WO2023282205A1 - 露光装置及びデバイス製造方法 - Google Patents

露光装置及びデバイス製造方法 Download PDF

Info

Publication number
WO2023282205A1
WO2023282205A1 PCT/JP2022/026485 JP2022026485W WO2023282205A1 WO 2023282205 A1 WO2023282205 A1 WO 2023282205A1 JP 2022026485 W JP2022026485 W JP 2022026485W WO 2023282205 A1 WO2023282205 A1 WO 2023282205A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
optical system
pattern
moving body
exposure apparatus
Prior art date
Application number
PCT/JP2022/026485
Other languages
English (en)
French (fr)
Inventor
加藤正紀
水野仁
水野恭志
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2023533103A priority Critical patent/JPWO2023282205A1/ja
Priority to CN202280047477.8A priority patent/CN117651911A/zh
Priority to KR1020237045137A priority patent/KR20240014514A/ko
Publication of WO2023282205A1 publication Critical patent/WO2023282205A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70316Details of optical elements, e.g. of Bragg reflectors, extreme ultraviolet [EUV] multilayer or bilayer mirrors or diffractive optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load

Definitions

  • a step-and-repeat projection exposure apparatus such as liquid crystal and organic EL display panels and semiconductor elements (integrated circuits, etc.
  • And-scan projection exposure apparatuses so-called scanning steppers (also called scanners)
  • This type of exposure apparatus projects and exposes a mask pattern for an electronic device onto a photosensitive layer coated on the surface of a substrate to be exposed (hereinafter simply referred to as a substrate) such as a glass substrate, semiconductor wafer, printed wiring board, or resin film. are doing.
  • a digital mirror device or the like in which a large number of micromirrors that are slightly displaced are regularly arranged can be used instead of the mask substrate.
  • a digital mirror device or the like in which a large number of micromirrors that are slightly displaced are regularly arranged.
  • illumination light obtained by mixing light from a laser diode (LD) with a wavelength of 375 nm and light from an LD with a wavelength of 405 nm in a multimode fiber bundle is sent to a digital mirror.
  • a device (DMD) is irradiated with light, and reflected light from each of a large number of tilt-controlled micromirrors is projected and exposed onto a substrate via an imaging optical system and a microlens array.
  • an exposure apparatus is an exposure apparatus that exposes an object to pattern light generated by a spatial light modulator according to drawing data, and irradiates the spatial light modulator with illumination light.
  • an illumination optical system a projection optical system that projects the pattern light onto the object; a first moving body that is disposed below the projection optical system and holds the object; a first driving unit that moves the first moving body in a first direction and a second direction that are orthogonal to each other within a predetermined plane; a second moving body that holds the spatial light modulator; a second drive unit for moving; a measurement unit for measuring measurement results including at least one of position information of the object and position information of the first moving body; and based on the measurement results obtained by the measurement unit.
  • a control unit that controls at least one of driving the second moving body and adjusting the projection optical system, and controls the exposure position of the pattern light.
  • FIG. 1 is a perspective view showing an overview of the external configuration of an exposure apparatus according to one embodiment.
  • FIG. 2 is a diagram showing an arrangement example of a DMD projection area projected onto a substrate by each projection unit of a plurality of exposure modules.
  • FIG. 3 is a diagram for explaining the state of stitch exposure by each of the four specific projection areas in FIG.
  • FIG. 4 is an optical layout diagram of a specific configuration of two exposure modules arranged in the X direction (scanning exposure direction) viewed in the XZ plane.
  • FIG. 5A is a diagram schematically showing the DMD
  • FIG. 5B is a diagram showing the DMD when the power is OFF
  • FIG. FIG. 5D is a diagram for explaining the mirror in the OFF state.
  • FIGS. 6A and 6B are diagrams illustrating optical elements provided between the DMD and the first lens group of the projection unit.
  • FIG. 7 is a diagram showing a schematic configuration of an alignment device provided on a calibration reference portion attached to the edge of the substrate holder of the exposure apparatus.
  • FIG. 8 is a functional block diagram showing the functional configuration of the exposure control device.
  • FIG. 9 is a flow chart showing an outline of a procedure for exposing a substrate.
  • FIG. 10 is a diagram showing a case where patterns of four display panels are exposed on one substrate.
  • FIGS. 11A to 11C are diagrams showing examples of exposure results of the first exposure processing of the display panel.
  • a pattern exposure apparatus (hereinafter simply referred to as an exposure apparatus) according to one embodiment will be described with reference to the drawings.
  • FIG. 1 is a perspective view showing an overview of the external configuration of an exposure apparatus EX according to one embodiment.
  • the exposure apparatus EX is an apparatus that forms and projects, onto a substrate to be exposed, exposure light whose intensity distribution in space is dynamically modulated by a spatial light modulator (SLM).
  • SLM spatial light modulator
  • Examples of spatial light modulators include liquid crystal devices, digital micromirror devices (DMDs), magneto-optical spatial light modulators (MOSLMs), and the like.
  • the exposure apparatus EX according to this embodiment includes the DMD 10 as a spatial light modulator, but may include other spatial light modulators.
  • the exposure apparatus EX is a step-and-scan projection exposure apparatus (scanner) that exposes a rectangular glass substrate used in a display device (flat panel display) or the like. be.
  • the glass substrate is a flat panel display substrate P having at least one side length or diagonal length of 500 mm or more and a thickness of 1 mm or less.
  • the exposure device EX exposes a photosensitive layer (photoresist) formed on the surface of the substrate P with a constant thickness to a projected image of a pattern created by the DMD.
  • the substrate P unloaded from the exposure apparatus EX after exposure is sent to predetermined process steps (film formation step, etching step, plating step, etc.) after the development step.
  • the exposure apparatus EX includes a pedestal 2 placed on active vibration isolation units 1a, 1b, 1c, and 1d (1d is not shown), a platen 3 placed on the pedestal 2, and An XY stage 4A that can move two-dimensionally, a first driving section that moves the XY stage 4A, a substrate holder 4B (first moving body) that sucks and holds the substrate P on a plane on the XY stage 4A, and a substrate holder.
  • a stage device including laser length measurement interferometers (hereinafter simply referred to as interferometers) IFX and IFY1 to IFY4 for measuring the two-dimensional movement position of 4B (substrate P) is provided.
  • Such a stage apparatus is disclosed, for example, in US Patent Publication No. 2010/0018950 and US Patent Publication No. 2012/0057140.
  • the XY plane of the orthogonal coordinate system XYZ is set parallel to the flat surface of the surface plate 3 of the stage device, and the XY stage 4A is set to be translatable within the XY plane.
  • the direction parallel to the X-axis of the coordinate system XYZ is set as the scanning movement direction of the substrate P (XY stage 4A) during scanning exposure.
  • the movement position of the substrate P in the X-axis direction is sequentially measured by the interferometer IFX, and the movement position in the Y-axis direction is sequentially measured by at least one (preferably two) of the four interferometers IFY1 to IFY4. be.
  • the substrate holder 4B is configured to be slightly movable in the direction of the Z-axis perpendicular to the XY plane with respect to the XY stage 4A and to be slightly inclined in any direction with respect to the XY plane, and projected onto the surface of the substrate P. Focus adjustment and leveling (parallelism) adjustment with respect to the imaging plane of the pattern are actively performed. Further, the substrate holder 4B is configured to be slightly rotatable ( ⁇ z rotation) about an axis parallel to the Z axis in order to actively adjust the tilt of the substrate P within the XY plane.
  • the exposure apparatus EX further includes an optical surface plate 5 that holds a plurality of exposure (drawing) module groups MU(A), MU(B), and MU(C), and a main column that supports the optical surface plate 5 from the pedestal 2. 6a, 6b, 6c, 6d (6d is not shown).
  • Each of the plurality of exposure module groups MU(A), MU(B), and MU(C) is attached to the +Z direction side of the optical platen 5 .
  • Each of the plurality of exposure module groups MU(A), MU(B), and MU(C) is attached to the +Z direction side of the optical surface plate 5, and an illumination unit ILU that receives illumination light from the optical fiber unit FBU.
  • each of the exposure module groups MU(A), MU(B), and MU(C) serves as a light modulating section that reflects the illumination light from the illumination unit ILU in the -Z direction and makes it enter the projection unit PLU. of DMD 10.
  • MU(A), MU(B), and MU(C) serves as a light modulating section that reflects the illumination light from the illumination unit ILU in the -Z direction and makes it enter the projection unit PLU. of DMD 10.
  • a plurality of alignment systems (microscopes) ALG for detecting alignment marks formed at a plurality of predetermined positions on the substrate P are attached to the -Z direction side of the optical platen 5 of the exposure apparatus EX.
  • a calibration reference unit CU for calibration is provided at the -X direction end on the substrate holder 4B. Calibration is performed by confirming (calibrating) the relative positional relationship within the XY plane of each detection field of alignment system ALG, and by projecting each of exposure module groups MU(A), MU(B), and MU(C).
  • Confirmation of the baseline error between each projection position of the pattern image projected from the unit PLU and the position of each detection field of the alignment system ALG, and adjustment of the position and image quality of the pattern image projected from the projection unit PLU. Include at least one of the confirmations.
  • part of the exposure module groups MU(A), MU(B), and MU(C) are not shown in FIG. 1, in this embodiment, nine modules are arranged in the Y direction as an example. Although they are arranged at regular intervals, the number of modules may be less or more than nine. In FIG. 1, three rows of exposure modules are arranged in the X-axis direction, but the number of rows of exposure modules arranged in the X-axis direction may be two or less, or four or more. .
  • FIG. 2 is a diagram showing an arrangement example of the projection areas IAn of the DMD 10 projected onto the substrate P by the projection units PLU of the exposure module groups MU(A), MU(B), and MU(C).
  • the coordinate system XYZ is set the same as in FIG.
  • the exposure module group MU (A) in the first row, the exposure module group MU (B) in the second row, and the exposure module in the third row are spaced apart in the X direction (first direction).
  • Each group MU(C) is composed of nine modules arranged in the Y direction (second direction).
  • the exposure module group MU(A) consists of nine modules MU1 to MU9 arranged in the +Y direction
  • the exposure module group MU(B) consists of nine modules MU10 to MU18 arranged in the -Y direction
  • the exposure module group MU(C) is composed of nine modules MU19 to MU27 arranged in the +Y direction.
  • the modules MU1 to MU27 all have the same configuration, and when the exposure module group MU(A) and the exposure module group MU(B) face each other in the X direction, the exposure module group MU(B) and the exposure module group It has a back-to-back relationship with MU(C) in the X direction.
  • the center point of each of the projection areas IA1 to IA9 in the first row is located on a line k1 parallel to the Y axis
  • the center point of each of the projection areas IA10 to IA18 in the second row is on a line k2 parallel to the Y axis
  • the center point of each of the projection areas IA19 to IA27 in the third row is located on a line k3 parallel to the Y-axis.
  • the distance in the X direction between the lines k1 and k2 is set to the distance XL1
  • the distance in the X direction between the lines k2 and k3 is set to the distance XL2.
  • the connecting portion between the -Y direction end of the projection area IA9 and the +Y direction end of the projection area IA10 is OLa
  • the -Y direction end of the projection area IA10 and the +Y direction end of the projection area IA27 and OLb, and the joint portion between the +Y-direction end of the projection area IA8 and the -Y-direction end of the projection area IA27 is OLc.
  • the orthogonal coordinate system XYZ is set the same as in FIGS.
  • the coordinate system X'Y' in the projection areas IA8, IA9, IA10, IA27 (and all other projection areas IAn) is It is set to be inclined by an angle ⁇ k with respect to the X-axis and Y-axis (lines k1 to k3) of the orthogonal coordinate system XYZ. That is, the entire DMD 10 is tilted by an angle ⁇ k in the XY plane so that the two-dimensional array of many micromirrors of the DMD 10 is in the X'Y' coordinate system.
  • a circular area encompassing each of the projection areas IA8, IA9, IA10, IA27 (and all other projection areas IAn as well) in FIG. 3 represents the circular image field PLf' of the projection unit PLU.
  • the projection image of the micromirrors arranged obliquely (angle ⁇ k) at the end of the projection area IA10 in the ⁇ Y′ direction and the projection image of the micromirrors arranged obliquely (angle ⁇ k) at the end of the projection area IA27 in the +Y′ direction It is set so that the projected images of the aligned micromirrors overlap.
  • the projection image of the micromirrors arranged obliquely (angle ⁇ k) at the end of the projection area IA8 in the +Y′ direction and the oblique (angle ⁇ k) end of the projection area IA27 in the ⁇ Y′ direction ) are set so as to overlap the projection images of the micromirrors arranged in the plane.
  • FIG. 4 is an optical view of the specific configuration of the module MU18 in the exposure module group MU(B) and the module MU19 in the exposure module group MU(C) shown in FIGS. 1 and 2 in the XZ plane. It is a layout diagram.
  • the orthogonal coordinate system XYZ in FIG. 4 is set the same as the orthogonal coordinate system XYZ in FIGS.
  • the module MU18 is shifted in the +Y direction with respect to the module MU19 by a constant interval and is installed in a back-to-back relationship.
  • the optical fiber unit FBU shown in FIG. 1 is composed of 27 optical fiber bundles FB1 to FB27 corresponding to the 27 modules MU1 to MU27 shown in FIG.
  • the illumination unit ILU of the module MU18 functions as a mirror 100 that reflects the illumination light ILm traveling in the -Z direction from the output end of the optical fiber bundle FB18, a mirror 102 that reflects the illumination light ILm from the mirror 100 in the -Z direction, and a collimator lens.
  • Mirror 102, input lens system 104, optical integrator 108, condenser lens system 110, and tilt mirror 112 are arranged along optical axis AXc parallel to the Z axis.
  • the optical fiber bundle FB18 is configured by bundling one optical fiber line or a plurality of optical fiber lines.
  • the illumination light ILm emitted from the output end of the optical fiber bundle FB18 (each of the optical fiber lines) is set to a numerical aperture (NA, also called divergence angle) so as to enter the input lens system 104 at the subsequent stage without being vignetted.
  • NA numerical aperture
  • the position of the front focal point of the input lens system 104 is designed to be the same as the position of the output end of the optical fiber bundle FB18.
  • the position of the rear focal point of the input lens system 104 is such that the illumination light ILm from a single or a plurality of point light sources formed at the output end of the optical fiber bundle FB18 is superimposed on the incident surface side of the MFE lens 108A of the optical integrator 108. is set to let Therefore, the incident surface of the MFE lens 108A is Koehler-illuminated by the illumination light ILm from the exit end of the optical fiber bundle FB18.
  • the geometric center point in the XY plane of the output end of the optical fiber bundle FB18 is positioned on the optical axis AXc, and the principal ray ( center line) is parallel (or coaxial) with the optical axis AXc.
  • Illumination light ILm from input lens system 104 is attenuated by an arbitrary value in the range of 0% to 90% by illumination adjustment filter 106, and then passes through optical integrator 108 (MFE lens 108A, field lens, etc.). , enter the condenser lens system 110 .
  • the MFE lens 108A is a two-dimensional arrangement of a large number of rectangular microlenses of several tens of ⁇ m square. ) is set to be almost similar to Also, the position of the front focal point of the condenser lens system 110 is set to be substantially the same as the position of the exit surface of the MFE lens 108A.
  • each illumination light from a point light source formed on each exit side of a large number of microlenses of the MFE lens 108A is converted into a substantially parallel light beam by the condenser lens system 110, and after being reflected by the tilt mirror 112, , are superimposed on the DMD 10 to form a uniform illuminance distribution. Since a surface light source in which a large number of point light sources (condensing points) are two-dimensionally densely arranged is generated on the exit surface of the MFE lens 108A, the MFE lens 108A functions as a surface light source forming member.
  • the optical axis AXc passing through the condenser lens system 110 and parallel to the Z-axis is bent by the tilt mirror 112 and reaches the DMD 10.
  • AXb the neutral plane including the center point of each of the numerous micromirrors of DMD 10 is set parallel to the XY plane. Therefore, the angle formed by the normal to the neutral plane (parallel to the Z-axis) and the optical axis AXb is the incident angle ⁇ of the illumination light ILm with respect to the DMD 10 .
  • the DMD 10 is attached to the underside of a mount portion 10M fixed to the support column of the illumination unit ILU.
  • a fine movement stage (No. 2 moving body) 10S is provided in the mount section 10M.
  • the fine movement stage 10S can be moved in the X direction and the Y direction by a fine movement stage driving section 10D (second driving section), and can rotate ⁇ z (Z axis). Therefore, by moving the fine movement stage 10S in the XY directions or rotating ⁇ z, the DMD 10 can be moved in the XY directions or rotated ⁇ z. Also, by using a displacement sensor (not shown), it is possible to perform feedback control on the amount of movement or the amount of rotation of the fine movement stage 10S.
  • FIG. 5A is a diagram schematically showing the DMD 10
  • FIG. 5B is a diagram showing the DMD 10 when the power is off
  • FIG. 5C is an explanation of mirrors in the ON state
  • FIG. 5D is a diagram for explaining the mirror in the OFF state.
  • mirrors in the ON state are indicated by hatching.
  • the DMD 10 has a plurality of micromirrors 10a whose reflection angle can be changed and controlled.
  • the DMD 10 is of a roll-and-pitch drive type in which the ON state and the OFF state are switched by tilting in the roll direction and tilting in the pitch direction of the micromirror 10a.
  • each micromirror 10a when the power is off, the reflecting surface of each micromirror 10a is set parallel to the X'Y' plane.
  • the arrangement pitch of the micromirrors 10a in the X' direction is Pdx ([mu]m), and the arrangement pitch in the Y' direction is Pdy ([mu]m).
  • Each micromirror 10a is turned on by tilting around the Y'-axis.
  • FIG. 5C shows a case where only the central micromirror 10a is in the ON state and the other micromirrors 10a are in the neutral state (neither ON nor OFF state).
  • Each micromirror 10a is turned off by tilting around the X' axis.
  • FIG. 5(D) shows a case where only the central micromirror 10a is in the OFF state and the other micromirrors 10a are in the neutral state.
  • the ON-state micromirror 10a is arranged from the X'Y' plane so that the illumination light applied to the ON-state micromirror 10a is reflected in the X direction of the XZ plane. It is driven to tilt at a predetermined angle. Further, the micromirror 10a in the OFF state is driven to be inclined at a predetermined angle from the X'Y' plane so that the illumination light irradiated to the micromirror 10a in the ON state is reflected in the Y direction in the YZ plane. .
  • the DMD 10 generates an exposure pattern by switching the ON state and OFF state of each micromirror 10a.
  • Illumination light reflected by the mirror in the OFF state is absorbed by a light absorber (not shown).
  • the DMD 10 has been described as an example of a spatial light modulator, the DMD 10 has been described as a reflective type that reflects laser light. A diffractive type may also be used.
  • a spatial light modulator can spatially and temporally modulate laser light.
  • the illumination light ILm irradiated to the ON-state micromirror 10a of the micromirrors 10a of the DMD 10 is reflected in the X direction in the XZ plane toward the projection unit PLU.
  • the illumination light ILm irradiated to the OFF-state micromirror 10a among the micromirrors 10a of the DMD 10 is reflected in the Y direction in the YZ plane so as not to face the projection unit PLU.
  • a movable shutter 114 for shielding reflected light from the DMD 10 during a non-exposure period is detachably provided in the optical path between the DMD 10 and the projection unit PLU.
  • the movable shutter 114 is rotated to an angular position retracted from the optical path during the exposure period, as illustrated on the module MU19 side, and inserted obliquely into the optical path during the non-exposure period, as illustrated on the module MU18 side. is rotated to the desired angular position.
  • a reflecting surface is formed on the DMD 10 side of the movable shutter 114 , and the light from the DMD 10 reflected there is applied to the light absorber 117 .
  • the light absorber 117 absorbs light energy in the ultraviolet wavelength range (wavelength of 400 nm or less) without re-reflection and converts it into heat energy. Therefore, the light absorber 117 is also provided with a heat dissipation mechanism (radiating fins or a cooling mechanism). Although not shown in FIG. 4, the reflected light from the micromirror 10a of the DMD 10, which is in the OFF state during the exposure period, is reflected in the Y direction ( 4) is absorbed by a similar light absorber (not shown in FIG. 4).
  • the projection unit PLU attached to the lower side of the optical surface plate 5 is a double-telecentric combination composed of a first lens group 116 and a second lens group 118 arranged along an optical axis AXa parallel to the Z axis. It is configured as an image projection lens system.
  • the first lens group 116 and the second lens group 118 are translated in the direction along the Z-axis (optical axis AXa) by a fine actuator with respect to a support column fixed to the lower side of the optical surface plate 5.
  • the projection magnification Mp is set to about 1/6, taking into account the tilt angle ⁇ k in the XY plane.
  • An imaging projection lens system consisting of lens groups 116 and 118 inverts/inverts the reduced image of the entire mirror surface of the DMD 10 and forms an image on a projection area IA18 (IAn) on the substrate P.
  • the first lens group 116 of the projection unit PLU can be finely moved in the direction of the optical axis AXa by an actuator in order to finely adjust the projection magnification Mp (about ⁇ several tens of ppm), and the second lens group 118 is for high-speed focus adjustment. Therefore, the actuator can be finely moved in the direction of the optical axis AXa. Further, a plurality of oblique incident light type focus sensors 120 are provided below the optical surface plate 5 in order to measure the positional change of the surface of the substrate P in the Z-axis direction with submicron accuracy.
  • the DMD 10 and the first lens group 116 are two deflection prisms 600a and 600b as shown in FIG. 6A or two prisms as shown in FIG. 6B.
  • Parallel plates 601a and 601b are provided.
  • the two deflection prisms 600a and 600b and the two parallel plates 601a and 601b will be referred to as optical elements OPE unless otherwise specified. Further, in the present embodiment, correcting the positional deviation is also referred to as image shifting.
  • the optical element OPE is provided between the DMD 10 and the first lens group 116 in this embodiment, it is not limited to this.
  • the optical element OPE may be provided between the first lens group 116 and the second lens group or between the projection unit PLU and the substrate P.
  • a projection optical system is configured by the projection unit PLU and the optical element OPE.
  • the projection area IAn must be tilted by the angle ⁇ k in the XY plane as described above with reference to FIG. (at least the optical path portion of the mirrors 102 to 112 along the optical axis AXc) are arranged so as to be inclined by an angle ⁇ k in the XY plane as a whole.
  • FIG. 7 is a diagram showing a schematic configuration of the alignment device 60 provided in the calibration reference unit CU attached to the end of the substrate holder 4B of the exposure apparatus EX.
  • the alignment device 60 includes a reference mark 60a, a two-dimensional imaging element 60e, and the like. Alignment device 60 is used to measure and calibrate the positions of various modules, and is also used to calibrate alignment system ALG.
  • the positions of the modules MU1 to MU27 are measured by projecting the DMD pattern for calibration onto the reference mark 60a of the alignment device 60 with the projection unit PLU, and measuring the relative position between the reference mark 60a and the DMD pattern.
  • alignment system ALG can be calibrated by measuring reference mark 60a of alignment device 60 with alignment system ALG. That is, the position of alignment system ALG can be determined by measuring reference mark 60a of alignment device 60 with alignment system ALG. Furthermore, using reference mark 60a, it is possible to determine the relative positions of alignment system ALG and modules MU1 to MU27.
  • Alignment system ALG can also measure the position of the alignment mark on substrate P placed on substrate holder 4B with reference to reference mark 60a of alignment device 60 .
  • FIG. 8 is a functional block diagram showing the functional configuration of the exposure control device 300 included in the exposure apparatus EX according to this embodiment.
  • the exposure control device 300 includes a drawing data storage unit 310 , a control data creation unit 301 , a correction data creation unit 302 , a drive control unit 304 and an exposure control unit 306 .
  • the drawing data storage unit 310 sends drawing data MD1 to MD27 for pattern exposure to the DMDs 10 of the 27 modules MU1 to MU27 shown in FIG.
  • the control data creation unit 301 creates first control data based on the alignment measurement result of the substrate P by the alignment system ALG, and outputs the first control data to the drive control unit 304 .
  • the driving amount of the fine movement stage 10S of each module MU1 to MU27 is defined based on the first control data.
  • the fine movement stage 10S driven by the fine movement stage driving section 10D is moved in the X and Y directions, or rotated in the ⁇ z direction. As a result, the projection image projected onto the substrate P can be image-shifted.
  • the driving amount of the projection unit PLU of each module MU1 to MU27 or the adjustment amount of the lens in the projection unit PLU is defined based on the first control data.
  • the projection unit PLU moves at least one lens group of the first lens group 116 or the second lens group 118 within the XY plane by an actuator or the like provided in the projection unit PLU.
  • the projection image projected onto the substrate P can be image-shifted. From the viewpoint of aberration, it is more preferable that the projection unit PLU moves the first lens group 116 and the second lens group 118 with the same amount of movement of the first lens group 116 and the second lens group 118 .
  • At least one lens provided in the first lens group 116 or the second lens group 118 is adjusted by an actuator or the like provided in the first lens group 116 or the second lens group 118. Move within the XY plane. As a result, the projection image projected onto the substrate P can be image-shifted.
  • the two deflection prisms 600a and 600b are driven based on the first control data.
  • the drive amount of 600b By controlling the distance between the two deflection prisms, the projection image projected onto the substrate P can be image-shifted.
  • the two deflection prisms 600a and 600b are arranged not only between the DMD 10 and the first lens group 116, but also between the first lens group 116 and the second lens group 118, between the second lens group 118 and the substrate P. can also be provided between
  • the two parallel plates 601a and 601b are driven based on the first control data.
  • the drive amount of 601b can be image-shifted by controlling the rotation amount for rotating the two parallel plates 601a and 601b by ⁇ z.
  • the two parallel plates 601a and 601b are placed not only between the DMD 10 and the first lens group 116, but also between the first lens group 116 and the second lens group 118, and between the second lens group 118 and the substrate P. can also be provided.
  • the reason for creating the first control data will be explained.
  • the substrate P is placed on the substrate holder 4B at a position deviated from the designed position.
  • the pattern generated based on the drawing data MDn will be exposed on the substrate P at a deviation from the designed position.
  • the positional displacement is determined. Rewriting the drawing data MDn according to the substrate P can be considered.
  • the drawing data MDn for the display panel has a large amount of data, it takes a long time (for example, 40 minutes) to rewrite, which may reduce the throughput. Further, if the amount of misalignment is smaller than the minimum line width (minimum pixel size) of the pattern projected onto the substrate P, the misalignment cannot be corrected even if the drawing data is changed. That is, it may be difficult to accurately correct by changing the drawing data.
  • the pattern projection position is shifted to correct the positional deviation of the substrate P from the design value.
  • the projection position of the pattern is shifted by controlling the driving of at least one of the fine movement stage 10S of the DMD 10, the optical system of the projection unit PLU, and the optical element OPE.
  • the fine movement stage 10S of the DMD 10 is rotated by ⁇ degrees and ⁇ z from the initial position, and the X position of the DMD 10 is changed.
  • the pattern can be projected to the design position.
  • the control data generating unit 301 considers the relationship between the modules MUn, Create data. It should be noted that the creation time of the first control data is, for example, about several seconds.
  • the correction data creation unit 302 creates correction data based on the calibration result and outputs it to the drive control unit 304 .
  • the correction data is the driving amount of the fine movement stage 10S of the DMD 10 and the projection unit PLU so as to correct the positional deviation of each component of the exposure apparatus EX (for example, the module MUn, the alignment system ALG, etc.). and data for correcting the drive amount of the optical system and the drive amount of the optical element OPE.
  • the correction data includes, for each of the modules MU1 to MU27, the offset value of the driving amount of the fine movement stage 10S of the DMD 10, the offset value of the driving amount of the optical system of the projection unit PLU, and the offset value of the driving amount of the optical element OPE. is defined.
  • the reason for creating the correction data will be explained.
  • the positions of the components of the exposure apparatus EX may shift, and calibration may be required between exposure processes.
  • calibration it is conceivable to redo configuration settings and rewrite drawing data so as to correct misalignment of each configuration.
  • the drive amount of the fine movement stage 10S of the DMD 10 is corrected so as to correct the positional deviation of each component of the exposure apparatus EX.
  • the correction data creation unit 302 thus creates correction data for correcting the drive amount of the fine movement stage 10S of the DMD 10, the drive amount of the optical system of the projection unit PLU, and the drive amount of the optical element OPE.
  • the drive control unit 304 generates second control data by correcting the first control data input from the control data creation unit 301 using the correction data input from the correction data creation unit 302 .
  • the drive control unit 304 generates the second control data by combining the first control data input from the control data generation unit 301 and the calibration result without generating the correction data in the correction data generation unit 302. Also good.
  • the drive control unit 304 controls the drive amount of the fine movement stage 10S of the DMD 10, the drive amount of the optical system of the projection unit PLU, and the optical elements included in the second control data.
  • Drive amount control data CD1 to CD27 are generated by correcting the drive amount of the OPE in real time, and sent to the modules MU1 to MU27.
  • the exposure control device 300 (driving control section 304) may control the first driving section that moves the XY stage 4A. Further, the exposure control device 300 (driving control section 304) may control the fine movement stage driving section 10D.
  • the exposure control device 300 (driving control unit 304) may also control a driving unit that drives the first lens group 116, the second lens group 118, and the optical element OPE provided in the projection optical system.
  • the substrate holder 4B may not move as designed (for example, it should move straight in the X direction, but it moves in a meandering manner).
  • the substrate holder 4B does not move as designed in this way (for example, when the position in the Y direction of the substrate holder 4B at a predetermined position in the X direction differs from the design value)
  • drawing data MDn The pattern based on is exposed on the substrate P with deviation from the designed position. At this time, it is difficult in terms of time to rewrite the drawing data so as to follow the positional deviation of the substrate holder 4B.
  • the misalignment cannot be corrected even if the drawing data is changed. That is, it may be difficult to accurately correct by changing the drawing data.
  • the drive control unit 304 controls the drive amount of the fine movement stage 10S of the DMD 10 and the drive of the optical system of the projection unit PLU, which are included in the second control data, based on the measurement results of the interferometers IFY1 to IFY4.
  • the modules MU1 to MU2 are controlled by drive amount control data (third control data) CD1 to CD27 obtained by correcting the amount and the drive amount of the optical element OPE in real time. This makes it possible to correct the positional deviation of the substrate P, the positional deviation of each component of the exposure apparatus EX, and the positional deviation of the substrate holder 4B during scanning exposure, and project and expose the pattern onto the substrate P as designed.
  • modules MU1-MU27 drive fine movement stage 10S of DMD 10, drive the optical system of projection unit PLU, and optical element It controls the driving of the OPE.
  • the exposure control unit (sequencer) 306 transmits the drawing data MD1 to MD27 from the drawing data storage unit 310 to the modules MU1 to MU27 in synchronization with the scanning exposure (moving position) of the substrate P, drive amount control data CD1 to CD27.
  • FIG. 9 shows an overview of the procedure when exposing the substrate P using the exposure apparatus EX for the first time, or when exposing the substrate P using the exposure apparatus EX that has not been used for a long time. It is a flow chart. In the following example, a case of scanning and exposing a pattern such as a display panel on the substrate P will be described.
  • step S11 initial calibration of the exposure apparatus EX is performed (step S11).
  • the settings of each component of the exposure apparatus EX are calibrated based on the measurement results obtained by the alignment system ALG and the like. For example, the positions of the modules MU1 to MU27, the initial positions and attitudes of the illumination units ILU, DMD10, and the projection unit PLU of the modules MU1 to MU27, and the inclination of the substrate holder 4B are corrected.
  • the substrate P is loaded into the main body of the exposure apparatus EX and placed on the substrate holder 4B (step S15).
  • step S17 alignment marks formed at a plurality of predetermined positions on the substrate P are measured by a plurality of alignment systems ALG (step S17).
  • control data generation unit 301 calculates the driving amount of the fine movement stage 10S of the DMD 10 and the driving amount of the optical system of the projection unit PLU so as to correct the positional deviation of the substrate P. , and the drive amount of the optical element OPE are created (step S19).
  • the driving amount control data CDn at this time is data (fourth control data) obtained by correcting the first control data in real time based on the measurement results of the interferometers IFY1 to IFY4 (that is, the position of the substrate holder 4B). be.
  • the substrate P is unloaded (step S23).
