - 一种永磁电机转子、永磁电机及永磁电机转子的加工方法 - Google Patents

一种永磁电机转子、永磁电机及永磁电机转子的加工方法 Download PDF

Info

Publication number
WO2023284110A1
WO2023284110A1 PCT/CN2021/119514 CN2021119514W WO2023284110A1 WO 2023284110 A1 WO2023284110 A1 WO 2023284110A1 CN 2021119514 W CN2021119514 W CN 2021119514W WO 2023284110 A1 WO2023284110 A1 WO 2023284110A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnet motor
motor rotor
magnetic
steel sheet
Prior art date
Application number
PCT/CN2021/119514
Other languages
English (en)
French (fr)
Inventor
翁凤华
吴翔亮
翁乐洋
Original Assignee
横店集团东磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横店集团东磁股份有限公司 filed Critical 横店集团东磁股份有限公司
Priority to DE112021000356.9T priority Critical patent/DE112021000356T5/de
Publication of WO2023284110A1 publication Critical patent/WO2023284110A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present application relates to the technical field of motors, for example, to a permanent magnet motor rotor, a permanent magnet motor and a processing method for a permanent magnet motor rotor.
  • Permanent magnet motors are more and more used in new energy electric vehicles because of their advantages such as less heat generation, simple structure, small size, light weight and low noise. New energy electric vehicles require permanent magnet motors to operate with as little energy loss as possible, so as to have strong torque at low speeds to ensure starting torque, while supporting higher cruising range.
  • the present application provides a permanent magnet motor rotor, a permanent magnet motor and a processing method for a permanent magnet motor rotor, which can not only effectively reduce operating energy loss, but also improve the overall production efficiency of the permanent magnet motor and reduce production costs.
  • the application provides a permanent magnet motor rotor, including:
  • the silicon steel sheet group is sleeved on the rotating shaft
  • a plurality of magnetic tiles are fixed outside the silicon steel sheet group at intervals along the circumferential direction of the silicon steel sheet group, and the two ends of each magnetic tile in the circumferential direction are oppositely inclined to the axis of the magnetic tile Two chamfered surfaces are formed, and the opposite chamfered surfaces of two adjacent magnetic tiles are arranged in parallel.
  • the present application also provides a permanent magnet motor, which includes the rotor of the permanent magnet motor as described above.
  • the present application also provides a method for processing a rotor of a permanent magnet motor, which is suitable for the rotor of a permanent magnet motor as described above, and the method for processing the rotor of a permanent magnet motor includes:
  • a plurality of magnetic tiles corresponding to the number of poles of the permanent magnet motor are subjected to chamfering processing.
  • the two ends of the circumferential direction of each magnetic tile are respectively inclined relative to the axial direction of the magnetic tile and the direction of inclination is opposite, so that form a beveled surface;
  • a plurality of the magnetic tiles are fixed outside the silicon steel sheet group at intervals along the circumferential direction of the silicon steel sheet group, and the opposite chamfered surfaces of two adjacent magnetic tiles are parallel to form a permanent magneto rotor.
  • Fig. 1 is a schematic diagram of the overall sectional structure of the permanent magnet motor rotor provided by the embodiment of the present application;
  • Fig. 2 is a schematic diagram of the size of the permanent magnet motor rotor corresponding to Fig. 1;
  • Fig. 3 is a schematic diagram of the overall layout of the magnetic tiles in the permanent magnet motor rotor provided by the embodiment of the present application;
  • Fig. 4 is a schematic diagram of the axial orthographic projection structure of the magnetic tile
  • Fig. 5 is a schematic diagram of the rotation structure of direction A in Fig. 4;
  • Fig. 6 is the distribution diagram of the magnetic field produced by the permanent magnet motor rotor in the related art
  • Fig. 7 is a distribution diagram of the magnetic field generated by the rotor of the permanent magnet motor provided by the embodiment of the present application.
  • Rotating shaft 2. Silicon steel sheet group; 21. Salient pole; 22. Groove; 3. Fixed key; 4. Magnetic tile; 41. Beveled surface; 42. Large axial end face; 43. Small axial end face.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • connection can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • a first feature being "on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • This embodiment provides a permanent magnet motor rotor, which includes a rotating shaft 1 , a silicon steel sheet group 2 and a plurality of magnetic tiles 4 .
