WO2023281898A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2023281898A1
WO2023281898A1 PCT/JP2022/018101 JP2022018101W WO2023281898A1 WO 2023281898 A1 WO2023281898 A1 WO 2023281898A1 JP 2022018101 W JP2022018101 W JP 2022018101W WO 2023281898 A1 WO2023281898 A1 WO 2023281898A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator core
thermal conductivity
high thermal
resin
resin portion
Prior art date
Application number
PCT/JP2022/018101
Other languages
English (en)
French (fr)
Inventor
駿介 菊池
峻史 水野
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2023281898A1 publication Critical patent/WO2023281898A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present disclosure relates to rotating electric machines.
  • a rotating electrical machine described in Patent Document 1 includes a stator and a rotor.
  • the stator is fixed to the housing and has a cylindrical stator core.
  • the rotor is arranged inside the stator and has a magnetic body.
  • the stator core has a tubular yoke and a plurality of teeth extending radially inward of the stator core from the yoke. A plurality of teeth are arranged side by side at intervals in the circumferential direction of the stator core.
  • heat may be generated in the stator core due to iron loss.
  • the heat generated in the stator core may be radiated from the tips of the teeth to the air present in the gap between the stator and the rotor.
  • the temperature of the air existing in the gap between the stator and the rotor rises, making it difficult for the heat generated from the magnetic material to radiate to the air existing in the gap between the stator and the rotor.
  • a rotating electrical machine includes a stator fixed to a housing and having a cylindrical stator core, and a rotor disposed inside the stator and having a magnetic body.
  • the stator core has a tubular yoke and a plurality of teeth extending radially inward of the stator core from the yoke. The plurality of teeth are arranged side by side at intervals in the circumferential direction of the stator core.
  • the rotating electric machine further includes a heat transfer member thermally coupled with the stator core.
  • the heat transfer member includes a resin portion having a portion disposed between the stator and the rotor, and a high thermal conductivity portion held by the resin portion and having a higher thermal conductivity than the resin portion. have.
  • the housing has a facing portion that faces the end surface of the stator core. The high thermal conductivity portion extends from between the teeth adjacent to each other in the circumferential direction toward the facing portion and protrudes from the end surface of the stator core.
  • FIG. 2 is a cross-sectional view taken along line 2-2 in FIG. 1;
  • FIG. 3 is a cross-sectional view taken along line 3-3 in FIG. 2;
  • FIG. 3 is a cross-sectional view taken along line 4-4 in FIG. 2;
  • FIG. 1 An embodiment of a rotating electric machine will be described below with reference to FIGS. 1 to 4.
  • FIG. 1 the rotating electric machine 10 is housed in a tubular housing 11 .
  • the housing 11 includes a tubular first housing structure 12 and a plate-like second housing structure 13 connected to the first housing structure 12 .
  • the first housing structure 12 and the second housing structure 13 are made of metal, for example, aluminum.
  • the first housing structure 12 has a plate-like end wall 12a and a peripheral wall 12b cylindrically extending from the outer peripheral portion of the end wall 12a.
  • the second housing structure 13 is connected to the first housing structure 12 while closing the opening of the peripheral wall 12b on the side opposite to the end wall 12a.
  • the end face 120 of the end wall 12a of the first housing structure 12 is provided with a cylindrical boss 12c protruding.
  • the axis of the boss portion 12 c coincides with the axis of the peripheral wall 12 b of the first housing structure 12 .
  • the end surface 130 of the second housing structure 13 is provided with a cylindrical boss portion 13a projecting therefrom.
  • the axis of the boss portion 13 a coincides with the axis of the peripheral wall 12 b of the first housing structure 12 . Therefore, the axes of both boss portions 12c and 13a are aligned.
  • the rotating electric machine 10 has a stator 14 and a rotor 15 .
  • the stator 14 has a cylindrical stator core 16 and coils 17 wound around the stator core 16 .
  • the stator core 16 is fixed to the inner peripheral surface of the peripheral wall 12 b of the first housing structure 12 .
  • the coil 17 has a first coil end 17 a and a second coil end 17 b at both axial ends of the stator core 16 .
  • the first coil end 17 a is a portion of the coil 17 that protrudes from the first end face 16 a that is the end face of the stator core 16 .
  • the first coil end 17 a protrudes from the first end surface 16 a of the stator core 16 toward the second housing structure 13 .
  • the second housing structure 13 is a facing portion that is a portion of the housing 11 that faces the first end surface 16 a of the stator core 16 .
  • the second coil end 17 b is a portion of the coil 17 protruding from the second end face 16 b that is the end face of the stator core 16 .
  • the second coil end 17b protrudes from the second end surface 16b of the stator core 16 toward the end wall 12a of the first housing structure 12 . Therefore, the end wall 12a of the first housing structure 12 is a facing portion, which is a portion of the housing 11 that faces the second end face 16b of the stator core 16. As shown in FIG.
  • the direction in which the axis L1 of the stator core 16 extends is referred to as "the axial direction of the stator core 16".
  • the rotor 15 is rotatably arranged radially inward of the stator 14 within the housing 11 .
  • the rotor 15 has a tubular member 20 , a permanent magnet 21 that is a magnetic material, a first shaft member 22 and a second shaft member 23 .
  • the tubular member 20 is made of, for example, a titanium alloy.
  • the tubular member 20 is tubular. The axis of the tubular member 20 extends linearly.
  • the permanent magnet 21 has a solid cylindrical shape.
  • the permanent magnet 21 is arranged inside the tubular member 20 .
  • the axis of the permanent magnet 21 coincides with the axis of the tubular member 20 .
  • the permanent magnets 21 are magnetized in the radial direction of the permanent magnets 21 .
  • the permanent magnet 21 is press-fitted into the inner peripheral surface of the tubular member 20 .
  • the axial length of the permanent magnet 21 is shorter than the axial length of the tubular member 20 .
  • Both end faces 21 a located on both sides in the axial direction of the permanent magnet 21 are flat faces extending in a direction orthogonal to the axial direction of the permanent magnet 21 .
  • Both end faces 21 a of the permanent magnet 21 are positioned inside the cylindrical member 20 . Therefore, the first end surface 20a and the second end surface 20b located in the axial direction of the cylindrical member 20 protrude axially relative to the both end surfaces 21a of the permanent magnet 21, respectively.
  • the first shaft member 22 and the second shaft member 23 are provided at both ends of the tubular member 20 in the axial direction.
  • the first shaft member 22 and the second shaft member 23 are made of iron, for example.
  • the first shaft member 22 has a first press-fit portion 22a and a first shaft portion 22b.
  • the first press-fit portion 22a has a cylindrical shape.
  • the first press-fitting portion 22 a is press-fitted into one axial end portion of the inner peripheral surface of the cylindrical member 20 . Therefore, the first shaft member 22 is fixed to the inner peripheral surface of the tubular member 20 .
  • the first shaft portion 22b is cylindrical.
  • the outer diameter of the first shaft portion 22b is larger than the outer diameter of the first press-fitting portion 22a.
  • the second shaft member 23 has a second press-fit portion 23a and a second shaft portion 23b.
  • the second press-fit portion 23a has a cylindrical shape.
  • the second press-fitting portion 23 a is press-fitted into the other axial end portion of the inner peripheral surface of the cylindrical member 20 . Therefore, the second shaft member 23 is fixed to the inner peripheral surface of the tubular member 20 .
  • the second shaft portion 23b is cylindrical.
  • the outer diameter of the second shaft portion 23b is larger than the outer diameter of the second press-fitting portion 23a.
  • the outer diameter of the first press-fit portion 22a and the outer diameter of the second press-fit portion 23a are equal.
  • the outer diameter of the first shaft portion 22b and the outer diameter of the second shaft portion 23b are equal.
  • the first shaft member 22 and the second shaft member 23 are provided at both ends of the tubular member 20 with the axis of the first shaft member 22 and the axis of the second shaft member 23 aligned with the axis of the tubular member 20 . ing. Therefore, the axis of the first shaft member 22 and the axis of the second shaft member 23 match the axis of the permanent magnet 21 .
  • the axial length of the tubular member 20 is longer than the axial length of the stator core 16 .
  • the first end surface 20a and the second end surface 20b of the tubular member 20 are located radially inside the stator core 16 with respect to the first coil end 17a and the second coil end 17b, respectively.
  • An end portion of the first shaft portion 22b near the first press-fitting portion 22a is located radially inside the stator core 16 with respect to the first coil end 17a.
  • the end portion of the second shaft portion 23b near the second press-fit portion 23a is located radially inside the stator core 16 with respect to the second coil end 17b.
  • the rotating electric machine 10 has a first bearing 24 and a second bearing 25 .
  • the first bearing 24 and the second bearing 25 are each cylindrical.
  • the first bearing 24 is supported by the boss portion 13 a of the second housing structure 13 .
  • a second bearing 25 is supported by the boss portion 12 c of the first housing structure 12 .
  • the stator core 16 has a cylindrical yoke 30 and multiple teeth 31 .
  • the stator core 16 has six teeth 31 .
  • the outer peripheral surface 300 of the yoke 30 is fixed to the inner peripheral surface 120b of the peripheral wall 12b of the first housing structure 12 .
  • the stator core 16 is thereby fixed to the housing 11 .
  • Each tooth 31 has a tooth body portion 32 and a tip portion 33 .
  • Teeth main body portion 32 extends from inner peripheral surface 301 of yoke 30 toward axis L ⁇ b>1 of stator core 16 .
  • the tip portion 33 is provided on the opposite side of the tooth body portion 32 to the yoke 30 . Therefore, each tooth 31 extends from inner peripheral surface 301 of yoke 30 toward axis L ⁇ b>1 of stator core 16 . Therefore, each tooth 31 extends radially inward of the stator core 16 from the yoke 30 .
  • the six teeth 31 are arranged side by side at intervals in the circumferential direction of the stator core 16 .
  • the six teeth 31 are arranged at intervals of 60 degrees in the circumferential direction of the stator core 16 .
  • Each tooth 31 has a tip surface 302 .
  • a tip surface 302 of the tooth 31 is located on the opposite side of the tooth 31 from the yoke 30 .
  • the tip surface 302 of the tooth 31 is an arcuate curved surface.
  • Tip end surfaces 302 of teeth 31 are positioned on concentric circles about axis L ⁇ b>1 of stator core 16 .
  • a tip surface 302 of each tooth 31 extends along the outer peripheral surface of the tubular member 20 .
  • a tip surface 302 of each tooth 31 is separated from the outer peripheral surface of the tubular member 20 . Therefore, a gap G1 exists between the tip surface 302 of each tooth 31 and the rotor 15 .
  • each electromagnetic steel sheet 40 has an annular yoke-forming portion 41 and a plurality of tooth-forming portions 42 located inside the yoke-forming portion 41 .
  • each electromagnetic steel sheet 40 has six tooth-constituting portions 42 respectively.
  • a plurality of yoke-constituting portions 41 are stacked in the axial direction of the stator core 16 .
  • a plurality of tooth-constituting portions 42 are stacked in the axial direction of stator core 16 . Therefore, the yoke 30 of the stator core 16 is composed of the plurality of stacked yoke-constituting portions 41 .
  • Teeth 31 of stator core 16 are composed of a plurality of stacked teeth constituting portions 42 .
  • the rotating electrical machine 10 includes a heat transfer member 50.
  • the heat transfer member 50 has a resin portion 51 and a high thermal conductivity portion 52 .
  • the resin portion 51 holds the high thermal conductivity portion 52 .
  • the resin portion 51 is positioned radially inward of the stator core 16 relative to the coil 17 .
  • the resin portion 51 has a substantially cylindrical shape.
  • the resin portion 51 has a first resin portion 51a, a second resin portion 51b, and a plurality of third resin portions 51c.
  • the first resin portion 51a protrudes from the first end surface 16a of the stator core 16.
  • the first resin portion 51a has a substantially cylindrical shape.
  • the axis of the first resin portion 51 a coincides with the axis L ⁇ b>1 of the stator core 16 .
  • the first resin portion 51 a has an end face 510 a located on one side in the axial direction, and the end face 510 a is in contact with the first end face 16 a of the stator core 16 .
  • the first resin portion 51 a extends from the first end surface 16 a of the stator core 16 in a direction away from the stator core 16 .
  • the axial length of the first resin portion 51 a is longer than the length of the first coil end 17 a protruding from the first end surface 16 a of the stator core 16 .
  • the first resin portion 51 a has an end surface 511 a positioned on the other side in the axial direction, and the end surface 511 a is in contact with the end surface 130 of the second housing structure 13 .
  • the second resin portion 51b protrudes from the second end face 16b of the stator core 16.
  • the second resin portion 51b is cylindrical.
  • the axis of the second resin portion 51b coincides with the axis L1 of the stator core 16.
  • the second resin portion 51 b has an end face 510 b located on one side in the axial direction, and the end face 510 b contacts the second end face 16 b of the stator core 16 .
  • the second resin portion 51 b extends from the second end surface 16 b of the stator core 16 in a direction away from the stator core 16 .
  • the axial length of the second resin portion 51b is longer than the length of the second coil end 17b that protrudes from the second end face 16b of the stator core 16 .
  • the second resin portion 51 b has an end surface 511 b located on the other side in the axial direction, and the end surface 511 b contacts the end surface 120 of the first housing structure 12 .
  • the plurality of third resin portions 51c are arranged radially inside the stator core 16. As shown in FIG. The plurality of third resin portions 51c connect the first resin portion 51a and the second resin portion 51b. Therefore, the resin portion 51 has a portion arranged between the stator 14 and the rotor 15 . Each of the third resin portions 51c has a columnar shape. Each of the third resin portions 51 c is provided between teeth 31 adjacent to each other in the circumferential direction of the stator core 16 . In this embodiment, six third resin portions 51c are provided. Therefore, the six third resin portions 51c are arranged side by side at regular intervals in the circumferential direction of the stator core 16 .
  • the stator 14 and the third resin portion 51c are in contact without any gap.
  • the axial direction of the third resin portion 51 c coincides with the axial direction of the stator core 16 .
  • the third resin portion 51 c has an end positioned radially inward of the stator core 16 , and the end is flush with the tip surface 302 of the tooth 31 .
  • the high thermal conductivity portion 52 is made of aluminum, for example. Therefore, the high thermal conductivity portion 52 has higher thermal conductivity than the resin portion 51 .
  • the high thermal conductivity portion 52 is fibrous.
  • the high heat conductive portion 52 has a first high heat conductive portion 52a, a second high heat conductive portion 52b, and a third high heat conductive portion 52c.
  • the first high thermal conductivity portion 52a is arranged so as to pass through the first resin portion 51a, the third resin portion 51c, and the second resin portion 51b in this order in the axial direction of the stator core 16.
  • the first high thermal conductivity portion 52a is held by the first resin portion 51a, the second resin portion 51b, and the third resin portion 51c.
  • the first high thermal conductivity portion 52 a passes between the teeth 31 adjacent in the circumferential direction of the stator core 16 .
  • the first high thermal conductivity portion 52 a extends from between the teeth 31 adjacent in the circumferential direction of the stator core 16 toward the end surface 130 of the second housing structure 13 .
  • the first high thermal conductivity portion 52 a has an end located on one side in the axial direction, and the end is in contact with the end face 130 of the second housing structure 13 . Therefore, the first high thermal conductivity portion 52 a is thermally coupled with the second housing structure 13 .
  • the first high thermal conductivity portion 52 a extends from between the circumferentially adjacent teeth 31 of the stator core 16 toward the end face 120 of the end wall 12 a of the first housing structure 12 .
  • the first high thermal conductivity portion 52 a has an end located on the other side in the axial direction, and this end is in contact with the end face 120 of the end wall 12 a of the first housing structure 12 . Therefore, the first high thermal conductivity portion 52a is thermally coupled with the first housing structure 12 .
  • the second high thermal conductivity portion 52b penetrates only the first resin portion 51a in the axial direction of the stator core 16.
  • the second high thermal conductivity portion 52b is held by the first resin portion 51a.
  • the second high thermal conductivity portion 52 b has an end located on one side in the axial direction, and the end is in contact with the end face 130 of the second housing structure 13 . Therefore, the second high thermal conductivity portion 52b is thermally coupled to the second housing structure 13.
  • the second high thermal conductivity portion 52 b has an end located on the other side in the axial direction, and the end is in contact with the first end surface 16 a of the stator core 16 . Therefore, the second high thermal conductivity portion 52b is thermally coupled to the stator core 16. As shown in FIG.
  • the third high thermal conductivity portion 52c penetrates only the second resin portion 51b in the axial direction of the stator core 16.
  • the third high thermal conductivity portion 52c is held by the second resin portion 51b.
  • the third high thermal conductivity portion 52c has an end located on one side in the axial direction, and the end is in contact with the second end face 16b of the stator core 16. As shown in FIG. Therefore, the third high thermal conductivity portion 52 c is thermally coupled with the stator core 16 .
  • the third high thermal conductivity portion 52 c has an end located on the other side in the axial direction, and this end is in contact with the end face 120 of the end wall 12 a of the first housing structure 12 . Therefore, the third high thermal conductivity portion 52c is thermally coupled to the first housing structure 12.
  • the heat transfer member 50 is thermally coupled with the stator core 16 .
  • thermally coupled means that two members are in a state of being able to exchange heat with each other with a higher thermal conductivity than air.
  • the heat transfer member 50 is configured by integrally molding a first resin portion 51a, a second resin portion 51b, and a third resin portion 51c by resin molding.
  • the resin portion 51 is formed by injecting resin into the mold and curing the resin while the stator 14, the first bearing 24, and the second bearing 25 are arranged at predetermined positions in the mold. formed.
  • heat is generated in the permanent magnets 21 when eddy currents are generated in the permanent magnets 21. As shown in FIG. The heat generated in the permanent magnet 21 is radiated to the air present in the gap G1. Further, for example, heat may also be generated in the stator core 16 due to iron loss.
  • the heat of the stator core 16 is transferred to the third resin portion 51c, and the heat transferred to the third resin portion 51c is transferred to the first high thermal conductivity portion 52a. Since the first high thermal conductivity portion 52a has higher thermal conductivity than the third resin portion 51c, the heat transferred from the stator core 16 to the third resin portion 51c is easily transferred to the first high thermal conductivity portion 52a.
  • the first high thermal conductivity portion 52 a extends from between the teeth 31 adjacent in the circumferential direction of the stator core 16 toward the end wall 12 a of the second housing structure 13 and the first housing structure 12 . It extends so as to protrude from the end surface 16a and the second end surface 16b.
  • the heat transferred to the first high thermal conductivity portion 52a is transferred from between the teeth 31 adjacent in the circumferential direction to the end walls 12a of the second housing structure 13 and the first housing structure 12 in the axial direction of the stator core 16. transmitted towards. Therefore, the heat transferred from the permanent magnets 21 is less likely to stay on the teeth 31 . Therefore, the heat generated in the stator core 16 is less likely to be radiated from the tip portions 33 of the teeth 31 to the air present in the gap G1. Therefore, the temperature of the air existing in the gap G1 is less likely to rise due to the heat generated in the stator core 16 . Therefore, the heat of the permanent magnets 21 is easily radiated to the air between the stator 14 and the rotor 15 . As a result, the heat of the permanent magnet 21 is efficiently radiated.
  • the second high thermal conductivity portion 52b is in contact with the first end surface 16a of the stator core 16 and is also in contact with the second housing structure 13. Therefore, the heat of the stator core 16 is transferred from the first end face 16a of the stator core 16 to the second high thermal conductivity portion 52b, and radiated from the second high thermal conductivity portion 52b to the second housing structure 13. Further, the third high thermal conductivity portion 52c is in contact with the second end surface 16b of the stator core 16 and is also in contact with the end wall 12a of the first housing structure 12. As shown in FIG.
  • the heat of the stator core 16 is transferred from the second end face 16b of the stator core 16 to the third high heat conductive portion 52c, and radiated from the third high heat conductive portion 52c to the end wall 12a of the first housing structure 12. Therefore, the heat of the stator core 16 is radiated more efficiently.
  • the rotary electric machine 10 includes the heat transfer member 50 .
  • the heat transfer member 50 has a resin portion 51 and a high thermal conductivity portion 52 .
  • the first high thermal conductivity portion 52 a extends in the axial direction of the stator core 16 and protrudes from the first end surface 16 a and the second end surface 16 b of the stator core 16 . According to this, the heat of the stator core 16 is transferred to the third resin portion 51c, and the heat transferred to the third resin portion 51c is transferred to the first high thermal conductivity portion 52a.
  • the first high thermal conductivity portion 52a Since the first high thermal conductivity portion 52a has higher thermal conductivity than the third resin portion 51c, the heat transferred from the stator core 16 to the third resin portion 51c is easily transferred to the first high thermal conductivity portion 52a.
  • the first high thermal conductivity portion 52 a protrudes from the first end face 16 a of the stator core 16 from between the teeth 31 adjacent in the circumferential direction of the stator core 16 toward the end face 130 of the second housing structure 13 . Therefore, the heat transferred to the first high thermal conductivity portion 52 a is transferred from between the teeth 31 adjacent in the circumferential direction toward the end face 130 of the second housing structure 13 in the axial direction of the stator core 16 .
  • the first high thermal conductivity portion 52a protrudes from the second end face 16b of the stator core 16 from between the teeth 31 adjacent in the circumferential direction of the stator core 16 toward the end face 120 of the end wall 12a of the first housing structure 12. ing. Therefore, the heat transferred to the first high thermal conductivity portion 52a is directed from between the teeth 31 adjacent in the circumferential direction of the stator core 16 toward the end face 120 of the end wall 12a of the first housing structure 12 in the axial direction of the stator core 16. transmitted by That is, the heat transferred to the first high thermal conductivity portion 52 a is easily transferred to the axially outer side of the stator core 16 . Therefore, the heat transferred from the permanent magnets 21 is less likely to stay on the teeth 31 .
  • the heat generated in the stator core 16 is less likely to be radiated from the tip portions 33 of the teeth 31 to the air present in the gap G1. Therefore, the temperature of the air existing in the gap G1 is less likely to rise due to the heat generated in the stator core 16 . Therefore, the heat of the permanent magnets 21 is easily radiated to the air between the stator 14 and the rotor 15 . As a result, the heat of the permanent magnets 21 can be efficiently radiated.
  • the second high thermal conductivity portion 52b is in contact with the first end face 16a of the stator core 16. According to this, the heat of the stator core 16 is transferred from the first end face 16a of the stator core 16 to the second high thermal conductivity portion 52b. Therefore, the heat of the stator core 16 is more easily dissipated to the second high thermal conductivity portions 52b than when the second high thermal conductivity portions 52b are not in contact with the first end surface 16a of the stator core 16 . Therefore, the heat of the stator core 16 can be radiated more efficiently. Also, the third high thermal conductivity portion 52 c is in contact with the second end surface 16 b of the stator core 16 .
  • the heat of the stator core 16 is transferred from the second end surface 16b of the stator core 16 to the third high thermal conductivity portion 52c. Therefore, the heat of the stator core 16 is more easily dissipated to the third high thermal conductivity portions 52c than when the third high thermal conductivity portions 52c are not in contact with the second end surface 16b of the stator core 16 . Therefore, the heat of the stator core 16 can be radiated more efficiently. As a result, the heat of the permanent magnets 21 can be dissipated more efficiently.
  • the first high thermal conductivity portion 52 a and the second high thermal conductivity portion 52 b are in contact with the second housing structure 13 . According to this, the heat of the stator core 16 is transmitted to the first high thermal conductivity portion 52a and the second high thermal conductivity portion 52b through the resin portion 51, and the heat is transferred from the first high thermal conductivity portion 52a and the second high thermal conductivity portion 52b to the second housing. Heat is radiated to the structure 13 . Therefore, it becomes difficult for heat to radiate to the gap G1. Also, the first high thermal conductivity portion 52 a and the third high thermal conductivity portion 52 c are in contact with the end wall 12 a of the first housing structure 12 .
  • the heat of the stator core 16 is transmitted to the first high heat conductive portion 52a and the third high heat conductive portion 52c through the resin portion 51, and the heat is transferred from the first high heat conductive portion 52a and the third high heat conductive portion 52c to the first housing.
  • Heat is dissipated to the end wall 12a of the structure 12 . Therefore, it becomes difficult for heat to radiate to the gap G1. Therefore, the heat of the permanent magnet 21 can be radiated more efficiently.
  • the stator core 16 is configured by laminating a plurality of electromagnetic steel sheets 40 in the axial direction.
  • the present invention is suitable for rotating electric machine 10 that uses stator core 16 that is configured by stacking a plurality of electromagnetic steel sheets 40 .
  • the third resin portion 51 c is arranged between the teeth 31 in the circumferential direction of the stator core 16 . According to this, the teeth 31 adjacent to each other in the circumferential direction of the stator core 16 are fixed in the circumferential direction of the stator core 16 via the third resin portion 51c. Therefore, it is possible to reduce noise and vibration accompanying driving of the rotary electric machine 10 .
  • the resin portion 51 is configured by integrally molding the first resin portion 51a, the second resin portion 51b, and the third resin portion 51c by resin molding.
  • the first resin portion 51a, the second resin portion 51b, and the third resin portion 51c are separate members, gaps are less likely to occur between the resin portions. Therefore, it is possible to prevent the heat generated in the stator core 16 from becoming difficult to radiate due to the gaps between the members.
  • the first high thermal conductivity portion 52a protrudes from the first end surface 16a of the stator core 16 and also protrudes from the second end surface 16b of the stator core 16 . According to this configuration, the first high thermal conductivity portion 52a transfers heat transmitted from the teeth 31 in the axial direction of the stator core 16, compared to the case where the first high thermal conductivity portion 52a protrudes from only one of the first end surface 16a and the second end surface 16b of the stator core 16. Easy to dissipate heat to the outside.
  • the heat transfer member 50 may be arranged at a portion located axially outside of the stator core 16 relative to the first coil end 17a and the second coil end 17b in the space inside the housing 11 .
  • the heat transfer member 50 may be arranged at a portion located radially outside of the stator core 16 relative to the first coil end 17 a and the second coil end 17 b in the space inside the housing 11 .
  • the heat transfer member 50 may be composed of a plurality of members.
  • the heat transfer member 50 may be composed of a first heat transfer member positioned closer to the first coil end 17a and a second heat transfer member positioned closer to the second coil end 17b.
  • each of the plurality of third resin portions 51c has a protruding portion that protrudes radially inward of the stator core 16 from the tip surface 302 of the tooth 31, and the protruding portions are continuous in the circumferential direction of the stator core 16. good. That is, the shape of the third resin portion 51c is not particularly limited as long as the rotor 15 is rotatable.
  • the resin part 51 does not need to have the 1st resin part 51a.
  • the resin part 51 does not need to have the 2nd resin part 51b.
  • the high thermal conductivity part 52 does not need to be fibrous.
  • the high thermal conductivity portion 52 may extend in the axial direction of the stator core 16 and may extend in the circumferential direction of the stator core 16 . The point is that the high thermal conductivity portion 52 is held by the resin portion 51 while extending in the axial direction of the stator core 16 .
  • the high thermal conductivity portion 52 is made of aluminum, but it is not limited to this.
  • the high thermal conductivity portion 52 may be made of copper or carbon fiber reinforced plastic, for example. The point is that the high thermal conductivity portion 52 should have a higher thermal conductivity than the resin portion 51 .
  • the high thermal conductivity portion 52 may be made of resin. In this case, the high thermal conductivity portion 52 has higher thermal conductivity than the resin portion 51 . O In the embodiment, the first high thermal conductivity portion 52 a may be spaced apart from the end wall 12 a of the first housing structure 12 .
  • the first high thermal conductivity portion 52 a may be spaced apart from the second housing structure 13 .
  • the second high thermal conductivity portion 52 b may be spaced apart from the first end surface 16 a of the stator core 16 .
  • the third high thermal conductivity portion 52 c may be spaced apart from the second end surface 16 b of the stator core 16 .
  • the stator core 16 may not be configured by laminating a plurality of electromagnetic steel sheets 40 .
  • first bearing 24 and the second bearing 25 may be provided so as to support the cylindrical member 20 of the rotor 15 .
  • the rotor 15 may be rotatably supported by the housing 11 by only the first bearing 24 or only the second bearing 25 .
  • the rotor 15 may include, for example, a rotor core configured by laminating a plurality of electromagnetic steel sheets, and a shaft member passing through the rotor core.
  • the tubular member 20 may be made of metal such as nickel alloy, or may be made of carbon fiber reinforced plastic.
  • first shaft member 22 and the second shaft member 23 are made of iron, but the present invention is not limited to this.
  • the first shaft member 22 and the second shaft member 23 may be made of non-magnetic metal, for example.
  • the magnetic body is not limited to the permanent magnet 21 .
  • the magnetic body may be, for example, a laminated core, an amorphous core, a dust core, or the like.
  • the permanent magnet 21 may be, for example, a samarium-cobalt magnet, a ferrite magnet, or the like.
  • the permanent magnet 21 may be, for example, in the shape of a solid quadrangular prism.
  • the first shaft member 22 and the second shaft member 23 may have, for example, a square prism shape.
  • the tubular member 20 must be formed in a quadrangular tubular shape. Therefore, the shape of the cylindrical member 20 may be appropriately changed according to the shapes of the permanent magnet 21, the first shaft member 22, and the second shaft member 23.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

回転電機(10)は、筒状のステータコア(16)を有するステータ(14)と、ロータ(15)と、を備える。ステータコア(16)は、筒状のヨーク(30)と、ヨーク(30)から径方向内側に延びる複数のティース(31)と、を有する。回転電機(10)は、ステータコア(16)と熱的に結合された伝熱部材(50)をさらに備える。伝熱部材(50)は、樹脂部(51)と、樹脂部(51)に保持されるとともに、樹脂部(51)よりも熱伝導率が高い高熱伝導部(52)と、を有する。ハウジング(11)は、ステータコア(16)の端面に対向する部位である対向部(13)を有している。高熱伝導部(52)は、周方向で隣り合うティース(31)同士の間から対向部(13)に向けて延びるとともに、ステータコア(16)の端面から突出する。

Description

回転電機
 本開示は、回転電機に関する。
 特許文献1に記載の回転電機は、ステータと、ロータと、を備えている。ステータは、ハウジングに固定されるとともに、筒状のステータコアを有している。ロータは、ステータの内側に配置されるとともに、磁性体を有している。ステータコアは、筒状のヨークと、ヨークからステータコアの径方向内側に延びる複数のティースと、を有している。複数のティースは、ステータコアの周方向に間隔を空けて並んで配置される。
特開2019-213281号公報
 このような回転電機においては、磁性体に渦電流が生じることにより、磁性体に熱が生じる。磁性体に生じた熱は、ステータとロータとの間の隙間に存在する空気に放熱される。
 また、例えば、鉄損によりステータコアにも熱が生じる場合がある。ここで、ステータコアに生じた熱は、ティースの先端から、ステータとロータとの間の隙間に存在する空気に放熱される場合がある。この場合、ステータとロータとの間の隙間に存在する空気の温度が上昇するため、磁性体から生じた熱が、ステータとロータとの間の隙間に存在する空気に放熱され難くなってしまう。
 本開示の一態様に係る回転電機は、ハウジングに固定されるとともに、筒状のステータコアを有するステータと、前記ステータの内側に配置されるとともに、磁性体を有するロータと、を備える。前記ステータコアは、筒状のヨークと、前記ヨークから前記ステータコアの径方向内側に延びる複数のティースと、を有する。該複数のティースは、前記ステータコアの周方向に間隔を空けて並んで配置されている。前記回転電機は、前記ステータコアと熱的に結合された伝熱部材をさらに備える。前記伝熱部材は、前記ステータと前記ロータとの間に配置される部位を有する樹脂部と、前記樹脂部に保持されるとともに、前記樹脂部よりも熱伝導率が高い高熱伝導部と、を有する。前記ハウジングは、前記ステータコアの端面に対向する部位である対向部を有している。前記高熱伝導部は、前記周方向で隣り合う前記ティース同士の間から前記対向部に向けて延びるとともに、前記ステータコアの端面から突出する。
実施形態における回転電機を説明するための断面図である。 図1における2-2線に沿った断面図である。 図2における3-3線に沿った断面図である。 図2における4-4線に沿った断面図である。
 以下、回転電機の一実施形態を図1~図4にしたがって説明する。
 <回転電機10の全体構成>
 図1に示すように、回転電機10は、筒状のハウジング11内に収容されている。ハウジング11は、筒状の第1ハウジング構成体12と、第1ハウジング構成体12に連結される板状の第2ハウジング構成体13と、を備えている。第1ハウジング構成体12及び第2ハウジング構成体13は金属製であり、例えば、アルミニウム製である。
 第1ハウジング構成体12は、板状の端壁12aと、端壁12aの外周部から筒状に延びる周壁12bと、を有している。第2ハウジング構成体13は、周壁12bにおける端壁12aとは反対側の開口を閉塞した状態で第1ハウジング構成体12に連結されている。
 第1ハウジング構成体12の端壁12aの端面120には、円筒状のボス部12cが突出した状態で設けられている。ボス部12cの軸線は、第1ハウジング構成体12の周壁12bの軸線と一致している。また、第2ハウジング構成体13の端面130には、円筒状のボス部13aが突出した状態で設けられている。ボス部13aの軸線は、第1ハウジング構成体12の周壁12bの軸線と一致している。よって、両ボス部12c,13aの軸線は一致している。
 回転電機10は、ステータ14と、ロータ15と、を備えている。ステータ14は、円筒状のステータコア16と、ステータコア16に巻回されるコイル17と、を有している。ステータコア16は、第1ハウジング構成体12の周壁12bの内周面に固定されている。コイル17は、ステータコア16の軸方向の両端に第1コイルエンド17a及び第2コイルエンド17bを有している。第1コイルエンド17aは、コイル17のうちステータコア16の端面である第1端面16aから突出した部位である。第1コイルエンド17aは、ステータコア16の第1端面16aから第2ハウジング構成体13に向けて突出している。したがって、第2ハウジング構成体13は、ステータコア16の第1端面16aに対向するハウジング11の部位である対向部である。第2コイルエンド17bは、ステータコア16の端面である第2端面16bから突出したコイル17の部位である。第2コイルエンド17bは、ステータコア16の第2端面16bから第1ハウジング構成体12の端壁12aに向けて突出している。したがって、第1ハウジング構成体12の端壁12aは、ステータコア16の第2端面16bに対向するハウジング11の部位である対向部である。なお、以下の説明において、ステータコア16の軸線L1が延びる方向を、「ステータコア16の軸方向」と記載する。ロータ15は、ハウジング11内において、ステータ14の径方向内側に回転可能な状態で配置されている。
 <ロータ15の構成>
 ロータ15は、筒部材20と、磁性体である永久磁石21と、第1軸部材22と、第2軸部材23と、を有している。本実施形態では、筒部材20は、例えば、チタン合金製である。筒部材20は筒状である。筒部材20の軸線は、直線状に延びている。
 永久磁石21は、中実円柱状である。永久磁石21は、筒部材20内に配置されている。永久磁石21の軸線は、筒部材20の軸線と一致している。永久磁石21は、永久磁石21の径方向に着磁されている。永久磁石21は、筒部材20の内周面に圧入されている。永久磁石21の軸方向の長さは、筒部材20の軸方向の長さよりも短い。永久磁石21の軸方向両側に位置する両端面21aは、永久磁石21の軸方向に対して直交する方向に延びる平坦面である。永久磁石21の両端面21aは、筒部材20の内側に位置している。よって、筒部材20の軸方向に位置する第1端面20a及び第2端面20bそれぞれは、永久磁石21の両端面21aそれぞれに対して軸方向へ突出している。
 第1軸部材22及び第2軸部材23は、筒部材20の軸方向の両端部にそれぞれ設けられている。第1軸部材22及び第2軸部材23は、例えば、鉄製である。第1軸部材22は、第1圧入部22aと、第1軸部22bと、を有している。第1圧入部22aは、円柱状である。第1圧入部22aは、筒部材20の内周面における軸方向の一端部に圧入されている。よって、第1軸部材22は、筒部材20の内周面に固定されている。第1軸部22bは、円柱状である。第1軸部22bの外径は、第1圧入部22aの外径よりも大きい。
 第2軸部材23は、第2圧入部23aと、第2軸部23bと、を有している。第2圧入部23aは、円柱状である。第2圧入部23aは、筒部材20の内周面における軸方向の他端部に圧入されている。よって、第2軸部材23は、筒部材20の内周面に固定されている。第2軸部23bは、円柱状である。第2軸部23bの外径は、第2圧入部23aの外径よりも大きい。
 第1圧入部22aの外径と第2圧入部23aの外径とは等しい。第1軸部22bの外径と第2軸部23bの外径とは等しい。第1軸部材22及び第2軸部材23は、第1軸部材22の軸線及び第2軸部材23の軸線が筒部材20の軸線と一致した状態で、筒部材20の両端部にそれぞれ設けられている。したがって、第1軸部材22の軸線及び第2軸部材23の軸線は、永久磁石21の軸線と一致している。
 筒部材20の軸方向の長さは、ステータコア16の軸方向の長さよりも長い。筒部材20の第1端面20a及び第2端面20bは、第1コイルエンド17a及び第2コイルエンド17bに対してステータコア16の径方向内側にそれぞれ位置している。そして、第1軸部22bにおける第1圧入部22a寄りの端部は、第1コイルエンド17aに対してステータコア16の径方向内側に位置している。また、第2軸部23bにおける第2圧入部23a寄りの端部は、第2コイルエンド17bに対してステータコア16の径方向内側に位置している。
 回転電機10は、第1軸受24と、第2軸受25と、を備えている。第1軸受24及び第2軸受25は、それぞれ円筒状である。第1軸受24は、第2ハウジング構成体13のボス部13aに支持されている。第2軸受25が、第1ハウジング構成体12のボス部12cに支持されている。
 <ステータコア16の構成>
 図2に示すように、ステータコア16は、円筒状のヨーク30と、複数のティース31と、を有している。本実施形態では、ステータコア16は、6つのティース31を有している。ヨーク30の外周面300は、第1ハウジング構成体12の周壁12bの内周面120bに固定されている。これにより、ステータコア16は、ハウジング11に固定されている。
 各ティース31は、ティース本体部32と、先端部33と、を有している。ティース本体部32は、ヨーク30の内周面301からステータコア16の軸線L1に向けて延びる。先端部33は、ティース本体部32におけるヨーク30とは反対側に設けられている。よって、各ティース31は、ヨーク30の内周面301からステータコア16の軸線L1に向けて延びている。したがって、各ティース31は、ヨーク30からステータコア16の径方向内側に延びている。6つのティース31は、ステータコア16の周方向に間隔を空けて並んで配置されている。6つのティース31は、ステータコア16の周方向に60度置きに配置されている。各ティース31は、先端面302を有している。ティース31の先端面302は、ティース31におけるヨーク30とは反対側に位置する。ティース31の先端面302は、弧状に湾曲する円弧面である。ティース31の先端面302は、ステータコア16の軸線L1を中心とした同心円上に位置している。各ティース31の先端面302は、筒部材20の外周面に沿って延びている。各ティース31の先端面302は、筒部材20の外周面に対して離間している。したがって、各ティース31の先端面302とロータ15との間には、隙間G1が存在する。
 図1に示すように、ステータコア16は、複数の電磁鋼板40が軸方向に積層されることによって構成されている。図2に示すように、各電磁鋼板40は、環状のヨーク構成部41と、ヨーク構成部41よりも内側に位置する複数のティース構成部42と、を有している。本実施形態では、各電磁鋼板40は、6つのティース構成部42をそれぞれ有している。
 複数の電磁鋼板40がステータコア16の軸方向に積層されることにより、複数のヨーク構成部41がステータコア16の軸方向に積層される。同様に、複数の電磁鋼板40がステータコア16の軸方向に積層されることにより、複数のティース構成部42がステータコア16の軸方向に積層される。したがって、積層された複数のヨーク構成部41によって、ステータコア16のヨーク30が構成されている。積層された複数のティース構成部42によって、ステータコア16のティース31が構成されている。
 <伝熱部材50の構成>
 図2、図3、及び図4に示すように、回転電機10は、伝熱部材50を備えている。伝熱部材50は、樹脂部51と、高熱伝導部52と、を有している。樹脂部51は、高熱伝導部52を保持している。
 <樹脂部51の構成>
 樹脂部51は、コイル17よりもステータコア16の径方向内側に位置している。樹脂部51は、略円筒状である。樹脂部51は、第1樹脂部51a、第2樹脂部51b、及び複数の第3樹脂部51cを有している。
 図3及び図4に示すように、第1樹脂部51aは、ステータコア16の第1端面16aから突出している。第1樹脂部51aは、略円筒状である。第1樹脂部51aの軸線は、ステータコア16の軸線L1と一致している。第1樹脂部51aは軸方向の一方に位置する端面510aを有しており、端面510aは、ステータコア16の第1端面16aに接触している。第1樹脂部51aは、ステータコア16の第1端面16aからステータコア16に対して離間する方向へ延びている。第1樹脂部51aの軸方向の長さは、ステータコア16の第1端面16aから突出する第1コイルエンド17aの長さよりも長い。第1樹脂部51aは軸方向の他方に位置する端面511aを有しており、端面511aは、第2ハウジング構成体13の端面130に接触している。
 第2樹脂部51bは、ステータコア16の第2端面16bから突出している。第2樹脂部51bは、円筒状である。第2樹脂部51bの軸線は、ステータコア16の軸線L1と一致している。第2樹脂部51bは軸方向の一方に位置する端面510bを有しており、端面510bは、ステータコア16の第2端面16bに接触している。第2樹脂部51bは、ステータコア16の第2端面16bからステータコア16に対して離間する方向へ延びている。第2樹脂部51bの軸方向の長さは、ステータコア16の第2端面16bから突出する第2コイルエンド17bの長さよりも長い。第2樹脂部51bは軸方向の他方に位置する端面511bを有しており、端面511bは、第1ハウジング構成体12の端面120に接触している。
 図2及び図4に示すように、複数の第3樹脂部51cは、ステータコア16の径方向内側に配置されている。複数の第3樹脂部51cは、第1樹脂部51aと第2樹脂部51bとを接続している。したがって、樹脂部51は、ステータ14とロータ15との間に配置される部位を有する。第3樹脂部51cの各々は、柱状である。第3樹脂部51cの各々は、ステータコア16の周方向に隣り合うティース31同士の間に設けられている。本実施形態では、第3樹脂部51cは、6つ設けられている。したがって、6つの第3樹脂部51cは、ステータコア16の周方向に等間隔置きに並んで配置されている。ステータ14と第3樹脂部51cとは、隙間なく接触している。第3樹脂部51cの軸方向は、ステータコア16の軸方向と一致している。第3樹脂部51cはステータコア16の径方向内側に位置する端部を有しており、同端部は、ティース31の先端面302と面一になっている。
 <高熱伝導部52の構成>
 高熱伝導部52は、例えば、アルミニウム製である。したがって、高熱伝導部52は、樹脂部51よりも熱伝導性が高い。高熱伝導部52は、繊維状である。高熱伝導部52は、第1高熱伝導部52aと、第2高熱伝導部52bと、第3高熱伝導部52cと、を有している。
 第1高熱伝導部52aは、ステータコア16の軸方向で第1樹脂部51a、第3樹脂部51c、及び第2樹脂部51bをこの順に貫通するように配置されている。第1高熱伝導部52aは、第1樹脂部51a、第2樹脂部51b、及び第3樹脂部51cに保持されている。第1高熱伝導部52aは、ステータコア16の周方向で隣り合うティース31同士の間を通過している。第1高熱伝導部52aは、ステータコア16の周方向で隣り合うティース31同士の間から第2ハウジング構成体13の端面130に向けて延びている。第1高熱伝導部52aは軸方向の一方に位置する端部を有しており、同端部は、第2ハウジング構成体13の端面130に接触している。よって、第1高熱伝導部52aは、第2ハウジング構成体13と熱的に結合されている。第1高熱伝導部52aは、ステータコア16の周方向で隣り合うティース31同士の間から第1ハウジング構成体12の端壁12aの端面120に向けて延びている。第1高熱伝導部52aは軸方向の他方に位置する端部を有しており、同端部は、第1ハウジング構成体12の端壁12aの端面120に接触している。よって、第1高熱伝導部52aは、第1ハウジング構成体12と熱的に結合されている。
 第2高熱伝導部52bは、ステータコア16の軸方向で第1樹脂部51aのみを貫通している。第2高熱伝導部52bは、第1樹脂部51aに保持されている。第2高熱伝導部52bは軸方向の一方に位置する端部を有しており、同端部は、第2ハウジング構成体13の端面130に接触している。よって、第2高熱伝導部52bは、第2ハウジング構成体13と熱的に結合されている。第2高熱伝導部52bは軸方向の他方に位置する端部を有しており、同端部は、ステータコア16の第1端面16aに接触している。よって、第2高熱伝導部52bは、ステータコア16と熱的に結合されている。
 第3高熱伝導部52cは、ステータコア16の軸方向で第2樹脂部51bのみを貫通している。第3高熱伝導部52cは、第2樹脂部51bに保持されている。第3高熱伝導部52cは軸方向の一方に位置する端部を有しており、同端部は、ステータコア16の第2端面16bに接触している。よって、第3高熱伝導部52cは、ステータコア16と熱的に結合されている。第3高熱伝導部52cは軸方向の他方に位置する端部を有しており、同端部は、第1ハウジング構成体12の端壁12aの端面120に接触している。よって、第3高熱伝導部52cは、第1ハウジング構成体12と熱的に結合されている。以上から、伝熱部材50は、ステータコア16と熱的に結合されている。なお、「熱的に結合されている」とは、2つの部材が互いに空気よりも高い熱伝導率で熱交換することができる状態であることを意味する。
 本実施形態では、伝熱部材50は、第1樹脂部51a、第2樹脂部51b、及び第3樹脂部51cが、樹脂モールドにより一体成形されることにより構成されている。樹脂部51は、例えば、ステータ14、第1軸受24、及び第2軸受25が金型内の予め定められた位置に配置された状態で、樹脂が金型内に注入されて硬化することにより形成されている。
 <作用>
 次に、本実施形態の作用について説明する。
 上記構成のロータ15において、図示しない駆動回路によって制御された電力がコイル17に供給されると、永久磁石21が回転しようとする。これにより、筒部材20が永久磁石21と一体的に回転する。そして、筒部材20と第1軸部材22及び第2軸部材23との固定部分においてトルクが筒部材20から第1軸部材22及び第2軸部材23に伝達されることにより、第1軸部材22及び第2軸部材23も永久磁石21と一体的に回転する。このようにして、永久磁石21、第1軸部材22、及び第2軸部材23が一体となって回転する。
 このような回転電機10のロータ15においては、永久磁石21に渦電流が発生すると、永久磁石21に熱が生じる。永久磁石21に生じた熱は、隙間G1に存在する空気に放熱される。また、例えば、鉄損によりステータコア16にも熱が生じる場合がある。
 ここで、ステータコア16の熱が第3樹脂部51cに伝達されるとともに、第3樹脂部51cに伝達された熱が第1高熱伝導部52aに伝達される。第1高熱伝導部52aは、第3樹脂部51cよりも熱伝導率が高いため、ステータコア16から第3樹脂部51cに伝達された熱が第1高熱伝導部52aへ伝達され易い。そして、第1高熱伝導部52aは、ステータコア16の周方向で隣り合うティース31同士の間から第2ハウジング構成体13及び第1ハウジング構成体12の端壁12aに向けて、ステータコア16の第1端面16a及び第2端面16bから突出するように延びている。そのため、第1高熱伝導部52aに伝達された熱は、周方向で隣り合うティース31同士の間からステータコア16の軸方向において第2ハウジング構成体13及び第1ハウジング構成体12の端壁12aに向けて伝達される。よって、永久磁石21から伝達された熱が、ティース31に留まり難くなる。そのため、ステータコア16に生じた熱が、ティース31の先端部33から、隙間G1に存在する空気に放熱され難くなる。よって、隙間G1に存在する空気の温度が、ステータコア16に生じる熱によって上昇し難くなる。したがって、永久磁石21の熱がステータ14とロータ15との間の空気に放熱され易くなる。その結果、永久磁石21の熱が効率良く放熱される。
 また、第2高熱伝導部52bは、ステータコア16の第1端面16aに接触しており、第2ハウジング構成体13にも接触している。よって、ステータコア16の熱がステータコア16の第1端面16aから第2高熱伝導部52bに伝達され、第2高熱伝導部52bから第2ハウジング構成体13へ放熱される。また、第3高熱伝導部52cは、ステータコア16の第2端面16bに接触しており、第1ハウジング構成体12の端壁12aにも接触している。よって、ステータコア16の熱がステータコア16の第2端面16bから第3高熱伝導部52cに伝達され、第3高熱伝導部52cから第1ハウジング構成体12の端壁12aへ放熱される。したがって、ステータコア16の熱がさらに効率良く放熱される。
 <効果>
 上記実施形態では以下の効果を得ることができる。
 (1)回転電機10は、伝熱部材50を備えている。伝熱部材50は、樹脂部51と、高熱伝導部52と、を有している。第1高熱伝導部52aは、ステータコア16の軸方向に延びるとともに、ステータコア16の第1端面16a及び第2端面16bから突出している。これによれば、ステータコア16の熱が第3樹脂部51cに伝達されるとともに、第3樹脂部51cに伝達された熱が第1高熱伝導部52aに伝達される。第1高熱伝導部52aは、第3樹脂部51cよりも熱伝導率が高いため、ステータコア16から第3樹脂部51cに伝達された熱が第1高熱伝導部52aへ伝達され易い。第1高熱伝導部52aは、ステータコア16の周方向で隣り合うティース31同士の間から第2ハウジング構成体13の端面130に向けて、ステータコア16の第1端面16aから突出している。そのため、第1高熱伝導部52aに伝達された熱は、周方向で隣り合うティース31同士の間からステータコア16の軸方向において第2ハウジング構成体13の端面130に向けて伝達される。また、第1高熱伝導部52aは、ステータコア16の周方向で隣り合うティース31同士の間から第1ハウジング構成体12の端壁12aの端面120に向けて、ステータコア16の第2端面16bから突出している。そのため、第1高熱伝導部52aに伝達された熱は、ステータコア16の周方向で隣り合うティース31同士の間からステータコア16の軸方向において第1ハウジング構成体12の端壁12aの端面120に向けて伝達される。つまり、第1高熱伝導部52aに伝達された熱がステータコア16の軸方向外側に伝達され易くなる。よって、永久磁石21から伝達された熱が、ティース31に留まり難くなる。そのため、ステータコア16に生じた熱が、ティース31の先端部33から、隙間G1に存在する空気に放熱され難くなる。よって、隙間G1に存在する空気の温度が、ステータコア16に生じる熱によって上昇し難くなる。したがって、永久磁石21の熱がステータ14とロータ15との間の空気に放熱され易くなる。その結果、永久磁石21の熱を効率良く放熱することができる。
 (2)第2高熱伝導部52bは、ステータコア16の第1端面16aに接触している。これによれば、ステータコア16の熱がステータコア16の第1端面16aから第2高熱伝導部52bに伝達される。そのため、第2高熱伝導部52bがステータコア16の第1端面16aに接触していない場合に比べて、ステータコア16の熱を第2高熱伝導部52bに放熱し易い。したがって、ステータコア16の熱をさらに効率良く放熱することができる。また、第3高熱伝導部52cは、ステータコア16の第2端面16bに接触している。これによれば、ステータコア16の熱がステータコア16の第2端面16bから第3高熱伝導部52cに伝達される。そのため、第3高熱伝導部52cがステータコア16の第2端面16bに接触していない場合に比べて、ステータコア16の熱を第3高熱伝導部52cに放熱し易い。したがって、ステータコア16の熱をさらに効率良く放熱することができる。その結果、永久磁石21の熱をさらに効率良く放熱することができる。
 (3)ティース31と第3樹脂部51cとは、隙間なく接触している。これによれば、ティース31と第3樹脂部51cとが接触していない場合に比べて、ティース31の熱を第3樹脂部51cに放熱し易くすることができる。したがって、ステータコア16に生じた熱を、ティース31にさらに留まり難くすることができる。その結果、永久磁石21の熱をさらに効率良く放熱することができる。
 (4)第1高熱伝導部52a及び第2高熱伝導部52bは、第2ハウジング構成体13に接触している。これによれば、ステータコア16の熱が樹脂部51を介して第1高熱伝導部52a及び第2高熱伝導部52bに伝達され、第1高熱伝導部52a及び第2高熱伝導部52bから第2ハウジング構成体13へ放熱される。そのため、熱が隙間G1に放熱され難くなる。また、第1高熱伝導部52a及び第3高熱伝導部52cは、第1ハウジング構成体12の端壁12aに接触している。これによれば、ステータコア16の熱が樹脂部51を介して第1高熱伝導部52a及び第3高熱伝導部52cに伝達され、第1高熱伝導部52a及び第3高熱伝導部52cから第1ハウジング構成体12の端壁12aへ放熱される。そのため、熱が隙間G1に放熱され難くなる。したがって、永久磁石21の熱をさらに効率良く放熱することができる。
 (5)ステータコア16は、複数の電磁鋼板40が軸方向に積層されることにより構成されている。このように、ステータコア16で生じた熱がステータコア16の軸方向へ伝達され難い構成であっても、ティース31の先端面302から伝熱部材50に放熱することができる。そのため、本発明は、複数の電磁鋼板40が積層されることにより構成されたステータコア16を用いる回転電機10として好適である。
 (6)第3樹脂部51cは、ステータコア16の周方向でティース31同士の間に配置されている。これによれば、ステータコア16の周方向で隣り合うティース31同士が第3樹脂部51cを介してステータコア16の周方向で固定される。したがって、回転電機10の駆動に伴う騒音や振動を低減することができる。
 (7)樹脂部51は、第1樹脂部51a、第2樹脂部51b、及び第3樹脂部51cが樹脂モールドで一体成形されることにより構成されている。例えば、第1樹脂部51a、第2樹脂部51b、及び第3樹脂部51cがそれぞれ別々の部材である場合に比べて、樹脂部同士の間に隙間が生じ難い。そのため、ステータコア16に生じた熱が各部材同士の間の隙間によって、放熱され難くなることを抑制することができる。
 (8)第1高熱伝導部52aは、ステータコア16の第1端面16aから突出するとともに、ステータコア16の第2端面16bから突出している。これによれば、第1高熱伝導部52aは、ステータコア16の第1端面16a及び第2端面16bの一方のみから突出する場合に比べて、ティース31から伝達された熱を、ステータコア16の軸方向外側へ放熱し易い。
 <変更例>
 なお、上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ○ 実施形態において、伝熱部材50は、ハウジング11内の空間における第1コイルエンド17a及び第2コイルエンド17bよりもステータコア16の軸方向外側に位置する部位に配置されていてもよい。
 ○ 実施形態において、伝熱部材50は、ハウジング11内の空間における第1コイルエンド17a及び第2コイルエンド17bよりもステータコア16の径方向外側に位置する部位に配置されていてもよい。
 ○ 実施形態において、伝熱部材50は、複数の部材から構成されていてもよい。例えば、伝熱部材50は、第1コイルエンド17a寄りに位置する第1伝熱部材と、第2コイルエンド17b寄りに位置する第2伝熱部材と、から構成されていてもよい。
 ○ 実施形態において、第3樹脂部51cは、6つ別々に設けられた状態で、第1樹脂部51aと第2樹脂部51bとを接続していたが、これに限らない。例えば、複数の第3樹脂部51cは、ティース31の先端面302よりもステータコア16の径方向内側に突出する突出部をそれぞれ有し、突出部同士がステータコア16の周方向で連続していてもよい。つまり、ロータ15が回転可能な状態であればよく、第3樹脂部51cの形状は、特に限定されない。
 ○ 実施形態において、樹脂部51は、第1樹脂部51aを有していなくてもよい。
 ○ 実施形態において、樹脂部51は、第2樹脂部51bを有していなくてもよい。
 ○ 実施形態において、高熱伝導部52は、繊維状でなくてもよい。例えば、高熱伝導部52は、ステータコア16の軸方向に延びるとともに、ステータコア16の周方向に延びていてもよい。要は、高熱伝導部52は、ステータコア16の軸方向に延びた状態で樹脂部51に保持されていればよい。
 ○ 実施形態において、高熱伝導部52は、アルミニウム製であったが、これに限らない。高熱伝導部52は、例えば、銅製や炭素繊維強化プラスチック製であってもよい。要は、高熱伝導部52は、樹脂部51よりも熱伝導率が高ければよい。
 ○ 実施形態において、高熱伝導部52は、樹脂製であってもよい。この場合、高熱伝導部52は、樹脂部51よりも熱伝導率が高い。
 ○ 実施形態において、第1高熱伝導部52aは、第1ハウジング構成体12の端壁12aに対して離間していてもよい。
 ○ 実施形態において、第1高熱伝導部52aは、第2ハウジング構成体13に対して離間していてもよい。
 ○ 実施形態において、第2高熱伝導部52bは、ステータコア16の第1端面16aに対して離間していてもよい。
 ○ 実施形態において、第3高熱伝導部52cは、ステータコア16の第2端面16bに対して離間していてもよい。
 ○ 実施形態において、ステータコア16は、複数の電磁鋼板40が積層されることにより構成されるものでなくてもよい。
 ○ 実施形態において、第1軸受24及び第2軸受25は、ロータ15のうち筒部材20を支持するように設けられていてもよい。
 ○ 実施形態において、ロータ15は、第1軸受24のみ又は第2軸受25のみによって、ハウジング11に回転可能な状態で支持されていてもよい。
 ○ 実施形態において、ロータ15は、例えば、電磁鋼板が複数積層されて構成されるロータコアと、ロータコアを貫通する軸部材と、を備えていてもよい。
 ○ 実施形態において、筒部材20は、例えば、ニッケル合金のような金属製であってもよいし、炭素繊維強化プラスチック製であってもよい。
 ○ 実施形態において、第1軸部材22及び第2軸部材23は、鉄製であったが、これに限らない。第1軸部材22及び第2軸部材23は、例えば、非磁性の金属製であってもよい。
 ○ 実施形態において、磁性体は、永久磁石21に限らない。磁性体は、例えば、積層コア、アモルファスコア、又は圧粉コア等であってもよい。
 ○ 実施形態において、永久磁石21は、例えば、サマリウム・コバルト磁石、フェライト磁石などであってもよい。
 ○ 実施形態において、永久磁石21は、例えば、中実四角柱状であってもよい。また、第1軸部材22及び第2軸部材23は、例えば、四角柱状であってもよい。そして、例えば、永久磁石21が中実四角柱状であるとともに、第1軸部材22及び第2軸部材23が四角柱状である場合、筒部材20が四角筒状に形成されている必要がある。したがって、筒部材20の形状は、永久磁石21、第1軸部材22、及び第2軸部材23の形状によって適宜変更してもよい。

Claims (4)

  1.  ハウジングに固定されるとともに、筒状のステータコアを有するステータと、
     前記ステータの内側に配置されるとともに、磁性体を有するロータと、を備える回転電機であって、
     前記ステータコアは、
      筒状のヨークと、
      前記ヨークから前記ステータコアの径方向内側に延びる複数のティースであって、該複数のティースは、前記ステータコアの周方向に間隔を空けて並んで配置されている、前記複数のティースと、を含み、
     前記回転電機は、前記ステータコアと熱的に結合された伝熱部材をさらに備え、
     前記伝熱部材は、
      前記ステータと前記ロータとの間に配置される部位を有する樹脂部と、
      前記樹脂部に保持されるとともに、前記樹脂部よりも熱伝導率が高い高熱伝導部と、を有し、
     前記ハウジングは、前記ステータコアの端面に対向する部位である対向部を有しており、
     前記高熱伝導部は、前記周方向で隣り合う前記ティース同士の間から前記対向部に向けて延びるとともに、前記ステータコアの端面から突出する回転電機。
  2.  前記高熱伝導部は、前記ステータコアの端面に接触している、請求項1に記載の回転電機。
  3.  前記ティースと前記樹脂部とは、隙間なく接触している、請求項1又は請求項2に記載の回転電機。
  4.  前記高熱伝導部は、前記対向部に接触している、請求項1~請求項3のいずれか一項に記載の回転電機。
PCT/JP2022/018101 2021-07-08 2022-04-19 回転電機 WO2023281898A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-113800 2021-07-08
JP2021113800A JP2023010039A (ja) 2021-07-08 2021-07-08 回転電機

Publications (1)

Publication Number Publication Date
WO2023281898A1 true WO2023281898A1 (ja) 2023-01-12

Family

ID=84801487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018101 WO2023281898A1 (ja) 2021-07-08 2022-04-19 回転電機

Country Status (2)

Country Link
JP (1) JP2023010039A (ja)
WO (1) WO2023281898A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070208A (ja) * 2001-08-29 2003-03-07 Yaskawa Electric Corp Acサーボモータ
JP2006320104A (ja) * 2005-05-12 2006-11-24 Komatsu Ltd 電動機のコイル冷却構造
JP2012191772A (ja) * 2011-03-11 2012-10-04 Jtekt Corp 電動ポンプユニット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070208A (ja) * 2001-08-29 2003-03-07 Yaskawa Electric Corp Acサーボモータ
JP2006320104A (ja) * 2005-05-12 2006-11-24 Komatsu Ltd 電動機のコイル冷却構造
JP2012191772A (ja) * 2011-03-11 2012-10-04 Jtekt Corp 電動ポンプユニット

Also Published As

Publication number Publication date
JP2023010039A (ja) 2023-01-20

Similar Documents

Publication Publication Date Title
JP5879121B2 (ja) アキシャルギャップ回転電機
EP1404003B1 (en) Stator yoke for a commutator motor
US7411330B2 (en) Rotating electric machine
WO2014034344A1 (ja) 回転電機
JP4457785B2 (ja) ディスク型回転電機のステータ構造
US20060220485A1 (en) Motor
JP2009095087A (ja) アキシャルギャップ型モータ
JP2008131682A (ja) アキシャルエアギャップ型電動機
JP2010075027A (ja) ステータコア及びモータ
JP2006254561A (ja) 回転電機
JP2009195055A (ja) 回転電機
WO2023281898A1 (ja) 回転電機
KR20150030040A (ko) 스테이터 코어 및 이를 포함하는 모터
JP2009136056A (ja) 電動機
JP2015056984A (ja) 回転電機及びそれを備えた空調機器
WO2024080143A1 (ja) 鉄心ユニット、および、回転子
JP2012125111A (ja) アウターロータ型回転機のロータ
JP5609514B2 (ja) リングコイルモータ
WO2019146499A1 (ja) 回転電機の固定子及び回転電機の固定子の製造方法
CN111384802A (zh) 旋转电机的转子
JP6685166B2 (ja) アキシャルギャップ型回転電機
CN113491052A (zh) 定子和马达
KR102167732B1 (ko) 스테이터 코어 및 이를 포함하는 모터
KR102220049B1 (ko) 스테이터 코어 및 이를 포함하는 모터
EP4387057A1 (en) Rotor for an axial flux motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE