WO2023282666A1 - 전극 및 이의 제조 방법 - Google Patents

전극 및 이의 제조 방법 Download PDF

Info

Publication number
WO2023282666A1
WO2023282666A1 PCT/KR2022/009862 KR2022009862W WO2023282666A1 WO 2023282666 A1 WO2023282666 A1 WO 2023282666A1 KR 2022009862 W KR2022009862 W KR 2022009862W WO 2023282666 A1 WO2023282666 A1 WO 2023282666A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
electrode
masking tape
current collector
Prior art date
Application number
PCT/KR2022/009862
Other languages
English (en)
French (fr)
Inventor
이서준
이효진
김태수
이혁수
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2023574834A priority Critical patent/JP2024520732A/ja
Priority to EP22838018.4A priority patent/EP4333090A1/en
Priority to CN202280042234.5A priority patent/CN117480627A/zh
Publication of WO2023282666A1 publication Critical patent/WO2023282666A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/32Processes for applying liquids or other fluent materials using means for protecting parts of a surface not to be coated, e.g. using stencils, resists
    • B05D1/322Removable films used as masks
    • B05D1/325Masking layer made of peelable film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode and a method for manufacturing the same, and more specifically, to an electrode in which a corner portion where an upper surface of an active material layer and a side wall surface forming a thickness of the active material layer meet is formed in a right angle shape, and a method for manufacturing the electrode.
  • lithium secondary batteries having high energy density and voltage are commercialized and widely used.
  • a lithium secondary battery has a structure in which an electrolyte containing a lithium salt is impregnated with an electrode assembly in which an active material is applied on a current collector, that is, an electrode assembly in which a porous separator is interposed between a positive electrode and a negative electrode.
  • the electrode is a mixing process of preparing a slurry by mixing / dispersing an active material, a binder, and a conductive material in a solvent, a coating process of applying the active material slurry to a thin film current collector and drying it, and increasing the capacity density of the electrode after the coating process It is manufactured by forming an active material layer on the current collector through a pressing process for increasing adhesion between the current collector and the active material.
  • mismatching causes the position of the active material layer to shift when the positive/negative electrodes face each other, and the misaligned portion reduces the efficiency of charging and discharging.
  • the mismatching portion may cause lithium to be deposited on the surface of the negative electrode, and when such lithium precipitation occurs for a long time, battery capacity decreases.
  • the present invention was made to solve the above problems of the prior art,
  • an object of the present invention is to provide a method of manufacturing an electrode in which a corner portion where an upper surface of the active material layer and a side wall surface forming the thickness of the active material layer meet can be formed in a right angle shape.
  • an object of the present invention is to provide an electrode in which a corner portion where an upper surface of an active material layer and a sidewall surface forming a thickness of the active material layer meet is formed in a right angle shape to improve battery capacity.
  • an electrode comprising a current collector manufactured by the manufacturing method of the present invention and an active material layer laminated on one or both sides of the current collector
  • an electrode characterized in that a corner portion adjacent to the active material non-laminated portion and where the top surface of the active material layer and the side wall surface forming the thickness of the active material layer meet includes a partial shape of a cut groove.
  • the manufacturing method of the electrode of the present invention provides an effect of uniformly forming the end of the active material layer and preventing the formation of a sliding part and/or a mismatching part.
  • the electrode of the present invention is formed in a right-angled corner portion where the top surface of the active material layer and the side wall surface forming the thickness of the active material layer meet, providing an effect of increasing the capacity of the battery.
  • FIG. 1 is a view schematically showing a method of forming an electrode in the prior art
  • FIG. 2 is a view showing problems that occur when an active material is applied to a current collector according to the prior art
  • FIG. 3 is a diagram schematically showing a sliding part and a mismatching part that occur when an active material is applied to a current collector according to the prior art
  • FIGS. 4 to 6 are diagrams showing one embodiment of the manufacturing method of the electrode of the present invention.
  • FIG. 7 and 8 are views illustrating an embodiment in which a masking tape is attached by a roll-to-roll process in the method of manufacturing an electrode of the present invention.
  • the active material non-laminated portion is also referred to as a “non-coating portion” and refers to a portion where an electrode tab is formed.
  • the masking tape 20 may be used known in the art.
  • An adhesive tape may be preferably used as the masking tape, and the adhesive tape may include a film substrate 24 and an adhesive layer 22 formed on one surface of the film substrate.
  • the bonding strength of the adhesive layer 22 to the current collector 10 must be weaker than the bonding strength of the adhesive layer 22 to the film substrate 24, and there must be a difference in bonding strength so that the adhesive tape adheres to the current collector. It is preferable because it can be removed without remaining.
  • the cutting groove in step (c) may be formed using a means known in the art, such as a knife, and is particularly preferably formed using a laser. This is because when a knife or the like is used, it is difficult to uniformly form the groove surface of the cutting groove, the operation becomes inconvenient due to the active material debris removed during the groove forming process, and the quality of the active material layer may be damaged.
  • the shape of the cutting groove is not particularly limited, but may be a shape similar to a letter U, a shape similar to a letter V, and the like. At this time, the cut groove similar to the letter U may be formed so that the bottom surface and the wall surface are perpendicular to each other.
  • the cutting groove may have a width of 10 ⁇ m to 200 ⁇ m and a depth of 10 ⁇ m to 200 ⁇ m, but the size of the cutting groove must be formed differently depending on the thickness of the active material layer and the thickness of the masking tape, so it is limited to the above range it is not going to be
  • the laser device may include a laser source generator, a delivery mirror, a laser beam width controller, and a scanner unit, and the scanner may include a galvano mirror and a theta lens. etc. may be included.
  • the laser source generator may be, for example, an IR Fiber laser source generator, and the laser wavelength may be 1000 to 1100 nm, preferably 1060 to 1080 nm, but is not limited thereto.
  • the cutting groove may be formed by using a laser after supplying water to the cutting groove formation region.
  • a laser In the case of forming cut grooves using a laser without supplying water, it is undesirable because the problem of deteriorating the active material by the heat of the laser (heat affected zone occurs) occurs. Therefore, in the present invention, after supplying water in advance before forming a cut groove by a laser, the laser is applied.
  • the moisture supply method is not particularly limited, but, for example, water may be supplied by spraying water to the active material using a spray device or the like.
  • the supply of water be made, for example, 5 seconds to 30 seconds before applying the laser. This is because sufficient time is required for moisture to be supplied to the inside of the active material before laser application.
  • the degree of moisture absorption varies depending on the composition of the active material, it is not limited to the above range.
  • the (b) active material layer lamination step may be carried out by a method of coating the active material layer and a part or all of the top of the masking tape.
  • the step of laminating the active material may further include compressing the coated active material after coating the active material.
  • the active material coating step and the pressing step may be performed by methods known in the art.
  • step (c) in step (c), as shown in FIG. 4, it may be preferable to form the cut groove on the side of the active material located on the masking tape around the boundary line between the masking tape and the active material.
  • the cutting groove is formed at the above location, as shown in FIG. 6 , after removing the masking tape, the cross section of the remaining active material layer may be formed close to a right angle, which may be advantageous in securing battery capacity.
  • the masking tape attachment in steps (a) to (d) may be performed by a roll-to-roll process, as illustrated in FIGS. 7 to 8 there is.
  • the masking tape may include a film substrate and an adhesive layer (PSA), and a release film further attached to the adhesive layer may be used, and the release film may include a masking tape on a current collector. It can be removed prior to bonding.
  • PSA adhesive layer
  • the active material may be laminated on the current collector to which the masking tape is not attached or on the portion to which the masking tape is attached and the current collector to which the masking tape is not attached by a conventional roll-to-roll process.
  • the roll-to-roll process may be performed by a method known in the art.
  • an electrode comprising a current collector manufactured by the manufacturing method of the present invention and an active material layer laminated on one or both sides of the current collector
  • a corner portion where an upper surface of the active material layer and a side wall surface forming the thickness of the active material layer meet may include a partial shape of a cut groove and may be formed in a right angle shape.
  • the right angle shape includes a substantially right angle shape as well as a right angle conforming to strict standards.
  • a side wall surface forming the thickness of the active material layer may be a side wall surface in a direction in which an electrode tab is formed.
  • the electrode may be formed by the manufacturing method of the electrode of the present invention.
  • current collectors known in this field may be used without limitation as the positive current collector or the negative current collector, for example, copper, aluminum, gold, nickel, copper alloy, or a combination thereof. and foils manufactured by
  • the active material layer may be a positive active material layer or a negative active material layer.
  • the active material layer may be formed of an active material slurry including a positive electrode active material or a negative electrode active material and a binder, and the active material slurry may further include a conductive material and, if necessary, a dispersant.
  • the cathode active material As the cathode active material, the anode active material, the binder, and the conductive material, components known in the art may be used without limitation.
  • cathode active material examples include lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron oxide, LiNi x Mn y Co z O 2 (NMC), a three-component cathode material, or a lithium composite oxide obtained by combining these.
  • NMC LiNi x Mn y Co z O 2
  • a sulfur-carbon composite may be included as a cathode active material.
  • anode active material examples include LiTi 2 (PO 4 ) 3 , Li 3 V 2 (PO 4 ) 3 , LiVP 2 O 7 , LiFeP 2 O 7 , LiVPO 4 F, LiVPO 4 O, and LiFeSO 4 F.
  • the negative electrode active material may have a carbon coating layer formed on a surface thereof.
  • Examples of the conductive material include carbon black such as Super-P, Denka Black, Acetylene Black, Ketjen Black, Channel Black, Furnace Black, Lamp Black, Summer Black, and Carbon Black; carbon derivatives such as carbon nanotubes and fullerenes; conductive fibers such as carbon fibers and metal fibers; metal powders such as carbon fluoride, aluminum, and nickel powder; or conductive polymers such as polyaniline, polythiophene, polyacetylene, and polypyrrole; etc. can be used.
  • carbon black such as Super-P, Denka Black, Acetylene Black, Ketjen Black, Channel Black, Furnace Black, Lamp Black, Summer Black, and Carbon Black
  • carbon derivatives such as carbon nanotubes and fullerenes
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive polymers such as polyaniline, polythiophene, polyacetylene, and polypyrrole; etc.
  • the electrode may be a positive electrode or a negative electrode, and the manufacturing method thereof is not particularly limited, and may be manufactured in a form in which a positive electrode active material or a negative electrode active material is bound to a current collector according to a conventional method known in the art.
  • the electrode may be one used in a secondary battery, for example, one used in a lithium ion secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명은 (a) 집전체 표면을 활물질층 적층부와 활물질 비적층부로 구획하고, 상기 활물질 비적층부에 마스킹 테이프를 부착하는 단계; (b) 상기 마스킹 테이프가 부착된 집전체에 활물질층을 적층하는 단계; (c) 상기 활물질층의 상부면에 하부의 마스킹 테이프와 활물질의 경계를 따라 절단홈을 형성하는 단계; 및 (d) 상기 마스킹 테이프를 상기 절단홈을 따라 제거하여 활물질 비적층부를 형성하는 단계;를 포함하는 전극의 제조 방법 및 활물질층의 상부면과 활물질층의 두께를 형성하는 측벽면이 만나는 모서리부가 직각 형태로 형성된 전극을 제공한다.

Description

전극 및 이의 제조 방법
본 출원은 2021년 7월 8일자 한국 특허 출원 제 10-2021-0089425호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.
본 발명은 전극 및 이의 제조 방법에 관한 것으로서, 구체적으로는 활물질층의 상부면과 활물질층의 두께를 형성하는 측벽면이 만나는 모서리부가 직각 형태로 형성되는 전극 및 상기 전극의 제조 방법에 관한 것이다.
모바일 기기, 전기 자동차 등에 대한 수요가 증가함에 따라 이차전지의 수요가 급격히 증가하고 있다. 특히, 이차전지 중 높은 에너지 밀도와 전압을 가지는 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지는 집전체 상에 활물질이 도포되어 있는 전극, 즉 양극과 음극 사이에 다공성의 분리막이 개재된 전극조립체에 리튬염을 포함하는 전해질이 함침되어 있는 구조로 이루어져 있다. 상기 전극은 활물질, 바인더 및 도전재를 용매에 혼합/분산시켜 슬러리를 제조하는 혼합 공정, 상기 활물질 슬러리를 박막 형태의 집전체에 도포하고 건조하는 코팅 공정, 코팅공정이 끝난 전극의 용량 밀도를 높이고 집전체와 활물질 간의 접착성을 증가시키기 위한 압연(pressing) 공정을 거쳐, 집전체 상에 활물질층을 형성함으로써 제조된다.
상기 활물질 슬러리를 집전체 도포하는 경우, 도 2에 도시된 바와 같이, 드래그 라인(drag line) 및/또는 아이슬란드(island)가 형성됨으로써, 활물질층의 말단부에 균일한 면을 형성하는 것이 어려운 것으로 알려져 있다. 또한, 도 3에 도시된 바와 같이, 활물질층 가장자리에 활물질층의 두께가 점차 감소하는 슬라이딩부가 형성되어 활물질층의 용량을 감소시키는 문제가 발생된다. 또한, 상기 슬러리를 집전체 양면에 도포하는 경우, 도 3에 도시된 바와 같이, 상면과 하면에 도포되는 슬러리의 위치가 일치하지 않는 미스매칭이 발생한다. 이러한 미스매칭은 양/음극 대면시 활물질층의 위치를 어긋나게 하며, 이렇게 어긋난 부분은 충방전의 효율이 떨어뜨린다. 특히, 상기 미스매칭부는 음극 표면에 리튬이 석출되게 할 수 있으며, 이러한 리튬 석출이 장시간 이루어지는 경우 전지 용량 감소가 발생한다.
그러므로, 활물질층의 단부를 균일하게 형성하고, 슬라이딩부 및/또는 미스매칭부의 형성을 방지할 수 있는 방법이 요구되고 있다.
[선행기술문헌]
일본 공개 제2000-251942호
본 발명은 종래기술의 상기와 같은 문제를 해소하기 위하여 안출된 것으로서,
활물질층의 단부를 균일하게 형성하고, 슬라이딩부 및/또는 미스매칭부의 형성을 방지할 수 있는 전극의 제조 방법을 제공하는 것을 목적으로 한다.
또한, 활물질층의 상부면과 활물질층의 두께를 형성하는 측벽면이 만나는 모서리부가 직각 형태로 형성될 수 있는 전극의 제조 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 활물질층의 상부면과 활물질층의 두께를 형성하는 측벽면이 만나는 모서리부가 직각 형태로 형성되어 전지의 용량이 향상되는 전극을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은
(a) 집전체 표면을 활물질층 적층부와 활물질 비적층부로 구획하고, 상기 활물질 비적층부에 마스킹 테이프를 부착하는 단계;
(b) 상기 마스킹 테이프가 부착된 집전체에 활물질층을 적층하는 단계;
(c) 상기 활물질층의 상부면에 하부의 마스킹 테이프와 활물질의 경계를 따라 절단홈을 형성하는 단계; 및
(d) 상기 마스킹 테이프를 상기 절단홈을 따라 제거하여 활물질 비적층부를 형성하는 단계;를 포함하는 전극의 제조 방법을 제공한다.
또한, 본 발명은
상기 본 발명의 제조방법으로 제조된, 집전체 및 상기 집전체의 일면 또는 양면에 적층된 활물질층을 포함하는 전극으로서,
활물질 비적층부에 인접하며, 활물질층의 상부면과 활물질층의 두께를 형성하는 측벽면이 만나는 모서리부가, 절단홈의 일부형태를 포함하는 것을 특징으로 하는 하는 전극을 제공한다.
본 발명의 전극의 제조 방법은 활물질층의 단부를 균일하게 형성하고, 슬라이딩부 및/또는 미스매칭부의 형성을 방지하는 효과를 제공한다.
또한, 활물질층의 상부면과 활물질층의 두께를 형성하는 측벽면이 만나는 모서리부를 직각 형태로 형성할 수 있는 방법을 제공한다.
또한, 본 발명의 전극은 활물질층의 상부면과 활물질층의 두께를 형성하는 측벽면이 만나는 모서리부가 직각 형태로 형성되어, 전지의 용량을 증가시키는 효과를 제공한다.
도 1은 종래기술의 전극 형성방법을 모식적으로 도시한 도면이며,
도 2는 종래기술에 따라 집전체에 활물질을 도포하는 경우 발생하는 문제점을 도시한 도면이며,
도 3은 종래기술에 따라 집전체에 활물질을 도포하는 경우 발생하는 슬라이딩부 및 미스매칭부를 모식적으로 도시한 도면이며,
도 4 내지 도 6은 본 발명의 전극의 제조 방법의 일 실시형태를 도시한 도면이며,
도 7 및 도 8은 본 발명의 전극의 제조 방법에 있어서 마스킹 테이프를 롤투롤(Roll-to-Roll) 공정에 의해 부착하는 일 실시형태를 예시한 도면이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다.
본 발명의 전극의 제조 방법은,
(a) 집전체 표면을 활물질층 적층부와 활물질 비적층부로 구획하고, 상기 활물질 비적층부에 마스킹 테이프를 부착하는 단계;
(b) 상기 마스킹 테이프가 부착된 집전체에 활물질층을 적층하는 단계;
(c) 상기 활물질층의 상부면에 하부의 마스킹 테이프와 활물질의 경계를 따라 절단홈을 형성하는 단계; 및
(d) 상기 마스킹 테이프를 상기 절단홈을 따라 제거하여 활물질 비적층부를 형성하는 단계;를 포함하는 것을 특징으로 한다.
상기에서 활물질 비적층부는 “무지부(non-coating portion)”로 호칭되기도 하는 부분으로서, 전극탭이 형성되는 부분을 의미한다.
종래의 전극의 제조 방법도 마스킹 테이프를 이용하는 기술을 공지하고 있으나, 활물질을 적층한 후 마스킹 테이프를 제거할 때, 활물질층의 절단부가 균일한 면을 형성하지 못하는 단점이 있었다. 즉, 활물질층을 형성하는 활물질 슬러리가 활물질 입자, 도전재 입자, 바인더 등을 포함하고, 이들이 상기 마스킹 테이프를 제거하는 시점에 바인더에 의해 결합되어 다양한 크기의 집합체(덩어리)를 형성하므로, 마스킹 테이프의 제거에 의해 마스킹 테이프의 상부면에 있는 활물질이 물리적으로 절단될 때 활물질층의 단면을 균일하게 형성하는 것이 어려웠다.
본 발명자들은 이러한 종래 기술의 단점을 개선하기 위하여 예의 노력한 바, 도 4에 예시된 바와 같이, 상기 활물질층의 상부면에 하부의 마스킹 테이프(20)와 활물질(30)의 경계를 따라 절단홈(40)을 형성하는 경우, 위와 같은 문제가 현저하게 개선되는 것을 발견하여 본 발명을 완성하였다.
본 발명의 일 실시형태에 있어서, 상기 마스킹 테이프(20)는 이 분야에 공지된 것을 사용할 수 있다. 마스킹 테이프로는 점착 테이프가 바람직하게 사용될 수 있으며, 상기 점착 테이프는 필름기재(24)와 상기 필름기재의 일면에 형성된 점착층(22)을 포함하는 것이 사용될 수 있다. 이때, 상기 점착층(22)의 집전체(10)에 대한 결합력은 점착층(22)의 필름기재(24)에 대한 결합력보다 약해야 하며, 이와 같은 결합력의 차이가 있어야 점착 테이프가 집전체에 남지 않고 제거될 수 있어 바람직하다.
본 발명의 일 실시형태에 있어서, 상기 (c) 단계의 절단홈은 나이프 등 이 분야에 공지된 수단을 사용하여 형성할 수 있으며, 특히, 레이저를 사용하여 형성하는 것이 바람직하다. 왜냐하면 나이프 등을 사용하는 경우, 절단홈의 홈 표면이 균일하게 형성되기 어려우며, 홈 형성과정에서 제거되는 활물질 부스러기로 인하여 작업이 불편해지며, 활물질층 품질이 훼손될 수 있기 때문이다.
상기 절단홈의 형태는 특별히 한정되지 않으나, 알파벳 U자 유사 형태, V자 유사 형태 등일 수 있다. 이때, 상기 알파벳 U자 유사 형태의 절단홈은 바닥면과 벽면이 수직을 이루도록 형성된 형태일 수도 있다.
상기 절단홈의 폭은 10㎛ 내지 200㎛, 깊이 10㎛ 내지 200㎛로 형성될 수 있으나, 상기 절단홈의 크기는 활물질 층의 두께 및 마스킹 테이프의 두께에 따라 달리 형성되어야 하므로, 상기 범위로 한정되는 것은 아니다.
상기 레이저를 생성하는 레이저 장치로는 이 분야에 공지된 레이저 장치를 사용할 수 있다. 상기 레이저 장치는 도 5에 도시된 바와 같이, 레이저 소스 생성기, 디리버리 미러(delivery mirror), 레이저 빔 폭 조절기, 및 스캐너 유닛 등을 포함하여 구성될 수 있으며, 상기 스캐너는 갈바노 미러, 세타렌즈 등을 포함할 수 있다. 상기 레이저 소스 생성기는 예를 들어, IR Fiber 레이저 소스 생성기일 수 있으며, 레이저 파장은 1000 내지 1100nm일 수 있으며, 바람직하게는 1060 내지 1080nm일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 실시형태에 있어서, 상기 절단홈은 절단홈 형성 부위에 수분을 공급한 후, 레이저를 사용하여 형성될 수 있다. 수분 공급 없이 레이저를 사용하여 절단홈을 형성하는 경우, 레이저에 열에 의해 활물질이 열화되는 문제가 발생(Heat affected zone 발생)하므로 바람직하지 않다. 따라서, 본 발명에서는 레이저에 의해 절단홈을 형성하기 전에 미리 수분을 공급한 후, 레이저를 적용한다. 상기 수분 공급 방법은 특별히 한정되지 않으나, 예를 들어, 스프레이 장치 등에 의해 활물질에 물을 분사하여 수분을 공급할 수 있다.
상기 수분 공급은 예를 들어, 레이저를 적용하기 5초 내지 30초 전에 이루어지는 것이 바람직하다. 왜냐하면, 레이저 적용전에 활물질 내부로 수분이 공급될 수 있는 충분한 시간이 필요하기 때문이다. 그러나, 활물질의 조성에 따라 수분의 흡수 정도가 다르기 때문에 상기 범위로 한정되는 것은 아니다.
본 발명의 일 실시형태에 있어서, 상기 (b)활물질층 적층 단계는 활물질을 활물질 적층부와 마스킹 테이프의 상부의 일부 또는 전부에 코팅하는 방법으로 실시될 수 있다. 또한, 상기 활물질 적층 단계는 상기 활물질 코팅 후, 코팅된 활물질을 압착하는 단계를 더 포함할 수 있다. 상기 활물질 코팅 단계 및 상기 압착 단계는 이 분야에서 공지된 방법으로 실시될 수 있다.
본 발명의 일 실시형태에 있어서, 상기 (c)단계에서 절단홈은 도 4에 도시된 바와 같이, 마스킹 테이프와 활물질의 경계선을 중심으로 마스킹 테이프 위에 위치된 활물질 쪽에 형성하는 것이 바람직할 수 있다. 상기 위치에 절단홈이 형성되는 경우, 도 6에 도시된 바와 같이, 마스킹 테이프 제거 후, 잔존하는 활물질층의 단면이 직각에 가깝게 형성될 수 있어서 전지의 용량 확보에 있어서 유리할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 (a)단계 내지 (d)단계에서 마스킹 테이프 부착은 도 7 내지 도 8에 예시된 바와 같이, 롤투롤(Roll-to-Roll) 공정에 의해 실시될 수 있다. 이때, 도 7 내지 도 8에서 마스킹 테이프는 필름기재와 점착층(PSA)을 포함할 수 있으며, 상기 점착층에는 이형필름이 더 부착된 것이 사용될 수 있으며, 상기 이형필름은 집전체에 마스킹 테이프를 접착시키는 전단계에서 제거될 수 있다.
상기와 같이 마스킹 테이프를 부착한 후에, 통상적인 롤투롤 공정에 의해 마스킹 테이프가 부착되지 않은 집전체 위, 또는 마스킹 테이프가 부착된 부분 및 마스킹 테이프가 부착되지 않은 집전체 위에 활물질을 적층할 수 있다.
상기 롤투롤(Roll-to-Roll) 공정은 이 분야에 공지된 방법으로 실시될 수 있다.
또한, 본 발명은
상기 본 발명의 제조방법으로 제조된, 집전체 및 상기 집전체의 일면 또는 양면에 적층된 활물질층을 포함하는 전극으로서,
활물질 비적층부에 인접하며, 활물질층의 상부면과 활물질층의 두께를 형성하는 측벽면이 만나는 모서리부가, 도 6에 예시된 바와 같이, 절단홈의 일부형태를 포함하는 것을 특징으로 하는 전극에 관한 것이다.
상기 활물질층의 상부면과 활물질층의 두께를 형성하는 측벽면이 만나는 모서리부는 절단홈의 일부 형태를 포함함으로써, 직각 형태로 형성될 수 있다.
상기 직각 형태는 엄격한 기준에 따르는 직각뿐만 아니라, 실질적으로 직각인 형태를 포함한다. 특히, 상기 활물질층의 두께를 형성하는 측벽면은 전극탭이 형성되는 방향의 측벽면일 수 있다.
또한, 본 발명의 일 실시형태에 있어서, 상기 전극은 본 발명의 전극의 제조 방법으로 형성된 것일 수 있다.
본 발명에서 있어서, 상기 집전체는 양극 집전체 또는 음극 집전체로서 이 분야에 공지된 집전체들이 제한없이 사용될 수 있으며, 예를 들어, 구리, 알루미늄, 금, 니켈, 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등을 들 수 있다.
또한, 상기 활물질층은 양극 활물질층 또는 음극 활물질층일 수 있다. 상기 활물질층은 양극 활물질 또는 음극활물질과 바인더를 포함하는 활물질 슬러리로 형성될 수 있으며, 상기 활물질 슬러리에는 도전재가 더 포함될 수 있으며, 필요한 경우 분산제가 더 포함될 수도 있다.
상기 양극 활물질, 음극 활물질, 바인더, 및 도전재로는 이 분야에 공지된 성분들이 제한없이 사용될 수 있다.
상기 양극활물질로는 예를 들어, 리튬망간 산화물, 리튬코발트 산화물, 리튬니켈 산화물, 리튬철 산화물, 3성분계 양극재인 LiNixMnyCozO2 (NMC) 또는 이들을 조합한 리튬복합 산화물 등이 사용될 수 있다. 리튬-황 전지인 경우에는 황-탄소 복합체가 양극활물질로 포함될 수 있다.
상기 음극활물질로는 예를 들어, LiTi2(PO4)3, Li3V2(PO4)3, LiVP2O7, LiFeP2O7, LiVPO4F, LiVPO4O, 및 LiFeSO4F 등을 들 수 있다. 상기 음극활물질은 표면에 탄소 코팅층이 형성된 것일 수도 있다.
상기 도전재로는 예를 들어, 슈퍼 P(Super-P), 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 카본 블랙 등의 카본 블랙; 탄소 나노튜브나 플러렌 등의 탄소 유도체; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 또는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 등의 전도성 고분자; 등이 사용될 수 있다.
상기 전극은 양극 또는 음극일 수 있으며, 이들의 제조방법은 특별히 제한되지 않으며, 이 분야에 알려진 통상적인 방법에 따라 양극활물질 또는 음극활물질을 집전체에 결착시킨 형태로 제조될 수 있다.
상기 전극은 이차 전지에 사용되는 것일 수 있으며, 예를 들어 리튬 이온 이차 전지에 사용되는 것일 수 있다.
비록 본 발명이 상기 언급된 바람직한 실시예와 관련되어 설명되었지만,
발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서, 첨부된 특허청구범위는 본 발명의 요지에 속하는 한 이러한 수정이나 변형을 포함할 것이다.
[부호의 설명]
10: 집전체 20: 마스킹 테이프
22: 점착층 24: 필름기재
30: 활물질 40: 절단홈

Claims (10)

  1. (a) 집전체 표면을 활물질층 적층부와 활물질 비적층부로 구획하고, 상기 활물질 비적층부에 마스킹 테이프를 부착하는 단계;
    (b) 상기 마스킹 테이프가 부착된 집전체에 활물질층을 적층하는 단계;
    (c) 상기 활물질층의 상부면에 하부의 마스킹 테이프와 활물질의 경계를 따라 절단홈을 형성하는 단계; 및
    (d) 상기 마스킹 테이프를 상기 절단홈을 따라 제거하여 활물질 비적층부를 형성하는 단계;를 포함하는 전극의 제조 방법.
  2. 제1항에 있어서,
    상기 (c) 단계의 절단홈은 레이저를 사용하여 형성하는 것을 특징으로 하는 전극의 제조 방법.
  3. 제2항에 있어서,
    상기 절단홈은 절단홈 형성 부위에 수분을 공급한 후, 레이저를 사용하여 형성하는 것을 특징으로 하는 전극의 제조 방법.
  4. 제1항에 있어서,
    상기 (b)단계는 활물질 코팅 단계 및 압착 단계를 포함하는 것을 특징으로 하는 전극의 제조 방법.
  5. 제1항에 있어서,
    상기 (c)단계에서 절단홈은 마스킹 테이프와 활물질의 경계선을 중심으로 마스킹 테이프 위에 위치된 활물질 쪽에 형성하는 것을 특징으로 하는 전극의 제조 방법.
  6. 제1항에 있어서,
    상기 마스킹 테이프는 필름기재와 상기 필름기재의 일면에 점착층이 형성된 점착 테이프인 것을 특징으로 하는 전극의 제조 방법.
  7. 제1항에 있어서,
    상기 (a)단계 내지 (d)단계는 롤투롤(Roll-to-Roll) 공정에 의해 실시되는 것을 특징으로 하는 전극의 제조 방법.
  8. 집전체 및 상기 집전체의 일면 또는 양면에 적층된 활물질층을 포함하는 제1항의 방법으로 제조된 전극으로서,
    활물질 비적층부에 인접하며, 활물질층의 상부면과 활물질층의 두께를 형성하는 측벽면이 만나는 모서리부가 절단홈의 일부형태를 포함하는 것을 특징으로 하는 전극.
  9. 제8항에 있어서,
    상기 활물질층의 두께를 형성하는 측벽면은 전극탭이 형성되는 방향의 측벽면인 것을 특징으로 하는 전극.
  10. 제8항에 있어서,
    상기 전극은 제1항의 방법으로 제조된 것을 특징으로 하는 전극.
PCT/KR2022/009862 2021-07-08 2022-07-07 전극 및 이의 제조 방법 WO2023282666A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023574834A JP2024520732A (ja) 2021-07-08 2022-07-07 電極及びその製造方法
EP22838018.4A EP4333090A1 (en) 2021-07-08 2022-07-07 Electrode and manufacturing method therefor
CN202280042234.5A CN117480627A (zh) 2021-07-08 2022-07-07 电极及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0089425 2021-07-08
KR1020210089425A KR20230008975A (ko) 2021-07-08 2021-07-08 전극 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2023282666A1 true WO2023282666A1 (ko) 2023-01-12

Family

ID=84801961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009862 WO2023282666A1 (ko) 2021-07-08 2022-07-07 전극 및 이의 제조 방법

Country Status (5)

Country Link
EP (1) EP4333090A1 (ko)
JP (1) JP2024520732A (ko)
KR (1) KR20230008975A (ko)
CN (1) CN117480627A (ko)
WO (1) WO2023282666A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251942A (ja) 1999-03-01 2000-09-14 Matsushita Battery Industrial Co Ltd 非水電解液二次電池の製造方法
KR20050096926A (ko) * 2002-12-27 2005-10-06 마쯔시다덴기산교 가부시키가이샤 집전체 시트 및 전기화학 소자
US20180358645A1 (en) * 2015-12-22 2018-12-13 Nec Corporation Secondary cell and method for manufacturing same
KR20200016285A (ko) * 2017-08-24 2020-02-14 비클 에너지 재팬 가부시끼가이샤 이차 전지
KR20210065033A (ko) * 2019-11-26 2021-06-03 도요타 지도샤(주) 비수 전해질 이차 전지
KR20210089425A (ko) 2020-01-08 2021-07-16 주식회사 에듀에스알티 모바일 영어단어 학습장치 및 그의 동작방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251942A (ja) 1999-03-01 2000-09-14 Matsushita Battery Industrial Co Ltd 非水電解液二次電池の製造方法
KR20050096926A (ko) * 2002-12-27 2005-10-06 마쯔시다덴기산교 가부시키가이샤 집전체 시트 및 전기화학 소자
US20180358645A1 (en) * 2015-12-22 2018-12-13 Nec Corporation Secondary cell and method for manufacturing same
KR20200016285A (ko) * 2017-08-24 2020-02-14 비클 에너지 재팬 가부시끼가이샤 이차 전지
KR20210065033A (ko) * 2019-11-26 2021-06-03 도요타 지도샤(주) 비수 전해질 이차 전지
KR20210089425A (ko) 2020-01-08 2021-07-16 주식회사 에듀에스알티 모바일 영어단어 학습장치 및 그의 동작방법

Also Published As

Publication number Publication date
KR20230008975A (ko) 2023-01-17
CN117480627A (zh) 2024-01-30
JP2024520732A (ja) 2024-05-24
EP4333090A1 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
WO2018066806A1 (ko) 프리-슬리팅 공정을 포함하는 이차전지용 전극의 제조 방법
WO2019151833A1 (ko) 리튬 이차전지용 전극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2017160085A1 (ko) 2층 구조의 전극 및 그의 제조방법
WO2017039385A1 (ko) 점착력이 상이한 점착 코팅부들을 포함하는 분리막 및 이를 포함하는 전극조립체
WO2018169213A1 (ko) 이차 전지용 전극 제조방법 및 그에 따라 제조된 이차 전지용 전극
KR101840494B1 (ko) 이차전지용 전극, 이의 제조방법, 이를 포함하는 이차전지
WO2015016554A1 (ko) 상이한 전극재 층들을 포함하는 전극 및 리튬 이차전지
WO2018217071A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019216548A1 (ko) 리튬 이차 전지용 세퍼레이터, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2020085823A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2018048126A1 (ko) 균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법
WO2016114474A1 (ko) 전극용 슬러리 조성물, 전극 및 이차전지
WO2019103546A2 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2021133127A1 (ko) 수계 양극용 슬러리, 양극 조성물 및 이 양극 조성물을 포함하는 리튬 이온 이차전지, 그리고 이들의 제조 방법
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2018182195A1 (ko) 고로딩 전극의 제조 방법
WO2021251663A1 (ko) 음극 및 이를 포함하는 이차전지
WO2023282666A1 (ko) 전극 및 이의 제조 방법
WO2017082680A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2019066585A1 (ko) 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021225303A1 (ko) 고-니켈 전극 시트 및 이의 제조방법
WO2021162346A1 (ko) 전극 및 전극 조립체
WO2021167353A1 (ko) 음극의 전리튬 방법, 전리튬화 음극, 및 이를 포함하는 리튬 이차전지
WO2021141367A1 (ko) 테이핑 영역을 포함하는 전극 집전체용 금속 박막 및 이를 이용한 전극 제조방법
WO2023003300A1 (ko) 전극의 제조 방법 및 이 방법에 사용되는 전극 제조 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22838018

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022838018

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2023574834

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280042234.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18570316

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022838018

Country of ref document: EP

Effective date: 20231129

NENP Non-entry into the national phase

Ref country code: DE