  • the silicon steel sheet group 2 is sleeved on the rotating shaft 1 .
  • a shaft hole is provided at the center of the silicon steel sheet group 2 , and the silicon steel sheet group 2 is sheathed on the rotating shaft 1 through the shaft hole.
  • key grooves are provided in the shaft hole and on the rotating shaft 1 respectively, and the fixing key 3 is installed in the key groove to realize the fixing between the silicon steel sheet group 2 and the rotating shaft 1 .
  • the structure of the fixed key 3 is a conventional structure in the art, and will not be repeated here.
  • a plurality of magnetic tiles 4 are fixed outside the silicon steel sheet group 2 at intervals along the circumferential direction of the silicon steel sheet group 2 (that is, the circumferential direction of the permanent magnet motor rotor).
  • the circumferential ends of each magnetic tile 4 are respectively inclined relative to the axis of the magnetic tile 4 and the inclination direction is opposite, thereby forming two chamfered surfaces 41, and the opposite chamfered surfaces 41 of two adjacent magnetic tiles 4 are arranged in parallel.
  • oblique magnetic poles can be produced after the two ends of the magnetic tile 4 in the circumferential direction are arranged obliquely, and a certain angle is formed with the stator coil, so that the magnetic poles have asymmetry in the circumferential direction of the permanent magnet motor rotor, thereby forming a sinusoidal pole. Or close to sinusoidal magnetic field distribution, reduce torque ripple, achieve no axial overlap between adjacent magnetic poles, and reduce torque density attenuation. As a result, when the permanent magnet motor rotor is running, energy loss can be effectively reduced, so that the maximum value of reluctance torque and permanent magnet torque can be superimposed at the same or similar current phase angle, and strong to ensure that the starting torque is large enough.
  • both ends of the magnetic tile 4 in the circumferential direction are inclined relative to its own axis, and the inclination directions of the two ends are opposite, so as to form oblique magnetic poles.
  • the length direction and the width direction of the magnetic tile 4 in this embodiment are no longer perpendicular.
  • the expanded shape of the magnetic tile 4 is trapezoidal.
  • the two axial ends of the magnetic tile 4 respectively form a large axial end surface 42 and an axial small end surface 43, Both end faces are perpendicular to the magnetic tile 4 axis.
  • the area of the large axial end surface 42 is greater than the area of the small axial end surface 43 .
  • the included angle (referred to as the chamfer angle) ⁇ between the chamfer direction of the chamfer surface 41 at both ends of the magnetic shoe 4 in the circumferential direction and the axial large end surface 42 is set at an acute angle.
  • the material of the magnetic tile 4 is not limited to ferrite, neodymium iron boron, samarium cobalt, and alnico.
  • the silicon steel sheet group 2 includes a plurality of salient poles 21 arranged along its circumference, and a plurality of magnetic tiles 4 are respectively fixed on the plurality of salient poles 21 to form obvious magnetic poles.
  • the magnetic tile 4 is bonded to the side of the salient pole 21 away from the axis of the silicon steel sheet group 2 , and the magnetic tile 4 completely covers the salient pole 21 .
  • the axial length of the magnetic tile 4 (or the width of the magnetic tile 4) is set to W, and the value of W is greater than or equal to the axial length of the silicon steel sheet group 2 (or Say the thickness of silicon steel sheet group 2).
  • the value of the gap A between two adjacent magnetic tiles 4 is: 0.5 ⁇ W ⁇ cot ⁇ A ⁇ W ⁇ cot ⁇ .
  • FIG. 4 is a projected view of the magnetic tile 4 on a plane perpendicular to its own axis.
  • the outer diameter of the magnetic tile 4 is R
  • the inner diameter is r.
  • the central angle corresponding to the arc segment (denoted as long arc) on the axial large end face 42 is ⁇ 1
  • the central angle corresponding to the arc segment (denoted as short arc) on the axial small end face 43 is ⁇ 2.
  • the angle formed by the tangent of the long arc and the normal of the short arc is ⁇ 1.
  • the included angle between the bevel direction of the bevel surface 41 and the long arc tangent is ⁇ 2.
  • the short arc length L1 of the magnetic tile 4 ( ⁇ r ⁇ 2)/180.
  • the arc length of the short arc is the circumferential length of a single magnetic tile 4 in contact with the salient pole 21 .
  • a groove 22 is arranged between two adjacent salient poles 21, and the groove 22 is connected to the two magnets on the adjacent two salient poles 21.
  • the tiles 4 are relatively spaced apart to generate a magnetic field closer to a sinusoidal distribution, lower the structural temperature, and increase the life of the rotor of the permanent magnet motor.
  • the groove 22 is set as an arc-shaped groove, and the radius of the arc-shaped groove is R1, which is convenient for processing, and can reduce stress concentration and improve service life.
  • FIG. 6 it corresponds to the arrangement and magnetic field distribution of the permanent magnet motor rotor in the related art.
  • adjacent rotor magnetic tiles 4 are in close contact, and no groove 22 is provided on the silicon steel sheet group 2 .
  • Fig. 7 shows the arrangement and magnetic field distribution of the permanent magnet motor rotor in this embodiment. It can be seen that when a large gap is left between adjacent magnetic tiles 4 and grooves 22 are provided between the salient poles 21, for any two adjacent magnetic tiles 4, the The ineffective lines of force will be reduced, and the density of the lines of force in the normal direction of the adjacent parts of the magnetic tile 4 will become sparse, while the density of the lines of force in the middle part of the magnetic tile 4 will be relatively increased, which will increase the effective magnetic flux on the stator, and cooperate with the superimposition of the magnet oblique cutting technology , strengthen the asymmetric reluctance torque of the magnetic circuit structure, and improve the transition capability and power density of the motor. As a result, this design can effectively improve the air gap magnetic density waveform and obtain a magnetic field closer to a sinusoidal distribution, thereby reducing abnormal energy loss and energy consumption.
  • the spacing of the magnetic tiles 4 and the design of the grooves 22 increase the circulation of the air in the motor, which can more effectively diffuse the heat in the motor and control the temperature rise of the motor.
  • the magnet loss during the operation of the motor is reduced, and the requirement for the temperature coefficient value of the magnet can be reduced, thereby reducing the production cost.
  • the temperature rise of the motor load is also tested with whether there is a groove 22 as a variable.
  • a hole is set in the stator for temperature measurement. The test results are shown in Table 2.
  • This embodiment also provides a permanent magnet motor, which includes the rotor of the permanent magnet motor as described above.
  • the permanent magnet motor further includes a stator, and the rotor of the permanent magnet motor is installed inside the stator and arranged coaxially with the stator. Since the stator structure is a conventional technology in the art, it will not be repeated here.
  • this embodiment provides a permanent magnet motor rotor and a permanent magnet motor.
  • the problem of the step transition of the magnetic field is solved, and the sinusoidal Or close to the sinusoidal rotor magnetic field, which ensures that the permanent magnet motor can still have a large torque at low speed, avoids the resonance of the rotor magnetic field and the counter-electromagnetic field generated by the rotating stator, and solves the problem of excessive temperature rise of the motor during the load process.
  • Fast and cause technical problems such as degaussing.
  • the rotor of the permanent magnet motor is simple to process, which can improve the overall production efficiency of the permanent magnet motor and reduce production costs.
  • the present embodiment provides a kind of processing method of permanent magnet motor rotor, and it comprises the following steps:
  • a plurality of magnetic tiles 4 corresponding to the number of poles of the permanent magnet motor are subjected to chamfering processing.
  • the two ends of each magnetic tile 4 in the circumferential direction are respectively inclined relative to the axial direction of the magnetic tile 4 and the direction of inclination is opposite. , to form the chamfered surface 41 .
  • the processing process of the traditional magnetic tile is as follows: firstly, the width, length and bow height of the blank of the magnetic tile are ground, then automatic internal and external chamfering, rough and fine grinding of the internal and external circles, and finally ultrasonic cleaning and drying are completed.
  • Magnetic tile processing when processing the magnetic tile 4, only the process of oblique cutting is added between the rough and fine grinding of the inner and outer circles and the ultrasonic cleaning process, which can achieve the same effect as the winding of the chute, and has high efficiency. , short construction period and low cost advantages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请公开了一种永磁电机转子、永磁电机及永磁电机转子的加工方法,涉及电机技术领域。该永磁电机转子包括转轴(1)、矽钢片组(2)以及多个磁瓦(4)。矽钢片组(2)套设在转轴(1)上,多个磁瓦(4)沿矽钢片组(2)的周向间隔固定在矽钢片组(2)外,每个磁瓦(4)的周向的两端分别相对磁瓦(4)的轴线反向倾斜设置形成两个斜切面(41),且相邻两个磁瓦(4)的相对的斜切面(41)平行设置。

Description

一种永磁电机转子、永磁电机及永磁电机转子的加工方法
本申请要求在2021年7月14日提交中国专利局、申请号为202110793521.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机技术领域,例如涉及一种永磁电机转子、永磁电机及永磁电机转子的加工方法。
背景技术
永磁电机因具有发热少、结构简单、体积小、重量轻和噪声小等诸多优点,所以被越来越多地用于新能源电动车中。新能源电动车需要永磁电机运行能量损失尽量小,以在低转速时具有强劲的扭矩来确保启动转矩,同时支持更高的续航里程。
传统的永磁电机因常采用正形磁瓦(磁瓦的长度和宽度方向垂直设置,磁瓦展开形状呈矩形),所以在运行时会形成锯齿形的磁场分布,能量损失较大。为改善此问题,目前已有永磁电机将定子绕线组设计为了斜槽结构,以削弱齿槽效应,获得正弦或接近正弦波形的磁场分布,减少能量损失。然而,由于绕线工艺复杂,加工周期较长,所以导致永磁电机整体生产效率较低,且生产成本较高。
发明内容
本申请提供一种永磁电机转子、永磁电机及永磁电机转子的加工方法,既能够有效减少运行能量损失,又可以提高永磁电机整体的生产效率,降低生产成本。
本申请提供了一种永磁电机转子,包括:
转轴;
矽钢片组,套设在所述转轴上;
多个磁瓦,沿所述矽钢片组的周向间隔固定在所述矽钢片组外,每个所述磁瓦的周向的两端分别相对所述磁瓦的轴线反向倾斜设置形成两个斜切面,且相邻两个所述磁瓦的相对的所述斜切面平行设置。
本申请还提供了一种永磁电机,其包括如上所述的永磁电机转子。
本申请还提供了一种永磁电机转子的加工方法,其适用于如上所述的永磁电机转子,所述永磁电机转子的加工方法包括:
将矽钢片组套设在转轴上;
对与永磁电机极数对应的多个磁瓦进行斜切加工,斜切时,使每一所述磁瓦周向的两端分别相对所述磁瓦的轴线方向倾斜且倾斜方向相反,以形成斜切面;
将多个所述磁瓦沿所述矽钢片组的周向间隔固定在所述矽钢片组外,并使相邻两个所述磁瓦的相对的所述斜切面平行,以形成永磁电机转子。
附图说明
图1是本申请实施例提供的永磁电机转子的整体剖视结构示意图;
图2是与图1对应的永磁电机转子的尺寸示意图;
图3是本申请实施例提供的永磁电机转子中磁瓦的整体布置示意图;
图4是磁瓦的轴向正投影结构示意图;
图5是图4中A向的旋转结构示意图;
图6是相关技术中永磁电机转子产生的磁场分布图;
图7是本申请实施例提供的永磁电机转子产生的磁场分布图。
图中:
1、转轴;2、矽钢片组;21、凸极;22、凹槽;3、固定键;4、磁瓦;41、斜切面;42、轴向大端面;43、轴向小端面。
具体实施方式
下面结合附图并通过具体实施方式来说明本申请的技术方案。
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“左”、“右”等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
实施例一
本实施例提供了一种永磁电机转子,其包括转轴1、矽钢片组2和多个磁瓦4。
如图1所示,矽钢片组2套设在转轴1上。示例性地,在矽钢片组2中心处设置有轴孔,矽钢片组2通过轴孔套设在转轴1上。示例性地,在轴孔内及转轴1上分别开设有键槽,固定键3安装在键槽内,以实现矽钢片组2和转轴1之间的固定。固定键3的结构为本领域常规结构,在此不再赘述。
参考图1和图3,多个磁瓦4沿矽钢片组2的周向(亦即永磁电机转子的周 向)间隔固定在矽钢片组2外。其中,每个磁瓦4的周向的两端分别相对磁瓦4的轴线倾斜且倾斜方向相反,从而形成两个斜切面41,且相邻两个磁瓦4的相对的斜切面41平行设置。
按此,对磁瓦4周向两端进行斜切设置后可产生斜形磁极,与定子线圈产生一定角度,使磁极在永磁电机转子的圆周方向上具有了不对称性,从而可形成正弦或接近正弦的磁场分布,降低转矩脉动,达到相邻磁极轴向无重叠,减少了转矩密度衰减。作为结果,该永磁电机转子运行时,可以有效减少能量损失,使磁阻转矩和永磁转矩的最大值在相同或相近的电流相位角下叠加,在低转速状态下仍可获得强劲的扭矩,确保起动转矩足够大。
从制造角度来看,在设置该永磁电机转子时,由于仅需对磁瓦4进行斜切加工,而无需改动定子绕线组,所以可以有效简化生产工艺,提高生产效率,降低生产成本。
本实施例中,磁瓦4周向的两端均相对自身轴线倾斜,且两端倾斜方向相反,以形成斜形磁极。当然,也可说本实施例中磁瓦4的长度方向和宽度方向不再垂直。此时,磁瓦4的展开形状呈梯形。
为更直观准确地表述这一倾斜设置,参考图2以及图3,现规定沿磁瓦4的轴向,磁瓦4轴向的两端分别形成轴向大端面42和轴向小端面43,两个端面均与磁瓦4轴线垂直。其中,轴向大端面42的面积大于轴向小端面43的面积。此时,磁瓦4周向两端的斜切面41的斜切方向与轴向大端面42之间的夹角(记为斜切角度)θ呈锐角设置。示例性地,磁瓦4的材质不局限于铁氧体、钕铁硼、钐钴和铝镍钴等。
下面,对该永磁电机转子的设置作介绍。
如图1所示,矽钢片组2包括沿自身周向设置的多个凸极21,多个磁瓦4一一对应固定在多个凸极21上,以形成明显的磁极。本实施例中,磁瓦4通过粘接方式贴合设置在凸极21远离矽钢片组2轴心的一侧,且磁瓦4完全覆盖凸极21。
具体几何参数方面,如图2所示,记磁瓦4的轴向长度(或者说磁瓦4的宽度)设置为W,则W的值大于或等于矽钢片组2的轴向长度(或者说矽钢片组2的厚度)。相邻两个磁瓦4的间隙A的取值为:0.5·W·cotθ≤A≤W·cotθ。
图4为磁瓦4在与自身轴线相垂直平面上的投影图。其中,磁瓦4的外径为R,内径为r。与轴向大端面42上的弧段(记为长弧)相对应的圆心角为α1,与轴向小端面43上的弧段(记为短弧)相对应的圆心角为α2。长弧切线与短弧法线形成的夹角为θ1。再参照图5,斜切面41的斜切方向与长弧切线形成的夹角为θ2。
记永磁电机的极数为n,则可得磁瓦4的最大弧长(即长弧弧长)L=R·α1=(2πR-A)/n。磁瓦4的短弧弧长L1=(πr·α2)/180。本实施例中,短弧弧长即为单个磁瓦4与凸极21接触的周向长度。
示例性地,参考图1和图2,该永磁电机转子中,相邻两个凸极21之间设置有凹槽22,且凹槽22与相邻两个凸极21上的两个磁瓦4的间隔相对,以产生更接近正弦分布的磁场,并降低结构温度,提高永磁电机转子的寿命。可选地,凹槽22设置为弧形槽,弧形槽的半径为R1,其便于加工,且可减少应力集中,提高使用寿命。
参考图6,其对应相关技术中永磁电机转子的设置及磁场分布。在图2所示的永磁电机转子中,相邻转子磁瓦4紧靠,且矽钢片组2上未开设凹槽22。此时,对于任意相邻两个转子磁瓦4,直接从转子磁瓦4相邻端面穿透的无效磁力线较多,噪音等非正常能量损失较多,整体功耗较大。
相比之下,图7为本实施例中永磁电机转子的设置及磁场分布。可以看到,当相邻磁瓦4留有较大间隙,且凸极21之间设置有凹槽22后,对于任意相邻两个磁瓦4,直接从磁瓦4相邻端面穿透的无效磁力线会减少,磁瓦4相邻部位法线方向的磁力线密度变稀疏,而磁瓦4自身中间部位的磁力线密度会相对增加,增加了有效作用于定子的磁束,配合磁体斜切技术的叠加,强化了磁路结构的不对称性磁阻转矩,提高了电机过渡能力及功率密度。作为结果,通过此 设计可有效改善气隙磁密度波形,获得更接近正弦分布的磁场,从而减少非正常能量损失,降低能耗。
同时,在永磁电机转子旋转过程中,磁瓦4的间隔设置及凹槽22的设计均增加了电机内空气的流通,能够更有效地让电机内热量得到扩散,控制电机温度的升高,降低电机运转过程中的磁体失磁,并可以降低对磁体的温度系数值要求,降低生产成本。
本实施例中,以4极电机为例,给出以上各参数的可选参考取值如下:A取2mm~4mm,α1取86°~89°,α2取68°~75°,θ1取75~85°,θ2取68~78°,R1取5~8mm。
依此,以斜切角度θ和是否具有凹槽22为变量,对永磁电机噪音进行测试,获得结果如表1所示。
表1
Figure PCTCN2021119514-appb-000001
由表1可见:(1)斜切角度θ取65°~80°时,降噪效果更明显;(2)转子上开有凹槽22的电机可比未开凹槽22的电机平均降噪10.875dB。
此外,本实施例还以是否具有凹槽22为变量,对电机负载温升进行了试验。试验时,在定子中设置一孔以进行测温。试验结果如表2所示。
表2
Figure PCTCN2021119514-appb-000002
Figure PCTCN2021119514-appb-000003
由表2可见,在同样外部环境条件下,不开凹槽22时电机温度上升幅度约42℃,定子内温达到63℃左右才稳定下来,而开凹槽22电机的温度上升幅度仅约21℃,定子内温到达42℃左右即可稳定下来。可见,凹槽22的设计更有利于延长电机的使用寿命,提高能源转换率。
本实施例还提供了一种永磁电机,其包括如上所述的永磁电机转子。示例性地,该永磁电机还包括定子,永磁电机转子安装在定子内部并与定子同轴设置。由于定子结构为本领域常规技术,所以在此不再赘述。
综上,本实施例提供了一种永磁电机转子及永磁电机,通过对磁瓦4及矽钢片组2的形状结构进行科学设计调整,解决了磁场的阶梯式过渡问题,可获得正弦或者接近正弦的转子磁场,保证了低转速状态下永磁电机仍能具有大转矩,避免了转子磁场与转动定子所产生的反电动磁场进行谐振,并解决了电机在负载过程中温升过快而引起消磁等技术难题。同时,该永磁电机转子加工简单,可提高永磁电机整体的生产效率,降低生产成本。
实施例二
本实施例提供了一种永磁电机转子的加工方法,其包括以下步骤:
(1)将矽钢片组2套设在转轴1上,并通过固定键3实现矽钢片组2和转轴1之间的固定。
(2)对与永磁电机极数对应的多个磁瓦4进行斜切加工,斜切时,使每一磁瓦4周向的两端分别相对磁瓦4的轴线方向倾斜且倾斜方向相反,以形成斜切面41。
实际上,传统磁瓦的加工过程如下:先对磁瓦的毛坯件进行宽度、长度及 弓高磨削,再进行自动内外倒角,内外圆粗精磨,最后进行超声清洗和烘干,完成磁瓦加工。与之相比,本实施例在加工磁瓦4时仅在内外圆粗精磨和超声清洗工序之间增加了斜切加工的工序,可以达到和斜槽绕线同样的效果,且具有效率高、工期短和成本低的优势。
(3)将多个磁瓦4沿矽钢片组2的周向一一对应固定在凸极21上,并使相邻两个磁瓦4的相对的斜切面41平行,以形成永磁电机转子。

Claims (10)

  1. 一种永磁电机转子,包括:
    转轴(1);
    矽钢片组(2),套设在所述转轴(1)上;
    多个磁瓦(4),沿所述矽钢片组(2)的周向间隔固定在所述矽钢片组(2)外,每个所述磁瓦(4)的周向的两端分别相对所述磁瓦(4)的轴线反向倾斜设置形成两个斜切面(41),且相邻两个所述磁瓦(4)的相对的所述斜切面(41)平行设置。
  2. 根据权利要求1所述的永磁电机转子,其中,所述矽钢片组(2)包括沿自身周向设置的多个凸极(21),多个所述磁瓦(4)一一对应固定在多个所述凸极(21)上。
  3. 根据权利要求2所述的永磁电机转子,其中,每个所述磁瓦(4)贴合设置在对应的所述凸极(21)远离所述矽钢片组(2)轴心的一侧,且每个所述磁瓦(4)完全覆盖对应的所述凸极(21)。
  4. 根据权利要求2所述的永磁电机转子,其中,相邻两个所述凸极(21)之间设置有凹槽(22),且所述凹槽(22)与所述相邻两个所述凸极(21)上的两个所述磁瓦(4)的间隔相对。
  5. 根据权利要求4所述的永磁电机转子,其中,所述凹槽(22)设置为弧形槽。
  6. 根据权利要求1所述的永磁电机转子,其中,沿每个所述磁瓦(4)的轴向,每个所述磁瓦(4)的两端分别形成轴向大端面(42)和轴向小端面(43),所述轴向大端面(42)和所述轴向小端面(43)均与每个所述磁瓦(4)的轴线垂直,且所述轴向大端面(42)的面积大于所述轴向小端面(43)的面积;
    所述斜切面(41)的斜切方向与所述轴向大端面(42)之间的夹角θ取值为65°~80°。
  7. 根据权利要求6所述的永磁电机转子,其中,所述磁瓦(4)的轴向长度均设置为W,相邻两个所述磁瓦(4)的间隙A的取值为:0.5·W·cotθ≤A≤W·cotθ。
  8. 根据权利要求1所述的永磁电机转子,其中,所述矽钢片组(2)和所述转轴(1)通过固定键(3)连接。
  9. 一种永磁电机,包括如权利要求1-8任一项所述的永磁电机转子。
  10. 一种永磁电机转子的加工方法,适用于如权利要求1-8任一项所述的永磁电机转子,所述永磁电机转子的加工方法包括:
    将矽钢片组(2)套设在转轴(1)上;
    对与永磁电机极数对应的多个磁瓦(4)进行斜切加工,斜切时,使每一个所述磁瓦(4)周向的两端分别相对所述磁瓦(4)的轴线方向倾斜且倾斜方向相反,以形成斜切面(41);
    将多个所述磁瓦(4)沿所述矽钢片组(2)的周向间隔固定在所述矽钢片组(2)外,并使相邻两个所述磁瓦(4)的相对的所述斜切面(41)平行,以形成永磁电机转子。
PCT/CN2021/119514 2021-07-14 2021-09-22 一种永磁电机转子、永磁电机及永磁电机转子的加工方法 WO2023284110A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021000356.9T DE112021000356T5 (de) 2021-07-14 2021-09-22 Läufer eines dauermagnetmotors, dauermagnetmotor und verfahren zum verarbeiten eines läufers eines dauermagnetmotors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110793521.7 2021-07-14
CN202110793521.7A CN113381543A (zh) 2021-07-14 2021-07-14 一种永磁电机转子、永磁电机及永磁电机转子的加工方法

Publications (1)

Publication Number Publication Date
WO2023284110A1 true WO2023284110A1 (zh) 2023-01-19

Family

ID=77582048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119514 WO2023284110A1 (zh) 2021-07-14 2021-09-22 一种永磁电机转子、永磁电机及永磁电机转子的加工方法

Country Status (3)

Country Link
CN (1) CN113381543A (zh)
DE (1) DE112021000356T5 (zh)
WO (1) WO2023284110A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113381543A (zh) * 2021-07-14 2021-09-10 横店集团东磁股份有限公司 一种永磁电机转子、永磁电机及永磁电机转子的加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025202A (zh) * 2011-01-17 2011-04-20 成都华川电装有限责任公司 电机以及磁瓦
CN102255401A (zh) * 2011-06-29 2011-11-23 贵阳万江航空机电有限公司 一种降低永磁直流电机电磁噪声方法
CN205565934U (zh) * 2016-03-05 2016-09-07 鹰潭市睿驰电机有限公司 用于防止磁钢滑脱的无刷直流马达转子
CN211239484U (zh) * 2019-12-27 2020-08-11 捷和电机制品(深圳)有限公司 永磁转子及电机
CN113381543A (zh) * 2021-07-14 2021-09-10 横店集团东磁股份有限公司 一种永磁电机转子、永磁电机及永磁电机转子的加工方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004129486A (ja) * 2002-08-08 2004-04-22 Daido Steel Co Ltd ブラシレスモータ
CN201022157Y (zh) * 2006-12-30 2008-02-13 陈文伟 改进的马达转子结构
CN101572468A (zh) * 2009-04-30 2009-11-04 苏州工业园区美能新能源有限公司 太阳跟踪系统用高精度低波动永磁无刷伺服电机
JP2010279156A (ja) * 2009-05-28 2010-12-09 Fuji Electric Systems Co Ltd 永久磁石型回転機
CN102035280B (zh) * 2009-09-29 2013-02-27 深圳华任兴科技有限公司 永磁体轴向磁场电机的盘形转子结构、装配成型方法和永磁体轴向磁场电机
CN202395554U (zh) * 2011-12-06 2012-08-22 广东美芝制冷设备有限公司 旋转压缩机
KR20130095110A (ko) * 2012-02-17 2013-08-27 삼성전기주식회사 모터용 마그네트의 착자 구조
CN102810966A (zh) * 2012-07-19 2012-12-05 春城控股集团有限公司 高速转子内置斜磁极变频永磁直流电机
CN102868275A (zh) * 2012-09-18 2013-01-09 无锡锡山特种风机有限公司 三相永磁同步电动机
CN203674833U (zh) * 2014-01-17 2014-06-25 河南理工大学 永磁电机转子
WO2015156044A1 (ja) * 2014-04-08 2015-10-15 三菱電機株式会社 永久磁石埋込型回転電機
CN104158325B (zh) * 2014-08-21 2017-06-27 江西工埠机械有限责任公司 外转子电机的永磁体安装结构
CN104158373B (zh) * 2014-08-21 2017-06-13 江西工埠机械有限责任公司 外转子电机
CN104734383A (zh) * 2015-04-02 2015-06-24 佛山市南海九洲普惠风机有限公司 一种直流无刷电机的新型转子
KR20170052963A (ko) * 2015-11-05 2017-05-15 한국전기연구원 전기모터
CN205377497U (zh) * 2016-01-25 2016-07-06 杭州微光电子股份有限公司 一种高极弧系数正弦反电动势磁瓦结构
CN109217600A (zh) * 2017-07-06 2019-01-15 三花亚威科电器设备(芜湖)有限公司 用于电机的斜极磁瓦和具有其的电机转子及电机
CN208571755U (zh) * 2018-08-04 2019-03-01 温岭市东菱电机有限公司 一种低齿槽转矩永磁无刷电梯门电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025202A (zh) * 2011-01-17 2011-04-20 成都华川电装有限责任公司 电机以及磁瓦
CN102255401A (zh) * 2011-06-29 2011-11-23 贵阳万江航空机电有限公司 一种降低永磁直流电机电磁噪声方法
CN205565934U (zh) * 2016-03-05 2016-09-07 鹰潭市睿驰电机有限公司 用于防止磁钢滑脱的无刷直流马达转子
CN211239484U (zh) * 2019-12-27 2020-08-11 捷和电机制品(深圳)有限公司 永磁转子及电机
CN113381543A (zh) * 2021-07-14 2021-09-10 横店集团东磁股份有限公司 一种永磁电机转子、永磁电机及永磁电机转子的加工方法

Also Published As

Publication number Publication date
DE112021000356T5 (de) 2023-03-23
CN113381543A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
CN1324785C (zh) 永磁体埋入型电动机
WO2014090050A1 (zh) 电机转子
WO2017202316A1 (zh) 两对极永磁同步电机和电动汽车
JP2006014457A (ja) 同期電動機
WO2013013435A1 (zh) 永磁同步电机
CN109217596A (zh) 一种永磁无刷双转子电机
WO2017202320A1 (zh) 电机转子、电机和电动汽车
CN101222153B (zh) 永磁电机的转动结构及决定其转动结构的方法
WO2020125066A1 (zh) 切向电机、电机转子及转子铁芯
WO2020015287A1 (zh) 转子组件及电机
WO2023284110A1 (zh) 一种永磁电机转子、永磁电机及永磁电机转子的加工方法
WO2023138051A1 (zh) 转子盘、轴向磁场电机转子及制作方法
Hao et al. Analysis of cogging torque reduction techniques in axial-field flux-switching permanent-magnet machine
JP5526495B2 (ja) 永久磁石式回転電機
US20140265704A1 (en) Rotor including permanent magnets having different thicknesses and motor including same
CN110838779A (zh) 一种混合励磁绕线转子及混合励磁绕线式同步电机
WO2017202319A1 (zh) 永磁同步电机和电动汽车
WO2017202318A1 (zh) 电机转子冲片、电机转子、电机和电动汽车
WO2023045264A1 (zh) 转子结构、电机结构和电子装置
CN116094275A (zh) 一种内置式永磁电机
US20240186853A1 (en) Permanent-magnet motor rotor, permanent-magnet motor and method for processing a permanent-magnet motor rotor
Pu et al. Design and analysis of a multi-flux-modulated permanent magnet motor
WO2017202317A1 (zh) 两对极电机和电动汽车
CN110994843A (zh) 永磁同步电机的转子结构
CN218940912U (zh) 一种内置式永磁电机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17759979

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949885

Country of ref document: EP

Kind code of ref document: A1