  • step S25 it is determined whether or not calibration is necessary (step S25). For example, when the number of substrates P subjected to scanning exposure processing reaches a predetermined number (for example, 10) after the previous calibration, it is determined that calibration is necessary. Alternatively, it is determined that calibration is necessary when a predetermined time has passed every day.
  • a predetermined number for example, 10
  • step S25/NO If calibration is unnecessary (step S25/NO), return to step S15. On the other hand, if calibration is required (step S25/YES), calibration is performed (step S27).
  • the correction data generation unit 302 determines the driving amount of the fine movement stage 10S of the DMD 10 and the driving of the optical system of the projection unit PLU so as to correct the positional deviation of each device of the exposure device EX. Correction data for correcting the amount and the driving amount of the optical element OPE are created (step S29).
  • a new substrate P is loaded into the main body of the exposure apparatus EX and placed on the substrate holder 4B (step S31).
  • step S33 alignment marks formed at a plurality of predetermined positions on the newly loaded substrate P are measured by a plurality of alignment systems ALG (step S33).
  • control data generation unit 301 calculates the driving amount of the fine movement stage 10S of the DMD 10 and the driving amount of the optical system of the projection unit PLU so as to correct the positional deviation of the substrate P. , and the driving amount of the optical element OPE are created (step S35).
  • the drive control unit 304 generates second control data by correcting the first control data created in step S35 with the correction data created in step S29 (step S37).
  • step S29 may be omitted, and the drive control unit 304 may create the second control data based on the first control data and the calibration result.
  • the driving amount control data CDn at this time is data (third control data) obtained by correcting the second control data in real time based on the measurement results of the interferometers IFY1 to IFY4 (that is, the position of the substrate holder 4B). be.
  • the substrate P is unloaded (step S41).
  • step S43 it is determined whether or not calibration is necessary. For example, when the number of substrates P subjected to scanning exposure processing reaches a predetermined number (for example, 10) after the previous calibration, it is determined that calibration is necessary.
  • a predetermined number for example, 10
  • step S43/NO If calibration is unnecessary (step S43/NO), return to step S31. On the other hand, if calibration is required (step S43/YES), calibration is performed (step S27).
  • step S21 the drive control unit 304 corrects the first control data in real time based on the measurement results of the interferometers IFY1 to IFY4 (that is, the position of the substrate holder 4B) to generate the drive amount control data CDn for each module. It can be sent to MUn.
  • a plurality of modules MU1 to MU1 each including a plurality of illumination units ILU for irradiating light and a plurality of projection units PLU for projecting patterns formed by the respective DMDs 10 onto the substrate P placed on the substrate holder 4B. and MU27.
  • the exposure apparatus EX further drives the DMD 10 of each of the modules MU1 to MU27 according to at least one of the state of the substrate P, the state of the substrate holder 4B, and the state of the exposure apparatus EX without changing the drawing data MDn.
  • the drive control unit 304 drives the DMD 10 and the projection unit PLU according to at least one of the state of the substrate P, the state of the substrate holder 4B, and the state of the exposure apparatus EX without changing the drawing data MDn.
  • the driving of the optical element OPE it is possible to expose a predetermined pattern on a predetermined position of the substrate P while suppressing a decrease in the throughput of the exposure apparatus EX. Further, when the amount of positional deviation is smaller than the minimum line width (minimum pixel dimension) of the pattern projected onto the substrate P, it is difficult to correct the positional deviation by rewriting the drawing data. In this embodiment, since the positional deviation is corrected by driving the DMD 10, driving the projection unit PLU, and driving the optical element OPE, the amount of positional deviation is smaller than the minimum line width of the pattern projected onto the substrate P. Even in this case, the positional deviation can be corrected. This improves exposure accuracy.
  • the exposure apparatus EX includes an alignment system ALG that measures the state of the substrate P with respect to the substrate holder 4B, and a pattern projected onto a predetermined position on the substrate P based on the measurement result of the alignment system ALG.
  • a control data creation unit that creates first control data for controlling the driving of at least one of the fine movement stage 10S of the DMD 10, the optical system of the projection unit PLU, and the optical element OPE.
  • the drive control unit 304 controls driving of the fine movement stage 10S of the DMD 10, driving of the optical system of the projection unit PLU, and driving of the optical element OPE.
  • the pattern can be exposed onto the substrate P by correcting the positional deviation from the design position of the substrate P without lowering the throughput. Further, even if the amount of positional deviation is smaller than the minimum line width of the pattern projected onto the substrate P, the positional deviation can be corrected.
  • the exposure apparatus EX includes a correction data creation unit 302 that creates correction data for correcting the first control data based on the calibration result, and the drive control unit 304 creates the first control data.
  • the driving of the fine movement stage 10S of the DMD 10, the driving of the optical system of the projection unit PLU, and the driving of the optical element OPE are controlled. Accordingly, the pattern can be exposed onto the substrate P by correcting the positional deviation of each component of the exposure apparatus EX without lowering the throughput. Further, even when the positional deviation amount of each component of the exposure apparatus EX is smaller than the minimum line width of the pattern projected onto the substrate P, the positional deviation can be corrected.
  • the exposure apparatus EX includes interferometers IFY1 to IFY4 for measuring position information of the substrate holder 4B with respect to the surface plate 3 or the optical surface plate 5.
  • the predetermined pattern can be exposed on the designed position of the substrate P without lowering the throughput. Further, even if the positional deviation amount of the substrate holder 4B is smaller than the minimum line width of the pattern projected onto the substrate P, the positional deviation can be corrected.
  • the exposure apparatus EX according to the above embodiment can also be used when exposing another pattern to the substrate P already exposed with a predetermined pattern.
  • a second pattern different from the first pattern may be exposed.
  • the substrate P is exposed with a first pattern using an exposure apparatus that uses a mask substrate
  • the substrate P is exposed with a second pattern using the exposure apparatus EX according to the present embodiment.
  • FIG. 10 is a diagram showing a case where patterns for four display panels are exposed on one substrate P.
  • FIG. 10 it is assumed that patterns of four display panels PNL1 to PNL4 are exposed on one substrate P by the first exposure process.
  • hatched portions indicate regions exposed in the first exposure process, and black circles in each region indicate alignment marks AM.
  • the dotted line indicates the cutting line for separating each panel, and the dashed-dotted line indicates the position where the display panel PNL2 and its alignment mark AM should have been exposed in the first exposure process.
  • the pattern of the display panel PNL2 is exposed with a large deviation from the design position compared to the other display panels PNL1, PNL3, and PNL4.
  • the drawing data in the second exposure process is rewritten so as to match the exposed area of the display panel PNL2 in the first exposure process, it takes a long time to rewrite the drawing data, resulting in a decrease in throughput. Resulting in.
  • the second pattern can be exposed so as to match the exposed area of the first pattern of the display panel PNL2 as follows.
  • control data creation unit 301 creates first control data so that the deviation from the design position of the exposed region of the first pattern on display panel PNL2 is corrected.
  • the drive control unit 304 controls the driving of the fine movement stage 10S of the DMD 10 of the modules MU1 to MU27 and the optical system of the projection unit PLU based on the first control data, so that the first pattern is exposed deviated from the designed position.
  • the second pattern can be exposed in the exposed areas of the first pattern.
  • the first control data corresponding to the positional deviation of the exposed area from the designed position is created for each area of the display panels PNL1 to PNL4.
  • the exposure apparatus EX can expose the second pattern so as to match the exposed area of the first pattern without lowering the throughput. can do.
  • the distance D1 between the exposure area of the display panel PNL1 and the exposure area of the display panel PNL2 is the distance of the fine movement stage 10S of the DMD 10 when the pattern exposure of the display panel PNL1 is completed.
  • the substrate holder 4B moves the distance D1 longer than the time required to change from the state, the state of the optical system of the projection unit PLU, and the state of the optical element OPE to the state for exposing the display panel PNL2. It is preferable that the time is set to be longer.
  • the state of the fine movement stage 10S refers to relative positional information of the DMD 10 with respect to the substrate holder 4B, the XY stage 4A, the optical platen 5, and the platen 3, the inclination angle in the ⁇ z-axis direction, and the like.
  • the state of the optical system of the projection unit PLU means the first lens group 116, the second lens group 118, the first lens group 116 and the second lens group 116 with respect to the substrate holder 4B, the XY stage 4A, the optical surface plate 5, and the surface plate 3. It refers to relative position information of each lens included in the lens group 118 and the like.
  • the state of the optical element OPE refers to relative positional information of the optical element OPE with respect to the substrate holder 4B, the XY stage 4A, the optical platen 5, and the platen 3, and the like. If the optical element OPE is a pair of deflection prisms, the state of the optical element OPE includes the distance between the pair of deflection prisms and the rotation angle of each deflection prism. If the optical element OPE is a pair of parallel plates, the state of the optical element OPE includes the interval between the pair of parallel plates and the rotation angle of each parallel plate. Therefore, the exposure apparatus EX according to the above embodiment can expose the display panel PNL1 and the display panel PNL2 in one scanning exposure.
  • the DMD 10 moves slightly when the pattern exposure of the display panel PNL1 is completed while the exposure apparatus EX moves the distance D1 after exposing the exposure area of the display panel PNL1. At least one of the state of the stage 10S, the state of the optical system of the projection unit PLU, and the state of the optical element OPE is changed to a state for exposing the display panel PNL2, and the exposure area of the display panel PNL2 is exposed.
  • the exposure control device 300 (drive control unit 304) provided in the exposure apparatus EX moves the XY stage 4A in the scanning direction (X-axis direction) to expose the exposure area of the display panel PNL1 of the substrate P, and then the display panel.
  • the exposure area of PNL2 is exposed, and the setting of the exposure apparatus EX is changed while the projection optical system advances the distance D1 between the exposure areas of the display panels PNL1 and PNL2.
  • the exposure control device 300 (drive control unit 304) provided in the exposure apparatus EX changes the settings of the exposure apparatus EX by controlling the driving of the fine movement stage 10S of the DMD 10 or the projection optical system.
  • the control unit provided in the exposure apparatus EX includes an XY stage 4A, a fine movement stage driving unit 10D that changes at least one of the position and orientation of the spatial light modulator 10, and a first lens group 116 provided in the projection optical system. , the second lens group 118, and a driving unit that drives the optical element OPE, the exposure area of the display panel PNL1 and the exposure area of the display panel PNL2 aligned in the scanning direction (X-axis direction) on the substrate P are projected optically.
  • the XY stage 4A is driven so as to move to the same side in the scanning direction (X-axis direction) with respect to the optical axis of the system, and the exposure area of the display panel PNL1 on the substrate P moving in the scanning direction (X-axis direction). and the exposure area of the display panel PNL2 (distance D) intersects the optical axis. drive at least one of
  • the state of the fine movement stage 10S of the DMD 10 the state of the optical system of the projection unit PLU, and the state of the optical element OPE are the states for exposing the display panel PNL2. Since exposure processing can be continued without waiting for , the throughput can be improved.
  • the positional deviation from the design value of the exposed area in the first exposure process of the display panel PNL2 drives the fine movement stage 10S of the DMD 10, the optical system of the projection unit PLU, and the optical element OPE. If the amount is such that it cannot be corrected even if the projection position of the pattern is shifted, the exposure process is not started, and the relevant information is displayed on the display device provided in the exposure apparatus EX to determine whether or not to continue the exposure process.
  • the operator of the device EX may be allowed to make the selection. Alternatively, the exposure apparatus EX may output a warning. Alternatively, the operator may be allowed to select whether to continue the exposure process, stop the exposure process, or expose the substrate P to a pattern that is known to be defective.
  • the exposure result (exposure shape) of the first exposure process of the display panel PNL1 is not a square like PNL1 in FIG. 10, but a barrel shape like FIG. It may have a pincushion shape.
  • fine movement stage 10S of DMD 10, the optical system of projection unit PLU, and optical element OPE are driven in real time during exposure of display panel PNL1 based on the measurement result of alignment mark AM of display panel PNL1 by alignment system ALG.
  • the projection position of the pattern can be corrected at each position on the display panel PNL1.
  • the shape of the display panel PNL1 is not limited to this. As shown in FIG. include.
  • such an exposure result is not limited to PNL1, and PLN2 to PLN4 may also have similar exposure results.
  • the exposure apparatus EX can expose the display panel PNL1 and the display panel PNL3 in one scanning exposure.
  • the alignment system ALG measures the alignment mark AM of the display panel PNL1 (first measurement) and the alignment mark AM of the display panel PNL3 (second measurement). and alignment measurement of the two display panels PNL1 and PLN3.
  • the exposure apparatus EX according to the above-described embodiment can expose the display panel PNL1 and the display panel PNL2 in one scanning exposure.
  • the distance D1 between the exposure area of the display panel PNL1 and the exposure area of the display panel PNL2 can be set larger than the exposure field of the exposure module. Also, if there is no problem with accuracy, the distance D1 may be set smaller than the exposure field of view of the exposure module.
  • the modules MU1 to MU4 are used to expose the PNL3, and the modules MU5 to MU9 are used to expose the PNL1.
  • the modules MU1 to MU4 drive the fine movement stage 10S of the DMD 10, the optical system of the projection unit PLU, and the optical element OPE in real time based on the measurement result of the second measurement while the display panel PNL3 is being exposed. Exposure is performed while correcting the projection position of the pattern.
  • the modules MU5 to MU9 drive the fine movement stage 10S of the DMD 10, the optical system of the projection unit PLU, and the optical element OPE in real time based on the measurement result of the first measurement while the display panel PNL1 is being exposed, thereby driving the pattern projection position. Exposure is performed while correcting the As a result, exposure can be performed while correcting a plurality of panels PNL1 and PLN3 in one scanning exposure.
  • the modules MU1 to MU4 expose the display panel PNL3 and the modules MU5 to MU9 expose the display panel PNL1.
  • the exposure module group MU(B) and the exposure module group MU(C) are the same as the exposure module group MU(A).
  • the distance D1 between the exposure area of the display panel PNL1 and the exposure area of the display panel PNL2 is short, and while the substrate holder 4B moves the distance D1, the fine movement stage 10S of the DMD 10 is driven and the projection unit PLU is moved.
  • the information is displayed on the display device of the exposure apparatus EX so that the operator of the exposure apparatus EX can decide whether to continue the exposure process.
  • the operator may be allowed to select whether to continue the exposure process, stop the exposure process, or expose the substrate P to a pattern that is known to be defective.
  • the drive control unit 304 controls the driving of the fine movement stage 10S of the DMD 10, the driving of the optical system of the projection unit PLU, and the driving of the optical element OPE. It is not limited.
  • the drive control unit 304 may control the drive of any one of the fine movement stage 10S of the DMD 10, the optical system of the projection unit PLU, and the optical element OPE.
  • the amount of misalignment measured by alignment system ALG, calibration, and interferometers IFY1 to IFY4 exceeds a prescribed amount predetermined by the operator, exposure, continuation of exposure, or realignment is performed. It is also possible to predetermine, for example, redo as recipe information (exposure conditions).
  • the drive control unit 304 corrects the first control data or the second control data based on the measurement results of the interferometers IFY1 to IFY4. No correction is required.
  • the drive control unit 304 controls the driving of the fine movement stage 10S of the DMD 10, the driving of the optical system of the projection unit PLU, and the driving of the optical element OPE based on the first control data or the second control data. do it.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

露光装置のスループットを向上するために、描画データに応じた空間光変調器によって生成されるパターン光を物体に対して露光する露光装置であって、前記空間光変調器に照明光を照射する照明光学系と、前記物体に前記パターン光を投影する投影光学系と、前記投影光学系の下方に配置され、前記物体を保持する第1移動体と、前記投影光学系の光軸と直交する所定平面内で互いに直交する第1方向と第2方向とへ前記第1移動体を移動させる第1駆動部と、前記空間光変調器を保持する第2移動体と、前記第2移動体を移動させる第2駆動部と、前記物体の位置情報と、前記第1移動体の位置情報と、の少なくとも一つを計測結果として得る計測部と、前記計測部で得られた前記計測結果に基づいて前記第2移動体の駆動と、前記投影光学系の調整と、の少なくとも一方を制御し、前記パターン光の露光位置を制御する制御部と、を備える。 

Description

露光装置及びデバイス製造方法
 露光装置及びデバイス製造方法に関する。
 従来、液晶や有機ELによる表示パネル、半導体素子(集積回路等)等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、ステップ・アンド・リピート方式の投影露光装置(いわゆるステッパ)、あるいはステップ・アンド・スキャン方式の投影露光装置(いわゆるスキャニング・ステッパ(スキャナとも呼ばれる))などが使用されている。この種の露光装置は、ガラス基板、半導体ウェハ、プリント配線基板、樹脂フィルム等の被露光基板(以下、単に基板とも呼ぶ)の表面に塗布された感光層に電子デバイス用のマスクパターンを投影露光している。
 そのマスクパターンを固定的に形成するマスク基板の作製には時間と経費を要する為、マスク基板の代わりに、微少変位するマイクロミラーの多数を規則的に配列したデジタル・ミラー・デバイス(DMD)等の空間光変調素子(可変マスクパターン生成器)を使用した露光装置が知られている(例えば、特許文献1参照)。特許文献1に開示された露光装置では、例えば、波長375nmのレーザダイオード(LD)からの光と波長405nmのLDからの光とをマルチモードのファイバーバンドルで混合した照明光を、デジタル・ミラー・デバイス(DMD)に照射し、傾斜制御された多数のマイクロミラーの各々からの反射光を結像光学系、マイクロレンズアレーを介して基板に投影露光している。
 露光装置のスループットの向上が望まれている。
特開2019-23748号公報
 開示の態様によれば、露光装置は、描画データに応じた空間光変調器によって生成されるパターン光を物体に対して露光する露光装置であって、前記空間光変調器に照明光を照射する照明光学系と、前記物体に前記パターン光を投影する投影光学系と、前記投影光学系の下方に配置され、前記物体を保持する第1移動体と、前記投影光学系の光軸と直交する所定平面内で互いに直交する第1方向と第2方向とへ前記第1移動体を移動させる第1駆動部と、前記空間光変調器を保持する第2移動体と、前記第2移動体を移動させる第2駆動部と、前記物体の位置情報と、前記第1移動体の位置情報の少なくとも一つを含む計測結果を計測する計測部と、前記計測部で得られた前記計測結果に基づいて前記第2移動体の駆動と、前記投影光学系の調整と、の少なくとも一方を制御し、前記パターン光の露光位置を制御する制御部と、を備える。
 なお、後述の実施形態の構成を適宜改良しても良く、また、少なくとも一部を他の構成物に代替させても良い。更に、その配置について特に限定のない構成要件は、実施形態で開示した配置に限らず、その機能を達成できる位置に配置することができる。
図1は、一実施形態に係る露光装置の外観構成の概要を示す斜視図である。 図2は、複数の露光モジュールの各々の投影ユニットによって基板上に投射されるDMDの投影領域の配置例を示す図である。 図3は、図2において、特定の4つの投影領域の各々による継ぎ露光の状態を説明する図である。 図4は、X方向(走査露光方向)に並ぶ2つの露光モジュールの具体的な構成をXZ面内で見た光学配置図である。 図5(A)は、DMDを概略的に示す図であり、図5(B)は、電源がOFFの場合のDMDを示す図であり、図5(C)は、ON状態のミラーについて説明するための図であり、図5(D)は、OFF状態のミラーについて説明するための図である。 図6(A)及び図6(B)は、DMDと投影ユニットの第1レンズ群との間に設けられる光学素子について説明する図である。 図7は、露光装置の基板ホルダ上の端部に付設された較正用基準部に設けられるアライメント装置の概略構成を示す図である。 図8は、露光制御装置の機能構成を示す機能ブロック図である。 図9は、基板に露光処理をする場合の手順の概要を示すフローチャートである。 図10は、1枚の基板に4枚の表示パネルのパターンを露光する場合について示す図である。 図11(A)~図11(C)は、表示パネルの1回目の露光処理による露光結果の例を示す図である。
 一実施形態に係るパターン露光装置(以下、単に露光装置と記載する)について、図面を参照して説明する。
〔露光装置の全体構成〕
 図1は、一実施形態に係る露光装置EXの外観構成の概要を示す斜視図である。露光装置EXは、空間光変調素子(SLM:Spatial Light Modulator)によって、空間内での強度分布が動的に変調される露光光を被露光基板に結像投影する装置である。空間光変調器の例としては、液晶素子、デジタルマイクロミラーデバイス(DMD:Digital Micromirror Device)、磁気光学空間光変調器(MOSLM:Magneto Optic Spatial Light Modulator)等が挙げられる。本実施形態に係る露光装置EXは、空間光変調器としてDMD10を備えるが、他の空間光変調器を備えていてもよい。
 特定の実施形態において、露光装置EXは、表示装置(フラットパネルディスプレイ)などに用いられる矩形(角型)のガラス基板を露光対象物とするステップ・アンド・スキャン方式の投影露光装置(スキャナ)である。そのガラス基板は、少なくとも一辺の長さ、または対角長が500mm以上であり、厚さが1mm以下のフラットパネルディスプレイ用の基板Pとする。露光装置EXは、基板Pの表面に一定の厚みで形成された感光層(フォトレジスト)にDMDで作られるパターンの投影像を露光する。露光後に露光装置EXから搬出される基板Pは、現像工程の後に所定のプロセス工程(成膜工程、エッチング工程、メッキ工程等)に送られる。
 露光装置EXは、アクティブ防振ユニット1a、1b、1c、1d(1dは不図示)上に載置されたペデスタル2と、ペデスタル2上に載置された定盤3と、定盤3上で2次元に移動可能なXYステージ4Aと、XYステージ4Aを移動させる第1駆動部と、XYステージ4A上で基板Pを平面上に吸着保持する基板ホルダ4B(第1移動体)と、基板ホルダ4B(基板P)の2次元の移動位置を計測するレーザ測長干渉計(以下、単に干渉計とも呼ぶ)IFX、IFY1~IFY4とで構成されるステージ装置を備える。このようなステージ装置は、例えば、米国特許公開第2010/0018950号明細書、米国特許公開第2012/0057140号明細書に開示されている。
 図1において、直交座標系XYZのXY面はステージ装置の定盤3の平坦な表面と平行に設定され、XYステージ4AはXY面内で並進移動可能に設定される。また、本実施の形態では、座標系XYZのX軸と平行な方向がスキャン露光時の基板P(XYステージ4A)の走査移動方向に設定される。基板PのX軸方向の移動位置は干渉計IFXで逐次計測され、Y軸方向の移動位置は、4つの干渉計IFY1~IFY4の内の少なくとも1つ(好ましくは2つ)以上によって逐次計測される。基板ホルダ4Bは、XYステージ4Aに対して、XY面と垂直なZ軸の方向に微少移動可能、且つXY面に対して任意の方向に微少傾斜可能に構成され、基板Pの表面と投影されたパターンの結像面とのフォーカス調整とレベリング(平行度)調整とがアクティブに行われる。更に基板ホルダ4Bは、XY面内での基板Pの傾きをアクティブに調整する為に、Z軸と平行な軸線の回りに微少回転(θz回転)可能に構成されている。
 露光装置EXは、更に、複数の露光(描画)モジュール群MU(A)、MU(B)、MU(C)を保持する光学定盤5と、光学定盤5をペデスタル2から支持するメインコラム6a、6b、6c、6d(6dは不図示)とを備える。複数の露光モジュール群MU(A)、MU(B)、MU(C)の各々は、光学定盤5の+Z方向側に取り付けられている。複数の露光モジュール群MU(A)、MU(B)、MU(C)の各々は、光学定盤5の+Z方向側に取り付けられて、光ファイバーユニットFBUからの照明光を入射する照明ユニットILUと、光学定盤5の-Z方向側に取り付けられてZ軸と平行な光軸を有する投影ユニットPLUとを有する。更に露光モジュール群MU(A)、MU(B)、MU(C)の各々は、照明ユニットILUからの照明光を-Z方向に向けて反射させて、投影ユニットPLUに入射させる光変調部としてのDMD10を備える。照明ユニットILU、DMD10、投影ユニットPLUによる露光モジュールの詳細な構成は後述する。
 露光装置EXの光学定盤5の-Z方向側には、基板P上の所定の複数位置に形成されたアライメントマークを検出する複数のアライメント系(顕微鏡)ALGが取り付けられている。また、基板ホルダ4B上の-X方向の端部には、キャリブレーション用の較正用基準部CUが設けられている。キャリブレーションは、アライメント系ALGの各々の検出視野のXY面内での相対的な位置関係の確認(較正)、露光モジュール群MU(A)、MU(B)、MU(C)の各々の投影ユニットPLUから投射されるパターン像の各投影位置とアライメント系ALGの各々の検出視野の位置とのベースライン誤差の確認(較正)、及び投影ユニットPLUから投射されるパターン像の位置や像質の確認の少なくとも1つを含む。なお、図1では一部を不図示としたが、露光モジュール群MU(A)、MU(B)、MU(C)の各々は、本実施の形態では、一例として9つのモジュールがY方向に一定間隔で並べられるが、そのモジュール数は9つよりも少なくてもよいし、多くてもよい。また、図1では、X軸方向に露光モジュールを3列配置しているが、X軸方向に配置する露光モジュールの列の数は、2列以下でもよいし、4列以上であってもよい。
 図2は、露光モジュール群MU(A)、MU(B)、MU(C)の各々の投影ユニットPLUによって基板P上に投射されるDMD10の投影領域IAnの配置例を示す図であり、直交座標系XYZは図1と同じに設定される。本実施の形態では、X方向(第1方向)に離間して配置される1列目の露光モジュール群MU(A)、2列目の露光モジュール群MU(B)、3列目の露光モジュール群MU(C)の各々は、Y方向(第2方向)に並べられた9つのモジュールで構成される。露光モジュール群MU(A)は、+Y方向に配置された9つのモジュールMU1~MU9で構成され、露光モジュール群MU(B)は、-Y方向に配置された9つのモジュールMU10~MU18で構成され、露光モジュール群MU(C)は、+Y方向に配置された9つのモジュールMU19~MU27で構成される。モジュールMU1~MU27は全て同じ構成であり、露光モジュール群MU(A)と露光モジュール群MU(B)とをX方向に関して向かい合わせの関係としたとき、露光モジュール群MU(B)と露光モジュール群MU(C)とはX方向に関して背中合わせの関係になっている。
 図2において、モジュールMU1~MU27の各々による投影領域IA1、IA2、IA3、・・・、IA27(nを1~27として、IAnと表すこともある)の形状は、一例として、ほぼ1:2の縦横比を持ってY方向に延びた長方形になっている。本実施の形態では、基板Pの+X方向の走査移動に伴って、1列目の投影領域IA1~IA9の各々の-Y方向の端部と、2列目の投影領域IA10~IA18の各々の+Y方向の端部とで継ぎ露光が行われる。そして、1列目と2列目の投影領域IA1~IA18の各々で露光されなかった基板P上の領域は、3列目の投影領域IA19~IA27の各々によって継ぎ露光される。1列目の投影領域IA1~IA9の各々の中心点はY軸と平行な線k1上に位置し、2列目の投影領域IA10~IA18の各々の中心点はY軸と平行な線k2上に位置し、3列目の投影領域IA19~IA27の各々の中心点はY軸と平行な線k3上に位置する。線k1と線k2のX方向の間隔は距離XL1に設定され、線k2と線k3のX方向の間隔は距離XL2に設定される。
 ここで、投影領域IA9の-Y方向の端部と投影領域IA10の+Y方向の端部との継ぎ部をOLa、投影領域IA10の-Y方向の端部と投影領域IA27の+Y方向の端部との継ぎ部をOLb、そして投影領域IA8の+Y方向の端部と投影領域IA27の-Y方向の端部との継ぎ部をOLcとしたとき、その継ぎ露光の状態を図3にて説明する。図3において、直交座標系XYZは図1、図2と同一に設定され、投影領域IA8、IA9、IA10、IA27(及び、他の全ての投影領域IAn)内の座標系X’Y’は、直交座標系XYZのX軸、Y軸(線k1~k3)に対して、角度θkだけ傾くように設定される。即ち、DMD10の多数のマイクロミラーの2次元の配列が座標系X’Y’となるように、DMD10の全体がXY面内で角度θkだけ傾けられている。
 図3中の投影領域IA8、IA9、IA10、IA27(及び、他の全ての投影領域IAnも同じ)の各々を包含する円形の領域は、投影ユニットPLUの円形イメージフィールドPLf’を表す。継ぎ部OLaでは、投影領域IA9の-Y’方向の端部の斜め(角度θk)に並ぶマイクロミラーの投影像と、投影領域IA10の+Y’方向の端部の斜め(角度θk)に並ぶマイクロミラーの投影像とがオーバーラップするように設定される。また、継ぎ部OLbでは、投影領域IA10の-Y’方向の端部の斜め(角度θk)に並ぶマイクロミラーの投影像と、投影領域IA27の+Y’方向の端部の斜め(角度θk)に並ぶマイクロミラーの投影像とがオーバーラップするように設定される。同様に、継ぎ部をOLcでは、投影領域IA8の+Y’方向の端部の斜め(角度θk)に並ぶマイクロミラーの投影像と、投影領域IA27の-Y’方向の端部の斜め(角度θk)に並ぶマイクロミラーの投影像とがオーバーラップするように設定される。
〔照明ユニットの構成〕
 図4は、図1、図2に示した露光モジュール群MU(B)中のモジュールMU18と、露光モジュール群MU(C)中のモジュールMU19との具体的な構成をXZ面内で見た光学配置図である。図4の直交座標系XYZは図1~図3の直交座標系XYZと同じに設定される。また、図2に示した各モジュールのXY面内での配置から明らかなように、モジュールMU18はモジュールMU19に対して+Y方向に一定間隔だけずらされると共に、互いに背中合わせの関係で設置されている。モジュールMU18内の各光学部材とモジュールMU19内の各光学部材は、それぞれ同じ材料で同じに構成されるので、ここでは主にモジュールMU18の光学構成について詳細に説明する。なお、図1に示した光ファイバーユニットFBUは、図2に示した27個のモジュールMU1~MU27の各々に対応して、27本の光ファイバー束FB1~FB27で構成される。
 モジュールMU18の照明ユニットILUは、光ファイバー束FB18の出射端から-Z方向に進む照明光ILmを反射するミラー100、ミラー100からの照明光ILmを-Z方向に反射するミラー102、コリメータレンズとして作用するインプットレンズ系104、照度調整フィルター106、マイクロ・フライ・アイ(MFE)レンズやフィールドレンズ等を含むオプチカルインテグレータ108、コンデンサーレンズ系110、及び、コンデンサーレンズ系110からの照明光ILmをDMD10に向けて反射する傾斜ミラー112とで構成される。ミラー102、インプットレンズ系104、オプチカルインテグレータ108、コンデンサーレンズ系110、並びに傾斜ミラー112は、Z軸と平行な光軸AXcに沿って配置される。
 光ファイバー束FB18は、1本の光ファイバー線、又は複数本の光ファイバー線を束ねて構成される。光ファイバー束FB18(光ファイバー線の各々)の出射端から照射される照明光ILmは、後段のインプットレンズ系104でけられること無く入射するような開口数(NA、広がり角とも呼ぶ)に設定されている。インプットレンズ系104の前側焦点の位置は、設計上では光ファイバー束FB18の出射端の位置と同じになるように設定される。さらに、インプットレンズ系104の後側焦点の位置は、光ファイバー束FB18の出射端に形成される単一又は複数の点光源からの照明光ILmをオプチカルインテグレータ108のMFEレンズ108Aの入射面側で重畳させるように設定されている。従って、MFEレンズ108Aの入射面は光ファイバー束FB18の出射端からの照明光ILmによってケーラー照明される。なお、初期状態では、光ファイバー束FB18の出射端のXY面内での幾何学的な中心点が光軸AXc上に位置し、光ファイバー線の出射端の点光源からの照明光ILmの主光線(中心線)は光軸AXcと平行(又は同軸)になっているものとする。
 インプットレンズ系104からの照明光ILmは、照度調整フィルター106で0%~90%の範囲の任意の値で照度を減衰された後、オプチカルインテグレータ108(MFEレンズ108A、フィールドレンズ等)を通って、コンデンサーレンズ系110に入射する。MFEレンズ108Aは、数十μm角の矩形のマイクロレンズを2次元に多数配列したものであり、その全体の形状はXY面内で、DMD10のミラー面全体の形状(縦横比が約1:2)とほぼ相似になるように設定される。また、コンデンサーレンズ系110の前側焦点の位置は、MFEレンズ108Aの射出面の位置とほぼ同じになるように設定される。その為、MFEレンズ108Aの多数のマイクロレンズの各射出側に形成される点光源からの照明光の各々は、コンデンサーレンズ系110によってほぼ平行な光束に変換され、傾斜ミラー112で反射された後、DMD10上で重畳されて均一な照度分布となる。MFEレンズ108Aの射出面には、多数の点光源(集光点)が2次元的に密に配列した面光源が生成されることから、面光源化部材として機能する。
 図4に示すモジュールMU18内において、コンデンサーレンズ系110を通るZ軸と平行な光軸AXcは、傾斜ミラー112で折り曲げられてDMD10に至るが、傾斜ミラー112とDMD10の間の光軸を光軸AXbとする。本実施の形態において、DMD10の多数のマイクロミラーの各々の中心点を含む中立面は、XY面と平行に設定されているものとする。従って、その中立面の法線(Z軸と平行)と光軸AXbとの成す角度が、DMD10に対する照明光ILmの入射角θαとなる。DMD10は、照明ユニットILUの支持コラムに固設されたマウント部10Mの下側に取り付けられる。マウント部10Mには、DMD10の位置や姿勢を微調整する為に、例えば、国際公開特許2006/120927号に開示されているようなパラレルリンク機構と伸縮可能なピエゾ素子を組み合わせた微動ステージ(第2移動体)10Sが設けられる。微動ステージ10Sは、微動ステージ駆動部10D(第2駆動部)によりX方向、Y方向に移動可能であり、θz(Z軸)回転可能である。したがって、微動ステージ10SがXY方向に移動、あるいはθz回転をすることにより、DMD10をXY方向に移動あるいはθz回転をさせることができる。また、変位センサ(不図示)を用いることにより微動ステージ10Sの移動量あるいは回転量についてフィードバック制御を行うことができる。
[DMDの構成]
 図5(A)は、DMD10を概略的に示す図であり、図5(B)は、電源がOFFの場合のDMD10を示す図であり、図5(C)は、ON状態のミラーについて説明するための図であり、図5(D)は、OFF状態のミラーについて説明するための図である。なお、図5(A)~図5(D)において、ON状態にあるミラーをハッチングで示している。
 DMD10は、反射角変更制御可能なマイクロミラー10aを複数有する。本実施形態において、DMD10は、ON状態とOFF状態とをマイクロミラー10aのロール方向傾斜とピッチ方向傾斜とで切り換えるロール&ピッチ駆動方式のものとする。
 図5(B)に示すように、電源がオフの状態のとき、各マイクロミラー10aの反射面は、X’Y’面と平行に設定される。各マイクロミラー10aのX’方向の配列ピッチをPdx(μm)、Y’方向の配列ピッチをPdy(μm)とするが、実用上はPdx=Pdyに設定される。
 各マイクロミラー10aは、Y’軸周りに傾斜することでON状態となる。図5(C)では、中央のマイクロミラー10aのみをON状態とし、他のマイクロミラー10aはニュートラルな状態(ONでもOFFでもない状態)とした場合を示している。また、各マイクロミラー10aは、X’軸周りに傾斜することでOFF状態となる。図5(D)では、中央のマイクロミラー10aのみをOFF状態とし、他のマイクロミラー10aはニュートラルな状態とした場合を示している。なお、簡略化のため図示していないが、ON状態のマイクロミラー10aは、ON状態のマイクロミラー10aに照射された照明光がXZ平面のX方向に反射されるよう、X’Y’平面から所定の角度傾くように駆動される。また、OFF状態のマイクロミラー10aは、ON状態のマイクロミラー10aに照射された照明光がYZ面内のY方向に反射されるよう、X’Y’平面から所定の角度傾くように駆動される。DMD10は、各マイクロミラー10aのON状態及びOFF状態を切り替えることで、露光パターンを生成する。
 OFF状態のミラーによって反射された照明光は、不図示の光吸収体により吸収される。
 なお、DMD10を空間光変調器の一例として説明をしたため、レーザ光を反射する反射型として説明をしたが、空間光変調器は、レーザ光を透過する透過型でも良いし、レーザ光を回折する回折型でも良い。空間光変調器は、レーザ光を空間的に、且つ、時間的に変調することができる。
 図4に戻り、DMD10のマイクロミラー10aのうちのON状態のマイクロミラー10aに照射された照明光ILmは、投影ユニットPLUに向かうようにXZ面内のX方向に反射される。一方、DMD10のマイクロミラー10aのうちのOFF状態のマイクロミラー10aに照射された照明光ILmは、投影ユニットPLUに向かわないようにYZ面内のY方向に反射される。
 DMD10から投影ユニットPLUの間の光路中には、非露光期間中にDMD10からの反射光を遮蔽する為の可動シャッター114が挿脱可能に設けられている。可動シャッター114は、モジュールMU19側で図示したように、露光期間中は光路から退避する角度位置に回動され、非露光期間中はモジュールMU18側に図示したように、光路中に斜めに挿入される角度位置に回動される。可動シャッター114のDMD10側には反射面が形成され、そこで反射されたDMD10からの光は光吸収体117に照射される。光吸収体117は、紫外波長域(400nm以下の波長)の光エネルギーを再反射させることなく吸収して熱エネルギーに変換する。その為、光吸収体117には放熱機構(放熱フィンや冷却機構)も設けられる。なお、図4では不図示ではあるが、露光期間中にOFF状態となるDMD10のマイクロミラー10aからの反射光は、上述したように、DMD10と投影ユニットPLUの間の光路に対してY方向(図4の紙面と直交した方向)に設置された同様の光吸収体(図4では不図示)によって吸収される。
〔投影ユニットの構成〕
 光学定盤5の下側に取り付けられた投影ユニットPLUは、Z軸と平行な光軸AXaに沿って配置される第1レンズ群116と第2レンズ群118とで構成される両側テレセントリックな結像投影レンズ系として構成される。第1レンズ群116と第2レンズ群118は、それぞれ光学定盤5の下側に固設される支持コラムに対して、Z軸(光軸AXa)に沿った方向に微動アクチュエータで並進移動するように構成される。第1レンズ群116と第2レンズ群118による結像投影レンズ系の投影倍率Mpは、DMD10上のマイクロミラーの配列ピッチPdと、基板P上の投影領域IAn(n=1~27)内に投影されるパターンの最小線幅(最小画素寸法)Pgとの関係で決められる。
 一例として、必要とされる最小線幅(最小画素寸法)Pgが1μmで、マイクロミラーの配列ピッチPdx及びPdyがそれぞれ5.4μmの場合、先の図3で説明した投影領域IAn(DMD10)のXY面内での傾き角θkも考慮して、投影倍率Mpは約1/6に設定される。レンズ群116、118による結像投影レンズ系は、DMD10のミラー面全体の縮小像を倒立/反転させて基板P上の投影領域IA18(IAn)に結像する。
 投影ユニットPLUの第1レンズ群116は、投影倍率Mpの微調整(±数十ppm程度)する為にアクチュエータによって光軸AXa方向に微動可能とされ、第2レンズ群118はフォーカスの高速調整の為にアクチュエータによって光軸AXa方向に微動可能とされる。さらに、基板Pの表面のZ軸方向の位置変化をサブミクロン以下の精度で計測する為に、光学定盤5の下側には、斜入射光式のフォーカスセンサー120が複数設けられている。複数のフォーカスセンサー120は、基板Pの全体的なZ軸方向の位置変化、投影領域IAn(n=1~27)の各々に対応した基板P上の部分領域のZ軸方向の位置変化、或いは基板Pの部分的な傾斜変化等を計測する。
 また、本実施形態において、DMD10と第1レンズ群116との間には、図6(A)に示すような、2つの偏角プリズム600a,600bあるいは図6(B)に示すような、2枚の平行平板601a,601bが設けられている。以下、2つの偏角プリズム600a,600bと2枚の平行平板601a,601bとは特に限定がない限り光学素子OPEと呼ぶ。また、本実施形態では位置ずれを補正することを像シフトさせるとも言う。なお、本実施形態において、光学素子OPEは、DMD10と第1レンズ群116との間に設けられているが、これに限られるものではない。光学素子OPEは、第1レンズ群116と第2レンズ群との間、又は投影ユニットPLUと基板Pとの間に設けられていてもよい。なお、投影ユニットPLUと、光学素子OPEとによって、投影光学系が構成されている。
 以上のような照明ユニットILUと投影ユニットPLUとは、先の図3で説明したように、XY面内で投影領域IAnが角度θkだけ傾ける必要があるので、図4中のDMD10と照明ユニットILU(少なくとも光軸AXcに沿ったミラー102~ミラー112の光路部分)とが、全体的にXY面内で角度θkだけ傾くように配置されている。
[較正用基準部CUの構成]
 図7は、露光装置EXの基板ホルダ4B上の端部に付設された較正用基準部CUに設けられるアライメント装置60の概略構成を示す図である。アライメント装置60は、基準マーク60a、及び二次元撮像素子60e等を備える。アライメント装置60は、各種モジュールの位置の計測及び較正のために使用され、アライメント系ALGの較正にも用いられる。
 各モジュールMU1~MU27の位置の計測は、較正用のDMDパターンを投影ユニットPLUでアライメント装置60の基準マーク60a上に投影し、基準マーク60aとDMDパターンの相対位置を計測することで行われる。
 またアライメント系ALGの較正は、アライメント系ALGにて、アライメント装置60の基準マーク60aを計測することで行うことができる。すなわち、アライメント系ALGにて、アライメント装置60の基準マーク60aを計測することで、アライメント系ALGの位置を求めることができる。さらに、基準マーク60aを用いて、アライメント系ALGとモジュールMU1~MU27との相対位置を求めることが可能となる。
 また、アライメント系ALGは、基板ホルダ4B上に載置された基板P上のアライメントマークの位置を、アライメント装置60の基準マーク60aを基準に計測することができる。
[露光制御装置の構成]
 上記構成を有する露光装置EXにおいて行われる、走査露光処理を含む各種処理は、露光制御装置300によって制御される。図8は、本実施形態に係る露光装置EXが備える露光制御装置300の機能構成を示す機能ブロック図である。
 露光制御装置300は、描画データ記憶部310と、制御データ作成部301と、補正データ作成部302と、駆動制御部304と、露光制御部306と、を備える。
 描画データ記憶部310には、複数のモジュールMUn(n=1~27)の各々で露光される表示パネル用のパターンの描画データが記憶されている。描画データ記憶部310は、図2に示した27のモジュールMU1~MU27の各々のDMD10に、パターン露光用の描画データMD1~MD27を送出する。モジュールMUn(n=1~27)は、描画データMDnに基づいてDMD10のマイクロミラー10aを選択的に駆動して描画データMDnに対応したパターンを生成し、基板Pに投影露光する。すなわち、描画データは、DMD10の各マイクロミラー10aのON状態とOFF状態とを切り換えさせるデータである。
 制御データ作成部301は、アライメント系ALGによる基板Pのアライメント計測結果に基づいて、第1制御データを作成し、駆動制御部304に出力する。第1制御データは、アライメント計測結果に基づいて基板Pの位置ずれを補正するように、各モジュールMUn(n=1~27)が備えるDMD10の微動ステージ10Sの駆動と、投影ユニットPLUの光学系(第1レンズ群116及び第2レンズ群118)の駆動と、光学素子OPEの駆動と、を制御するためのデータである。
 より具体的には、DMD10の微動ステージ10Sを駆動させるときは、第1制御データに基づいて各モジュールMU1~MU27の微動ステージ10Sの駆動量を定義する。微動ステージ駆動部10Dによって駆動された微動ステージ10SはX方向、Y方向に移動され、あるいは、θz方向に回転される。その結果、基板Pに投影される投影像を像シフトさせることができる。
 また、投影ユニットPLUの光学系を調整させるときは、第1制御データに基づいて各モジュールMU1~MU27の投影ユニットPLUの駆動量あるいは投影ユニットPLU内のレンズの調整量を定義する。投影ユニットPLUを駆動させる場合は、投影ユニットPLUは投影ユニットPLUに備えられるアクチュエータ等によって、第1レンズ群116あるいは第2レンズ群118の少なくとも一つのレンズ群をXY平面内で移動させる。その結果、基板Pに投影される投影像を像シフトさせることができる。また、収差の観点から、投影ユニットPLUは、第1レンズ群116及び第2レンズ群118の移動量を同一にして第1レンズ群116及び第2レンズ群118を移動させることがより好ましい。投影ユニットPLU内のレンズを調整するときは、第1レンズ群116及び第2レンズ群118に備えられるアクチュエータ等によって、第1レンズ群116あるいは第2レンズ群118内に設けられる少なくとも一つのレンズをXY平面内で移動させる。その結果、基板Pに投影される投影像を像シフトさせることができる。
 また、各モジュールMU1~MU27のDMD10と第1レンズ群116との間に設けられた2つの偏角プリズム600a,600bを駆動させるときは、第1制御データに基づいて2つの偏角プリズム600a,600bの駆動量を定義する。2つの偏角プリズムの間隔を制御することにより、基板Pに投影される投影像を像シフトさせることができる。また、2つの偏角プリズム600a,600bは、DMD10と第1レンズ群116との間だけではなく、第1レンズ群116と第2レンズ群118との間、第2レンズ群118と基板Pとの間にも設けることができる。
 さらに、各モジュールMU1~MU27のDMD10と第1レンズ群116との間に設けられた2枚の平行平板601a,601bを駆動させるときは、第1制御データに基づいて2枚の平行平板601a,601bの駆動量を定義する。2枚の平行平板601a,601bをθz回転させる回転量を制御することにより、基板Pに投影される投影像を像シフトさせることができる。2枚の平行平板601a,601bは、DMD10と第1レンズ群116との間だけではなく、第1レンズ群116と第2レンズ群118との間、第2レンズ群118と基板Pとの間にも設けることができる。
 ここで、第1制御データを作成する理由について説明する。例えば、基板Pが設計位置からずれた位置で基板ホルダ4Bに載置されたとする。この場合、そのまま走査露光を行うと、描画データMDnに基づいて生成したパターンが設計上の位置からずれて基板Pに露光されてしまう。このように位置ずれして載置された基板Pの所定の位置(設計上の位置)にパターンを露光する方法として、例えば、アライメント系ALGによる基板Pのアライメント計測結果に基づいて、位置ずれした基板Pに合わせて描画データMDnを書き換えることが考えられる。しかしながら、表示パネル用の描画データMDnはデータ量が多いため、書き換えに長い時間(例えば、40分)がかかり、スループットを低下させるおそれがある。また、位置ずれ量が、基板Pに投影されるパターンの最小線幅(最小画素寸法)よりも小さい場合、描画データを変更しても当該位置ずれを補正することはできない。すなわち、描画データの変更では、精度的に補正が難しい場合がある。
 そこで、本実施形態では、アライメント系ALGによる基板Pのアライメント計測結果に基づいて、描画データMDnを書き換えるのではなく、パターンの投影位置をずらして基板Pの設計値からの位置ずれを補正する。具体的には、DMD10の微動ステージ10Sと、投影ユニットPLUの光学系と、光学素子OPEの少なくともいずれか一つの駆動を制御することによって、パターンの投影位置をずらす。これにより、基板Pの設計値からの位置ずれが補正できる。
 例えば、基板PがZ軸周りに設計値からα度ずれて(α度回転して)配置されている場合には、DMD10の微動ステージ10Sを初期位置からα度、θz回転させ、DMD10のX方向及びY方向の位置を調整することによって、パターンを設計位置に投影することができる。
 なお、本実施形態では、モジュールMUn(n=1~27)は、X方向及びY方向に並べられているため、制御データ作成部301は、モジュールMUn間の関係も考慮して、第1制御データを作成する。なお、第1制御データの作成時間は、例えば、数秒程度となる。
 補正データ作成部302は、露光処理と露光処理との間に、キャリブレーションが行われた場合、キャリブレーション結果に基づいて、補正データを作成し、駆動制御部304に出力する。補正データは、キャリブレーション結果に基づいて、露光装置EXの各構成(例えば、モジュールMUn、アライメント系ALG等)の位置ずれを補正するように、DMD10の微動ステージ10Sの駆動量と、投影ユニットPLUの光学系の駆動量と、光学素子OPEの駆動量を補正するためのデータである。例えば、補正データには、各モジュールMU1~MU27について、DMD10の微動ステージ10Sの駆動量のオフセット値と、投影ユニットPLUの光学系の駆動量のオフセット値と、光学素子OPEの駆動量のオフセット値が定義されている。
 ここで、補正データを作成する理由について説明する。例えば、露光装置EXにおいて露光処理を繰り返していると、露光装置EXの各構成の位置がずれてきてしまい、露光処理と露光処理との間にキャリブレーションが必要となる場合がある。一般的に、キャリブレーションが必要な場合、構成の設定のやり直しや、各構成の位置ずれを補正するよう描画データの書き換えを行うことが考えられる。
 しかしながら、キャリブレーション結果に基づいて、露光装置EXの各構成の設定をやり直しや、描画データの書き換えを行うと、時間がかかり、スループットを低下させるおそれがある。また、位置ずれ量が、基板Pに投影されるパターンの最小線幅(最小画素寸法)よりも小さい場合、描画データを変更しても当該位置ずれを補正することはできない。すなわち、描画データの変更では、精度的に補正が難しい場合がある。
 そこで、本実施形態では、露光処理と露光処理との間にキャリブレーションを行う場合、キャリブレーションの結果に基づいて露光装置EXの各構成の設定をやり直しや、描画データの書き換えを行うのではなく、露光装置EXの各構成の位置ずれを補正するようDMD10の微動ステージ10Sの駆動量と投影ユニットPLUの光学系の駆動量と光学素子OPEの駆動量を補正する。補正データ作成部302は、このように、DMD10の微動ステージ10Sの駆動量と投影ユニットPLUの光学系の駆動量と光学素子OPEの駆動量を補正するための補正データを作成する。
 駆動制御部304は、制御データ作成部301から入力された第1制御データを補正データ作成部302から入力された補正データによって補正した第2制御データを生成する。
 また、駆動制御部304は、補正データ作成部302で補正データを作成せずとも、制御データ作成部301から入力された第1制御データとキャリブレーション結果を組み合わせて第2制御データを生成しても良い。
 また、駆動制御部304は、干渉計IFY1~IFY4の計測結果に基づいて、第2制御データに含まれるDMD10の微動ステージ10Sの駆動量と、投影ユニットPLUの光学系の駆動量と、光学素子OPEの駆動量と、をリアルタイムに補正した駆動量制御データCD1~CD27を作成し、モジュールMU1~MU27に送出する。露光制御装置300(駆動制御部304)は、XYステージ4Aを移動させる第1駆動部を制御してもよい。また、露光制御装置300(駆動制御部304)は、微動ステージ駆動部10Dを制御してもよい。また、露光制御装置300(駆動制御部304)は、投影光学系内に設けられた第1レンズ群116、第2レンズ群118、光学素子OPEを駆動する駆動部を制御してもよい。
 ここで、駆動制御部304が、第2制御データをリアルタイムに補正する理由について説明する。基板Pの走査露光中に、基板ホルダ4Bが設計通りに移動しない(例えば、X方向に直進するはずが、蛇行しながら進むなど)場合がある。このように基板ホルダ4Bが設計通りに移動していない場合(例えば、所定のX方向位置における基板ホルダ4BのY方向の位置が設計値と異なる場合)、そのまま走査露光を行うと、描画データMDnに基づいたパターンが設計上の位置からずれて基板Pに露光されてしまう。このとき、基板ホルダ4Bの位置ずれに追従するように描画データを書き換えることは時間的に難しい。また、位置ずれ量が、基板Pに投影されるパターンの最小線幅(最小画素寸法)よりも小さい場合、描画データを変更しても当該位置ずれを補正することはできない。すなわち、描画データの変更では、精度的に補正が難しい場合がある。
 そこで、本実施形態では、駆動制御部304は、干渉計IFY1~IFY4の計測結果に基づいて、第2制御データに含まれるDMD10の微動ステージ10Sの駆動量と、投影ユニットPLUの光学系の駆動量と、光学素子OPEの駆動量と、をリアルタイムに補正した駆動量制御データ(第3制御データ)CD1~CD27により、モジュールMU1~MU2を制御する。これにより、基板Pの位置ずれ、露光装置EXの各構成の位置ずれ、及び走査露光中の基板ホルダ4Bの位置ずれを補正でき、パターンを基板Pに設計値通りに投影露光することが出来る。
 モジュールMU1~MU27は、走査露光中、駆動制御部304から送出された駆動量制御データCD1~CD27に基づいて、DMD10の微動ステージ10Sの駆動と、投影ユニットPLUの光学系の駆動と、光学素子OPEの駆動と、を制御する。
 露光制御部(シーケンサー)306は、基板Pの走査露光(移動位置)に同期して、描画データ記憶部310からの描画データMD1~MD27のモジュールMU1~MU27への送出と、駆動制御部304からの駆動量制御データCD1~CD27の送出とを制御する。
[露光処理手順概要]
 次に、本実施形態に係る露光装置EXにおける露光処理手順の概要について、図9を参照して説明する。図9は、初めて露光装置EXを使用して基板Pに露光処理をする場合、又は、長期間使用していない露光装置EXを使用して基板Pに露光処理をする場合の手順の概要を示すフローチャートである。以下の例では、基板Pに表示パネル等のパターンを走査露光する場合について説明する。
 図9に示す手順では、まず、露光装置EXの初期キャリブレーションが行われる(ステップS11)。初期キャリブレーションでは、アライメント系ALG等による計測結果に基づいて、露光装置EXの各構成の設定が較正される。例えば、モジュールMU1~MU27の位置、モジュールMU1~MU27それぞれの照明ユニットILU、DMD10、及び投影ユニットPLUの初期位置や初期姿勢、基板ホルダ4Bの傾きなどが補正される。
 次に、複数のモジュールMUn(n=1~27)の各々で露光される表示パネル用のパターンの描画データが描画データ記憶部310にロードされる(ステップS13)。
 次に、露光装置EX本体部に基板Pが搬入され、基板ホルダ4B上に載置される(ステップS15)。
 次に、基板P上の所定の複数位置に形成されたアライメントマークを複数のアライメント系ALGにて計測する(ステップS17)。
 次に、アライメント系ALGによる計測結果に基づいて、制御データ作成部301が、基板Pの位置ずれを補正するようにDMD10の微動ステージ10Sの駆動量と、投影ユニットPLUの光学系の駆動量と、光学素子OPEの駆動量と、を規定した第1制御データを作成する(ステップS19)。
 次に、モジュールMUn(n=1~27)は、描画データMDnと駆動量制御データCDnと、に基づいて表示パネル等のパターンを基板P上に走査露光する(ステップS21)。このときの駆動量制御データCDnは、干渉計IFY1~IFY4の計測結果(すなわち、基板ホルダ4Bの位置)に基づいて第1制御データをリアルタイムに補正して得られるデータ(第4制御データ)である。
 走査露光処理が終了すると、基板Pが搬出される(ステップS23)。
 次に、キャリブレーションが必要か否か判断される(ステップS25)。例えば、前回のキャリブレーション後、走査露光処理した基板Pの数が所定枚数(例えば、10枚)に達した場合キャリブレーションが必要と判断される。あるいは、毎日、所定の時刻を過ぎた場合に、キャリブレーションが必要と判断される。
 キャリブレーションが不要の場合(ステップS25/NO)、ステップS15に戻る。一方、キャリブレーションが必要な場合(ステップS25/YES)、キャリブレーションが行われる(ステップS27)。
 次に、補正データ作成部302は、ステップS27におけるキャリブレーション結果に基づいて、露光装置EXの各装置の位置ずれを補正するようDMD10の微動ステージ10Sの駆動量や投影ユニットPLUの光学系の駆動量や光学素子OPEの駆動量を補正するための補正データを作成する(ステップS29)。
 次に、露光装置EX本体部に新たな基板Pが搬入され、基板ホルダ4B上に載置される(ステップS31)。
 次に、新たに搬入された基板P上の所定の複数位置に形成されたアライメントマークを複数のアライメント系ALGにて計測する(ステップS33)。
 次に、アライメント系ALGによる計測結果に基づいて、制御データ作成部301が、基板Pの位置ずれを補正するようにDMD10の微動ステージ10Sの駆動量と、投影ユニットPLUの光学系の駆動量と、光学素子OPEの駆動量と、を規定した第1制御データを作成する(ステップS35)。
 次に、駆動制御部304は、ステップS35で作成された第1制御データをステップS29で作成した補正データによって補正した第2制御データを生成する(ステップS37)。
 なお、ステップS29を省略し、駆動制御部304は、第1制御データとキャリブレーション結果とに基づいて第2制御データを作成してもよい。
 次に、モジュールMUn(n=1~27)は、描画データMDnと駆動量制御データCDnと、に基づいて表示パネル等のパターンを基板P上に走査露光する(ステップS39)。このときの駆動量制御データCDnは、干渉計IFY1~IFY4の計測結果(すなわち、基板ホルダ4Bの位置)に基づいて第2制御データをリアルタイムに補正して得られるデータ(第3制御データ)である。
 走査露光処理が終了すると、基板Pが搬出される(ステップS41)。
 次に、キャリブレーションが必要か否か判断される(ステップS43)。例えば、前回のキャリブレーション後、走査露光処理した基板Pの数が所定枚数(例えば、10枚)に達した場合キャリブレーションが必要と判断される。
 キャリブレーションが不要の場合(ステップS43/NO)、ステップS31に戻る。一方、キャリブレーションが必要な場合(ステップS43/YES)、キャリブレーションが行われる(ステップS27)。
 このようにして、所定の枚数の表示パネルの製造が終わるまで、図9の処理が繰り返される。なお、ステップS25~ステップS29の処理を省略してもよい。この場合、ステップS31以降の処理は行わず、ステップS23の終了後、ステップS15に戻ればよい。この場合、ステップS21において、駆動制御部304は、第1制御データを干渉計IFY1~IFY4の計測結果(すなわち、基板ホルダ4Bの位置)に基づいてリアルタイムに補正した駆動量制御データCDnを各モジュールMUnに送出すればよい。
 以上、詳細に説明したように、本実施形態によれば、露光装置EXは、基板ホルダ4Bと、描画データMDn(n=1~27)に対応したパターンを生成するDMD10と、DMD10それぞれに照明光を照射する複数の照明ユニットILUと、DMD10それぞれにより形成されるパターンを、基板ホルダ4B上に載置された基板P上に投影する複数の投影ユニットPLUと、をそれぞれ含む複数のモジュールMU1~MU27と、を備える。露光装置EXは、さらに、描画データMDnを変更せずに、基板Pの状態、基板ホルダ4Bの状態、及び露光装置EXの状態の少なくとも1つに応じて、モジュールMU1~MU27それぞれのDMD10の駆動と、投影ユニットPLUの駆動と、光学素子OPEの駆動と、を制御する駆動制御部304を備える。基板Pの状態、基板ホルダ4Bの状態、及び露光装置EXの状態の少なくとも1つに応じて、基板Pの所定の位置に所定のパターンが露光されるように描画データMDnを書き換える場合、描画データMDnの書き換えに時間がかかり、露光装置EXのスループットが低下する。駆動制御部304は、描画データMDnを変更せずに、基板Pの状態、基板ホルダ4Bの状態、及び露光装置EXの状態の少なくとも1つに応じてDMD10の駆動と、投影ユニットPLUの駆動と、光学素子OPEの駆動と、を制御するため、露光装置EXのスループットの低下を抑制しつつ、基板Pの所定の位置に所定のパターンを露光することができる。また、位置ずれ量が基板Pに投影されるパターンの最小線幅(最小画素寸法)よりも小さい場合、描画データの書き換えでは位置ずれを補正することが難しい。本実施形態では、DMD10の駆動と、投影ユニットPLUの駆動と、光学素子OPEの駆動と、により位置ずれを補正するので、位置ずれ量が基板Pに投影されるパターンの最小線幅よりも小さい場合でも、位置ずれを補正することができる。これにより、露光精度が向上する。
 また、本実施形態において、露光装置EXは、基板ホルダ4Bに対する基板Pの状態を計測するアライメント系ALGと、アライメント系ALGによる計測結果に基づいて、パターンが基板Pの所定の位置に投影されるように、DMD10の微動ステージ10Sと、投影ユニットPLUの光学系と、光学素子OPEと、の少なくとも一つの駆動を制御する第1制御データを作成する制御データ作成部と、を備る。そして、駆動制御部304は、第1の制御データに基づいて、DMD10の微動ステージ10Sの駆動と、投影ユニットPLUの光学系の駆動と、光学素子OPEの駆動と、を制御する。これにより、スループットを低下させることなく、基板Pの設計位置からの位置ずれを補正して、パターンを基板Pに露光することができる。また、位置ずれ量が基板Pに投影されるパターンの最小線幅よりも小さい場合でも、位置ずれを補正することができる。
 また、本実施形態において、露光装置EXは、キャリブレーション結果に基づいて、第1制御データを補正する補正データを作成する補正データ作成部302を備え、駆動制御部304は、第1制御データを補正データによって補正した第2制御データに基づいて、DMD10の微動ステージ10Sの駆動と、投影ユニットPLUの光学系の駆動と、光学素子OPEの駆動と、を制御する。これにより、スループットを低下させることなく、露光装置EXの各構成の位置ずれを補正して、パターンを基板Pに露光することができる。また、露光装置EXの各構成の位置ずれ量が基板Pに投影されるパターンの最小線幅よりも小さい場合でも、位置ずれを補正することができる。
 また、本実施形態において、露光装置EXは、定盤3あるいは光学定盤5に対する基板ホルダ4Bの位置情報を計測する干渉計IFY1~IFY4を備え、駆動制御部304は、干渉計IFY1~IFY4により計測された基板ホルダ4Bの位置情報に基づいて、第2制御データを補正した駆動量制御データCDn(n=1~27)に基づいて、各モジュールMUnのDMD10の微動ステージ10Sの駆動と、投影ユニットPLUの光学系の駆動と、光学素子OPEの駆動と、を制御する。これにより、走査露光期間中に、基板ホルダ4Bが設計値通りに移動していない場合でも、スループットを低下させることなく、所定のパターンを基板Pの設計上の位置に露光することができる。また、基板ホルダ4Bの位置ずれ量が基板Pに投影されるパターンの最小線幅よりも小さい場合でも、位置ずれを補正することができる。
(変形例)
 上記実施形態に係る露光装置EXは、所定のパターンを露光済みの基板Pに対して、別のパターンを露光する場合にも使用することができる。
 フラットパネルディスプレイの製造では、基板Pに第1のパターンを露光した後に、第1のパターンと異なる第2のパターンを露光する場合がある。例えば、1回目ではマスク基板を使用する露光装置にて第1のパターンを基板Pに露光し、2回目に本実施形態にかかる露光装置EXにて第2のパターンを基板Pに露光する。
 図10は、1枚の基板Pに4枚の表示パネル用のパターンを露光する場合について示す図である。図10の例では、1回目の露光処理によって、1枚の基板Pに4枚の表示パネルPNL1~PNL4のパターンが露光されているものとする。図10において、ハッチング部分は、1回目の露光処理で露光された領域を示し、各領域における黒丸はアライメントマークAMを示している。また、図10において、点線は、各パネルを切り離すときの切断線を示し、一点鎖線は、1回目の露光処理で表示パネルPNL2及びそのアライメントマークAMが露光されるべきであった位置を示している。
 図10の例では、表示パネルPNL2のパターンが、他の表示パネルPNL1、PNL3、PNL4と比較して設計位置から大きくずれて露光されている。このような場合、表示パネルPNL2の1回目の露光処理による露光済領域に合うように、2回目の露光処理の描画データを書き換えると、描画データの書き換えに長い時間がかかってしまい、スループットが低下してしまう。
 このような場合、上記実施形態に係る露光装置EXによれば、以下のようにして表示パネルPNL2の第1のパターンの露光済領域に合うように、第2のパターンを露光することができる。
 まず、アライメント系ALGによって表示パネルPNL1~PNL4の第1のパターンが実際に露光されている領域の位置を計測する。制御データ作成部301は、アライメント系ALGの計測結果に基づいて、表示パネルPNL2の第1のパターンの露光済領域の設計位置からのずれが補正されるように、第1制御データを作成する。駆動制御部304が、第1制御データに基づいてモジュールMU1~MU27のDMD10の微動ステージ10S及び投影ユニットPLUの光学系の駆動を制御することで、設計位置からずれて第1のパターンが露光された表示パネルPNL2について、第1のパターンの露光済領域に第2のパターンを露光することができる。
 すなわち、変形例では、表示パネルPNL1~PNL4の領域ごとに、露光済領域の設計位置からの位置ずれに応じた第1制御データを作成しているともいえる。
 このように、第1のパターンを複数個露光済みの1枚の基板Pに対して、第1のパターンの露光済領域に第2のパターンを重ね合わせて露光しなければならない場合に、第1のパターンの露光済領域が設計位置からずれていたとしても、本実施形態に係る露光装置EXでは、スループットを低下させることなく、第2のパターンを第1のパターンの露光済領域に合わせて露光することができる。
 なお、このとき、表示パネルPNL1の露光領域と表示パネルPNL2の露光領域との間の距離D1は、像シフトさせるために、表示パネルPNL1のパターンの露光を終了したときのDMD10の微動ステージ10Sの状態と、投影ユニットPLUの光学系の状態と、光学素子OPEの状態と、から表示パネルPNL2を露光するための状態に変更するまでに必要な時間よりも、基板ホルダ4Bが距離D1を移動する時間の方が長くなるように設定されていることが好ましい。ここで、微動ステージ10Sの状態とは、基板ホルダ4BやXYステージ4Aや光学定盤5や定盤3に対するDMD10の相対位置情報やθz軸方向の傾き角度などを指す。また、投影ユニットPLUの光学系の状態とは、基板ホルダ4BやXYステージ4Aや光学定盤5や定盤3に対する第1レンズ群116、第2レンズ群118、第1レンズ群116と第2レンズ群118とに含まれる各レンズの相対位置情報などを指す。さらに、光学素子OPEの状態とは、基板ホルダ4BやXYステージ4Aや光学定盤5や定盤3に対する光学素子OPEの相対位置情報などを指す。また、光学素子OPEが一対の偏角プリズムであれば、一対の偏角プリズムの間隔や、各偏角プリズムの回転角なども光学素子OPEの状態に含まれる。また、光学素子OPEが一対の平行平板であれば、一対の平行平板の間隔や、各平行平板の回転角なども光学素子OPEの状態に含まれる。したがって、上記実施形態に係る露光装置EXは、一度の走査露光で表示パネルPNL1と表示パネルPNL2とを露光することができる。また、露光装置EXは、一度の走査露光で露光する場合に、表示パネルPNL1の露光領域を露光した後、距離D1を進む間に、表示パネルPNL1のパターンの露光を終了したときのDMD10の微動ステージ10Sの状態と、投影ユニットPLUの光学系の状態と、光学素子OPEの状態の少なくとも一つを、表示パネルPNL2を露光するための状態に変更し、表示パネルPNL2の露光領域を露光する。
 露光装置EXが備える露光制御装置300(駆動制御部304)は、XYステージ4Aを走査方向(X軸方向)に移動させて、基板Pの表示パネルPNL1の露光領域を露光させた後、表示パネルPNL2の露光領域を露光させ、投影光学系が表示パネルPNL1の露光領域と表示パネルPNL2の露光領域との間の距離D1を進む間に露光装置EXの設定を変更する。
 露光装置EXが備える露光制御装置300(駆動制御部304)は、DMD10の微動ステージ10S、または、投影光学系の駆動を制御することにより、露光装置EXの設定を変更する。
 また、露光装置EXが備える制御部は、XYステージ4Aと、空間光変調器10の位置及び姿勢の少なくとも一方を変化させる微動ステージ駆動部10Dと、投影光学系内に設けられ第1レンズ群116、第2レンズ群118、光学素子OPEを駆動する駆動部と、を制御し、基板P上で走査方向(X軸方向)に並ぶ表示パネルPNL1の露光領域と表示パネルPNL2の露光領域が投影光学系の光軸に対して走査方向(X軸方向)の同じ側に移動するようにXYステージ4Aを駆動するとともに、走査方向(X軸方向)に移動する基板P上で表示パネルPNL1の露光領域と表示パネルPNL2の露光領域との間の領域(距離D)が前記光軸と交差する状態で微動ステージ駆動部10Dと第1レンズ群116、第2レンズ群118、光学素子OPEを駆動する駆動部との少なくとも一方を駆動する。
 距離D1が上記のように設定されていれば、DMD10の微動ステージ10Sの状態と、投影ユニットPLUの光学系の状態と、光学素子OPEの状態と、が表示パネルPNL2の露光を行うための状態となるのを待つことなく、露光処理を継続することができるため、スループットを向上できる。
 なお、例えば、表示パネルPNL2の1回目の露光処理による露光済領域の設計値からの位置ずれが、DMD10の微動ステージ10Sと、投影ユニットPLUの光学系と、光学素子OPEと、を駆動してパターンの投影位置をずらしても補正できないほどの量である場合には、露光処理を開始せず、当該情報を露光装置EXが備える表示装置に表示して、露光処理を続けるか否かを露光装置EXのオペレータに選択させるようにしてもよい。または、露光装置EXがワーニングを出力するようにしてもよい。または、オペレータが、露光処理を続けるか、露光処理を中止するか、基板Pに対して不良品であることがわかるようなパターンを露光するか、を選択できるようにしてもよい。
 また、表示パネルPNL1の1回目の露光処理による露光結果(露光形状)は、図10のPNL1のような四角形ではなく、図11(A)のような樽型形状や図11(B)のような糸巻き型形状となる場合がある。このような場合、表示パネルPNL1に2回目の露光を行う際、表示パネルPNL1の各位置において像シフトさせながら露光する必要がある。そこで、アライメント系ALGによる表示パネルPNL1のアライメントマークAMの計測結果に基づいて、表示パネルPNL1を露光中にリアルタイムでDMD10の微動ステージ10Sと投影ユニットPLUの光学系と光学素子OPEとを駆動させる。それにより、表示パネルPNL1の各位置においてパターンの投影位置を補正することができる。また、表示パネルPNL1の形状はこれに限られず、図11(C)のようにPNL1の右側が樽型形状で、PNL1の左側が糸巻き形状といったような、2つの形状を組み合わせたような場合も含む。さらに、このような露光結果はPNL1に限られず、PLN2~4にも同様の露光結果となる場合がある。
 また、上記実施形態に係る露光装置EXは、一度の走査露光で表示パネルPNL1と表示パネルPNL3とを露光することができる。表示パネルPNL1と表示パネルPNL3とを同時に露光するために、アライメント系ALGは、表示パネルPNL1のアライメントマークAMの計測(第1計測)と、表示パネルPNL3のアライメントマークAMの計測(第2計測)と、の2つの表示パネルPNL1,PLN3のアライメント計測を行う。第1計測を行うことで、表示パネルPNL1の露光結果を計測でき、第2計測を行うことで表示パネルPNL3の露光結果を計測できる。また、上記実施形態に係る露光装置EXは、一度の走査露光で表示パネルPNL1と表示パネルPNL2とを露光することができる。表示パネルPNL1の露光領域と表示パネルPNL2の露光領域との間の距離D1は、露光モジュールの露光視野より大きく設定することができる。また、精度に問題が無い場合は、距離D1は、露光モジュールの露光視野より小さく設定してもよい。
 さらに、露光モジュール群MU(A)では、モジュールMU1~MU4を使ってPNL3を露光し、モジュールMU5~MU9を使ってPNL1を露光する。この時、モジュールMU1~MU4は、表示パネルPNL3を露光中に、第2計測の計測結果に基づいて、リアルタイムでDMD10の微動ステージ10Sと投影ユニットPLUの光学系と光学素子OPEとを駆動させてパターンの投影位置を補正しながら露光を行う。モジュールMU5~MU9は、表示パネルPNL1を露光中に、第1計測の計測結果に基づいてリアルタイムでDMD10の微動ステージ10Sと投影ユニットPLUの光学系と光学素子OPEとを駆動させてパターンの投影位置を補正しながら露光を行う。これにより、一度の走査露光で複数のパネルPNL1とPLN3とを補正しながら露光を行うことができる。
 ここで、モジュールMU1~MU4が表示パネルPNL3を露光し、モジュールMU5~MU9が表示パネルPNL1を露光するとしたが、適宜設定されるものとする。また、露光モジュール群MU(B)、露光モジュール群MU(C)についても、露光モジュール群MU(A)と同様である。
 また、例えば、表示パネルPNL1の露光領域と表示パネルPNL2の露光領域との間の距離D1が短く、基板ホルダ4Bが距離D1を移動する間に、DMD10の微動ステージ10Sの駆動、投影ユニットPLUの光学系の駆動、又は光学素子OPEの駆動が間に合わない場合にも、当該情報を露光装置EXが備える表示装置に表示して、露光処理を続けるか否かを露光装置EXのオペレータに選択させるようにしてもよい。または、オペレータが、露光処理を続けるか、露光処理を中止するか、基板Pに対して不良品であることがわかるようなパターンを露光するか、を選択できるようにしてもよい。
 なお、上記実施形態及び変形例において、駆動制御部304は、DMD10の微動ステージ10Sの駆動と、投影ユニットPLUの光学系の駆動と、光学素子OPEの駆動と、を制御するとしたが、これに限られるものではない。駆動制御部304は、DMD10の微動ステージ10Sと、投影ユニットPLUの光学系と、光学素子OPEと、のいずれか一つの駆動を制御すればよい。なお、アライメント系ALG、キャリブレーション、干渉計IFY1~IFY4で計測された位置ずれ量が、オペレータが事前に定めた規定量を超えたときに、露光するか、露光を継続するか、アライメントを再度し直す等をレシピ情報(露光条件)としてあらかじめ決めておいてもよい。
 また、上記実施形態では、駆動制御部304は、第1制御データ又は第2制御データを干渉計IFY1~IFY4の計測結果に基づいて補正していたが、干渉計IFY1~IFY4の計測結果に基づく補正を行わなくてもよい。この場合、駆動制御部304は、第1制御データ又は第2制御データに基づいて、DMD10の微動ステージ10Sの駆動と、投影ユニットPLUの光学系の駆動と、光学素子OPEの駆動と、を制御すればよい。
 上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。
4B 基板ホルダ
10 DMD
10a マイクロミラー
10S 微動ステージ
116 第1レンズ群
118 第2レンズ群
300 露光制御装置
301 制御データ作成部
302 補正データ作成部
304 駆動制御部
ALG アライメント系
EX 露光装置
IFY1~IFY4 干渉計
MU1~MU27 モジュール
P 基板
PLU 投影ユニット
 

Claims (16)

  1.  描画データに応じた空間光変調器によって生成されるパターン光を物体に対して露光する露光装置であって、
     前記空間光変調器に照明光を照射する照明光学系と、
     前記物体に前記パターン光を投影する投影光学系と、
     前記投影光学系の下方に配置され、前記物体を保持する第1移動体と、
     前記投影光学系の光軸と直交する所定平面内で互いに直交する第1方向と第2方向とへ前記第1移動体を移動させる第1駆動部と、
     前記空間光変調器を保持する第2移動体と、
     前記第2移動体を移動させる第2駆動部と、
     前記物体の位置情報と、前記第1移動体の位置情報と、の少なくとも一つを含む計測結果を得る計測部と、
     前記計測部で得られた前記計測結果に基づいて前記第2移動体の駆動と、前記投影光学系の調整と、の少なくとも一方を制御し、前記パターン光の露光位置を制御する制御部と、
    を備える、露光装置。
  2.  前記投影光学系は一対の光学素子を有し、
     前記制御部は、前記計測結果に基づいて、前記一対の光学素子の駆動を制御する、請求項1に記載の露光装置。
  3.  前記投影光学系は、第1のレンズ群と第2のレンズ群とを有し、
     前記制御部は、前記第1のレンズ群と前記第2のレンズ群との少なくとも一方を調整する、
    請求項1または請求項2に記載の露光装置。
  4.  前記投影光学系は、第1のレンズ群と第2のレンズ群とを有し、
     前記制御部は、前記第1のレンズ群または前記第2のレンズ群の少なくとも一方を前記光軸方向に駆動する、請求項1または請求項2に記載の露光装置。
  5.  前記一対の光学素子は、第1偏角プリズムと第2偏角プリズムとを有し、
     前記制御部は、前記第1偏角プリズムと前記第2偏角プリズムとの間隔を調整し、前記パターン光の露光位置を制御する、
    請求項2に記載の露光装置。
  6.  前記一対の光学素子は、第1平行平板と第2平行平板とを有し、
     前記制御部は、前記第1平行平板と前記第2平行平板との少なくとも一方を移動あるいは回転させて、前記パターン光の露光位置を制御する、
    請求項2に記載の露光装置。
  7.  前記照明光学系と、前記投影光学系と、前記空間光変調器と、前記第2移動体と、前記第2駆動部とを有するモジュール部を複数有する、
    請求項1から請求項6のいずれか一項に記載の露光装置。
  8.  前記物体は、前記物体上に露光された第1のパターンを有する第1領域と第2領域とを有し、
     前記描画データは、前記第1領域と前記第2領域に、前記第1のパターンと異なる第2のパターンを形成するためのデータであり、
     前記計測部は、前記第1移動体に対する前記第1領域の相対位置情報である第1情報と前記第1移動体に対する前記第2領域の相対位置情報である第2情報とを計測し、
     前記第1情報と前記第2情報とに基づいて、前記第1領域と前記第2領域とに前記第2のパターンを露光する際の前記第2移動体の駆動と、前記第1領域と前記第2領域とに前記第2のパターンを露光する際の前記投影光学系の調整と、の少なくとも一つを制御する第1制御データを作成する第1作成部を備える、
    請求項1に記載の露光装置。
  9.  前記第1領域と前記第2領域とは、前記物体の前記第1方向において距離を隔てて設けられ、
     前記制御部は、前記第1領域と前記第2領域との間の前記距離を移動している間に、前記第1領域の露光終了時における前記第2移動体の状態から前記第2領域の露光開始時における前記第2移動体の状態に変更するため前記第2駆動部を制御し、前記第1領域の露光終了時における前記投影光学系の状態から前記第2領域の露光開始時における前記投影光学系の状態に変更するために前記投影光学系の調整を制御する、
    請求項8に記載の露光装置。
  10.  前記第1のパターンは、マスク基板を用いて露光されたパターンである、
    請求項8または請求項9に記載の露光装置。
  11.  空間光変調器に照明光を照射する照明光学系と、前記空間光変調器により生成されたパターン光を、第1移動体に載置された物体上に投影する光学素子を有する投影光学系と、を備える露光装置を用いたデバイス製造方法であって、
     計測部によって、前記物体の位置情報と、前記第1移動体の位置情報との少なくとも一つを含む計測結果を得ることと、
     制御部によって、前記計測部で得られた前記計測結果に基づいて前記空間光変調器を保持する第2移動体の駆動もしくは前記投影光学系の調整との少なくとも一方を制御することと、を含むデバイス製造方法。
  12.  第1パターンが露光された第1領域を有する物体に空間光変調器によって生成される第2パターン光を露光する露光装置であって、
     前記空間光変調器に照明光を照射する照明光学系と、
     前記物体に前記第2パターン光を投影する投影光学系と、
     前記投影光学系の下方に配置され、前記物体を保持する第1移動体と、
     前記投影光学系の光軸と直交する方向とへ前記第1移動体を移動させる第1駆動部と、
     前記空間光変調器を保持する第2移動体と、
     前記第2移動体を移動させる第2駆動部と、
     前記第1領域の前記第1パターンの露光結果を計測し、計測結果を取得する計測部と、
     前記計測結果に基づいて前記第2移動体の駆動と、前記投影光学系の調整との少なくとも一方の駆動を制御し、前記第1領域を露光中に前記第2パターン光の露光位置を制御する制御部と、
    を備える露光装置。
  13.  第1パターンが露光された第1領域と第2領域とを有する物体に空間光変調器によって生成される第2パターン光を露光する露光装置であって、
     前記空間光変調器に照明光を照射する照明光学系と、
     前記物体に前記第2パターン光を投影する投影光学系と、
     前記投影光学系の下方に配置され、前記物体を保持する第1移動体と、
     前記投影光学系の光軸と直交する方向とへ前記第1移動体を移動させる第1駆動部と、
     前記空間光変調器を保持する第2移動体と、
    前記第2移動体を移動させる第2駆動部と、
    前記第1領域の前記第1パターンの露光結果を計測した第1計測結果と、前記第2領域の前記第1パターンの露光結果を計測した第2計測結果と、を取得する計測部と、
     前記第1計測結果と前記第2計測結果とに基づいて前記第2移動体の駆動と、前記投影光学系の調整との少なくとも一方を制御し、前記第1領域と前記第2領域とを露光中に前記第2パターン光の露光位置を制御する制御部と、
    を備える露光装置。
  14.  前記第1移動体は、露光中に前記光軸と直交する第1方向に移動され、
     前記第1領域と前記第2領域とは前記第1方向に沿って配置される、
    請求項13に記載の露光装置。
  15.  露光対象を走査方向に移動させるステージと、
     空間光変調器と、
     前記空間光変調器を照明する照明光学系と、
     前記空間光変調器のミラーで反射される光を前記露光対象に照射する投影光学系と、
     制御部と、を備える露光装置であって、
     前記制御部は、前記ステージを前記走査方向に移動させて、前記露光対象の第1の領域を露光させた後、第2の領域を露光させ、前記投影光学系が前記第1の領域と前記第2の領域との間の距離を進む間に前記露光装置の設定を変更する、
    露光装置。
  16.  走査方向に基板を移動させながら、空間光変調器を介した光により前記基板を走査露光する露光装置であって、
     前記基板を保持して前記走査方向に移動するステージと、
     前記空間光変調器の位置及び姿勢の少なくとも一方を変化させる第1駆動部と、
     前記空間光変調器を介した光を前記基板上に投影する投影光学系と、
     前記投影光学系内に設けられ光学素子を駆動する第2駆動部と、
     前記ステージ、前記第1駆動部及び前記第2駆動部を制御する制御部と、
    を備え、
     前記制御部は、前記基板上で前記走査方向に並ぶ第1領域及び第2領域が前記投影光学系の光軸に対して前記走査方向の同じ側に移動するように前記ステージを駆動するとともに、前記走査方向に移動する前記基板上で前記第1領域と前記第2領域との間の領域が前記光軸と交差する状態で前記第1駆動部と前記第2駆動部との少なくとも一方を駆動する、
    露光装置。
     
PCT/JP2022/026485 2021-07-05 2022-07-01 露光装置及びデバイス製造方法 WO2023282205A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023533103A JPWO2023282205A1 (ja) 2021-07-05 2022-07-01
CN202280047477.8A CN117651911A (zh) 2021-07-05 2022-07-01 曝光装置以及器件制造方法
KR1020237045137A KR20240014514A (ko) 2021-07-05 2022-07-01 노광 장치 및 디바이스 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021111676 2021-07-05
JP2021-111676 2021-07-05

Publications (1)

Publication Number Publication Date
WO2023282205A1 true WO2023282205A1 (ja) 2023-01-12

Family

ID=84800630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026485 WO2023282205A1 (ja) 2021-07-05 2022-07-01 露光装置及びデバイス製造方法

Country Status (5)

Country Link
JP (1) JPWO2023282205A1 (ja)
KR (1) KR20240014514A (ja)
CN (1) CN117651911A (ja)
TW (1) TW202318108A (ja)
WO (1) WO2023282205A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050558A (ja) * 2000-07-31 2002-02-15 Canon Inc 投影露光装置及びデバイス製造方法
JP2004056080A (ja) * 2002-05-30 2004-02-19 Dainippon Screen Mfg Co Ltd 画像記録装置
JP2008182115A (ja) * 2007-01-25 2008-08-07 Nikon Corp 露光方法及び露光装置並びにマイクロデバイスの製造方法
JP2010533310A (ja) * 2007-07-10 2010-10-21 エルジー エレクトロニクス インコーポレイティド マスクレス露光方法
JP2013012639A (ja) * 2011-06-30 2013-01-17 Dainippon Screen Mfg Co Ltd パターン描画装置およびパターン描画方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6652618B2 (ja) 2018-10-11 2020-02-26 株式会社アドテックエンジニアリング 照度割合変更方法及び露光方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050558A (ja) * 2000-07-31 2002-02-15 Canon Inc 投影露光装置及びデバイス製造方法
JP2004056080A (ja) * 2002-05-30 2004-02-19 Dainippon Screen Mfg Co Ltd 画像記録装置
JP2008182115A (ja) * 2007-01-25 2008-08-07 Nikon Corp 露光方法及び露光装置並びにマイクロデバイスの製造方法
JP2010533310A (ja) * 2007-07-10 2010-10-21 エルジー エレクトロニクス インコーポレイティド マスクレス露光方法
JP2013012639A (ja) * 2011-06-30 2013-01-17 Dainippon Screen Mfg Co Ltd パターン描画装置およびパターン描画方法

Also Published As

Publication number Publication date
CN117651911A (zh) 2024-03-05
JPWO2023282205A1 (ja) 2023-01-12
TW202318108A (zh) 2023-05-01
KR20240014514A (ko) 2024-02-01

Similar Documents

Publication Publication Date Title
US20180203363A1 (en) Controller for optical device, exposure method and apparatus, and method for manufacturing device
US20030164933A1 (en) Projection exposure apparatus
JP4486323B2 (ja) 画素位置特定方法、画像ずれ補正方法、および画像形成装置
US7102733B2 (en) System and method to compensate for static and dynamic misalignments and deformations in a maskless lithography tool
JP2004327660A (ja) 走査型投影露光装置、露光方法及びデバイス製造方法
KR20110000619A (ko) 공간 광 변조 유닛, 조명 광학계, 노광 장치, 및 디바이스 제조 방법
WO2023282205A1 (ja) 露光装置及びデバイス製造方法
WO2023282168A1 (ja) 露光装置
WO2023127499A1 (ja) 露光装置
JP5689535B2 (ja) リソグラフィ装置及びデバイス製造方法
WO2023282213A1 (ja) パターン露光装置、露光方法、及びデバイス製造方法
WO2023282211A1 (ja) 露光装置、デバイス製造方法およびフラットパネルディスプレイの製造方法
US20240110844A1 (en) Exposure apparatus and inspection method
WO2023282210A1 (ja) 露光装置、露光方法およびフラットパネルディスプレイの製造方法、ならびに露光データ作成方法
WO2023282207A1 (ja) 露光装置、露光方法およびフラットパネルディスプレイの製造方法
JP5445905B2 (ja) 位置合わせ方法及び装置、並びに露光方法及び装置
TW202305513A (zh) 曝光裝置、元件製造方法及平板顯示器之製造方法
JP3214001B2 (ja) アライメント装置
KR20100083459A (ko) 노광 장치 및 그 직각도 측정방법
JP2001305743A (ja) 露光装置及びマイクロデバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837621

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533103

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237045137

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237045137

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280047477.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE