WO2023282061A1 - 微生物の質量分析方法 - Google Patents

微生物の質量分析方法 Download PDF

Info

Publication number
WO2023282061A1
WO2023282061A1 PCT/JP2022/024863 JP2022024863W WO2023282061A1 WO 2023282061 A1 WO2023282061 A1 WO 2023282061A1 JP 2022024863 W JP2022024863 W JP 2022024863W WO 2023282061 A1 WO2023282061 A1 WO 2023282061A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass spectrometry
mixed crystal
microorganism
sample
laser irradiation
Prior art date
Application number
PCT/JP2022/024863
Other languages
English (en)
French (fr)
Inventor
華奈江 寺本
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN202280048531.0A priority Critical patent/CN117616274A/zh
Priority to JP2023533519A priority patent/JPWO2023282061A1/ja
Priority to EP22837478.1A priority patent/EP4368984A1/en
Publication of WO2023282061A1 publication Critical patent/WO2023282061A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission

Definitions

  • the present invention relates to a method for mass spectrometry of microorganisms.
  • Matrix-assisted laser desorption/ionization one of the ionization methods in mass spectrometry, analyzes substances that do not absorb laser light easily and substances that are easily damaged by laser light, such as proteins.
  • a matrix substance that easily absorbs laser light and is easily ionized is mixed with the substance to be analyzed, and the mixture is irradiated with laser light to ionize the substance to be analyzed.
  • the matrix material is generally mixed with the analyte as a solution, and the matrix solution incorporates the analyte. By drying, the solvent in the solution is vaporized, forming crystals containing the substance to be analyzed (mixed crystals of sample and matrix substance).
  • the matrix material When this is irradiated with laser light, the matrix material absorbs the energy of the laser light and is rapidly heated and vaporized. At that time, the analyte is also vaporized together with the matrix substance, and the analyte is ionized in the process.
  • a mass spectrometer using such a MALDI method is capable of analyzing macromolecular compounds such as proteins without causing much dissociation, and is also suitable for microanalysis. widely used in the field.
  • MALDI-MS A mass spectrometer using such a MALDI method
  • One of the uses of MALDI-MS in the field of life science is the identification of microorganisms using MALDI-MS (see, for example, Non-Patent Document 1). This is a method for easily identifying microorganisms based on the mass spectral pattern obtained using the test microorganism, and because analysis results can be obtained in a short period of time, simple and rapid identification of microorganisms is possible. is.
  • the signal intensity of the ions derived from the test microorganisms is too low, and the microorganisms cannot be identified appropriately based on the mass spectrum pattern as described above. was there.
  • the present invention has been made in view of the above points, and its object is to detect ions derived from microorganisms with sufficiently high signal intensity in mass spectrometry of microorganisms using MALDI-MS. It is to be.
  • the method for mass spectrometry of microorganisms which has been made to solve the above problems, Forming a mixed crystal of a microbial sample, which is a sample containing a test microorganism or a component derived from the test microorganism, and a matrix material on a sample plate,
  • a mass spectrometer that performs analysis by matrix-assisted laser desorption ionization mass spectrometry
  • a predetermined number of first laser irradiations are performed on a predetermined minute region on the mixed crystal
  • the second laser irradiation is performed a predetermined number of times on the microregion or a predetermined region within the microregion
  • mass spectrometry data indicating the mass spectrometry result of the mixed crystal is generated.
  • ions derived from microorganisms can be detected with sufficiently high signal intensity in the analysis of microorganisms using MALDI-MS.
  • FIG. 10 is a comparison diagram of mass spectra of the first analysis and the second analysis in Test Example 5; 4 is a graph showing changes in protein peak intensity in Test Example 6.
  • FIG. 10 is a comparison diagram of mass spectra of the first analysis and the second analysis in Test Example 6;
  • FIG. 1 is a schematic configuration diagram of a microorganism analysis system according to one embodiment of the present invention.
  • This system includes a mass spectrometry unit 100 and a control/processing unit 200 that controls the operation of the mass spectrometry unit 100 and processes signals output from the mass spectrometry unit 100 .
  • the mass spectrometer 100 is a mass spectrometer (MALDI-MS) that uses matrix-assisted laser desorption ionization (MALDI) as a sample ionization method.
  • MALDI-MS mass spectrometer
  • a sample stage 111 a reflection optical system 112
  • an extraction electrode 113 an extraction electrode 113
  • an ion transport optical system 114 an ion transport optical system 114
  • a mass separator 115 ion A detector 116 or the like
  • a laser light source 117 and a condensing optical system 118 are arranged outside the vacuum chamber 110 .
  • the laser light source 117 emits ultraviolet laser light in pulses.
  • the laser light emitted from the laser light source 117 is condensed into a very small diameter by a condensing optical system 118, and passes through a window 119 provided on the wall surface of the vacuum chamber 110, through which ultraviolet rays can pass. Enter inside.
  • the laser light entering the vacuum chamber 110 is reflected by the reflecting optical system 112 and enters the mixed crystal 132 on the sample plate 130 . That is, the laser light source 117, the condensing optical system 118, the window section 119, and the reflecting optical system 112 correspond to the laser irradiation section of the present invention.
  • irradiation target area The minute area to be irradiated
  • the extraction electrode 113 is a plate-like electrode having an opening in the center for passing ions, and is arranged near the sample stage 111 so as to face the upper surface of the sample stage 111 .
  • a voltage is applied between the extraction electrode 113 and the sample stage 111 by a high-voltage power supply (not shown), and the ions generated from the mixed crystal 132 by the irradiation of the laser light are induced by the electric field formed by the voltage application. It is accelerated in the Z-axis direction perpendicular to the axis and the Y-axis.
  • the control/processing unit 200 includes an irradiation control unit 211, a data acquisition unit 212, a detection data storage unit 213, a data processing unit 214, a mass spectrometry data storage unit 215, a microorganism identification unit 216, and a microorganism identification database 217. .
  • the irradiation control section 211 (corresponding to the control section in the present invention) controls the operations of the stage driving section 120 and the laser light source 117 .
  • the control/processing unit 200 includes an extraction electrode 113, an ion transport optical system 114, a mass separator 115, an ion detector 116, and a vacuum sensor. It also controls the operation of a pump (not shown), etc.
  • the data collection unit 212 collects detection data input from the ion detector 116 as the analysis is performed, and stores the detection data in the detection data storage unit 213 .
  • the data processing unit 214 Based on the detection data stored in the detection data storage unit 213, the data processing unit 214 generates mass spectrometry data (for example, profile data, mass spectrum, or peak list, which will be described later) representing analysis results by the mass spectrometry unit 100. do.
  • the mass spectrometry data storage unit 215 stores the mass spectrometry data generated by the data processing unit 214 .
  • the microorganism identification unit 216 identifies the test microorganism by collating the mass spectrometry data generated by the data processing unit 214 with the microorganism identification database 217.
  • a mass list of multiple known microorganisms is registered in the microorganism identification database 217.
  • the mass list is a list listing the m/z of ions detected when the cells of each known microorganism are subjected to mass spectrometry, and in addition to the m/z values, at least the taxonomic group to which the known microorganism belongs ( (family, genus, species, strain, etc.) information (taxonomic information).
  • the substance of the control/processing unit 200 is a computer such as a personal computer or workstation, and the computer includes a CPU, memory, and a large-capacity storage device such as a hard disk or flash memory.
  • the control/processing unit 200 is connected to an input unit 221 such as a keyboard or a mouse, and a display unit 222 such as a liquid crystal display.
  • the irradiation control unit 211, the data collection unit 212, the data processing unit 214, and the microorganism identification unit 216 described above are embodied by the CPU executing dedicated control/processing software pre-installed in this computer.
  • the detection data storage unit 213, the mass spectrometry data storage unit 215, and the microorganism identification database 217 are based on a large-capacity storage device built into the computer or directly connected to the computer.
  • the functions of the irradiation control unit 211 and the functions of the data processing unit 214 and the microorganism identification unit 216 can be assigned to separate computers. Specifically, for example, the functions of the irradiation control unit 211 are assigned to a single computer directly connected to the mass spectrometry unit 100, and the functions of the data processing unit 214 and the functions of the microorganism identification unit 216 are transferred directly to the computer or via the Internet. It is conceivable to assign to another computer connected via a network such as. Furthermore, the function of the data processing unit 214 and the function of the microorganism identification unit 216 may be assigned to different computers.
  • a plurality of (for example, 100) irradiation target regions are set for one well, and for each irradiation target region, ions are generated by laser light irradiation, and the generated ions are separated. and detection are repeated a plurality of times (for example, about 5 to 10 times). Then, one piece of profile data is created by integrating the ion detection signals obtained for one irradiation target region. Therefore, for one well, the same number of profile data as the number of irradiation target regions set on the well is obtained.
  • the profile data refers to the waveform of the detection signal continuously sent out from the ion detector provided in the mass spectrometer, with the horizontal axis as time (or m/z) and the vertical axis as ion intensity. It is.
  • one mass spectrum (representative mass spectrum) regarding the mixed crystal formed on the well is created by averaging the profile data generated for one well, and further, the representative mass spectrum includes A list (peak list) or the like indicating the m/z value representing the centroid position (or center position) of each peak and the area value of each peak is created.
  • the signal intensity of ions derived from the microbial sample may be low.
  • the present inventors have come to consider the influence of impurities taken in from the atmosphere during the formation of mixed crystals of the sample and matrix as a factor.
  • the ionization in the general MALDI-MS analysis as described above is limited to a very shallow region near the surface of the mixed crystal of the sample and matrix substance.
  • this region contains many impurities (for example, minerals) taken in from the air during the process of drying the mixture of the sample and the matrix solution to form the mixed crystal. Therefore, it was expected that the ionization efficiency of components such as proteins derived from microorganisms would decrease due to ionization suppression (ion suppression) caused by the impurities.
  • the mixed crystal 132 to be analyzed is irradiated with laser light in advance before performing mass spectrometry for creating a mass spectrum (hereinafter sometimes referred to as "main analysis").
  • main analysis mass spectrometry for creating a mass spectrum
  • the surface layer portion of the mixed crystal is removed.
  • a region of the mixed crystal 132 with a low content of impurities taken in from the air can be ionized, so that the suppression of ionization due to the impurities is reduced, and a sufficiently high signal intensity can be obtained. It becomes possible to detect ions derived from microorganisms.
  • the user of the system according to the present embodiment forms mixed crystals 132 of the microbial sample and the matrix substance in predetermined wells 131 on the sample plate 130 (step 11).
  • a solution of a matrix substance (matrix solution) and a microbial sample are mixed, and the mixture is dropped into the well 131 and dried to remove the sample and the matrix substance. to form a mixed crystal 132 with.
  • the mixed crystal 132 may be formed by placing the microbial sample on the well 131 , dropping the matrix solution onto the same well 131 , mixing the two on the well 131 and drying them.
  • Microorganisms to be analyzed include, for example, bacteria, yeast, and fungi (filamentous fungi), but are not limited to these.
  • fungi filamentous fungi
  • the type of matrix substance is not particularly limited, and CHCA ( ⁇ -cyano-4-hydroxycinnamic acid), SA (sinapic acid), DHB (2,5-dihydroxybenzoic acid), or the like can be used as appropriate.
  • the solvent of the matrix solution can be an aqueous solution containing several tens of volume % of an organic solvent such as acetonitrile, to which 0 to 3 volume % of trifluoroacetic acid (TFA) is added, but is limited to this. not a thing
  • an organic solvent such as acetonitrile
  • TFA trifluoroacetic acid
  • the user sets the sample plate 130 holding the mixed crystal 132 on the sample stage 111 of the mass spectrometry unit 100 . Then, by operating the input unit 221, the number of irradiation target regions in the mixed crystal 132 in each well 131, and the position and size of each irradiation target region are set. 1 and the number of laser irradiation times N2 in the second laser irradiation are set. The number, positions, and sizes of irradiation target regions, or the number of laser irradiation times N 1 and N 2 may be automatically set by the control/processing unit 200 .
  • the vacuum chamber 110 is evacuated by a vacuum pump (not shown).
  • a vacuum pump (not shown).
  • the mixed crystal 132 formed in one well 131 on the sample plate 130 will be described below assuming that the system of the present embodiment is to be analyzed.
  • the first laser irradiation is performed on each irradiation target region set on the mixed crystal 132 (step 12). Specifically, first, the irradiation control unit 211 controls the stage driving unit 120 to move the sample stage 111, and moves the first irradiation target region on the mixed crystal 132 to the laser light condensing position. Then, the irradiation control unit 211 controls the laser light source 117 to emit laser light a predetermined number of times N 1 (for example, about 5 to 25 times).
  • the laser frequency at this time is, for example, 20 Hz to 200 Hz, preferably about 40 to 60 Hz.
  • the laser light emitted from the laser light source 117 is condensed into a very small diameter by the condensing optical system 118 , passes through the window 119 and the reflecting optical system 112 , and enters the first irradiation target area.
  • part of the mixed crystal 132 in the first irradiation target region is desorbed from the surface layer portion of the crystal and ionized.
  • the ions are extracted from the vicinity of the well 131 by the extraction electrode 113 and introduced into the mass separator 115 via the ion transport optical system 114 . After being separated according to m/z, they are detected by the ion detector 116 .
  • the detection data input from the ion detector 116 to the control/processing unit 200 via the ADC is not stored in the detection data storage unit 213 (that is, when the first laser irradiation is performed, the data collection unit 212 (No data is collected by
  • the irradiation control unit 211 controls the stage driving unit 120 to move the sample stage 111, and the second irradiation target region on the well 131 is irradiated with the laser beam. , and the first laser irradiation is performed in the same manner as described above. After that, similarly, the first laser irradiation is sequentially performed on the third and subsequent irradiation target regions.
  • the frequency of laser irradiation at this time is also, for example, about 40 to 60 Hz.
  • the frequency of laser irradiation at this time is also, for example, about 40 to 60 Hz.
  • the ions introduced into the mass separator 115 are separated according to m/z and detected by the ion detector 116, and the detection signal output from the ion detector 116 is converted into digital data (detection data) by the ADC 121. After being converted, it is input to the control/processing unit 200 .
  • the input detection data is collected by the data collection unit 212 and stored in the detection data storage unit 213 .
  • the irradiation control unit 211 controls the stage driving unit 120 to move the sample stage 111, and the second irradiation on the well 131 is performed.
  • the target area is moved to the position where the laser light is condensed, and the second laser irradiation and detection data collection are performed in the same manner as described above.
  • the second laser irradiation and the collection of detection data are sequentially executed for the third and subsequent irradiation target areas.
  • the microorganism identification unit 216 based on the mass spectrometry data (that is, representative mass spectrum or peak list) created above, the microorganism identification unit 216 identifies the test microorganism (step 15). Specifically, for example, the microorganism identification unit 216 reads the peak list for the microorganism sample generated in step 14 (that is, the peak list for the microorganism to be tested) from the mass spectrometry data storage unit 215, and reads the database for microorganism identification 217. Check against the mass list of each known microorganism contained in .
  • a mass list having an m/z pattern similar to the peak list of the test microorganism for example, an m/z that matches the m/z of each peak in the peak list of the test microorganism within a predetermined error range Extract the mass list that contains the most.
  • the microorganism identification unit 216 refers to the classification information stored in the microorganism identification database 217 in association with the extracted mass list, thereby identifying the taxonomic group (family, genus, species, or strain). Then, the specified taxonomic group is displayed on the display unit 222 as a taxonomic group to which the microorganism to be tested is presumed to belong.
  • steps 12 to 15 are performed only for the mixed crystal 132 formed in one well 131 on the sample plate 130, but normally the sample plate 130
  • the first laser irradiation (step 12) and the second laser irradiation (step 13) are performed for each of the mixed crystals 132 formed in the upper plurality of wells 131, and then each mixed crystal 132 is (step 14), and identification of the test microorganism corresponding to each mixed crystal 132 (step 15).
  • the data collection unit 212 does not collect data when the first laser irradiation (step 12) is executed. Also, the data collection unit 212 may collect data (that is, the detection data output from the ion detector 116 may be stored in the detection data storage unit 213). However, even in that case, when generating the mass spectrometry data in step 14, the detection data collected during the execution of the first laser irradiation was not used, and the detection data collected during the execution of the second laser irradiation (step 13) was not used. Mass spectrometry data shall be generated based on the detection data.
  • the ions generated from the mixed crystal 132 are separated by the mass separator 115 and detected by the ion detector 116 in both the first laser irradiation and the second laser irradiation. Such separation and detection of ions may not necessarily be performed in the first laser irradiation.
  • the ions generated from the mixed crystal 132 are separated, detected, and output from the ion detector 116.
  • ion separation and detection may be performed without data collection.
  • none of ion separation, detection, and data collection may be performed during the first laser irradiation.
  • the detection data collected in the second laser irradiation i.e., (N 1 +1) to N 2 th laser irradiation
  • the detection data collected in the second laser irradiation i.e., (N 1 +1) to N 2 th laser irradiation
  • each irradiation target region on the mixed crystal is irradiated with a laser.
  • the main analysis it is possible to obtain profile data in which the ionization of components derived from microorganisms occurs more reliably.
  • mass spectra with high peak intensities of components derived from microorganisms, and it is expected that it will be possible to identify microorganisms that could not be properly identified by conventional methods due to low peak intensities.
  • a high-quality mass list for each known microorganism i.e., a large number of m / z related to components derived from the microorganism
  • a database containing mass lists with low m/z for other unwanted components When creating such a database, each known microorganism is used as a test microorganism, and a peak list of each known microorganism is generated by executing steps 11 to 14 above, and a predetermined m / z from each peak list is generated. Extract range peaks.
  • the second laser irradiation is performed on the same range as the range in which the first laser irradiation is performed (that is, the irradiation target region described above).
  • the second laser irradiation may be performed on a narrower region within the minute region.
  • the minute area to be irradiated with the first laser and the minute area to be irradiated with the second laser may be set in advance by the user, respectively, or the first laser beam
  • a user may set a minute area to be irradiated, so that a narrower area within the minute area may be automatically set as the range for the second laser irradiation.
  • the control/processing unit 200 may automatically set both the area for the first laser irradiation and the area for the second laser irradiation.
  • the measurement of the same mixed crystal was repeated 8 times, and the ribosomal protein L36 on the 100 profile data in each measurement was measured. , L32, and L29 are shown in FIG.
  • the peak intensities of the three types of ribosomal proteins tended to increase significantly from the first to the fifth measurement, and showed a moderate increasing tendency from the fifth to the eighth measurement. rice field. From this result, it was shown that removing the surface layer of the mixed crystal by laser irradiation is effective for obtaining high peak intensity in microorganism analysis by MALDI-MS.
  • Test Example 2 A matrix solution was prepared by dissolving 15 mg/mL SA in 50% acetonitrile 1% trifluoroacetic acid in water. E. coli and the matrix solution were mixed so that the OD was about 1, and 1 ⁇ L of the resulting mixture was dropped onto the sample plate. By drying this, mixed crystals of the sample and the matrix material were formed on the sample plate. The sample plate was set in MALDI-MS, and the measurement of the mixed crystal was repeated eight times in the same manner as in Test Example 1.
  • FIG. 4 shows the results of plotting the average values of the peak intensities (mV) of the ribosomal proteins L36, L32, and L29 on the 100 pieces of profile data for each measurement.
  • the peak intensities of L36 and L32 were more than twice as large in the second measurement as in the first measurement, and peaks were observed with stronger intensities than in the first measurement up to the 4th and 5th measurements. From this result, it was shown that scraping the surface of the mixed crystal by laser irradiation is effective for obtaining high peak intensity in microorganism analysis by MALDI-MS.
  • a matrix solution was prepared by dissolving 10 mg/mL CHCA in 50% acetonitrile 1% trifluoroacetic acid in water. E. coli and the matrix solution were mixed so that the OD was about 1, and 1 ⁇ L of the resulting mixture was dropped onto the sample plate. By drying this, a mixed crystal of the sample and the matrix was formed on the sample plate.
  • the sample plate was set in MALDI-MS, and 5 shots of laser irradiation at 50 Hz were applied to each of 100 irradiation target regions set on the mixed crystal.
  • a total of 100 pieces of profile data are obtained by accumulating the detection signals output from the ion detector accompanying laser irradiation to each irradiation target area, and a representative mass spectrum is created by averaging them. bottom.
  • the measurement of the same mixed crystal i.e., 5 shots of laser irradiation for each of the 100 irradiation target regions
  • 100 profile data and representative masses were obtained in the same manner.
  • a spectrum was created.
  • FIG. 5 shows representative mass spectra in each measurement. From the figure, it can be seen that the peak intensity of the representative mass spectrum of the second measurement is generally higher than that of the representative mass spectrum of the first measurement.
  • L36 1st time: 327, 2nd time: 316, L32: 1st time: 409, 2nd time: 442, L29 was 383 for the first time and 498 for the second time, and a mass spectrum with higher mass resolution was obtained in the second measurement except for L36.
  • a matrix solution was prepared by dissolving 10 mg/mL of CHCA in 50% acetonitrile and 1% trifluoroacetic acid aqueous solution. Gram-negative bacterium Brevundimonas diminuta and the matrix solution were mixed so that the OD was about 1, and 1 ⁇ L of the resulting mixed solution was dropped onto a sample plate. By drying this, mixed crystals of the sample and the matrix material were formed on the sample plate.
  • the sample plate was set in MALDI-MS, and laser irradiation was first performed on each of the 100 irradiation target regions set on the mixed crystal, without taking in a detection signal from the ion detector. times, 5 times, 10 times, 15 times, or 25 times.
  • FIG. 6 shows the representative mass spectrum obtained above and the results of identification of microorganisms using the representative mass spectrum. As shown in the figure, two faint peaks were detected with no laser irradiation before data acquisition (that is, before main analysis), and the microorganism could not be identified. Five laser irradiations before data acquisition detected many high-intensity peaks and identified them as B. diminuta with an identification score of 66%.
  • Test Example 5 0.5 ⁇ L of a 25% formic acid aqueous solution was dropped onto the lactic acid bacteria coated on the sample plate, and the cells and formic acid were mixed by pipetting using a micropipette to lyse. After drying, 1 ⁇ L of 10 mg/mL CHCA (50% acetonitrile 1% trifluoroacetic acid aqueous solution) was added dropwise and mixed with the cells lysed with formic acid by pipetting. By drying this, mixed crystals of the sample and the matrix material were formed on the sample plate. The sample plate was set in MALDI-MS, and the measurement of the mixed crystal was repeated eight times in the same manner as in Test Example 1. FIG.
  • FIG. 7 shows the results of plotting the average peak intensities (mV) of the ribosomal proteins L36, L32, and L29 on the profile data obtained in each measurement.
  • the intensities of the peaks derived from the three proteins showed a large increase from the 1st to the 5th measurements, and showed a gentle increasing trend from the 5th to the 8th measurements.
  • FIG. 8 shows a representative mass spectrum in the first measurement and a representative mass spectrum in the second measurement. From the figure, it can be seen that the peak intensity of the representative mass spectrum of the second measurement is generally higher than that of the representative mass spectrum of the first measurement.
  • L36 first time 358
  • second time 375
  • L32 first time 334
  • second time 365
  • L29 first time 469
  • 2nd time 488
  • higher mass resolving power was obtained by the 2nd measurement.
  • FIG. 10 shows a representative mass spectrum in the first measurement and a representative mass spectrum in the second measurement. From the figure, it can be seen that the peak intensity of the representative mass spectrum of the second measurement is generally higher than that of the representative mass spectrum of the first measurement.
  • L36 1st: 317, 2nd: 320, L32: 1st: 385, 2nd: 399, L29: 1st: 503, 2nd time: 512, and the mass resolving power was high in both of the 2nd measurements.
  • a microbial mass spectrometry method comprises a microbial sample, which is a sample containing a test microorganism or a component derived from the test microorganism, and a mixed crystal of a matrix material on a sample plate.
  • a predetermined number of first laser irradiations are performed on a predetermined minute region on the mixed crystal
  • the second laser irradiation is performed a predetermined number of times on the microregion or a predetermined region within the microregion
  • Mass analysis by matrix-assisted laser desorption ionization mass spectrometry can be performed on the remaining regions. Therefore, in the mass spectrometry, it is possible to reduce ionization suppression due to the impurities and detect ions derived from microorganisms with sufficiently high signal intensity.
  • the method for identifying microorganisms according to one aspect of the present invention includes the mass spectrometry data generated by the method for mass spectrometry of microorganisms according to Section 1, and the mass spectrometry results for a plurality of known microorganisms.
  • the microorganism to be tested is identified by collating with the database.
  • the microorganism-derived ions generated by the method according to paragraph 1 are identified using mass spectrometry data with high signal intensity of ions derived from microorganisms. It is also possible to identify microorganisms with high accuracy.
  • a method for creating a database according to an aspect of the present invention includes performing the microorganism mass spectrometry method according to Section 1, wherein the known microorganisms are the test microorganisms, for a plurality of known microorganisms, A database is created in which the mass spectrometry data generated for each of the plurality of known microorganisms and classification information for each of the known microorganisms are recorded.
  • the database is created by collecting mass spectrometry data for each of a plurality of known microorganisms by the method described in paragraph 1, so that the ion signal intensity derived from microorganisms is high.
  • a high-quality database containing a large number of mass spectrometry data can be created.
  • a microorganism analysis system provides a matrix-assisted laser desorption for a mixed crystal of a microorganism sample, which is a sample containing a test microorganism or a component derived from the test microorganism, and a matrix substance.
  • a system for performing analysis by ionization mass spectrometry a laser irradiation unit for irradiating the mixed crystal with pulsed laser light; a sample stage supporting a sample plate holding the mixed crystal; a stage driving unit that moves the sample stage in a plane parallel to the sample plate; a mass separation unit that separates ions generated from the mixed crystal by irradiation of the laser beam based on m/z; an ion detector that detects ions separated by the mass separator; a control unit that controls the laser irradiation unit and the stage driving unit; a data processing unit that processes detection signals from the ion detection unit; has After the control unit performs a predetermined number of first laser irradiations on a predetermined microregion on the mixed crystal, the microregion or a predetermined region within the microregion controlling the laser irradiation unit and the stage driving unit so as to perform the second laser irradiation for a predetermined number of times; The data processing unit generates mass spectrometry data indicating
  • the first laser irradiation is performed to remove the surface layer portion of the mixed crystal of the sample and the matrix substance, which contains a large amount of impurities taken in from the air. can.
  • the region below the surface layer is ionized by the second laser irradiation, and mass spectrometry data is created based on the detection unit from the ion detection unit at that time, thereby suppressing the ionization due to the impurity. It is possible to obtain mass spectrometric data with high peak intensities of components derived from microorganisms.

Abstract

サンプルプレート上に、被検微生物又は該被検微生物由来の成分を含む試料である微生物試料と、マトリックス物質との混合結晶を形成し(11)、マトリックス支援レーザー脱離イオン化質量分析法による分析を行う質量分析装置において、前記混合結晶上の予め定められた微小領域に対して予め定められた回数の第1のレーザー照射を行い(12)、前記質量分析装置において、前記微小領域又は該微小領域内の予め定められた領域に対して予め定められた回数の第2のレーザー照射を行い(13)、前記第2のレーザー照射時に前記質量分析装置によって取得されたイオン検出信号に基づいて、前記混合結晶についての質量分析結果を表す質量分析データを生成(14)する。これにより、十分に高い信号強度で微生物由来のイオンを検出できるようになる。

Description

微生物の質量分析方法
 本発明は、微生物の質量分析方法に関する。
 質量分析におけるイオン化法の1つであるマトリックス支援レーザー脱離イオン化(MALDI=Matrix Assisted Laser Desorption/Ionization)法は、レーザー光を吸収しにくい物質やタンパク質などレーザー光で損傷を受けやすい物質を分析するために、レーザー光を吸収し易く且つイオン化しやすいマトリックス物質を分析対象物質と混合し、これにレーザー光を照射することで分析対象物質をイオン化する手法である。一般にマトリックス物質は溶液として分析対象物質と混合され、このマトリックス溶液が分析対象物質を取り込む。そして、乾燥させることによって溶液中の溶媒が気化し、分析対象物質を含んだ結晶(試料とマトリックス物質との混合結晶)が形成される。これにレーザー光を照射すると、マトリックス物質がレーザー光のエネルギーを吸収して急速に加熱され、気化する。その際、分析対象物質もマトリックス物質とともに気化し、その過程で分析対象物質がイオン化される。
 こうしたMALDI法を利用した質量分析装置(MALDI-MS)は、タンパク質などの高分子化合物をあまり解離させることなく分析することが可能であり、しかも微量分析にも好適であることから、生命科学の分野で広く利用されている。生命科学分野におけるMALDI-MSの利用の一つに、MALDI-MSを用いた微生物の同定がある(例えば、非特許文献1を参照)。これは、被検微生物を用いて得られたマススペクトルパターンに基づいて微生物を簡易的に同定する方法であり、短時間で分析結果を得ることができることから、簡便且つ迅速な微生物の同定が可能である。
「AXIMA 微生物同定システム 簡易ユーザーガイド」,株式会社島津製作所,2017年4月6日
 しかしながら、上記のようなMALDI-MSを用いて微生物を分析した場合、被検微生物に由来するイオンの信号強度が低すぎて、上述のようなマススペクトルパターンに基づく微生物同定が適切に行えない場合があった。
 本発明は上記の点に鑑みて成されたものであり、その目的とするところは、MALDI-MSを用いた微生物の質量分析において、十分に高い信号強度で微生物由来のイオンを検出できるようにすることである。
 上記課題を解決するために成された本発明に係る微生物の質量分析方法は、
 サンプルプレート上に、被検微生物又は該被検微生物由来の成分を含む試料である微生物試料と、マトリックス物質との混合結晶を形成し、
 マトリックス支援レーザー脱離イオン化質量分析法による分析を行う質量分析装置において、前記混合結晶上の予め定められた微小領域に対して予め定められた回数の第1のレーザー照射を行い、
 前記質量分析装置において、前記微小領域又は該微小領域内の予め定められた領域に対して予め定められた回数の第2のレーザー照射を行い、
 前記第2のレーザー照射時に前記質量分析装置によって取得されたイオン検出信号に基づいて、前記混合結晶についての質量分析結果を示す質量分析データを生成するものである。
 上記構成から成る本発明に係る微生物の質量分析方法によれば、MALDI-MSを用いた微生物分析において、十分に高い信号強度で微生物由来のイオンを検出できるようになる。
本発明の一実施形態に係る微生物分析システムの概略構成図。 同実施形態における微生物分析の手順を示すフローチャート。 試験例1におけるタンパク質ピーク強度の推移を示すグラフ。 試験例2におけるタンパク質ピーク強度の推移を示すグラフ。 試験例3における分析1回目と2回目のマススペクトルの比較図。 試験例4におけるデータ取得前のレーザー照射数によるマススペクトルと微生物同定結果の変化を示す図。 試験例5におけるタンパク質ピーク強度の推移を示すグラフ。 試験例5における分析1回目と2回目のマススペクトルの比較図。 試験例6におけるタンパク質ピーク強度の推移を示すグラフ。 試験例6における分析1回目と2回目のマススペクトルの比較図。
 以下、本発明を実施するための形態について図面を参照しつつ説明する。図1は、本発明の一実施形態に係る微生物分析システムの概略構成図である。
 このシステムは、質量分析部100と、質量分析部100の動作を制御すると共に質量分析部100から出力される信号を処理する制御/処理部200と、を備えている。
 質量分析部100は、試料のイオン化法としてマトリックス支援レーザー脱離イオン化(MALDI)法を用いる質量分析装置(MALDI-MS)である。この質量分析部100において、図示しない真空ポンプにより真空排気される真空チャンバ110の内部には、試料ステージ111、反射光学系112、引き出し電極113、イオン輸送光学系114、質量分離器115、及びイオン検出器116などが配設される。また、真空チャンバ110の外側には、レーザー光源117及び集光光学系118などが配置されている。
 試料ステージ111の上面には、MALDI法で用いられるサンプルプレート130が載置される。サンプルプレート130の上面には複数のウェル131(試料が載せられる領域)が設けられており、ウェル131内には、被検微生物又はそれに由来する成分を含む試料(以下「微生物試料」とよぶ)とマトリックス物質との混合結晶132が保持される。なお、図1では、簡略化のため一つのウェル131のみを示している。試料ステージ111は、ステッピングモータ(図示略)を含むステージ駆動部120によって、試料ステージ111の上面と平行且つ互いに直交するX軸及びY軸の2軸方向に移動可能である。
 レーザー光源117は紫外線であるレーザー光をパルス状に出射するものである。レーザー光源117から出射したレーザー光は、集光光学系118により微小径に絞られた上で、真空チャンバ110の壁面に設けられた、紫外線を透過可能な窓部119を介して真空チャンバ110の内部に進入する。真空チャンバ110内に進入したレーザー光は、反射光学系112で反射されてサンプルプレート130上の混合結晶132に入射する。すなわち、レーザー光源117、集光光学系118、窓部119、及び反射光学系112が本発明におけるレーザー照射部に相当する。なお、このレーザー光の集光位置は固定されているから、ステージ駆動部120により試料ステージ111がX-Y面内で移動されると、混合結晶132上でレーザー光が当たる位置、すなわちレーザー照射の対象となる微小領域(以下、「照射対象領域」とよぶ)が変化することとなる。
 引き出し電極113は、中央にイオンを通過させるための開口を備えた板状の電極であって、試料ステージ111の近傍に、試料ステージ111の上面と対向するように配置されている。引き出し電極113と試料ステージ111の間には図示しない高圧電源によって電圧が印加されており、前記レーザー光の照射によって混合結晶132から生じたイオンは、前記電圧印加によって形成される電場によって、前記X軸及びY軸と直交するZ軸方向に加速される。
 引き出し電極113の後段には、電場の作用によりイオンを収束させつつ輸送するためのイオン輸送光学系114が設置され、更にその後段には、イオンをm/zに応じて分離する質量分離器115と、分離されたイオンを検出するイオン検出器116とが設置されている。イオン検出器116による検出信号はアナログデジタル変換器(ADC)121でデジタルデータに変換されて制御/処理部200に入力される。以下、前記デジタルデータを「検出データ」とよぶ。イオン輸送光学系114としては、例えば、静電レンズや多極型の高周波イオンガイド、或いはそれらの組み合わせなどが用いられる。質量分離器115としては、例えば、イオントラップ型、四重極型、二重収束型、飛行時間型、又は磁場セクター型など各種のものを用いることができる。
 制御/処理部200は、照射制御部211、データ収集部212、検出データ記憶部213、データ処理部214、質量分析データ記憶部215、微生物同定部216、及び微生物同定用データベース217を含んでいる。
 照射制御部211(本発明における制御部に相当)は、ステージ駆動部120及びレーザー光源117の動作を制御する。なお、図1では煩雑さを避けるため信号線の記載を省略しているが、制御/処理部200は、引き出し電極113、イオン輸送光学系114、質量分離器115、イオン検出器116、及び真空ポンプ(図示略)、などの動作も制御する。データ収集部212は、分析の実行に伴ってイオン検出器116から入力される検出データを収集して検出データ記憶部213に格納する。データ処理部214は、検出データ記憶部213に格納された検出データに基づいて、質量分析部100による分析結果を表す質量分析データ(例えば、後述するプロファイルデータ、マススペクトル、又はピークリスト)を生成する。質量分析データ記憶部215は、データ処理部214で生成された質量分析データを記憶する。
 微生物同定部216は、データ処理部214で生成された質量分析データを微生物同定用データベース217と照合することによって、被検微生物を同定する。
 微生物同定用データベース217には、複数の既知微生物に関する質量リストが登録されている。質量リストは、各既知微生物の菌体を質量分析した際に検出されるイオンのm/zを列挙したリストであり、該m/zの値に加えて、少なくとも当該既知微生物が属する分類群(科、属、種、又は株など)の情報(分類情報)を含んでいる。
 制御/処理部200の実体はパーソナルコンピュータ又はワークステーションなどのコンピュータであり、該コンピュータは、CPUと、メモリと、ハードディスク又はフラッシュメモリ等から成る大容量記憶装置とを備えている。制御/処理部200には、キーボード又はマウス等から成る入力部221と、液晶ディスプレイ等の表示装置から成る表示部222が接続されている。上述の照射制御部211、データ収集部212、データ処理部214、及び微生物同定部216は、このコンピュータに予めインストールされた専用の制御・処理ソフトウェアをCPUが実行することによって具現化される。なお、検出データ記憶部213、質量分析データ記憶部215、及び微生物同定用データベース217は、前記コンピュータに内蔵された又は前記コンピュータに直接接続された大容量記憶装置によるものとするほか、例えば、前記コンピュータからインターネット等を介してアクセス可能である別のコンピュータシステム上に存在する記憶装置、例えば、クラウドコンピューティングにおける記憶装置などを利用してもよい。
 また、本実施形態に係るシステムは、照射制御部211の機能と、データ処理部214及び微生物同定部216の機能とを、別々のコンピュータに分担させるものとすることもできる。具体的には、例えば、照射制御部211の機能を質量分析部100に直接接続された一台のコンピュータに割り当て、データ処理部214の機能及び微生物同定部216の機能を前記コンピュータに直接又はインターネット等のネットワークを介して接続された別のコンピュータに割り当てることが考えられる。また、更に、データ処理部214の機能と微生物同定部216の機能とを別々のコンピュータに分担させるようにしてもよい。
 続いて、本実施形態に係るシステムを用いて行われる微生物分析方法の特徴について説明する。
 一般的に、MALDI-MSによる分析では、一つのウェルについて、複数(例えば100個)の照射対象領域が設定され、各照射対象領域について、レーザー光照射によるイオンの生成、並びに生成したイオンの分離及び検出、というプロセスが複数回(例えば5~10回程度)繰り返し実行される。そして、一つの照射対象領域について得られたイオン検出信号同士を積算することによって、一つのプロファイルデータが作成される。したがって、一つのウェルについて、該ウェル上に設定された照射対象領域の数と同数のプロファイルデータが得られることとなる。ここでプロファイルデータとは、質量分析装置に設けられたイオン検出器から連続的に送出される検出信号の波形を、横軸を時間(又はm/z)とし、縦軸をイオン強度として表したものである。その後は、1つのウェルについて生成されたプロファイルデータの平均を取るなどして該ウェル上に形成された混合結晶に関する1つのマススペクトル(代表マススペクトル)が作成され、更に、該代表マススペクトルに含まれる各ピークの重心位置(又は中心位置)を表すm/z値と、各ピークの面積値とを示したリスト(ピークリスト)等が作成される。
 しかしながら、上記従来の一般的なMALDI-MSによって微生物試料を分析した場合、微生物試料に由来するイオンの信号強度が低くなる場合があった。本発明者は、鋭意検討の結果、その要因として、試料とマトリックスとの混合結晶の形成時に大気中から取り込まれる不純物の影響を考察するに至った。
 すなわち、上記のような一般的なMALDI-MSによる分析においてイオン化されるのは、試料とマトリックス物質との混合結晶のうち、表面付近のごく浅い領域に限られる。しかしながら、この領域には、試料とマトリックス溶液の混合液を乾燥させて前記混合結晶を形成する過程で大気中から取り込まれた不純物(例えばミネラル分)が多く含まれると考えられる。そのため、上記不純物によるイオン化抑制(イオンサプレッション)によって、微生物に由来するタンパク質等の成分のイオン化効率が低下していると予想された。
 そこで、本実施形態に係るシステムでは、マススペクトル作成のための質量分析(以下、「本分析」とよぶことがある)を行う前に、予め分析対象である混合結晶132にレーザー光を照射することによって、当該混合結晶の表層部を除去しておく。これにより、前記本分析において、混合結晶132のうち、大気中から取り込まれた不純物の含有量が少ない領域をイオン化することができるため、該不純物によるイオン化抑制を低減し、十分に高い信号強度で微生物由来のイオンを検出することが可能となる。
 以下、このような微生物分析方法の詳細について、図2のフローチャートを参照しつつ説明する。
 まず、本実施形態に係るシステムのユーザ(すなわち分析担当者)が、サンプルプレート130上の所定のウェル131内に微生物試料とマトリックス物質との混合結晶132を形成させる(ステップ11)。具体的には、例えば、エッペンドルフチューブ等のマイクロチューブ内で、マトリックス物質の溶液(マトリックス溶液)と微生物試料とを混合し、その混合物を前記ウェル131に滴下して乾燥させることによって試料とマトリックス物質との混合結晶132を形成させる。あるいは、前記ウェル131に微生物試料を乗せた上で、同じウェル131にマトリックス溶液を滴下し、ウェル131上で両者を混合して乾燥させることによって混合結晶132を形成させるようにしてもよい。但し、混合結晶132の調製方法は、これらに限定されるものではなく、既知の様々な手法を適用することができる。また、分析対象とする微生物(被検微生物)は、例えば、細菌、酵母、カビ(糸状菌)等が挙げられるが、これに限定されるものではない。なお、グラム陽性菌、カビ、又は酵母などの硬い細胞壁を有する微生物を分析対象とする場合には、それらをマトリックス溶液と混合する前に、予めギ酸処理等の有機酸による前処理を行うようにしてもよい。マトリックス物質の種類は特に限定されず、CHCA(α-cyano-4-hydroxycinnamic acid)、SA(シナピン酸)、又はDHB(2,5-dihydroxybenzoic acid)等を適宜用いることができる。また、マトリックス溶液の溶媒は、アセトニトリル等の有機溶媒を数十体積%含む水溶液にトリフルオロ酢酸(TFA)が0~3体積%添加されたもの等を用いることができるが、これに限定されるものではない。なお、本実施形態における微生物試料としては、培地等から採取した微生物細胞(微生物体)そのものを用いるほか、微生物細胞からの抽出物、又は該抽出物から精製したタンパク質等の細胞構成成分を用いるようにしてもよい。
 次に、ユーザは、混合結晶132が保持されたサンプルプレート130を、質量分析部100の試料ステージ111上にセットする。そして、入力部221を操作して各ウェル131中の混合結晶132における照射対象領域の数、各照射対象領域の位置及び大きさを設定すると共に、後述する第1のレーザー照射におけるレーザー照射回数Nと第2のレーザー照射におけるレーザー照射回数Nを設定する。なお、照射対象領域の数、位置、及び大きさ、又は前記レーザー照射回数N及びNは、制御/処理部200によって自動的に設定されるものとしてもよい。その後、ユーザが入力部221から所定の操作を行うことによって制御/処理部200に分析の開始を指示すると、図示しない真空ポンプによって真空チャンバ110の真空引きが実行される。なお、以下では簡略化のため、サンプルプレート130上の1つのウェル131に形成された混合結晶132のみについて、本実施形態のシステムによる分析を実行するものとして説明を行う。
 真空引きが完了すると、混合結晶132上に設定された各照射対象領域に対する第1のレーザー照射が実行される(ステップ12)。具体的には、まず、照射制御部211が、ステージ駆動部120を制御して試料ステージ111を移動させ、混合結晶132上の1番目の照射対象領域をレーザー光の集光位置に移動させる。そして、照射制御部211がレーザー光源117を制御して、予め定められた回数N(例えば5~25回程度)だけレーザー光を出射させる。このときのレーザーの周波数は、例えば、20Hz~200Hz、望ましくは40~60Hz程度とする。レーザー光源117から出射されたレーザー光は、集光光学系118によって微小径に絞られた上で、窓部119及び反射光学系112を経て1番目の照射対象領域に入射する。このレーザー光の照射により、1番目の照射対象領域における、混合結晶132の一部が該結晶の表層部から脱離してイオン化する。前記イオンは、引き出し電極113によってウェル131の近傍から引き出され、イオン輸送光学系114を経て質量分離器115に導入される。そして、m/zにしたがって分離された上で、イオン検出器116で検出される。但し、このとき、イオン検出器116からADCを経て制御/処理部200に入力される検出データは、検出データ記憶部213に記憶されない(すなわち、第1のレーザー照射の実行時には、データ収集部212によるデータ収集は行われない)。
 1番目の照射対象領域に対する第1のレーザー照射が完了すると、照射制御部211が、ステージ駆動部120を制御して試料ステージ111を移動させ、ウェル131上の2番目の照射対象領域をレーザー光の集光位置に移動させ、上記同様に第1のレーザー照射を実行する。その後、同様にして3番目以降の照射対象領域に対しても、第1のレーザー照射を順次実行する。
 以上により、全ての照射対象領域について第1のレーザー照射が完了すると、続いて、各照射対象領域に対する第2のレーザー照射が実行され(ステップ13)、そのときのイオン検出器116からの出力信号(検出データ)がデータ収集部212によって収集される。具体的には、まず、照射制御部211の制御の下に、ステージ駆動部120が試料ステージ111を移動させて、ウェル131上の1番目の照射対象領域を再びレーザー光の集光位置に移動させる。そして、照射制御部211の制御の下に、レーザー光源117が予め定められた回数N(例えば5~25回程度)だけレーザー光を出射する。このときのレーザー照射の周波数も、例えば、40~60Hz程度とする。このとき、レーザー光が1回出射されるごとに、1番目の照射対象領域における混合結晶132の一部が該結晶の表面から脱離してイオン化し、イオン輸送光学系114を経て質量分離器115に導入される。質量分離器115に導入されたイオンは、m/zに従って分離された上で、イオン検出器116で検出され、イオン検出器116から出力される検出信号は、ADC121でデジタルデータ(検出データ)に変換された上で、制御/処理部200に入力される。入力された検出データは、データ収集部212によって収集されて、検出データ記憶部213に格納される。
 1番目の照射対象領域に対する第2のレーザー照射及び検出データの収集が完了すると、照射制御部211が、ステージ駆動部120を制御して試料ステージ111を移動させ、ウェル131上の2番目の照射対象領域をレーザー光の集光位置に移動させて、上記同様に第2のレーザー照射及び検出データの収集を実行する。その後、同様にして3番目以降の照射対象領域に対しても、第2のレーザー照射及び検出データの収集を順次実行する。
 以上により、全ての照射対象領域について第2のレーザー照射及び検出データの収集が完了すると、データ処理部214が、第2のレーザー照射の実行時に収集された検出データを、検出データ記憶部213から読み出して、混合結晶132に対する質量分析の結果を示す質量分析データを生成する(ステップ14)。具体的には、まず、各照射対象領域に対する第2のレーザー照射時に収集されたN個の検出データを積算することによって、照射対象領域ごとに1つのプロファイルデータを生成する。これにより、照射対象領域と同数のプロファイルデータが得られる。続いて、それらのプロファイルデータの各m/zにおけるイオン強度の値の平均値(又は中央値若しくは最頻値)を求め、それを縦軸とし、横軸をm/zとするマススペクトル(代表マススペクトル)を作成する。更に、該代表マススペクトルに含まれる各ピークの重心位置(又は中心位置)を表すm/z値と、各ピークの面積値(又は高さ)とをリスト化することによってピークリストを作成する。以上により作成された代表マススペクトル及びピークリストは、前記ウェル131中の混合結晶132に含まれる微生物試料についての最終的な分析結果(質量分析データ)として質量分析データ記憶部215に記憶される。
 その後、以上で作成された質量分析データ(すなわち代表マススペクトル又はピークリスト)に基づいて、微生物同定部216が、前記被検微生物を同定する(ステップ15)。具体的には、例えば、微生物同定部216が、ステップ14で生成された前記微生物試料についてのピークリスト(すなわち被検微生物のピークリスト)を質量分析データ記憶部215から読み出し、微生物同定用データベース217に収録されている各既知微生物の質量リストと照合する。そして、前記被検微生物のピークリストに類似したm/zパターンを有する質量リスト、例えば、前記被検微生物のピークリスト中の各ピークのm/zと所定の誤差範囲で一致するm/zが多く含まれている質量リストを抽出する。続いて、微生物同定部216が、抽出した質量リストに対応付けて微生物同定用データベース217に記憶されている分類情報を参照することによって、該質量リストに対応した既知微生物が属する分類群(科、属、種、又は株など)を特定する。そして、特定された分類群を、前記被検微生物が属すると推定される分類群として表示部222に表示させる。
 上述の通り、ここでは簡略化のため、サンプルプレート130上の一つのウェル131に形成された混合結晶132のみについて、ステップ12~15の工程を実行するものとしたが、通常は、サンプルプレート130上の複数のウェル131に形成された混合結晶132の各々について、上記の第1のレーザー照射(ステップ12)及び第2のレーザー照射(ステップ13)が実行され、その後に、各混合結晶132についての質量分析データの作成(ステップ14)、並びに各混合結晶132に対応する被検微生物の同定(ステップ15)が行われる。
 なお、上記の例では、第1のレーザー照射(ステップ12)の実行時には、データ収集部212によるデータの収集は行わないものとしたが、これに代えて、第1のレーザー照射の実行時においてもデータ収集部212によるデータ収集を行う(すなわちイオン検出器116から出力された検出データを検出データ記憶部213に記憶する)ものとしてもよい。但し、その場合にも、ステップ14における質量分析データの生成時には、第1のレーザー照射の実行時に収集された検出データは使用せず、第2のレーザー照射(ステップ13)の実行時に収集された検出データに基づいて質量分析データを生成するものとする。
 また、上記の例では、第1のレーザー照射及び第2のレーザー照射の双方において、混合結晶132から生じたイオンを質量分離器115で分離してイオン検出器116で検出するものとしたが、第1のレーザー照射においては、必ずしもこのようなイオンの分離及び検出を行わなくてもよい。
 更に、上記の例では、混合結晶132上の全ての照射対象領域について第1のレーザー照射が完了した後に、各照射対象領域についての第2のレーザー照射を行うものとしたが、これに限らず、1つの照射対象領域について第1のレーザー照射と第2のレーザー照射の両方(すなわち該照射対象領域に対する(N+N)回のレーザー照射)が完了した後に、次の照射対象領域についての第1のレーザー照射と第2のレーザー照射を行うようにしてもよい。この場合も、第1のレーザー照射(すなわち各照射対象領域における1回目からN回目までのレーザー照射)の実行時には、混合結晶132から生じたイオンの分離、検出、及びイオン検出器116から出力された検出データの収集データを行うようにしてもよく、イオンの分離、検出のみを行ってデータ収集は行わないようにしてもよい。あるいは、第1のレーザー照射の実行時には、イオンの分離、検出、及びデータ収集のいずれも行わないようにしてもよい。いずれの場合も、ステップ14における質量分析データの生成時には、各々の照射対象領域に対する第2のレーザー照射(すなわち(N+1)回目からN回目までのレーザー照射)で収集された検出データを用いて質量分析データを生成する。
 上記本実施形態に係る微生物分析システムによれば、本分析(マススペクトル作成のための質量分析)を行う前に、混合結晶上の照射対象領域の各々に対してレーザー照射を行っておくことにより、前記本分析において、微生物に由来する成分のイオン化がより確実に起きているプロファイルデータを得ることができる。その結果、微生物に由来する成分のピーク強度が高いマススペクトルを得ることができ、従来法ではピーク強度が低くて適切に同定することができなかった微生物についても同定が可能になると期待される。
 なお、本実施形態に係る微生物分析システムを用いて多数の既知微生物を分析することにより、各既知微生物に関する高品質な質量リスト(すなわち、当該微生物に由来する成分に関するm/zが多く含まれ、それ以外の不所望の成分に関するm/zが少ない質量リスト)が収録されたデータベースを作成することもできる。このようなデータベースを作成する際には、各既知微生物を被検微生物として、上記のステップ11~14を実行することにより各既知微生物のピークリストを生成し、各ピークリストから所定のm/z範囲のピークを抽出する。このとき、前記m/z範囲を2,000~35,000程度とすることにより、主にタンパク質由来のピークを抽出することができる。更に、ピークの高さ(相対強度)が所定の閾値以上のものだけを抽出することにより、不所望のピーク(ノイズ)を除外する。なお、リボソームタンパク質群は細胞内で大量に発現しているため、前記閾値を適切に設定することにより、上記で抽出されるm/zの大部分をリボソームタンパク質由来のものとすることもできる。そして、以上により抽出されたピークのm/zが記載されたリストである質量リストを作成し、該質量リストと該質量リストに対応する既知微生物の分類情報とを互いに関連付けてデータベースに登録する。
 以上により、複数の既知微生物に関する高品質な質量リストが収録されたデータベースを構築することができる。また、予めこのようにして構築されたデータベースを、本実施形態に係るシステムにおける微生物同定用データベース217として用いるようにしてもよい。これにより、未知微生物を被検微生物として上記ステップ11~15による微生物の同定を行った際に、より高い同定精度を達成することができる。
 以上、本発明を実施するための形態について具体例を挙げて説明を行ったが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲で適宜変更が許容される。例えば、上記の例では、第1のレーザー照射を行った範囲と同一の範囲(すなわち上記の照射対象領域)に対して第2のレーザー照射を行うものとしたが、第1のレーザー照射を行った微小領域内の、より狭い領域について第2のレーザー照射を行うようにしてもよい。その場合、第1のレーザー照射を行う微小領域と、第2のレーザー照射を行う微小領域(前記の「より狭い領域」)は、それぞれユーザが予め設定してもよく、あるいは、第1のレーザー照射を行う微小領域をユーザが設定することにより、該微小領域内のより狭い領域が、第2のレーザー照射を行う範囲として自動的に設定されるようにしてもよい。あるいは、第1のレーザー照射を行う領域及び第2のレーザー照射を行う領域の両方を、制御/処理部200が自動的に設定するものとしてもよい。
 以下、本発明の分析方法による効果を確認するために行った試験例について説明する。
[試験例1]
 10 mg/mLのCHCAを50%アセトニトリル1%トリフルオロ酢酸水溶液に溶解することによってマトリックス溶液を調製した。大腸菌と前記マトリックス溶液とを光学濃度(Optical Density:OD)が1程度になるように混合し、得られた混合液のうち1 μLをサンプルプレートに滴下した。そして、これを乾燥させることによりサンプルプレート上に試料とマトリックスとの混合結晶を形成させた。前記サンプルプレートをMALDI-MSにセットし、前記混合結晶上に設定した100個の照射対象領域の各々に対し、50 Hzで5ショットのレーザー照射を行った。そして、各照射対象領域へのレーザー照射に伴ってイオン検出器から出力された検出信号を積算することにより、合計100個のプロファイルデータを取得した。レーザー照射条件を変えずに、同じ混合結晶の測定(すなわち前記100個の照射対象領域に対する各5ショットのレーザー照射)を8回繰り返し、各回の測定における前記100個のプロファイルデータ上のリボソームタンパク質L36、L32、及びL29のピーク強度 (mV)の平均値をプロットした結果を図3に示す。同図に示すように、前記3種類のリボソームタンパク質のピーク強度は、測定1回目から5回目までの間に大幅な増加傾向が認められ、5回目から8回目までは緩やかな増加傾向が認められた。この結果から、レーザー照射によって前記混合結晶の表層部を除去することが、MALDI-MSによる微生物分析において高いピーク強度を得るために有効であることが示された。
[試験例2]
 15 mg/mLのSAを50%アセトニトリル1%トリフルオロ酢酸水溶液に溶解することによってマトリックス溶液を調製した。大腸菌と前記マトリックス溶液とをOD=1程度になるように混合し、得られた混合液のうち1 μLをサンプルプレートに滴下した。そして、これを乾燥させることによりサンプルプレート上に試料とマトリックス物質との混合結晶を形成させた。前記サンプルプレートをMALDI-MSにセットし、試験例1と同様にして、前記混合結晶の測定を繰り返し8回行った。各回の測定における前記100個のプロファイルデータ上のリボソームタンパク質L36、L32、及びL29のピーク強度 (mV)の平均値をプロットした結果を図4に示す。同図に示すように、L36とL32のピークの強度は、測定1回目より2回目の方が2倍以上大きくなり、4~5回目までは1回目よりも強い強度でピークが観測された。この結果から、レーザー照射によって前記混合結晶の表面を削ることが、MALDI-MSによる微生物分析において高いピーク強度を得るために有効であることが示された。
[試験例3]
 10 mg/mLのCHCAを50%アセトニトリル1%トリフルオロ酢酸水溶液に溶解することによってマトリックス溶液を調製した。大腸菌と前記マトリックス溶液とをOD=1程度になるように混合し、得られた混合液のうち1μLをサンプルプレートに滴下した。そして、これを乾燥させることによりサンプルプレート上に試料とマトリックスとの混合結晶を形成させた。前記サンプルプレートをMALDI-MSにセットし、前記混合結晶上に設定した100個の照射対象領域の各々に対し、50 Hzで5ショットのレーザー照射を行った。そして、各照射対象領域へのレーザー照射に伴ってイオン検出器から出力された検出信号を積算することにより、合計100個のプロファイルデータを取得し、それらの平均を取ることで代表マススペクトルを作成した。その後、レーザー照射条件を変えずに、同じ混合結晶の測定(すなわち前記100個の照射対象領域に対する各5ショットのレーザー照射)を再度一度行い、同様にして100個のプロファイルデータの取得及び代表マススペクトルの作成を行った。各回の測定における代表マススペクトルを図5に示す。同図より、測定2回目における代表マススペクトルの方が、測定1回目における代表マススペクトルに比べて全体的にピーク強度が高いことが分かる。また、図5のマススペクトルにおいて、3種類のリボソームタンパク質L36、L32、及びL29のピークの分解能は、L36が1回目:327、2回目:316、L32が1回目:409、2回目:442、L29が1回目:383、2回目:498であり、L36以外では2回目の測定の方が質量分解能の高いマススペクトルが得られた。
[試験例4]
 10 mg/mLのCHCAを50%アセトニトリル1%トリフルオロ酢酸水溶液に溶解してマトリックス溶液を調製した。グラム陰性細菌であるブレブンディモナス・ディミヌタ(Brevundimonas diminuta)と、前記マトリックス溶液とを、OD=1程度になるように混合し、得られた混合液のうち1μLをサンプルプレートに滴下した。そして、これを乾燥させることによりサンプルプレート上に試料とマトリックス物質との混合結晶を形成させた。前記サンプルプレートをMALDI-MSにセットし、前記混合結晶上に設定した100個の照射対象領域の各々に対して、まずイオン検出器からの検出信号の取り込みを伴わないレーザー照射を1ヶ所あたり0回, 5回, 10回, 15回, 又は25回行った。その後、同じ100個の照射対象領域に対し、レーザー照射を1カ所当たり5回行い、このときイオン検出器から出力された検出信号を積算することにより、合計100個のプロファイルデータを取得すると共に、それらの平均を取ることで代表マススペクトルを作成した。上記で得られた代表マススペクトルと、前記代表マススペクトルを用いて微生物同定を行った結果を図6に示す。同図に示すように、データ取得前(すなわち本分析前)のレーザー照射が0回のものでは、微弱なピークが2本検出され、微生物は同定できなかった。データ取得前にレーザー照射を5回行ったものでは、強度の高いピークが多数検出され、66%の同定スコアでB. diminutaとして同定された。データ取得前にレーザー照射を10回行ったものでも、強度の高いピークが多数検出され、49.5%の同定スコアでB. diminutaとして同定された。データ取得前にレーザー照射を15回行ったものでは、微弱なピークが数本しか検出されず、データ取得前にレーザー照射を25回行ったものでは、ピークが全く検出されず、微生物は同定できなかった。
[試験例5]
 サンプルプレートに塗布した乳酸菌の菌体に25%ギ酸水溶液を0.5μL滴下し、マイクロピペットを用いたピペッティングにより菌体とギ酸を混合して溶菌した。これを乾燥させてから10 mg/mLのCHCA(50%アセトニトリル1%トリフルオロ酢酸水溶液)を1μL滴下し、ピペッティングによりギ酸によって溶菌処理した菌体と混合した。そして、これを乾燥させることによりサンプルプレート上に試料とマトリックス物質との混合結晶を形成させた。前記サンプルプレートをMALDI-MSにセットし、試験例1と同様にして、前記混合結晶の測定を繰り返し8回行った。各回の測定で取得されたプロファイルデータ上のリボソームタンパク質L36、L32、及びL29のピーク強度 (mV)の平均値をプロットした結果を図7に示す。同図に示すように、前記3種類のタンパク質由来のピークの強度は、測定1回目から5回目まで大幅な増加が認められ、5回目から8回目までは緩やかな増加傾向が認められた。測定1回目における代表マススペクトルと測定第2回目における代表マススペクトルを図8に示す。同図より、測定2回目における代表マススペクトルの方が、測定1回目における代表マススペクトルに比べて全体的にピーク強度が高いことが分かる。また、3種類のリボソームタンパク質L36、L32、及びL29のピークの分解能は、L36が1回目:358、2回目:375、L32が1回目:334、2回目:365、L29が1回目:469、2回目:488となっていて、いずれも2回目の測定の方が高い質量分解能が得られた。
[試験例6]
 サンプルプレートに塗布した大腸菌の菌体に、10 mg/mLのCHCA(50%アセトニトリル1%トリフルオロ酢酸水溶液)を1μL滴下し、マイクロピペットを用いたピペッティングにより菌体と混合した。そして、これを乾燥させることによりサンプルプレート上に試料とマトリックス物質との混合結晶を形成させた。前記サンプルプレートをMALDI-MSにセットし、試験例1と同様にして、前記混合結晶の測定を繰り返し8回行った。各回の測定で取得されたプロファイルデータ上のリボソームタンパク質L36、L32、及びL29のピーク強度 (mV)の平均値をプロットした結果を図9に示す。同図に示すように、前記3つのタンパク質由来のピークの強度は、測定1回目から5回目までは大幅に増加し、5回目から8回目までは緩やかな増加を示した。測定1回目における代表マススペクトルと測定第2回目における代表マススペクトルを図10に示す。同図より、測定2回目における代表マススペクトルの方が、測定1回目における代表マススペクトルに比べて全体的にピーク強度が高いことが分かる。また、3種類のリボソームタンパク質L36、L32、及びL29のピークの分解能は、L36が1回目:317、2回目:320、L32が1回目:385、2回目:399、L29が1回目:503、2回目:512となっていて、いずれも2回目の測定で質量分解能が高かった。
[種々の態様]
 上述した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項)本発明の一態様に係る微生物の質量分析方法は、サンプルプレート上に、被検微生物又は該被検微生物由来の成分を含む試料である微生物試料と、マトリックス物質との混合結晶を形成し、
 マトリックス支援レーザー脱離イオン化質量分析法による分析を行う質量分析装置において、前記混合結晶上の予め定められた微小領域に対して予め定められた回数の第1のレーザー照射を行い、
 前記質量分析装置において、前記微小領域又は該微小領域内の予め定められた領域に対して予め定められた回数の第2のレーザー照射を行い、
 前記第2のレーザー照射時に前記質量分析装置によって取得されたイオン検出信号に基づいて、前記混合結晶についての質量分析結果を示す質量分析データを生成するものである。
 第1項に記載の微生物の質量分析方法では、試料とマトリックス物質との混合結晶のうち、大気中から取り込まれた不純物(例えば、ミネラル分)の含有量が多い表層部を除去した上で、残りの領域についてマトリックス支援レーザー脱離イオン化質量分析法による質量分析を行うことができる。そのため、該質量分析において、該不純物によるイオン化抑制を低減し、十分に高い信号強度で微生物由来のイオンを検出することが可能となる。
 (第2項)本発明の一態様に係る微生物の同定方法は、第1項に記載の微生物の質量分析方法によって生成された前記質量分析データを、複数の既知微生物に関する質量分析結果が収録されたデータベースと照合することにより前記被検微生物の同定を行うものである。
 第2項に記載の微生物の同定方法では、第1項に記載の方法で生成された、微生物由来のイオンの信号強度が高い質量分析データを用いて被検微生物の同定を行うため、従来よりも高精度な微生物同定が可能となる。
 (第3項)本発明の一態様に係るデータベースの作成方法は、複数の既知微生物に対して、該既知微生物を前記被検微生物とする第1項に記載の微生物の質量分析方法を行い、
 前記複数の既知微生物の各々について生成された前記質量分析データと、前記既知微生物の各々についての分類情報とが収録されたデータベースを作成するものである。
 第3項に記載のデータベースの作成方法では、複数の既知微生物の各々について、第1項に記載の方法で質量分析データを収集することによってデータベースを作成するため、微生物由来のイオン信号強度が高い質量分析データが多数収録された品質の高いデータベースを作成することができる。
 (第4項)本発明の一態様に係る微生物分析システムは、被検微生物又は該被検微生物由来の成分を含む試料である微生物試料と、マトリックス物質との混合結晶について、マトリックス支援レーザー脱離イオン化質量分析法による分析を行うシステムであって、
 前記混合結晶に対し、パルス状にレーザー光を照射するレーザー照射部と、
 前記混合結晶が保持されたサンプルプレートを支持する試料ステージと、
 試料ステージを前記サンプルプレートと平行な面内で移動させるステージ駆動部と、
 前記レーザー光の照射によって前記混合結晶から生じたイオンをm/zに基づいて分離する質量分離部と、
 前記質量分離部で分離されたイオンを検出するイオン検出部と、
 前記レーザー照射部及び前記ステージ駆動部を制御する制御部と、
 前記イオン検出部からの検出信号を処理するデータ処理部と、
 を有し、
 前記制御部が、前記混合結晶上の予め定められた微小領域に対して予め定められた回数の第1のレーザー照射を行った後に、前記微小領域又は該微小領域内の予め定められた領域に対して予め定められた回数の第2のレーザー照射を行うよう、前記レーザー照射部及び前記ステージ駆動部を制御し、
 前記データ処理部が、前記第2のレーザー照射時における前記イオン検出部からの検出信号に基づいて前記混合結晶についての質量分析結果を示す質量分析データを生成するものである。
 第4項に記載の微生物の質量分析方法では、第1のレーザー照射によって、試料とマトリックス物質との混合結晶のうち、大気中から取り込まれた不純物の含有量が多い表層部を除去することができる。その上で、第2のレーザー照射によって前記表層部よりも下の領域をイオン化し、そのときのイオン検出部からの検出部に基づいて質量分析データを作成することにより、前記不純物によるイオン化抑制を低減し、微生物に由来する成分のピーク強度が高い質量分析データを得ることができる。
100…質量分析部
111…試料ステージ
115…質量分離器
116…イオン検出器
117…レーザー光源
120…ステージ駆動部
130…サンプルプレート
131…ウェル
132…混合結晶
200…制御/処理部
211…照射制御部
212…データ収集部
213…検出データ記憶部
214…データ処理部
215…質量分析データ記憶部
216…微生物同定部
217…微生物同定用データベース
221…入力部
222…表示部

Claims (4)

  1.  サンプルプレート上に、被検微生物又は該被検微生物由来の成分を含む試料である微生物試料と、マトリックス物質との混合結晶を形成し、
     マトリックス支援レーザー脱離イオン化質量分析法による分析を行う質量分析装置において、前記混合結晶上の予め定められた微小領域に対して予め定められた回数の第1のレーザー照射を行い、
     前記質量分析装置において、前記微小領域又は該微小領域内の予め定められた領域に対して予め定められた回数の第2のレーザー照射を行い、
     前記第2のレーザー照射時に前記質量分析装置によって取得されたイオン検出信号に基づいて、前記混合結晶についての質量分析結果を示す質量分析データを生成する、
     微生物の質量分析方法。
  2.  請求項1に記載の微生物の質量分析方法によって生成された前記質量分析データを、複数の既知微生物に関する質量分析結果が収録されたデータベースと照合することにより前記被検微生物の同定を行う、微生物の同定方法。
  3.  複数の既知微生物に対して、該既知微生物を前記被検微生物とする請求項1に記載の微生物の質量分析方法を行い、
     前記複数の既知微生物の各々について生成された前記質量分析データと、前記既知微生物の各々についての分類情報とが収録されたデータベースを作成する、データベースの作成方法。
  4.  被検微生物又は該被検微生物由来の成分を含む試料である微生物試料と、マトリックス物質との混合結晶について、マトリックス支援レーザー脱離イオン化質量分析法による分析を行うシステムであって、
     前記混合結晶に対し、パルス状にレーザー光を照射するレーザー照射部と、
     前記混合結晶が保持されたサンプルプレートを支持する試料ステージと、
     試料ステージを前記サンプルプレートと平行な面内で移動させるステージ駆動部と、
     前記レーザー光の照射によって前記混合結晶から生じたイオンをm/zに基づいて分離する質量分離部と、
     前記質量分離部で分離されたイオンを検出するイオン検出部と、
     前記レーザー照射部及び前記ステージ駆動部を制御する制御部と、
     前記イオン検出部からの検出信号を処理するデータ処理部と、
     を有し、
     前記制御部が、前記混合結晶上の予め定められた微小領域に対して予め定められた回数の第1のレーザー照射を行った後に、前記微小領域又は該微小領域内の予め定められた領域に対して予め定められた回数の第2のレーザー照射を行うよう、前記レーザー照射部及び前記ステージ駆動部を制御し、
     前記データ処理部が、前記第2のレーザー照射時における前記イオン検出部からの検出信号に基づいて前記混合結晶についての質量分析結果を示す質量分析データを生成する、
     微生物の分析システム。
PCT/JP2022/024863 2021-07-08 2022-06-22 微生物の質量分析方法 WO2023282061A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280048531.0A CN117616274A (zh) 2021-07-08 2022-06-22 微生物的质谱分析方法
JP2023533519A JPWO2023282061A1 (ja) 2021-07-08 2022-06-22
EP22837478.1A EP4368984A1 (en) 2021-07-08 2022-06-22 Microorganism mass spectrometry method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-113657 2021-07-08
JP2021113657 2021-07-08

Publications (1)

Publication Number Publication Date
WO2023282061A1 true WO2023282061A1 (ja) 2023-01-12

Family

ID=84800264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024863 WO2023282061A1 (ja) 2021-07-08 2022-06-22 微生物の質量分析方法

Country Status (4)

Country Link
EP (1) EP4368984A1 (ja)
JP (1) JPWO2023282061A1 (ja)
CN (1) CN117616274A (ja)
WO (1) WO2023282061A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205460A (ja) * 2009-03-02 2010-09-16 Shimadzu Corp レーザ脱離イオン化飛行時間型質量分析装置
US20200075304A1 (en) * 2018-08-28 2020-03-05 Virgin Instruments Corporation Molecular Imaging of Biological Samples with Sub-Cellular Spatial Resolution and High Sensitivity
JP2020087639A (ja) * 2018-11-21 2020-06-04 株式会社島津製作所 質量分析装置、イオン発生タイミング制御方法およびイオン発生タイミング制御プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205460A (ja) * 2009-03-02 2010-09-16 Shimadzu Corp レーザ脱離イオン化飛行時間型質量分析装置
US20200075304A1 (en) * 2018-08-28 2020-03-05 Virgin Instruments Corporation Molecular Imaging of Biological Samples with Sub-Cellular Spatial Resolution and High Sensitivity
JP2020087639A (ja) * 2018-11-21 2020-06-04 株式会社島津製作所 質量分析装置、イオン発生タイミング制御方法およびイオン発生タイミング制御プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIMADZU CORPORATION, AXIMA MICROORGANISM IDENTIFICATION SYSTEM SIMPLE USER GUIDE, 6 April 2017 (2017-04-06)

Also Published As

Publication number Publication date
CN117616274A (zh) 2024-02-27
EP4368984A1 (en) 2024-05-15
JPWO2023282061A1 (ja) 2023-01-12

Similar Documents

Publication Publication Date Title
US20140117226A1 (en) Method and apparatus for identification of samples
EP2789007B1 (en) Systems, devices, and methods for sample analysis using mass spectrometry
Mallet et al. Dictionary of mass spectrometry
US7462821B2 (en) Instrumentation, articles of manufacture, and analysis methods
US7271397B2 (en) Combined chemical/biological agent detection system and method utilizing mass spectrometry
WO2010049973A1 (ja) 質量分析方法
WO2023282061A1 (ja) 微生物の質量分析方法
CN101894727A (zh) 一种二次离子质谱的一次离子源
JPH1012188A (ja) 大気圧イオン化イオントラップ質量分析方法及び装置
CN112689885A (zh) 用于减少高丰度离子的动态离子过滤器
US20030027231A1 (en) Methods for using mass spectrometry to identify and classify filamentous fungi, yeasts, molds and pollen
AU2001264867A1 (en) Methods for using mass spectrometry to identify and classify filamentous fungi, yeasts, molds and pollen
US10714210B2 (en) Sample mass spectrum analysis
Axelsson et al. Secondary electron resolved mass spectrometry of electrosprayed ions
Theel Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the identification of bacterial and fungal isolates
WO2019084547A1 (en) MASS SPECTROMETRY METHODS FOR CARCINOMA ASSESSMENTS
WO2022249291A1 (ja) 探針エレクトロスプレーイオン化質量分析装置
JP2023037252A (ja) 微生物の質量分析方法
EP4319904A1 (en) Bio-identification using low resolution tandem mass spectrometry
CN113640368A (zh) 有机化合物的结构解析方法
KR100485389B1 (ko) 이차이온 질량분석기 및 이를 이용한 이차이온 일드측정방법
Hughes et al. Identification of fragmentation in matrix‐assisted laser desorption mass spectrometry using a voltage labelling technique
WO2003074727A1 (en) Rapid identification of yeasts
Kim Off-line MALDI mass spectrometry of bioaerosols
Hayes Detection of Microorganisms using MALDI and ion mobility mass spectrometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837478

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533519

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022837478

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022837478

Country of ref document: EP

Effective date: 20240208