WO2023281877A1 - Optical system, image capturing device, and image capturing system - Google Patents

Optical system, image capturing device, and image capturing system Download PDF

Info

Publication number
WO2023281877A1
WO2023281877A1 PCT/JP2022/015933 JP2022015933W WO2023281877A1 WO 2023281877 A1 WO2023281877 A1 WO 2023281877A1 JP 2022015933 W JP2022015933 W JP 2022015933W WO 2023281877 A1 WO2023281877 A1 WO 2023281877A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
light
imaging
far
optical
Prior art date
Application number
PCT/JP2022/015933
Other languages
French (fr)
Japanese (ja)
Inventor
諒 黒崎
哲也 鈴木
淳 村田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023281877A1 publication Critical patent/WO2023281877A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes

Definitions

  • the present disclosure relates to an optical system, an imaging device, and an imaging system that perform imaging in the visible range and imaging in the far infrared range.
  • Patent Literature 1 discloses an aperture stop in an imaging device that captures both an observation image of fluorescence from an observation site of a subject and a subject image of illumination light.
  • This aperture stop has a filter region that transmits infrared light in the wavelength range of fluorescence from 610 to 720 nm and reduces or blocks the transmission of visible light, and an aperture region formed inside the filter region.
  • a transparent plate-like substrate is provided over the filter region and the aperture region, and the thickness in the optical axis direction is is disclosed to be uniform.
  • the present disclosure is an optical system that suppresses blur due to aberration in the visible range and small aperture blur in the far infrared range, and makes it easy to perform imaging in the visible range and imaging in the far infrared range with light amounts suitable for each. , provides an imaging device and an imaging system.
  • the optical system forms an image of first light having a wavelength in the visible range on the first imaging element, and forms an image of second light having a wavelength in the far-infrared range on the second imaging element.
  • Optical system is arranged along the optical axis and includes one or more lenses that transmit the first and second lights, respectively, and an aperture stop provided with an opening through which the optical axis passes.
  • the aperture stop includes an optical filter that blocks the first light and transmits the second light around the aperture.
  • the optical system satisfies the following formula (1a).
  • t thickness of the optical filter in the direction of the optical axis
  • n refractive index of the second light in the optical filter
  • p pixel pitch of the second imaging element
  • f the focal length of the second light in the optical system
  • D Effective diameter of the optical filter at the aperture stop.
  • the imaging device, and the imaging system according to the present disclosure blurring due to aberration in the visible range and small aperture blurring in the far infrared range are suppressed, and imaging in the visible range and imaging in the far infrared range are respectively suitable. It can be made easier with the amount of light.
  • FIG. 1 is a diagram for explaining an imaging device and an imaging system according to Embodiment 1 of the present disclosure
  • FIG. 1 is a diagram showing the configuration of an optical system according to Embodiment 1
  • FIG. 1 is a diagram showing simulation results of the optical system in Example 1 of Embodiment 1
  • Graph showing simulation results of the optical system in Example 3 of Embodiment 1 4 is a chart showing numerical examples of the optical system according to Embodiment 1.
  • 4 is a chart showing numerical examples of optical systems in Examples 1 to 3 of Embodiment 1.
  • FIG. 1 is a diagram for explaining an imaging device and an imaging system according to Embodiment 1 of the present disclosure
  • FIG. 1 is a diagram showing the configuration of an optical system according to Embodiment 1
  • FIG. 4 is a diagram showing the configuration of an optical system according to Embodiment 2; Graph showing simulation results of the optical system in Example 1 of Embodiment 2 Graph showing simulation results of the optical system in Example 2 of Embodiment 2 Graph showing simulation results of the optical system in Example 3 of Embodiment 2 Chart showing a numerical example of the optical system in Embodiment 2 Graph showing numerical examples of optical systems in Examples 1 to 3 of Embodiment 2 FIG.
  • FIG. 10 is a diagram showing the configuration of an optical system according to Embodiment 3; Graph showing simulation results of the optical system in Example 1 of Embodiment 3 Graph showing simulation results of the optical system in Example 2 of Embodiment 3 Graph showing simulation results of the optical system in Example 3 of Embodiment 3 Chart showing a numerical example of the optical system in Embodiment 3 4 is a chart showing numerical examples of optical systems in Examples 1 to 3 of Embodiment 3.
  • Embodiment 1 of the present disclosure will be described below with reference to the drawings.
  • an imaging apparatus and its optical system that are compatible with imaging in the visible range and imaging in the far infrared range will be described.
  • FIG. 1 is a diagram for explaining an imaging apparatus 1 and an imaging system 20 according to this embodiment.
  • An imaging system 20 of this embodiment includes an imaging device 1 and a control unit 15 .
  • the imaging device 1 includes an optical system 2, a visible imaging sensor 11, and a far-infrared imaging sensor 12, as shown in FIG. 1, for example.
  • the imaging apparatus 1 of the present embodiment is a camera device that performs imaging in the visible range, ie, visible imaging, and imaging in the far infrared range, ie, far infrared imaging, coaxially with an optical system 2 .
  • the visible region has a wavelength of 400 nm to 750 nm
  • the far infrared region has a wavelength of 3 ⁇ m to 20 ⁇ m.
  • part of the visible region and part of the far-infrared region are targets for visible imaging and far-infrared imaging by the imaging device 1 .
  • the far infrared region may be 7 ⁇ m to 12 ⁇ m.
  • the imaging device 1 of the present embodiment can be applied to various uses such as combining thermal imaging, motion sensors, night vision, or the like using far-infrared imaging, and visible imaging, for example.
  • image analysis such as measuring the temperature of a subject 10 such as a person and performing individual recognition on the same subject 10 can be applied.
  • the imaging device 1 of this system 20 may be incorporated into various electronic devices such as mobile terminals, mounted on moving bodies such as drones or vehicles, or installed as surveillance cameras. be done. In such various application examples, miniaturization of the imaging device 1 is useful.
  • the optical system 2 collects the light L10 incident from the subject 10, guides the visible light L11 in the incident light L10 to the visible image sensor 11, and The external light L12 is guided to the far-infrared imaging sensor 12. According to such an optical system 2, it is possible to provide a compact device configuration in which the imaging device 1 has only one lens barrel.
  • narrowing down the visible light L11 taken in by the optical system 2 is useful from the viewpoint of suppressing blurring due to aberration and improving imaging performance for visible imaging.
  • the wavelength of the far-infrared light L12 is long. The effect of "aperture blur" is more likely to occur than in visible imaging. Therefore, in far-infrared imaging, it is useful not to narrow down the intake of the far-infrared light L12 too much, from the viewpoint of the influence of the small-aperture blur on imaging performance.
  • the visible image sensor 11 has a relatively small pixel pitch and a large number of pixels and has high sensor sensitivity, narrowing down the visible light L11 is useful for improving the imaging performance of visible imaging. is.
  • the far-infrared imaging sensor 12 has a relatively large pixel pitch and a small number of pixels, resulting in low sensor sensitivity. For this reason, for far-infrared imaging, it is useful to secure a large amount of light for the optical system 2 to take in the far-infrared light L12.
  • the aperture diameter is the same for the visible light L11 and the far-red light L12, and it is difficult to suppress aberration blur in the visible range and small-aperture blur in the far-infrared range, and the amount of each light is also optimized. I had a problem that I could't. Therefore, the present embodiment provides an optical system 2 capable of realizing both narrowing down of the visible light L11 suitable for visible imaging and capture of far-infrared light L12 suitable for far-infrared imaging, as described above. The configuration of the optical system 2 will be described later.
  • the visible image sensor 11 is a variety of image sensors, such as CCD or CMOS image sensors, made of materials such as amorphous silicon having light sensitivity in the visible range.
  • the visible image sensor 11 has an imaging surface in which a plurality of pixels are arranged at a predetermined pitch.
  • the pixel pitch of the visible image sensor 11 is, for example, about 3 ⁇ m.
  • the visible image sensor 11 captures an image formed on an imaging surface by the incidence of the visible light L11 through the optical system 2, and generates an image signal representing a captured image in the visible range, that is, a visible image Im1.
  • the visible imaging sensor 11 is an example of the first imaging section in this embodiment.
  • the far-infrared imaging sensor 12 is an imaging element having light sensitivity in the far-infrared region, such as a bolometer, thermopile, or SOI diode.
  • the far-infrared imaging sensor 12 has an imaging surface in which a plurality of pixels are arranged at a predetermined pitch.
  • the pixel pitch of the far-infrared imaging sensor 12 is, for example, 10 ⁇ m to 300 ⁇ m.
  • the far-infrared image sensor 12 captures an image formed on an imaging surface by the incidence of the far-infrared light L12 via the optical system 2, and presents a captured image in the far-infrared region, that is, a far-infrared image Im2. Generate an image signal.
  • the far-infrared imaging sensor 12 is an example of a second imaging section in this embodiment.
  • the visible image Im1 and the far-infrared image Im2 are output as coaxial imaging results using the optical system 2. Therefore, according to the imaging apparatus 1 of the present embodiment, for example, image shift of the subject 10 between the visible image Im1 and the far-infrared image Im2 can be suppressed, and analysis is easy in various applications that combine visible imaging and far-infrared imaging. You can get the image output.
  • control unit 15 receives image signals from the imaging device 1 and performs various image analyzes based on various images Im1 and Im2 indicated by the received image signals.
  • the control unit 15 includes, for example, a CPU or MPU that implements various functions by executing programs stored in an internal memory.
  • Control unit 15 may include dedicated hardware circuitry designed to achieve the desired functionality.
  • the control unit 15 may include a CPU, MPU, GPU, DSP, FPGA, ASIC, or the like.
  • control unit 15 of the system 20 performs individual recognition of the subject 10 based on the visible image Im1 captured by the visible image sensor 11 in the imaging device 1, and the far-infrared image captured by the far-infrared image sensor 12.
  • the temperature of the subject 10 is recognized based on Im2.
  • control unit 15 associates the recognition result from the visible image Im1 and the recognition result from the far-infrared image Im2 based on, for example, the position of the subject 10 in each of the images Im1 and Im2, and outputs the result as information of the analysis result. to manage.
  • the optical system 2 of the imaging device 1 can suppress the image shift of the same subject 10 between the visible image Im1 and the far-infrared image Im2. can run to
  • FIG. 2 is a diagram showing the configuration of the optical system 2 according to Embodiment 1.
  • the optical system 2 includes a lens group 30 having an optical axis Z0 into which incident light L10 from the outside is incident, an aperture filter 4, a light branching element 21, and a far-infrared transmission filter 22.
  • the direction of the optical axis Z0 of the lens group 30 in the optical system 2 is defined as the Z direction, and two directions orthogonal to the Z direction are defined as the X and Y directions.
  • the object side (or enlargement side) facing outside from the optical system 2 is the -Z side or front, and the opposite image plane side (or reduction side) is the +Z side or rear.
  • the main surface of the light branching element 21 is arranged to be inclined by a predetermined angle (for example, 45°) from the XY plane.
  • the X direction corresponds to the direction in which the main surface of the light branching element 21 is inclined
  • the Y direction corresponds to the direction in which the main surface of the light branching element 21 extends.
  • the light branching element 21 is tilted so as to be positioned on the +X side as it goes to the +Z side.
  • the optical system 2 has an imaging position P1 where the visible light L11 is imaged by the optical system 2 and an imaging position P2 where the far infrared light L12 is imaged by the optical system 2 on the +Z side, ie, the rear.
  • the imaging plane of the visible image sensor 11 is arranged at the imaging position P1
  • the imaging plane of the far-infrared imaging sensor 12 is arranged at the imaging position P2.
  • the light branching element 21 is provided between the lens group 30 and the imaging sensors 11 and 12 .
  • the far-infrared transmission filter 22 is provided between the light branching element 21 and the far-infrared imaging sensor 12 .
  • the lens group 30 in the optical system 2 is made of a lens material that has optical transparency in both the visible range and the far infrared range. Due to the wavelength dependence of the refractive index of lens materials, the focal length of lens group 30 can vary according to the wavelength of the light to be imaged.
  • the lens group 30 functions as an imaging optical system by applying a refractive power according to the focal length to the incident light L10 from the outside.
  • the incident light L10 after passing through the lens group 30 includes visible light L11 and far-infrared light L12, and enters the light branching element 21 .
  • the visible light L11 and the far-infrared light L12 are examples of first and second light, respectively, in this embodiment.
  • the lens group 30 is composed of three lens elements 31 , 32 and 33 .
  • a first lens element 31, a second lens element 32, and a third lens element 33 are arranged in order from the front along the optical axis Z0.
  • the first and third lens elements 31 and 33 are made of chalcohalide glass (CH), and the second lens element 32 is made of zinc sulfide (ZnS) (FIG. 9). reference). Data for these various lens materials are exemplified in FIG.
  • the lens material in the lens group 30 is not limited to the above. It can be material.
  • the wavelength band transmitted by the lens material may be from 0.4 ⁇ m to 12 ⁇ m.
  • the aperture filter 4 is an example of an aperture stop in the present embodiment, and limits the amount of visible light L11 and the amount of far-infrared light L12 in the incident light L10.
  • the aperture filter 4 has a configuration for achieving both an aperture diameter that relatively reduces the amount of visible light L11 and an aperture diameter that relatively increases the amount of far-infrared light L12. The configuration of the aperture filter 4 will be described later.
  • the aperture filter 4 is arranged between the second and third lens elements 32 and 33 in the first embodiment.
  • the aperture filter 4 may be arranged at any position in the lens group 30 in the optical system 2 .
  • the lens group consisting of the lens elements 31 and 32 in front of the aperture filter 4 will be referred to as a front group 30a
  • the lens group consisting of the lens element 33 behind the aperture filter 4 will be referred to as a rear group 30b.
  • Each lens group may consist of one lens element.
  • the light branching element 21 is arranged, for example, behind the rear group 30b, and branches the optical path of the visible light L11 and the optical path of the far-infrared light L12. For example, as shown in FIG. 2, the light branching element 21 transmits the visible light L11 in the incident light L10 from the ⁇ Z side and emits it to the +Z side, while reflecting the far infrared light L12 to the +X side. configured to emit.
  • the light branching element 21 has a specific wavelength band (that is, a transmission band) that selectively transmits light, and is a band-pass filter having an optical characteristic that reflects light outside the transmission band. It is configured by setting the band to the transmission band.
  • the far-infrared transmission filter 22 is arranged, for example, between the light branching element 21 and the far-infrared imaging sensor 12 in the configuration example of FIG. 2, and selectively transmits the far-infrared light L12.
  • the far-infrared transmission filter 22 is composed of various filter elements such as a bandpass filter whose transmission band is set in advance to the wavelength band of the far-infrared light L12.
  • the optical system 2 of this embodiment is configured so that, for example, no lens element having refractive power is provided between the light branching element 21 and each of the imaging sensors 11 and 12 .
  • this configuration it is possible to reduce the size of the optical system 2 from the viewpoint of the overall length or the number of parts, etc., and the cost can be reduced by reducing the alignment process of the lens after the light splitting.
  • the lens group 30 on the -Z side (that is, in front) of the light branching element 21 is arranged so that the visible light included in the incident light L10 is An imaging optical system for each of L11 and far-infrared light L12 is configured. In other words, each imaging position P1, P2 is set corresponding to the focal length of the lens group 30.
  • FIG. 4 is a front view of the configuration of the aperture filter 4 in the optical system 2, viewed from the Z direction.
  • the aperture filter 4 is provided with an aperture 40 surrounding the optical axis Z0.
  • the aperture filter 4 includes a filter portion 41 surrounding the aperture portion 40 and a light blocking portion 42 surrounding the filter portion 41 .
  • the aperture portion 40, the filter portion 41 and the light shielding portion 42 are formed concentrically, for example.
  • the aperture 40 defines an area in the aperture filter 4 for passing both the visible light L11 and the far infrared light L12 in the incident light L1.
  • the opening 40 is formed, for example, in a circular shape around the optical axis Z0.
  • the aperture diameter Dap of the aperture 40 defines the aperture value (F number) of the visible light L11.
  • the opening 40 is configured by providing a hollow hole in the filter portion 41 .
  • the filter section 41 is made of various optical materials having optical properties of blocking the visible light L11 and transmitting the far-infrared light L12.
  • various materials such as silicon, germanium and chalcogenide glass can be employed. Examples 1 to 3 in which the filter portion 41 is made of various materials will be described later.
  • the filter section 41 is an example of an optical filter in this embodiment.
  • the thickness of the filter portion 41 in the direction of the optical axis Z0 will be referred to as "filter thickness".
  • the light blocking part 42 is made of various materials that block both the visible light L11 and the far infrared light L12, and is made of various metal members, for example.
  • the light shielding portion 42 is formed, for example, in an annular shape that is concentric with the opening portion 40 .
  • the inner diameter of the light shielding portion 42 corresponds to the outer diameter of the filter portion 41, that is, the effective diameter D. As shown in FIG. This effective diameter D defines the aperture value of the far-infrared light L12.
  • the light shielding portion 42 is not limited to an annular shape, and may be formed, for example, in a rotationally symmetrical polygonal shape.
  • the light shielding part 42 may be configured to have a variable aperture value with a structure such as a blade aperture.
  • the visible light L11 is narrowed down by the aperture diameter Dap of the aperture 40, thereby suppressing aberration blurring, and the effective diameter D of the filter section 41, which is larger than the aperture diameter Dap, The amount of light can be ensured while suppressing the small-aperture blur of the far-infrared light L12.
  • the eccentricity of the optical system 2 can be suppressed with respect to each of the visible light L11 and the far-infrared light L12.
  • the aperture filter 4 satisfies the condition (1) represented by the following equations (1a) and (1b). t ⁇ 2 ⁇ (4npf)/ ⁇ (n ⁇ 1)D ⁇ (1a) 0.1 ⁇ t (1b)
  • t is the filter thickness of the filter portion 41 of the aperture filter 4 in the direction of the optical axis Z0, for example in units of mm.
  • n is the refractive index of the filter portion 41 of the filter portion 41 in the far infrared region.
  • p is the pixel pitch of the far-infrared imaging sensor 12 (or the pixel pitch in the imaging of the far-infrared light L12).
  • f is the focal length of the far-infrared light L12 in the optical system 2; D is the effective diameter of the filter portion 41 in the aperture filter 4 .
  • Condition (1) is for avoiding deterioration in optical performance that may occur when the far-infrared light L12 passes through the filter portion 41 and the aperture portion 40 of the aperture filter 4 in the optical system 2 of the imaging device 1. It is a condition. Condition (1) in the optical system 2 will be described with reference to FIG.
  • the focal position changes due to the influence of light refraction in the filter section 41 .
  • the aperture filter 4 which is hollow at the aperture 40 as shown in FIG. are offset from each other.
  • a new problem was found that the optical performance of the optical system 2 could be lowered.
  • the optical system 2 of this embodiment can suppress deterioration of the optical performance of the optical system 2 by falling below the upper limit of the condition (1).
  • the focal depth d is represented by the following equation (12) using the permissible circle of confusion diameter ⁇ in the far-infrared imaging sensor 12 of the imaging device 1 .
  • the optical system 2 of this embodiment may satisfy the following formula (1c). t ⁇ (4npf)/ ⁇ (n ⁇ 1)D ⁇ (1c)
  • the optical system 2 of the present embodiment does not necessarily have to satisfy the above formula (1c), and may fall below the upper limit of the condition (1) as in the above formula (1a).
  • Numerical simulations by the inventors of the present application have confirmed that, even in this case, it is possible to sufficiently suppress deterioration in the optical performance of the optical system 2 in practice. This point will be described later.
  • the right side of the above equation (1c) may be referred to as a factor Q.
  • the pixel pitch p included in the factor Q is various pixels that can be used to obtain an optical image formed by the far-infrared light L12 without necessarily having the far-infrared imaging sensor 12. may be set at intervals.
  • the pixel pitch p may be about a representative wavelength of the far-infrared light L12, for example, 10 ⁇ m to 12 ⁇ m, from the viewpoint of the physical limit of pixels that form an image of the far-infrared light L12. good.
  • the pixel pitch p may be 10 ⁇ m or more and 300 ⁇ m or less from the viewpoint of making it possible to use various far-infrared imaging sensors 12 .
  • the lower limit of the condition (1) based on the above formula (1b) is that the filter thickness t is too thin, and the far-infrared imaging is affected from a different point of view from the defocus amount ⁇ t between the far-infrared rays L12a and L12b.
  • the filter thickness t is extremely thin, the far-infrared light L12 transmitted through the filter portion 41 and the far-infrared light L12 reflected inside the filter portion 41 (for example, reflected on the +Z side surface and then reflected on the -Z side surface This is thought to be due to the interference with the light emitted from the light, which causes unevenness in luminance.
  • the optical system 2 of this embodiment can solve the problem of the influence of such interference by exceeding the lower limit of the condition (1).
  • optical system 2 of this embodiment may satisfy the condition represented by the following formula (2). 0.2 ⁇
  • f is the focal length of the far-infrared light L12 in the entire optical system 2.
  • fa is the synthetic focal length of the far-infrared light L12 synthesized in the front group in the optical system 2, that is, in the lens group on the object side (-Z side) of the aperture filter 4;
  • the above equation (2) is obtained by increasing the composite focal length fa on the object side of the aperture filter 4 compared to the focal length f of the entire optical system 2, so that the shift amount ⁇ t between the far infrared rays L12a and L12b described above is is a condition for suppressing the occurrence of
  • the far-infrared light L12 incident on the optical system 2 from the object side causes the light beam directions of the light beams incident on the aperture filter 4 to be parallel to each other in the Z direction. can get closer.
  • the angle difference between the far-infrared light L12a refracted by the filter portion 41 and the far-infrared light L12b traveling straight through the aperture 40 is can be suppressed. Thereby, the defocus amount ⁇ t between the two light beams L12a and L12b can be reduced.
  • the optical system 2 of this embodiment may further satisfy the following formula (2a). 0.05 ⁇
  • optical system 2 of this embodiment may satisfy the condition represented by the following formula (3). D ⁇ f/2 (3)
  • the F value for the far-infrared light L12 may be 2 or less as in the above formula (3). Thereby, the far-infrared light L12 can be easily taken into the optical system 2.
  • optical system 2 of this embodiment may satisfy the condition represented by the following formula (4). Dap ⁇ fvis/4 (4)
  • Dap is the aperture diameter of the aperture 40 in the aperture filter 4 (see FIG. 4).
  • fvis is the focal length of the visible light L11 in the optical system 2;
  • the F value for the visible light L11 may be 4 or more as in the above formula (4).
  • FIG. 6 is a graph showing simulation results of the optical system 2 in Example 1 of Embodiment 1.
  • the horizontal axis indicates the filter thickness t of the aperture filter 4 in the optical system 2
  • the vertical axis indicates the MTF (modulation transfer function).
  • the unit of filter thickness t is mm.
  • Example 1 of FIG. 6 silicon is used as the optical material of the filter portion 41 in the aperture filter 4 of the optical system 2 .
  • the MTF was calculated on-axis in the image plane, using a spatial frequency of 10 lp/mm (lp: line pairs).
  • the pixel pitch p of the far-infrared imaging sensor 12 was assumed to be 50 ⁇ m, and the Nyquist frequency was taken into consideration in calculating the MTF.
  • FIG. 7 is a graph showing simulation results of the optical system 2 in Example 2 of Embodiment 1.
  • FIG. 8 is a graph showing simulation results of the optical system 2 in Example 3 of the first embodiment.
  • Example 2 germanium was adopted as the optical material of the filter portion 41 instead of silicon in Example 1.
  • Example 3 chalcogenide glass was used as the optical material of the filter section 41 (specifically, IRG203 manufactured by Hubei Xinhua Optical Information Materials Co., Ltd.).
  • Graphs in FIGS. 7 and 8 show simulation results for Examples 2 and 3, respectively, similarly to FIG. 6 for Example 1.
  • FIG. 7 IRG203 manufactured by Hubei Xinhua Optical Information Materials Co., Ltd.
  • the same tendency as in FIG. 6 was confirmed even when the optical material of the filter portion 41 was changed. That is, it was confirmed that the deterioration of the optical performance of the optical system 2 can be suppressed when the filter thickness t is less than the upper limit of the condition (1). Moreover, it was confirmed that the optical performance of the optical system 2 can be stably ensured by falling below the upper limit of the above formula (1c).
  • FIG. 9 is a chart showing a numerical example of the optical system 2 in Embodiment 1.
  • FIG. The chart in FIG. 9 includes surface data D11, aspheric surface data D12, and various data D13 of the optical system 2 in this embodiment.
  • the focal length f, the total angle of view 2 ⁇ , and the aperture diameter D of the optical system 2 of this embodiment are illustrated above the surface data D11.
  • the surface data D11 indicates the shape, radius of curvature, surface interval, and material of each surface S1 to S14 arranged in order from the object side in the optical system 2, and includes a remark column.
  • the surface number S2 is the object-side lens surface of the first lens element 31 and has an aspherical shape.
  • the surface number S1 represents an object such as the subject 10 positioned at infinity (see remarks).
  • the surface number S10 is the surface of the light branching element 21 on the object side. and respectively (see FIG. 2).
  • the aspherical surface data D12 indicates various coefficients of the following equation (20) that defines the shape of the aspherical surface for each of the aspherical surfaces S2, S3, S8, and S9 in the surface data D11.
  • h is the height in the radial direction
  • k is the conic constant
  • An is the n-th order aspheric coefficient.
  • n is an even number of 4 or more and 20 or less, and the sum of each n is taken. According to the above formula (20), the sag amount z at the height h in the radial direction on the target surface is defined rotationally symmetrically.
  • FIG. 10 is a chart showing numerical examples of the optical system 2 in Examples 1 to 3 of the first embodiment.
  • the chart in FIG. 10 shows interplanar spacing data D14 and factor data D15 for various filter thicknesses t in Examples 1-3.
  • the filter thickness t was varied within the range of 0 to 1.6 mm in this embodiment.
  • the surface distances dA, dB, dC before and after the aperture filter 4 and the surface distance dD between the light branching element 21 and the far-infrared transmission filter 22 were changed.
  • changes in the interplanar spacing dD with respect to changes in the filter thickness t were set separately.
  • the factor data D15 indicates the calculation results of the factors Q and 2Q of condition (1) according to the optical material of the filter section 41 in Examples 1 to 3 of the present embodiment. According to the above numerical examples, the simulation results shown in FIGS. 6 to 8 were obtained for the optical system 2 of this embodiment.
  • the optical system 2 forms an image of the visible light L11, which is an example of the first light having a wavelength in the visible range, on the visible image sensor 11, which is an example of the first imaging element. do. Further, the optical system 2 forms an image of far-infrared light L12, which is an example of second light having a wavelength in the far-infrared region, on a far-infrared imaging sensor 12, which is an example of a second imaging element.
  • the optical system 2 is arranged along the optical axis Z0, and includes first to third lens elements 31 to 33 as an example of one or more lenses that respectively transmit the visible light L11 and the far infrared light L12, and an aperture stop. and an aperture filter 4 as an example.
  • the aperture filter 4 is provided with an aperture 40 through which the optical axis Z0 passes, and defines the amount of emitted visible light L11 and far-infrared light L12 incident on the optical system 2 .
  • the aperture 40 defines the amount of visible light L11.
  • the aperture filter 4 includes a filter section 41 as an example of an optical filter that shields the visible light L11 around the aperture 40 and transmits the far-infrared light L12.
  • the optical system 2 satisfies the following formula (1a). t ⁇ 2 ⁇ (4npf)/ ⁇ (n ⁇ 1)D ⁇ (1a)
  • t is the thickness of the filter section 41 in the direction of the optical axis Z0.
  • n is the refractive index of the far-infrared light L12 in the filter section 41; p is the pixel pitch of the far-infrared imaging sensor 12 (or the pixel pitch in the imaging of the far-infrared light L12).
  • the filter thickness t is optimized in the aperture filter 4 that captures a larger amount of far-infrared light L12 while limiting the amount of visible light L11 in the filter portion 41 and the aperture 40. It is possible to solve the problem that the optical performance of far-infrared imaging can be degraded. Accordingly, it is possible to provide the optical system 2 that makes it easy to perform imaging in the visible range and imaging in the far-infrared range with light amounts suitable for each.
  • the optical system 2 satisfies the following formula (1b). 0.1 ⁇ t (1b) Thereby, the influence of the interference of the far-infrared light L12 can be suppressed in the aperture filter 4, and the optical performance of far-infrared imaging can be easily obtained.
  • the optical system 2 satisfies the following formula (1c). t ⁇ (4npf)/ ⁇ (n ⁇ 1)D ⁇ (1c)
  • the amount of deviation ⁇ t between the far-infrared rays L12a that pass through the filter section 41 and the far-infrared rays L12b that do not pass through the filter section 41 is kept within the range of the depth of focus d, and the optical performance of far-infrared imaging is improved. can be stably secured.
  • the optical system 2 satisfies the following formula (2). 0.2 ⁇
  • fa is the far-infrared light generated by the lens group, ie, the front group 30a, arranged on the incident side, ie, the enlargement side, of the visible light L11 and the far-infrared light L12, relative to the aperture filter 4 in the entire lens group 30 of the optical system 2. It is the combined focal length of the external light L12.
  • the luminous flux of the far-infrared light L12 incident on the aperture filter 4 can be totally collimated, the shift amount ⁇ t can be reduced, and the optical performance of far-infrared imaging can be improved.
  • the optical system 2 satisfies the following formulas (3) and (4).
  • Dap is the opening diameter of the opening 40 .
  • fvis is the focal length of the visible light L11 in the optical system 2;
  • the optical system 2 can narrow down the visible light L11 by setting the F value to 2 or less while taking in the amount of light by setting the F value to 4 or more for the far infrared rays L12 in the optical system 2 .
  • visible imaging and far-infrared imaging can be easily performed with the optimum amount of light for each.
  • the aperture filter 4 is hollow at the aperture 40 . This makes it possible to easily obtain a configuration that transmits both the visible light L11 and the far-infrared light L12. Even in this case, according to the optical system 2 of the present embodiment, the problem that the optical performance of far-infrared imaging may be degraded is solved, and visible imaging and far-infrared imaging are suitable for each. It can be done easily with the amount of light.
  • the aperture 40 of the aperture stop 4 and the filter section 41 are provided concentrically around the optical axis Z0. Thereby, the eccentricity of the optical system 2 can be suppressed for each of the visible light L11 and the far-infrared light L12, and it is possible to easily perform both visible imaging and far-infrared imaging.
  • the optical system 2 further includes a light branching element 21 arranged between the lens group 30, the visible image sensor 11, and the far-infrared light L12.
  • the light splitting element 21 splits the visible light L11 and the far-infrared light L12 incident along the optical axis Z0 from the lens group 30, guides the visible light L11 to the visible imaging sensor 11, and L12 is guided to the far-infrared imaging sensor 12.
  • FIG. the visible light L11 and the far-infrared light L12 can be guided to different imaging positions P1 and P2 via the light branching element 21, making it easy to achieve both visible imaging and far-infrared imaging.
  • the imaging device 1 includes an optical system 2, a visible imaging sensor 11 that is an example of a first imaging section, and a far-infrared imaging sensor 12 that is an example of a second imaging section.
  • the visible image sensor 11 captures an image of visible light L11 formed via the optical system 2 .
  • the far-infrared imaging sensor 12 captures an image formed by far-infrared light L12 through the optical system 2 .
  • the optical system 2 makes it easy to perform visible imaging and far-infrared imaging with the amount of light suitable for each.
  • the imaging system 20 includes an imaging device 1 and a control unit 15 that analyzes various images Im1 and Im2 captured by the imaging device 1.
  • the optical system 2 of the imaging device 1 can facilitate visible imaging and far-infrared imaging with the amount of light suitable for each. Accordingly, it is possible to easily perform both analysis of the visible image Im1 and analysis of the far-infrared image Im2.
  • Embodiment 2 Embodiment 2 will be described below with reference to FIGS. 11 to 16.
  • FIG. Although the example of the optical system 2 having three lenses has been described in the first embodiment, the present disclosure is not limited to this.
  • an example of an optical system 2A having two lenses will be described.
  • optical system 2A according to the present embodiment will be described, omitting the same description as in the first embodiment as appropriate.
  • FIG. 11 shows the configuration of an optical system 2A according to the second embodiment.
  • An optical system 2A according to this embodiment has the same configuration as the optical system 2 according to the first embodiment, but includes two lens elements 31 and 32 instead of the three lens elements 31-33.
  • the aperture filter 4 of this embodiment is arranged, for example, between two lens elements 31 and 32 .
  • FIG. 12 shows simulation results of the optical system 2A in Example 1 of Embodiment 2, similarly to FIG. 13 and 14 show simulation results of the optical system 2A in Examples 2 and 3 of Embodiment 2, respectively, similarly to FIGS. 7 and 8.
  • FIG. 12 shows simulation results of the optical system 2A in Example 1 of Embodiment 2
  • FIG. 13 and 14 show simulation results of the optical system 2A in Examples 2 and 3 of Embodiment 2, respectively, similarly to FIGS. 7 and 8.
  • 15 and 16 show numerical examples of the optical system 2A according to the second embodiment, similarly to the first embodiment.
  • surface data D21, aspheric surface data D22, and various data D23 in FIG. 15 respectively indicate information about the optical system 2A in this embodiment, similarly to each data D11 to D13 in FIG.
  • the surface distance data D24 and the factor data D25 in FIG. 16 respectively show information about the optical system 2A in Examples 1 to 3 of the present embodiment, similarly to the data D14 and D15 in FIG.
  • Embodiment 3 (Embodiment 3) Embodiment 3 will be described below with reference to FIGS. 17 to 22.
  • an optical system 2B composed of lens elements made of the same lens material will be described.
  • FIG. 17 shows the configuration of an optical system 2B according to the third embodiment.
  • zinc sulfide is exemplified as the lens material of the second lens element 32 .
  • the lens material of the second lens element 32B is the same chalcohalide glass as that of the first lens element 31 in the same configuration as the optical system 2 of the first embodiment.
  • the lens group 30 can be made of glass with high productivity and workability, and can be easily used in various applications.
  • FIGS. 21 and 22 show numerical examples of the optical system 2B in Embodiment 3, similarly to Embodiment 1.
  • FIG. Specifically, the surface data D31, the aspheric data D32, and the various data D33 in FIG. 21 each indicate information about the optical system 2B in this embodiment, similarly to the data D11 to D13 in FIG.
  • the surface distance data D34 and the factor data D35 in FIG. 22 respectively show information about the optical system 2B in Examples 1 to 3 of the present embodiment, similarly to the data D14 and D15 in FIG.
  • optical system 2B of the present embodiment also provided the same effects as those of the first and second embodiments under condition (1).
  • Embodiments 1 to 3 have been described as examples of the technology disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to embodiments in which modifications, substitutions, additions, omissions, etc. are made as appropriate.
  • the optical systems 2 to 2B in which the light branching element 21 transmits the visible light L11 and reflects the far-infrared light L12 are illustrated, but the present disclosure is not limited to this.
  • the optical system 2 of this embodiment may include a light branching element 23 that reflects the visible light L11 and transmits the far-infrared light L12 instead of the light branching element 21 described above.
  • the optical branching element of this embodiment is configured by a bandpass filter in which the wavelength band of the far-infrared light L12 is set in advance to the transmission band.
  • the far-infrared transmission filter 22 is arranged, for example, on the +Z side of the light branching element.
  • the aperture filter 4 can be used in the same manner as in the above-described embodiments to facilitate the realization of the imaging apparatus 1 capable of both visible imaging and far-infrared imaging.
  • the optical branching element 21 is composed of a bandpass filter.
  • the optical branching element 21 is not limited to a band-pass filter, and can be configured by various band splitters, for example, a high-pass filter or a low-pass filter.
  • the optical branching element 21 does not necessarily have to be provided in the optical system 2 .
  • the parts 40 to 42 of the aperture filter 4 do not necessarily have to be concentrically arranged.
  • the parts 40 to 42 of the aperture filter 4 may not be formed in a circular shape, but may be formed in an elliptical or polygonal shape, for example.
  • the aperture filter 4 includes the light shielding portion 42 .
  • the aperture filter 4 does not necessarily have to include the light shielding portion 42 .
  • the light shielding section 42 may be omitted when, for example, the aperture value of the far-infrared light L12 is set to open.
  • the optical material that blocks the visible light L11 and transmits the far-infrared light L12 in the filter portion 41 of the aperture filter 4 is exemplified.
  • the filter portion 41 of the aperture filter 4 is configured by applying a coating or the like that blocks the visible light L11 to a base material made of an optical material that transmits the visible light L11 and the far-infrared light L12. good too.
  • the far-infrared transmission filter 22 may be provided integrally with the far-infrared imaging sensor 12 or the light branching element 21 .
  • the far-infrared transmission filter 22 may be omitted from the optical systems 2-2B.
  • optical systems 2 to 2B including aspherical lens surfaces are illustrated.
  • the optical system of this embodiment may not include an aspherical lens surface, and for example, all of the lens elements included in the lens group 30 may be spherical lenses. Further, the optical system of this embodiment may include a lens element having a free-form surface that is not rotationally symmetrical in the lens group 30 .
  • the present disclosure is applicable to various applications that combine visible imaging and far-infrared imaging.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Lens Barrels (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

An optical system (2) in which first light (L11) in a visible area forms an image on first image capture elements (11), and second light (L12) in a far infrared area forms an image on second image capture elements (12). The optical system comprises: at least one lens (31-33) for transmitting each of the first and second light; and an aperture diaphragm (4) provided with an aperture (40). The aperture diaphragm is provided with an optical filter (41) that blocks the first light and transmits the second light in the periphery of the aperture. The optical system satisfies t < 2x (4npf) / {(n-1) D}. In the foregoing: t is the optical filter thickness; n is the refractive index of the second light in the optical filter; p is the pixel pitch of the second image capture elements; f is the focal distance of the second light in the optical system; and D is the effective diameter of the optical filter in the aperture diaphragm.

Description

光学系、撮像装置および撮像システムOptical system, imaging device and imaging system
 本開示は、可視域における撮像と遠赤外域における撮像とを行う光学系、撮像装置および撮像システムに関する。 The present disclosure relates to an optical system, an imaging device, and an imaging system that perform imaging in the visible range and imaging in the far infrared range.
 特許文献1は、被写体の観察部位からの蛍光による観察像と、照明光による被写体像とを共に撮影する撮像装置における開口絞りを開示する。この開口絞りは、蛍光の波長域である610~720nmの赤外光を透過させ、かつ可視光の透過を低減又は遮断するフィルタ領域と、フィルタ領域の内側に形成された開口領域とを有する。特許文献1では、フィルタ領域を透過する蛍光と開口領域を透過する蛍光とに位相差を生じさせないために、フィルタ領域と開口領域にわたって透明な平板状基材を存在させ、その光軸方向の厚みを均一にすることを開示している。 Patent Literature 1 discloses an aperture stop in an imaging device that captures both an observation image of fluorescence from an observation site of a subject and a subject image of illumination light. This aperture stop has a filter region that transmits infrared light in the wavelength range of fluorescence from 610 to 720 nm and reduces or blocks the transmission of visible light, and an aperture region formed inside the filter region. In Patent Document 1, in order not to cause a phase difference between the fluorescence transmitted through the filter region and the fluorescence transmitted through the aperture region, a transparent plate-like substrate is provided over the filter region and the aperture region, and the thickness in the optical axis direction is is disclosed to be uniform.
国際公開第2011/007435号WO2011/007435
 本開示は、可視域における収差によるボケと遠赤外域における小絞りボケを抑制し、且つ、可視域における撮像と遠赤外域における撮像とを各々に適した光量で行い易くすることができる光学系、撮像装置および撮像システムを提供する。 The present disclosure is an optical system that suppresses blur due to aberration in the visible range and small aperture blur in the far infrared range, and makes it easy to perform imaging in the visible range and imaging in the far infrared range with light amounts suitable for each. , provides an imaging device and an imaging system.
 本開示において、光学系は、可視域における波長を有する第1の光を第1の撮像素子に結像し、遠赤外域における波長を有する第2の光を第2の撮像素子に結像する光学系である。光学系は、光軸に沿って配置され、第1及び第2の光をそれぞれ透過する1以上のレンズと、光軸が通過する開口部が設けられた開口絞りとを備える。開口絞りは、開口部の周囲において第1の光を遮光して第2の光を透過させる光学フィルタを備える。光学系は、以下の式(1a)を満たす。
t<2×(4npf)/{(n-1)D}  …(1a)
 ここで、
t:光軸の方向における光学フィルタの厚み、
n:光学フィルタにおける第2の光の屈折率、
p:第2の撮像素子の画素ピッチ、
f:光学系における第2の光の焦点距離、
D:開口絞りにおける光学フィルタの有効径
である。
In the present disclosure, the optical system forms an image of first light having a wavelength in the visible range on the first imaging element, and forms an image of second light having a wavelength in the far-infrared range on the second imaging element. Optical system. The optical system is arranged along the optical axis and includes one or more lenses that transmit the first and second lights, respectively, and an aperture stop provided with an opening through which the optical axis passes. The aperture stop includes an optical filter that blocks the first light and transmits the second light around the aperture. The optical system satisfies the following formula (1a).
t<2×(4npf)/{(n−1)D} (1a)
here,
t: thickness of the optical filter in the direction of the optical axis;
n: refractive index of the second light in the optical filter;
p: pixel pitch of the second imaging element;
f: the focal length of the second light in the optical system;
D: Effective diameter of the optical filter at the aperture stop.
 本開示における光学系、撮像装置および撮像システムによると、可視域における収差によるボケと遠赤外域における小絞りボケを抑制し、且つ、可視域における撮像と遠赤外域における撮像とを各々に適した光量で行い易くすることができる。 According to the optical system, the imaging device, and the imaging system according to the present disclosure, blurring due to aberration in the visible range and small aperture blurring in the far infrared range are suppressed, and imaging in the visible range and imaging in the far infrared range are respectively suitable. It can be made easier with the amount of light.
本開示の実施形態1に係る撮像装置及び撮像システムを説明するための図1 is a diagram for explaining an imaging device and an imaging system according to Embodiment 1 of the present disclosure; FIG. 実施形態1に係る光学系の構成を示す図1 is a diagram showing the configuration of an optical system according to Embodiment 1; FIG. 光学系における各種のレンズ材料のデータを例示する図A diagram illustrating data of various lens materials in an optical system 光学系における開口フィルタの構成を示す図Diagram showing the configuration of an aperture filter in an optical system 光学系における条件(1)を説明するための図A diagram for explaining the condition (1) in the optical system. 実施形態1の実施例1における光学系のシミュレーション結果を示すグラフGraph showing simulation results of the optical system in Example 1 of Embodiment 1 実施形態1の実施例2における光学系のシミュレーション結果を示すグラフGraph showing simulation results of the optical system in Example 2 of Embodiment 1 実施形態1の実施例3における光学系のシミュレーション結果を示すグラフGraph showing simulation results of the optical system in Example 3 of Embodiment 1 実施形態1における光学系の数値実施例を示す図表4 is a chart showing numerical examples of the optical system according to Embodiment 1. 実施形態1の実施例1~3における光学系の数値実施例を示す図表4 is a chart showing numerical examples of optical systems in Examples 1 to 3 of Embodiment 1. 実施形態2に係る光学系の構成を示す図FIG. 4 is a diagram showing the configuration of an optical system according to Embodiment 2; 実施形態2の実施例1における光学系のシミュレーション結果を示すグラフGraph showing simulation results of the optical system in Example 1 of Embodiment 2 実施形態2の実施例2における光学系のシミュレーション結果を示すグラフGraph showing simulation results of the optical system in Example 2 of Embodiment 2 実施形態2の実施例3における光学系のシミュレーション結果を示すグラフGraph showing simulation results of the optical system in Example 3 of Embodiment 2 実施形態2における光学系の数値実施例を示す図表Chart showing a numerical example of the optical system in Embodiment 2 実施形態2の実施例1~3における光学系の数値実施例を示す図表Graph showing numerical examples of optical systems in Examples 1 to 3 of Embodiment 2 実施形態3に係る光学系の構成を示す図FIG. 10 is a diagram showing the configuration of an optical system according to Embodiment 3; 実施形態3の実施例1における光学系のシミュレーション結果を示すグラフGraph showing simulation results of the optical system in Example 1 of Embodiment 3 実施形態3の実施例2における光学系のシミュレーション結果を示すグラフGraph showing simulation results of the optical system in Example 2 of Embodiment 3 実施形態3の実施例3における光学系のシミュレーション結果を示すグラフGraph showing simulation results of the optical system in Example 3 of Embodiment 3 実施形態3における光学系の数値実施例を示す図表Chart showing a numerical example of the optical system in Embodiment 3 実施形態3の実施例1~3における光学系の数値実施例を示す図表4 is a chart showing numerical examples of optical systems in Examples 1 to 3 of Embodiment 3.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters and redundant descriptions of substantially the same configurations may be omitted. This is to avoid unnecessary verbosity in the following description and to facilitate understanding by those skilled in the art.
 なお、出願人は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。 It is noted that Applicants provide the accompanying drawings and the following description for a full understanding of the present disclosure by those skilled in the art and are not intended to limit the claimed subject matter thereby. Absent.
(実施形態1)
 以下、本開示の実施形態1について、図面を参照しながら説明する。本実施形態では、可視域における撮像と遠赤外域における撮像を両立する撮像装置とその光学系について説明する。
(Embodiment 1)
Embodiment 1 of the present disclosure will be described below with reference to the drawings. In the present embodiment, an imaging apparatus and its optical system that are compatible with imaging in the visible range and imaging in the far infrared range will be described.
1.撮像装置について
 図1は、本実施形態に係る撮像装置1及び撮像システム20を説明するための図である。本実施形態の撮像システム20は、撮像装置1と、制御部15とを備える。
1. Imaging Apparatus FIG. 1 is a diagram for explaining an imaging apparatus 1 and an imaging system 20 according to this embodiment. An imaging system 20 of this embodiment includes an imaging device 1 and a control unit 15 .
 本実施形態において、撮像装置1は、例えば図1に示すように、光学系2と、可視撮像センサ11と、遠赤外撮像センサ12と備える。本実施形態の撮像装置1は、可視域における撮像すなわち可視撮像と、遠赤外域における撮像すなわち遠赤外撮像とを、光学系2によって同軸で行うカメラデバイスである。例えば、可視域は波長400nm~750nmであり、遠赤外域は波長3μm~20μmである。例えばこうした可視域の一部と遠赤外域の一部とが、撮像装置1による可視撮像と遠赤外撮像との対象となる。例えば遠赤外域は7μm~12μmであってもよい。 In this embodiment, the imaging device 1 includes an optical system 2, a visible imaging sensor 11, and a far-infrared imaging sensor 12, as shown in FIG. 1, for example. The imaging apparatus 1 of the present embodiment is a camera device that performs imaging in the visible range, ie, visible imaging, and imaging in the far infrared range, ie, far infrared imaging, coaxially with an optical system 2 . For example, the visible region has a wavelength of 400 nm to 750 nm, and the far infrared region has a wavelength of 3 μm to 20 μm. For example, part of the visible region and part of the far-infrared region are targets for visible imaging and far-infrared imaging by the imaging device 1 . For example, the far infrared region may be 7 μm to 12 μm.
 本実施形態の撮像装置1は、例えば遠赤外撮像を利用した熱画像化、人感センサ或いは暗視等と、可視撮像とを組み合わせるような種々の用途に適用可能である。例えば本システム20において、人物等の被写体10を検温して、同じ被写体10に個人認識を行うなどの画像解析が適用できる。本システム20の撮像装置1は、モバイル端末などの各種電子機器に組み込まれたり、ドローン又は車両等の移動体に搭載されたり、監視カメラ等のように設置されたりする等の各種適用例が考えられる。こうした種々の適用例において、撮像装置1の小型化が有用である。 The imaging device 1 of the present embodiment can be applied to various uses such as combining thermal imaging, motion sensors, night vision, or the like using far-infrared imaging, and visible imaging, for example. For example, in this system 20, image analysis such as measuring the temperature of a subject 10 such as a person and performing individual recognition on the same subject 10 can be applied. The imaging device 1 of this system 20 may be incorporated into various electronic devices such as mobile terminals, mounted on moving bodies such as drones or vehicles, or installed as surveillance cameras. be done. In such various application examples, miniaturization of the imaging device 1 is useful.
 本実施形態の撮像装置1において、光学系2は、被写体10から入射する光L10を集光し、入射光L10における可視光L11を可視撮像センサ11に導光すると共に、入射光L10における遠赤外光L12を遠赤外撮像センサ12に導光する。こうした光学系2によると、撮像装置1における鏡筒が1つといった小型の装置構成が提供できる。 In the imaging device 1 of this embodiment, the optical system 2 collects the light L10 incident from the subject 10, guides the visible light L11 in the incident light L10 to the visible image sensor 11, and The external light L12 is guided to the far-infrared imaging sensor 12. According to such an optical system 2, it is possible to provide a compact device configuration in which the imaging device 1 has only one lens barrel.
 こうした撮像装置1において、光学系2が取り込む可視光L11を絞り込むことは、収差によるボケを抑制して、可視撮像についての結像性能を高くする観点から有用である。一方、遠赤外撮像では、遠赤外光L12の波長が長いことから、光学系2において取り込む遠赤外光L12を絞り過ぎることで、回折現象により却って結像性能が低下する、所謂「小絞りボケ」の影響が、可視撮像よりも生じ易い。よって、遠赤外撮像では、小絞りボケによる結像性能の影響の観点から、遠赤外光L12の取り込みを絞り過ぎないことが有用である。 In such an imaging device 1, narrowing down the visible light L11 taken in by the optical system 2 is useful from the viewpoint of suppressing blurring due to aberration and improving imaging performance for visible imaging. On the other hand, in far-infrared imaging, the wavelength of the far-infrared light L12 is long. The effect of "aperture blur" is more likely to occur than in visible imaging. Therefore, in far-infrared imaging, it is useful not to narrow down the intake of the far-infrared light L12 too much, from the viewpoint of the influence of the small-aperture blur on imaging performance.
 また、可視撮像センサ11は比較的、小さい画素ピッチ及び多数の画素数を有し、センサ感度が高いことからも、可視光L11の絞り込みは、可視撮像についての結像性能の向上のために有用である。一方、遠赤外撮像センサ12は比較的、大きい画素ピッチ及び少数の画素数を有し、センサ感度が低い。このことから、遠赤外撮像については、光学系2が遠赤外光L12を取り込む光量を大きく確保することが有用である。 In addition, since the visible image sensor 11 has a relatively small pixel pitch and a large number of pixels and has high sensor sensitivity, narrowing down the visible light L11 is useful for improving the imaging performance of visible imaging. is. On the other hand, the far-infrared imaging sensor 12 has a relatively large pixel pitch and a small number of pixels, resulting in low sensor sensitivity. For this reason, for far-infrared imaging, it is useful to secure a large amount of light for the optical system 2 to take in the far-infrared light L12.
 従来の撮像装置では、可視光L11と遠赤光L12とに対して開口径が同一であり、可視域の収差ボケ及び遠赤外域の小絞りボケを抑制し難くて且つ各々の光量も最適化できないという問題点があった。そこで、本実施形態では、以上のように可視撮像に適した可視光L11の絞り込みと、遠赤外撮像に適した遠赤外光L12の取り込みとの両立を実現できる光学系2を提供する。光学系2の構成については後述する。 In the conventional imaging device, the aperture diameter is the same for the visible light L11 and the far-red light L12, and it is difficult to suppress aberration blur in the visible range and small-aperture blur in the far-infrared range, and the amount of each light is also optimized. I had a problem that I couldn't. Therefore, the present embodiment provides an optical system 2 capable of realizing both narrowing down of the visible light L11 suitable for visible imaging and capture of far-infrared light L12 suitable for far-infrared imaging, as described above. The configuration of the optical system 2 will be described later.
 可視撮像センサ11は、例えばCCD又はCMOSイメージセンサといった、可視域に受光感度を有するアモルファスシリコン等の材料で構成された各種の撮像素子である。可視撮像センサ11は、複数の画素が所定のピッチで配置された撮像面を有する。可視撮像センサ11の画素ピッチは、例えば3μm程度である。可視撮像センサ11は、可視光L11が光学系2を介して入射することにより撮像面に結像した画像を撮像して、可視域における撮像画像すなわち可視画像Im1を示す画像信号を生成する。可視撮像センサ11は、本実施形態における第1の撮像部の一例である。 The visible image sensor 11 is a variety of image sensors, such as CCD or CMOS image sensors, made of materials such as amorphous silicon having light sensitivity in the visible range. The visible image sensor 11 has an imaging surface in which a plurality of pixels are arranged at a predetermined pitch. The pixel pitch of the visible image sensor 11 is, for example, about 3 μm. The visible image sensor 11 captures an image formed on an imaging surface by the incidence of the visible light L11 through the optical system 2, and generates an image signal representing a captured image in the visible range, that is, a visible image Im1. The visible imaging sensor 11 is an example of the first imaging section in this embodiment.
 遠赤外撮像センサ12は、例えばボロメータ、サーモパイル又はSOIダイオードなど、遠赤外域に受光感度を有する撮像素子である。遠赤外撮像センサ12は、複数の画素が所定のピッチで配置された撮像面を有する。遠赤外撮像センサ12の画素ピッチは、例えば10μm~300μmである。遠赤外撮像センサ12は、遠赤外光L12が光学系2を介して入射することにより撮像面に結像した画像を撮像して、遠赤外域における撮像画像すなわち遠赤外画像Im2を示す画像信号を生成する。遠赤外撮像センサ12は、本実施形態における第2の撮像部の一例である。 The far-infrared imaging sensor 12 is an imaging element having light sensitivity in the far-infrared region, such as a bolometer, thermopile, or SOI diode. The far-infrared imaging sensor 12 has an imaging surface in which a plurality of pixels are arranged at a predetermined pitch. The pixel pitch of the far-infrared imaging sensor 12 is, for example, 10 μm to 300 μm. The far-infrared image sensor 12 captures an image formed on an imaging surface by the incidence of the far-infrared light L12 via the optical system 2, and presents a captured image in the far-infrared region, that is, a far-infrared image Im2. Generate an image signal. The far-infrared imaging sensor 12 is an example of a second imaging section in this embodiment.
 以上のように構成される撮像装置1によると、可視画像Im1と遠赤外画像Im2とが、光学系2を用いた同軸の撮像結果として出力される。よって、本実施形態の撮像装置1によると、例えば可視画像Im1と遠赤外画像Im2の間で被写体10の像ズレを抑制でき、可視撮像と遠赤外撮像とを組み合わせる各種用途において解析し易い画像出力を得ることができる。 According to the imaging device 1 configured as described above, the visible image Im1 and the far-infrared image Im2 are output as coaxial imaging results using the optical system 2. Therefore, according to the imaging apparatus 1 of the present embodiment, for example, image shift of the subject 10 between the visible image Im1 and the far-infrared image Im2 can be suppressed, and analysis is easy in various applications that combine visible imaging and far-infrared imaging. You can get the image output.
 本システム20において、制御部15は、撮像装置1から画像信号を受信して、受信した画像信号が示す各種画像Im1,Im2に基づき各種の画像解析を行う。制御部15は、例えば内部メモリに格納されたプログラムを実行することで種々の機能を実現するCPU又はMPU等を含む。制御部15は、所望の機能を実現するように設計された専用のハードウェア回路を含んでもよい。制御部15は、CPU、MPU、GPU、DSP、FPGA又はASIC等を含んでもよい。 In this system 20, the control unit 15 receives image signals from the imaging device 1 and performs various image analyzes based on various images Im1 and Im2 indicated by the received image signals. The control unit 15 includes, for example, a CPU or MPU that implements various functions by executing programs stored in an internal memory. Control unit 15 may include dedicated hardware circuitry designed to achieve the desired functionality. The control unit 15 may include a CPU, MPU, GPU, DSP, FPGA, ASIC, or the like.
 例えば、本システム20の制御部15は、撮像装置1における可視撮像センサ11によって撮像された可視画像Im1に基づき被写体10の個人認識を行い、遠赤外撮像センサ12によって撮像された遠赤外画像Im2に基づき被写体10の温度を認識する。又、制御部15は、例えば各画像Im1,Im2における被写体10の位置に基づいて、可視画像Im1からの認識結果と遠赤外画像Im2からの認識結果とを互いに関連付けて、解析結果の情報として管理する。本システム20によると、撮像装置1の光学系2によって可視画像Im1と遠赤外画像Im2の間で同じ被写体10の像ズレを抑制できることから、制御部15は、上記のような情報管理を容易に実行できる。 For example, the control unit 15 of the system 20 performs individual recognition of the subject 10 based on the visible image Im1 captured by the visible image sensor 11 in the imaging device 1, and the far-infrared image captured by the far-infrared image sensor 12. The temperature of the subject 10 is recognized based on Im2. Further, the control unit 15 associates the recognition result from the visible image Im1 and the recognition result from the far-infrared image Im2 based on, for example, the position of the subject 10 in each of the images Im1 and Im2, and outputs the result as information of the analysis result. to manage. According to this system 20, the optical system 2 of the imaging device 1 can suppress the image shift of the same subject 10 between the visible image Im1 and the far-infrared image Im2. can run to
2.光学系について
 本実施形態に係る光学系2の構成について、図2を用いて説明する。
2. Optical System The configuration of the optical system 2 according to this embodiment will be described with reference to FIG.
 図2は、実施形態1に係る光学系2の構成を示す図である。光学系2は、外部からの入射光L10が入射する光軸Z0を有するレンズ群30と、開口フィルタ4と、光分岐素子21と、遠赤外透過フィルタ22とを備える。 FIG. 2 is a diagram showing the configuration of the optical system 2 according to Embodiment 1. FIG. The optical system 2 includes a lens group 30 having an optical axis Z0 into which incident light L10 from the outside is incident, an aperture filter 4, a light branching element 21, and a far-infrared transmission filter 22.
 以下、光学系2におけるレンズ群30の光軸Z0の方向をZ方向とし、Z方向に直交する2方向をX,Y方向とする。又、Z方向において光学系2から外部に向いた物体側(或いは拡大側)を-Z側または前方とし、反対の像面側(或いは縮小側)を+Z側または後方とする。本実施形態の光学系2においては、光分岐素子21の主面が、XY平面から所定角度(例えば45°)だけ傾けて配置される。X方向は光分岐素子21の主面が傾いた方向に対応し、Y方向は光分岐素子21の主面が延在する方向に対応する。光分岐素子21は、+Z側に向かうにつれて+X側に位置するように傾けられる。 Hereinafter, the direction of the optical axis Z0 of the lens group 30 in the optical system 2 is defined as the Z direction, and two directions orthogonal to the Z direction are defined as the X and Y directions. In the Z direction, the object side (or enlargement side) facing outside from the optical system 2 is the -Z side or front, and the opposite image plane side (or reduction side) is the +Z side or rear. In the optical system 2 of this embodiment, the main surface of the light branching element 21 is arranged to be inclined by a predetermined angle (for example, 45°) from the XY plane. The X direction corresponds to the direction in which the main surface of the light branching element 21 is inclined, and the Y direction corresponds to the direction in which the main surface of the light branching element 21 extends. The light branching element 21 is tilted so as to be positioned on the +X side as it goes to the +Z side.
 光学系2は、+Z側すなわち後方において、可視光L11が光学系2により結像する結像位置P1と、遠赤外光L12が光学系2により結像する結像位置P2とを有する。可視撮像センサ11の撮像面は結像位置P1に配置され、遠赤外撮像センサ12の撮像面は結像位置P2に配置される。光学系2において、光分岐素子21は、レンズ群30と各撮像センサ11,12との間に設けられる。遠赤外透過フィルタ22は、光分岐素子21と遠赤外撮像センサ12との間に設けられる。 The optical system 2 has an imaging position P1 where the visible light L11 is imaged by the optical system 2 and an imaging position P2 where the far infrared light L12 is imaged by the optical system 2 on the +Z side, ie, the rear. The imaging plane of the visible image sensor 11 is arranged at the imaging position P1, and the imaging plane of the far-infrared imaging sensor 12 is arranged at the imaging position P2. In the optical system 2 , the light branching element 21 is provided between the lens group 30 and the imaging sensors 11 and 12 . The far-infrared transmission filter 22 is provided between the light branching element 21 and the far-infrared imaging sensor 12 .
 光学系2におけるレンズ群30は、可視域と遠赤外域との双方において光透過性を有するレンズ材料で構成される。レンズ材料の屈折率の波長依存性より、レンズ群30の焦点距離は、結像の対象とする光の波長に応じて変動し得る。レンズ群30は、外部からの入射光L10に、焦点距離に応じた屈折力を作用させて、結像光学系として機能する。レンズ群30を透過後の入射光L10は、可視光L11及び遠赤外光L12を含み、光分岐素子21に入射する。可視光L11及び遠赤外光L12は、それぞれ本実施形態における第1及び第2の光の一例である。 The lens group 30 in the optical system 2 is made of a lens material that has optical transparency in both the visible range and the far infrared range. Due to the wavelength dependence of the refractive index of lens materials, the focal length of lens group 30 can vary according to the wavelength of the light to be imaged. The lens group 30 functions as an imaging optical system by applying a refractive power according to the focal length to the incident light L10 from the outside. The incident light L10 after passing through the lens group 30 includes visible light L11 and far-infrared light L12, and enters the light branching element 21 . The visible light L11 and the far-infrared light L12 are examples of first and second light, respectively, in this embodiment.
 実施形態1の光学系2において、レンズ群30は、3枚のレンズ素子31,32,33で構成される。レンズ群30においては、前方から順番に第1レンズ素子31と第2レンズ素子32と第3レンズ素子33とが、光軸Z0に沿って配置される。 In the optical system 2 of Embodiment 1, the lens group 30 is composed of three lens elements 31 , 32 and 33 . In the lens group 30, a first lens element 31, a second lens element 32, and a third lens element 33 are arranged in order from the front along the optical axis Z0.
 実施形態1では、レンズ材料の一例として、第1及び第3レンズ素子31,33がカルコハライドガラス(CH)で構成され、第2レンズ素子32が硫化亜鉛(ZnS)で構成される(図9参照)。こうした各種レンズ材料のデータを図3に例示する。レンズ群30におけるレンズ材料は上記に限らず、可視域において可視撮像に用いる可視光L11の波長帯と、遠赤外域において遠赤外撮像に用いる遠赤外光L12の波長帯とを透過する各種材料であってもよい。例えば、レンズ材料が透過する波長帯は0.4μm~12μmであってもよい。 In Embodiment 1, as an example of the lens material, the first and third lens elements 31 and 33 are made of chalcohalide glass (CH), and the second lens element 32 is made of zinc sulfide (ZnS) (FIG. 9). reference). Data for these various lens materials are exemplified in FIG. The lens material in the lens group 30 is not limited to the above. It can be material. For example, the wavelength band transmitted by the lens material may be from 0.4 μm to 12 μm.
 開口フィルタ4は、本実施形態における開口絞りの一例であり、入射光L10における可視光L11の光量及び遠赤外光L12の光量をそれぞれ制限する。本実施形態において、開口フィルタ4は、可視光L11の光量を比較的小さくする開口径と、遠赤外光L12の光量を比較的大きくする開口径とを両立するための構成を備える。開口フィルタ4の構成については後述する。 The aperture filter 4 is an example of an aperture stop in the present embodiment, and limits the amount of visible light L11 and the amount of far-infrared light L12 in the incident light L10. In the present embodiment, the aperture filter 4 has a configuration for achieving both an aperture diameter that relatively reduces the amount of visible light L11 and an aperture diameter that relatively increases the amount of far-infrared light L12. The configuration of the aperture filter 4 will be described later.
 開口フィルタ4は、実施形態1では第2及び第3レンズ素子32,33の間に配置される。開口フィルタ4は、光学系2におけるレンズ群30のどの位置に配置されてもよい。以下では、光学系2のレンズ群30全体のうちの開口フィルタ4よりも前方のレンズ素子31,32からなるレンズ群を前群30aといい、後方のレンズ素子33からなるレンズ群を後群30bという場合がある。各種レンズ群は、1つのレンズ素子で構成されてもよい。 The aperture filter 4 is arranged between the second and third lens elements 32 and 33 in the first embodiment. The aperture filter 4 may be arranged at any position in the lens group 30 in the optical system 2 . Hereinafter, of the entire lens group 30 of the optical system 2, the lens group consisting of the lens elements 31 and 32 in front of the aperture filter 4 will be referred to as a front group 30a, and the lens group consisting of the lens element 33 behind the aperture filter 4 will be referred to as a rear group 30b. There is a case. Each lens group may consist of one lens element.
 光分岐素子21は、例えば後群30bの後方に配置され、可視光L11の光路と遠赤外光L12の光路とを分岐する。光分岐素子21は、例えば図2に示すように、-Z側からの入射光L10において、可視光L11を透過して+Z側に出射する一方、遠赤外光L12を反射して+X側に出射するように構成される。例えば、光分岐素子21は、光を選択的に透過する特定の波長帯(即ち透過帯)を有し、透過帯以外の光を反射する光学特性のバンドパスフィルタにおいて、予め可視光L11の波長帯を透過帯に設定して構成される。 The light branching element 21 is arranged, for example, behind the rear group 30b, and branches the optical path of the visible light L11 and the optical path of the far-infrared light L12. For example, as shown in FIG. 2, the light branching element 21 transmits the visible light L11 in the incident light L10 from the −Z side and emits it to the +Z side, while reflecting the far infrared light L12 to the +X side. configured to emit. For example, the light branching element 21 has a specific wavelength band (that is, a transmission band) that selectively transmits light, and is a band-pass filter having an optical characteristic that reflects light outside the transmission band. It is configured by setting the band to the transmission band.
 遠赤外透過フィルタ22は、例えば図2の構成例において光分岐素子21と遠赤外撮像センサ12との間に配置され、遠赤外光L12を選択的に透過する。遠赤外透過フィルタ22は、例えば予め遠赤外光L12の波長帯を透過帯に設定したバンドパスフィルタなど、各種のフィルタ素子で構成される。 The far-infrared transmission filter 22 is arranged, for example, between the light branching element 21 and the far-infrared imaging sensor 12 in the configuration example of FIG. 2, and selectively transmits the far-infrared light L12. The far-infrared transmission filter 22 is composed of various filter elements such as a bandpass filter whose transmission band is set in advance to the wavelength band of the far-infrared light L12.
 本実施形態の光学系2は、光分岐素子21と各撮像センサ11,12との間には、例えば屈折力を有するレンズ素子を設けないように構成される。この構成により、光学系2の全長又は部品点数等の観点から小型化ができ、光分岐後のレンズの調心工程が減り低コスト化ができる。本実施形態では、こうした小型構成において可視撮像と遠赤外撮像とを両立するために、光分岐素子21よりも-Z側(即ち前方)のレンズ群30が、入射光L10に含まれる可視光L11と遠赤外光L12との各々の結像光学系を構成する。換言すると、各結像位置P1,P2がレンズ群30の焦点距離に対応して設定される。 The optical system 2 of this embodiment is configured so that, for example, no lens element having refractive power is provided between the light branching element 21 and each of the imaging sensors 11 and 12 . With this configuration, it is possible to reduce the size of the optical system 2 from the viewpoint of the overall length or the number of parts, etc., and the cost can be reduced by reducing the alignment process of the lens after the light splitting. In the present embodiment, in order to achieve both visible imaging and far-infrared imaging in such a compact configuration, the lens group 30 on the -Z side (that is, in front) of the light branching element 21 is arranged so that the visible light included in the incident light L10 is An imaging optical system for each of L11 and far-infrared light L12 is configured. In other words, each imaging position P1, P2 is set corresponding to the focal length of the lens group 30. FIG.
2-1.開口フィルタについて
 本実施形態の光学系2における開口フィルタ4の構成について、図4を用いて説明する。
2-1. Aperture Filter The configuration of the aperture filter 4 in the optical system 2 of this embodiment will be described with reference to FIG.
 図4は、光学系2における開口フィルタ4の構成を示す、Z方向から見た正面図である。開口フィルタ4には、例えば図4に示すように、光軸Z0の周囲を囲むように開口部40が設けられる。開口フィルタ4は、開口部40の周囲を囲むフィルタ部41と、フィルタ部41の周囲を囲む遮光部42とを備える。開口フィルタ4において、開口部40、フィルタ部41及び遮光部42は、例えば同心円状に形成される。 FIG. 4 is a front view of the configuration of the aperture filter 4 in the optical system 2, viewed from the Z direction. For example, as shown in FIG. 4, the aperture filter 4 is provided with an aperture 40 surrounding the optical axis Z0. The aperture filter 4 includes a filter portion 41 surrounding the aperture portion 40 and a light blocking portion 42 surrounding the filter portion 41 . In the aperture filter 4, the aperture portion 40, the filter portion 41 and the light shielding portion 42 are formed concentrically, for example.
 開口部40は、開口フィルタ4において入射光L1における可視光L11及び遠赤外光L12の双方を通過させるための領域を規定する。開口部40は、例えば光軸Z0を中心として円形状に形成される。開口部40の開口径Dapは、可視光L11の絞り値(F値)を規定する。本実施形態において、開口部40は、フィルタ部41において中空穴を設けて構成される。これにより、光学系2において、可視光L11と遠赤外光L12とを透過させる機能を、特別な光学部材を用いず容易に実現できる。 The aperture 40 defines an area in the aperture filter 4 for passing both the visible light L11 and the far infrared light L12 in the incident light L1. The opening 40 is formed, for example, in a circular shape around the optical axis Z0. The aperture diameter Dap of the aperture 40 defines the aperture value (F number) of the visible light L11. In this embodiment, the opening 40 is configured by providing a hollow hole in the filter portion 41 . Thereby, in the optical system 2, the function of transmitting the visible light L11 and the far-infrared light L12 can be easily realized without using a special optical member.
 フィルタ部41は、可視光L11を透過させずに遮断して、遠赤外光L12を透過する光学特性を有する各種の光学材料で構成される。例えば、シリコン、ゲルマニウム及びカルコゲナイドガラスなど各種の材料を採用できる。フィルタ部41を各種材料で構成した実施例1~3については後述する。フィルタ部41は、本実施形態における光学フィルタの一例である。以下、光軸Z0の方向におけるフィルタ部41の厚みを以下「フィルタ厚み」という。 The filter section 41 is made of various optical materials having optical properties of blocking the visible light L11 and transmitting the far-infrared light L12. For example, various materials such as silicon, germanium and chalcogenide glass can be employed. Examples 1 to 3 in which the filter portion 41 is made of various materials will be described later. The filter section 41 is an example of an optical filter in this embodiment. Hereinafter, the thickness of the filter portion 41 in the direction of the optical axis Z0 will be referred to as "filter thickness".
 遮光部42は、可視光L11及び遠赤外光L12の双方を遮断する各種材料で構成され、例えば各種の金属部材で構成される。遮光部42は、例えば開口部40と同心円状となる円環状に形成される。遮光部42の内径は、フィルタ部41の外径すなわち有効径Dに対応する。この有効径Dは、遠赤外光L12の絞り値を規定する。遮光部42は、円環状に限らず、例えば回転対称な多角形状に形成されてもよい。遮光部42は、羽根絞りなどの構造で絞り値を可変に構成されてもよい。 The light blocking part 42 is made of various materials that block both the visible light L11 and the far infrared light L12, and is made of various metal members, for example. The light shielding portion 42 is formed, for example, in an annular shape that is concentric with the opening portion 40 . The inner diameter of the light shielding portion 42 corresponds to the outer diameter of the filter portion 41, that is, the effective diameter D. As shown in FIG. This effective diameter D defines the aperture value of the far-infrared light L12. The light shielding portion 42 is not limited to an annular shape, and may be formed, for example, in a rotationally symmetrical polygonal shape. The light shielding part 42 may be configured to have a variable aperture value with a structure such as a blade aperture.
 以上のように構成される開口フィルタ4によると、開口部40の開口径Dapにより可視光L11を絞ることで収差ボケを抑制し、且つ、開口径Dapよりも大きいフィルタ部41の有効径Dにより遠赤外光L12の小絞りボケを抑制しつつ光量を確保できる。又、例えば開口フィルタ4の各部40~42が同心円状であることで、可視光L11と遠赤外光L12のそれぞれに関して光学系2の偏心を抑制できる。 According to the aperture filter 4 configured as described above, the visible light L11 is narrowed down by the aperture diameter Dap of the aperture 40, thereby suppressing aberration blurring, and the effective diameter D of the filter section 41, which is larger than the aperture diameter Dap, The amount of light can be ensured while suppressing the small-aperture blur of the far-infrared light L12. In addition, for example, since the respective portions 40 to 42 of the aperture filter 4 are concentric, the eccentricity of the optical system 2 can be suppressed with respect to each of the visible light L11 and the far-infrared light L12.
2-2.最適化条件について
 本願発明者の鋭意研究によると、上記のような開口フィルタ4の構成を、可視撮像と遠赤外撮像とを両立する撮像装置1に採用する上で、遠赤外撮像において光学性能の低下を招来し得る新たな課題が見出された。こうした新たな課題を解決するべく、本願発明者は鋭意研究を重ね、開口フィルタ4のフィルタ厚みを最適化した光学系2を考案するに到った。こうした光学系2における開口フィルタ4の最適化に関する各種条件について、以下説明する。
2-2. Regarding optimization conditions According to the intensive research of the inventors of the present application, in adopting the configuration of the aperture filter 4 as described above in the imaging device 1 capable of both visible imaging and far-infrared imaging, optical A new problem has been found that can lead to a decrease in performance. In order to solve such a new problem, the inventors of the present application conducted extensive research and came up with the optical system 2 in which the filter thickness of the aperture filter 4 is optimized. Various conditions for optimizing the aperture filter 4 in the optical system 2 will be described below.
 本実施形態の光学系2において、開口フィルタ4は、次式(1a),(1b)によって表される条件(1)を満たす。
t<2×(4npf)/{(n-1)D}  …(1a)
0.1<t                …(1b)
In the optical system 2 of this embodiment, the aperture filter 4 satisfies the condition (1) represented by the following equations (1a) and (1b).
t<2×(4npf)/{(n−1)D} (1a)
0.1<t (1b)
 上式(1a),(1b)において、tは、光軸Z0の方向における開口フィルタ4のフィルタ部41のフィルタ厚みであり、例えばmm単位である。nは、遠赤外域におけるフィルタ部41のフィルタ部41の屈折率である。pは、遠赤外撮像センサ12の画素ピッチ(或いは遠赤外光L12の結像における画素ピッチ)である。fは、光学系2における遠赤外光L12の焦点距離である。Dは開口フィルタ4におけるフィルタ部41の有効径である。  In the above formulas (1a) and (1b), t is the filter thickness of the filter portion 41 of the aperture filter 4 in the direction of the optical axis Z0, for example in units of mm. n is the refractive index of the filter portion 41 of the filter portion 41 in the far infrared region. p is the pixel pitch of the far-infrared imaging sensor 12 (or the pixel pitch in the imaging of the far-infrared light L12). f is the focal length of the far-infrared light L12 in the optical system 2; D is the effective diameter of the filter portion 41 in the aperture filter 4 .
 条件(1)は、撮像装置1の光学系2において、遠赤外光L12が、開口フィルタ4のフィルタ部41と開口部40とをそれぞれ通る際に生じ得る光学性能の低下を回避するための条件である。光学系2における条件(1)について、図5を用いて説明する。 Condition (1) is for avoiding deterioration in optical performance that may occur when the far-infrared light L12 passes through the filter portion 41 and the aperture portion 40 of the aperture filter 4 in the optical system 2 of the imaging device 1. It is a condition. Condition (1) in the optical system 2 will be described with reference to FIG.
 図5では、光学系2に入射した遠赤外光L12の光束において、開口フィルタ4のフィルタ部41を通る遠赤外光線L12aと、フィルタ部41を通らずに開口部40を通る遠赤外光線L12bとを例示している。 In FIG. 5, the far-infrared rays L12a that pass through the filter portion 41 of the aperture filter 4 and the far-infrared rays L12a that pass through the aperture portion 40 without passing through the filter portion 41 ray L12b are illustrated.
 フィルタ部41の有無によると、フィルタ部41における光の屈折の影響により焦点位置が変化する。このため、開口部40において中空の開口フィルタ4では、例えば図5に示すように、フィルタ部41を通る遠赤外光線L12aの焦点と、フィルタ部41を通らない遠赤外光線L12bの焦点とが互いにずれることとなる。このことから、光学系2の光学性能の低下を招来し得るという新たな問題点が見出された。この問題点に対して、本実施形態の光学系2は、条件(1)の上限を下回ることにより、光学系2の光学性能の低下を抑制できる。 Depending on the presence or absence of the filter section 41 , the focal position changes due to the influence of light refraction in the filter section 41 . For this reason, in the aperture filter 4 which is hollow at the aperture 40, as shown in FIG. are offset from each other. As a result, a new problem was found that the optical performance of the optical system 2 could be lowered. With respect to this problem, the optical system 2 of this embodiment can suppress deterioration of the optical performance of the optical system 2 by falling below the upper limit of the condition (1).
 まず、光学系2の開口フィルタ4において、フィルタ部41を通過した遠赤外光線L12aの焦点位置と、開口部40内(即ち空気)を通過した遠赤外光線L12bの焦点位置との間のずれ量Δtは、次式(11)のように、それぞれの遠赤外光線L12a,L12b間の空気換算長の差分で表される。
Δt=t(1-1/n)          …(11)
First, in the aperture filter 4 of the optical system 2, there is The amount of deviation Δt is represented by the difference in air-equivalent length between the far-infrared rays L12a and L12b, as in the following equation (11).
Δt=t(1−1/n) (11)
 こうした遠赤外光線L12a,L12b間のずれ量Δtが、撮像装置1において、焦点深度dの範囲内に収まれば、光学系2の光学性能を実質的に維持することができる。焦点深度dは、撮像装置1の遠赤外撮像センサ12における許容錯乱円径εを用いて、次式(12)のように表される。
d=2εf/D=4pf/D        …(12)
If the amount of deviation Δt between the far-infrared rays L12a and L12b is within the range of the depth of focus d in the imaging device 1, the optical performance of the optical system 2 can be substantially maintained. The focal depth d is represented by the following equation (12) using the permissible circle of confusion diameter ε in the far-infrared imaging sensor 12 of the imaging device 1 .
d=2εf/D=4pf/D (12)
 以上のような理論的な観点より、本実施形態の光学系2は、次式(1c)を満たしてもよい。
t<(4npf)/{(n-1)D}    …(1c)
From the above theoretical viewpoint, the optical system 2 of this embodiment may satisfy the following formula (1c).
t<(4npf)/{(n−1)D} (1c)
 上式(1c)を満たすことにより、光学系2の光学性能を良好に確保することが理想的に行える。一方、本実施形態の光学系2は、上式(1c)を必ずしも満たさなくてもよく、上式(1a)のように条件(1)の上限を下回る程度であってもよい。この場合であっても、実際的には光学系2の光学性能の低下抑制を充分に行える点は、本願発明者による数値シミュレーションによって確認された。この点については後述する。以下、上式(1c)の右辺を因子Qという場合がある。 By satisfying the above formula (1c), it is possible to ideally ensure good optical performance of the optical system 2 . On the other hand, the optical system 2 of the present embodiment does not necessarily have to satisfy the above formula (1c), and may fall below the upper limit of the condition (1) as in the above formula (1a). Numerical simulations by the inventors of the present application have confirmed that, even in this case, it is possible to sufficiently suppress deterioration in the optical performance of the optical system 2 in practice. This point will be described later. Hereinafter, the right side of the above equation (1c) may be referred to as a factor Q.
 条件(1)について、因子Qに含まれる画素ピッチpは、必ずしも遠赤外撮像センサ12がなくても、遠赤外光L12が結像する光学像を取得するために利用可能な種々の画素間隔に設定されてもよい。例えば、画素ピッチpは、遠赤外光L12を結像する画素の物理限界などの観点から、遠赤外光L12の代表的な波長程度であってもよく、例えば10μm~12μmであってもよい。また、画素ピッチpは、種々の遠赤外撮像センサ12を利用可能とする観点から10μm以上300μm以下であってもよい。 Regarding the condition (1), the pixel pitch p included in the factor Q is various pixels that can be used to obtain an optical image formed by the far-infrared light L12 without necessarily having the far-infrared imaging sensor 12. may be set at intervals. For example, the pixel pitch p may be about a representative wavelength of the far-infrared light L12, for example, 10 μm to 12 μm, from the viewpoint of the physical limit of pixels that form an image of the far-infrared light L12. good. Also, the pixel pitch p may be 10 μm or more and 300 μm or less from the viewpoint of making it possible to use various far-infrared imaging sensors 12 .
 又、上式(1b)による条件(1)の下限は、フィルタ厚みtが薄過ぎることによって、遠赤外光線L12a,L12b間の焦点のずれ量Δtとは別の観点から遠赤外撮像の光学性能を低下し得る問題点を解消する。即ち、フィルタ厚みtが極端に薄い場合、フィルタ部41を透過した遠赤外光L12と、フィルタ部41内部で反射した遠赤外光L12(例えば+Z側面で反射してから-Z側面で反射した光)とが干渉し、輝度ムラを発生させる影響が考えられる。 Further, the lower limit of the condition (1) based on the above formula (1b) is that the filter thickness t is too thin, and the far-infrared imaging is affected from a different point of view from the defocus amount Δt between the far-infrared rays L12a and L12b. To solve a problem that can degrade optical performance. That is, when the filter thickness t is extremely thin, the far-infrared light L12 transmitted through the filter portion 41 and the far-infrared light L12 reflected inside the filter portion 41 (for example, reflected on the +Z side surface and then reflected on the -Z side surface This is thought to be due to the interference with the light emitted from the light, which causes unevenness in luminance.
 これに対して、フィルタ厚みtが、遠赤外光L12の平均的な波長(例えば10μm)の10倍以上であれば、その影響が無視できる。よって、本実施形態の光学系2は、条件(1)の下限を上回ることで、こうした干渉による影響の問題点を解消できる。 On the other hand, if the filter thickness t is 10 times or more the average wavelength (for example, 10 μm) of the far-infrared light L12, the effect can be ignored. Therefore, the optical system 2 of this embodiment can solve the problem of the influence of such interference by exceeding the lower limit of the condition (1).
 また、本実施形態の光学系2は、次式(2)で表される条件を満たしてもよい。
0.2×|fa|>f           …(2)
Further, the optical system 2 of this embodiment may satisfy the condition represented by the following formula (2).
0.2×|fa|>f (2)
 上式(2)において、fは、光学系2全系における遠赤外光L12の焦点距離である。faは、光学系2における前群、すなわち開口フィルタ4よりも物体側(-Z側)のレンズ群において合成した、遠赤外光L12の合成焦点距離である。 In the above formula (2), f is the focal length of the far-infrared light L12 in the entire optical system 2. fa is the synthetic focal length of the far-infrared light L12 synthesized in the front group in the optical system 2, that is, in the lens group on the object side (-Z side) of the aperture filter 4;
 上式(2)は、光学系2全体の焦点距離fと比較して開口フィルタ4の物体側の合成焦点距離faを大きくすることにより、上述した遠赤外光線L12a,L12b間のずれ量Δtの発生を抑制する条件である。 The above equation (2) is obtained by increasing the composite focal length fa on the object side of the aperture filter 4 compared to the focal length f of the entire optical system 2, so that the shift amount Δt between the far infrared rays L12a and L12b described above is is a condition for suppressing the occurrence of
 即ち、上式(2)を満たす合成焦点距離faによると、物体側から光学系2に入射した遠赤外光L12が開口フィルタ4に入射する光束における各光線方向を、互いにZ方向に平行に近付けることができる。こうした略平行な遠赤外光L12の光束によると、開口フィルタ4において、フィルタ部41により屈折した遠赤外光線L12aと、開口部40により直進した遠赤外光線L12bとの間の角度差を抑制できる。これにより、両光線L12a,L12bの間の焦点のずれ量Δtを低減することができる。 That is, according to the combined focal length fa that satisfies the above formula (2), the far-infrared light L12 incident on the optical system 2 from the object side causes the light beam directions of the light beams incident on the aperture filter 4 to be parallel to each other in the Z direction. can get closer. According to such a light beam of substantially parallel far-infrared light L12, in the aperture filter 4, the angle difference between the far-infrared light L12a refracted by the filter portion 41 and the far-infrared light L12b traveling straight through the aperture 40 is can be suppressed. Thereby, the defocus amount Δt between the two light beams L12a and L12b can be reduced.
 こうした効果を更に顕著に得る観点から、本実施形態の光学系2は、さらに次式(2a)を満たしてもよい。
0.05×|fa|>f          …(2a)
From the viewpoint of obtaining such effects more remarkably, the optical system 2 of this embodiment may further satisfy the following formula (2a).
0.05×|fa|>f (2a)
 また、本実施形態の光学系2は、次式(3)で表される条件を満たしてもよい。
D≦f/2                …(3)
Further, the optical system 2 of this embodiment may satisfy the condition represented by the following formula (3).
D≤f/2 (3)
 すなわち、上式(3)のように本実施形態の光学系2において、遠赤外光L12に関するF値は2以下であってもよい。これにより、遠赤外光L12を光学系2に取り込み易くできる。 That is, in the optical system 2 of the present embodiment, the F value for the far-infrared light L12 may be 2 or less as in the above formula (3). Thereby, the far-infrared light L12 can be easily taken into the optical system 2. FIG.
 また、本実施形態の光学系2は、次式(4)で表される条件を満たしてもよい。
Dap≧fvis/4           …(4)
Moreover, the optical system 2 of this embodiment may satisfy the condition represented by the following formula (4).
Dap≧fvis/4 (4)
 上式(4)において、Dapは、開口フィルタ4における開口部40の開口径である(図4参照)。fvisは、光学系2における可視光L11の焦点距離である。上式(4)のように本実施形態の光学系2において、可視光L11に関するF値は4以上であってもよい。これにより、可視光L11を絞って光学系2の可視撮像の結像性能を良くし易い。 In the above formula (4), Dap is the aperture diameter of the aperture 40 in the aperture filter 4 (see FIG. 4). fvis is the focal length of the visible light L11 in the optical system 2; In the optical system 2 of the present embodiment, the F value for the visible light L11 may be 4 or more as in the above formula (4). As a result, it is easy to narrow down the visible light L11 and improve the imaging performance of the optical system 2 for visible imaging.
2-3.光学性能のシミュレーション
 以上のような条件(1)による光学性能の効果が確認された光学系2の数値シミュレーションについて、図6~図8を用いて説明する。
2-3. Simulation of Optical Performance A numerical simulation of the optical system 2 in which the effect of the optical performance under the condition (1) as described above has been confirmed will be described with reference to FIGS. 6 to 8. FIG.
 図6は、実施形態1の実施例1における光学系2のシミュレーション結果を示すグラフである。図6において、横軸は、光学系2における開口フィルタ4のフィルタ厚みtを示し、縦軸はMTF(変調伝達関数)を示す。フィルタ厚みtの単位はmmである。 FIG. 6 is a graph showing simulation results of the optical system 2 in Example 1 of Embodiment 1. FIG. In FIG. 6, the horizontal axis indicates the filter thickness t of the aperture filter 4 in the optical system 2, and the vertical axis indicates the MTF (modulation transfer function). The unit of filter thickness t is mm.
 図6の実施例1では、光学系2の開口フィルタ4におけるフィルタ部41の光学材料にシリコンを採用した。本シミュレーションにおいて、MTFは、像面における軸上で算出し、空間周波数10lp/mmを用いた(lp:line pairs)。遠赤外撮像センサ12の画素ピッチpとしては50μmを想定し、MTFの算出にはナイキスト周波数を考慮した。又、本シミュレーションでは、実施形態1における光学系2の構成において因子Q(=(4npf)/{(n-1)D})を算出して、フィルタ厚みtと比較した。 In Example 1 of FIG. 6, silicon is used as the optical material of the filter portion 41 in the aperture filter 4 of the optical system 2 . In this simulation, the MTF was calculated on-axis in the image plane, using a spatial frequency of 10 lp/mm (lp: line pairs). The pixel pitch p of the far-infrared imaging sensor 12 was assumed to be 50 μm, and the Nyquist frequency was taken into consideration in calculating the MTF. In this simulation, the factor Q (=(4npf)/{(n-1)D}) was calculated in the configuration of the optical system 2 in Embodiment 1 and compared with the filter thickness t.
 本シミュレーションによると、図6に示すように、フィルタ厚みtが、上述した理論的な式(1c)の上限Q近傍では、MTFが一定であり、光学性能を良好に維持できている。又、MTFの低下は、条件(1)の上限2Qを上回ってから生じている(式(1a)参照)。換言すると、フィルタ厚みtが上式(1c)の上限Qを上回っても、条件(1)の上限2Qに到るまで、光学系2の光学性能を維持できることが確認できた。 According to this simulation, as shown in FIG. 6, when the filter thickness t is near the upper limit Q of the theoretical formula (1c) described above, the MTF is constant and good optical performance can be maintained. Also, the decrease in MTF occurs after the upper limit 2Q of condition (1) is exceeded (see formula (1a)). In other words, it was confirmed that the optical performance of the optical system 2 can be maintained up to the upper limit 2Q of the condition (1) even if the filter thickness t exceeds the upper limit Q of the above formula (1c).
 図7は、実施形態1の実施例2における光学系2のシミュレーション結果を示すグラフである。図8は、実施形態1の実施例3における光学系2のシミュレーション結果を示すグラフである。 FIG. 7 is a graph showing simulation results of the optical system 2 in Example 2 of Embodiment 1. FIG. FIG. 8 is a graph showing simulation results of the optical system 2 in Example 3 of the first embodiment.
 実施例2では、フィルタ部41の光学材料として、実施例1のシリコンの代わりに、ゲルマニウムを採用した。又、実施例3では、フィルタ部41の光学材料として、カルコゲナイドガラスを採用した(具体的には、湖北新華光信息材料有限公司社製のIRG203)。図7,8の各グラフは、それぞれ実施例2,3について、実施例1の図6と同様にシミュレーション結果を示す。 In Example 2, germanium was adopted as the optical material of the filter portion 41 instead of silicon in Example 1. In Example 3, chalcogenide glass was used as the optical material of the filter section 41 (specifically, IRG203 manufactured by Hubei Xinhua Optical Information Materials Co., Ltd.). Graphs in FIGS. 7 and 8 show simulation results for Examples 2 and 3, respectively, similarly to FIG. 6 for Example 1. FIG.
 本実施形態の光学系2においては、図7,8に例示するように、フィルタ部41の光学材料を変えた場合であっても、図6と同様の傾向が確認された。すなわち、フィルタ厚みtが条件(1)の上限を下回ることで、光学系2の光学性能の低下を抑制できることが確認された。又、上式(1c)の上限を下回ることで、光学系2の光学性能を安定的に確保できることが確認できた。 In the optical system 2 of the present embodiment, as illustrated in FIGS. 7 and 8, the same tendency as in FIG. 6 was confirmed even when the optical material of the filter portion 41 was changed. That is, it was confirmed that the deterioration of the optical performance of the optical system 2 can be suppressed when the filter thickness t is less than the upper limit of the condition (1). Moreover, it was confirmed that the optical performance of the optical system 2 can be stably ensured by falling below the upper limit of the above formula (1c).
2-2.数値実施例
 以上のような実施形態1の光学系2の実施例1~3を示す数値実施例について、図9,10を用いて説明する。
2-2. Numerical Examples Numerical examples showing Examples 1 to 3 of the optical system 2 of Embodiment 1 as described above will be described with reference to FIGS.
 図9は、実施形態1における光学系2の数値実施例を示す図表である。図9の図表は、本実施形態における光学系2の面データD11と、非球面データD12と、各種データD13とを含む。又、図9では面データD11の上部に、本実施形態の光学系2の焦点距離f、全画角2ω、及び開口径Dを例示する。 FIG. 9 is a chart showing a numerical example of the optical system 2 in Embodiment 1. FIG. The chart in FIG. 9 includes surface data D11, aspheric surface data D12, and various data D13 of the optical system 2 in this embodiment. In addition, in FIG. 9, the focal length f, the total angle of view 2ω, and the aperture diameter D of the optical system 2 of this embodiment are illustrated above the surface data D11.
 面データD11は、物体側から光学系2において順番に並ぶ各面S1~S14について、各々の面の形状と、曲率半径と、面間隔と、材質とを示し、備考欄を付している。例えば、面番号S2は第1レンズ素子31の物体側のレンズ面であり、非球面形状を有する。なお、面番号S1は、無限遠に位置する被写体10等の物体を表す(備考欄参照)。又、図9の面データD11では、面番号S10が光分岐素子21の物体側の面であり、この面以降は、可視光L11の光路が通る面と遠赤外光L12の光路が通る面とをそれぞれ示す(図2参照)。 The surface data D11 indicates the shape, radius of curvature, surface interval, and material of each surface S1 to S14 arranged in order from the object side in the optical system 2, and includes a remark column. For example, the surface number S2 is the object-side lens surface of the first lens element 31 and has an aspherical shape. Note that the surface number S1 represents an object such as the subject 10 positioned at infinity (see remarks). In the surface data D11 of FIG. 9, the surface number S10 is the surface of the light branching element 21 on the object side. and respectively (see FIG. 2).
 非球面データD12は、面データD11における非球面形状の各面S2,S3,S8,S9について、非球面の形状を規定する次式(20)の各種係数を示す。 The aspherical surface data D12 indicates various coefficients of the following equation (20) that defines the shape of the aspherical surface for each of the aspherical surfaces S2, S3, S8, and S9 in the surface data D11.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上式(20)において、hは径方向の高さであり、kはコーニック定数であり、Anはn次の非球面係数である。上式(20)の右辺第2項において、例えばnは4以上20以下の偶数であり、各nについての総和が取られる。上式(20)によると、対象とする面上の径方向の高さhにおけるサグ量zが、回転対称に規定される。 In the above equation (20), h is the height in the radial direction, k is the conic constant, and An is the n-th order aspheric coefficient. In the second term on the right side of the above equation (20), n is an even number of 4 or more and 20 or less, and the sum of each n is taken. According to the above formula (20), the sag amount z at the height h in the radial direction on the target surface is defined rotationally symmetrically.
 各種データD13は、光学系2における開口フィルタ4の可視光L11についてのFナンバーと、遠赤外光L12についてのF値と、全画角と、前群による合成焦点距離faの絶対値と、光学系2全体の焦点距離fとを示す。又、本実施例の光学系2は、可視光L11の焦点距離fvis=8.8mmを有する。 The various data D13 include the F-number for the visible light L11 of the aperture filter 4 in the optical system 2, the F-number for the far-infrared light L12, the total angle of view, the absolute value of the combined focal length fa by the front group, The focal length f of the entire optical system 2 is shown. Also, the optical system 2 of this embodiment has a focal length fvis=8.8 mm for the visible light L11.
 図10は、実施形態1の実施例1~3における光学系2の数値実施例を示す図表である。図10の図表は、実施例1~3における種々のフィルタ厚みtに関する面間隔データD14と、因子データD15とを示す。 FIG. 10 is a chart showing numerical examples of the optical system 2 in Examples 1 to 3 of the first embodiment. The chart in FIG. 10 shows interplanar spacing data D14 and factor data D15 for various filter thicknesses t in Examples 1-3.
 図10の面間隔データD14に示すように、本実施形態では、上述した数値シミュレーションにおいて、フィルタ厚みtを0~1.6mmの範囲内で変化させた。これに合わせて、開口フィルタ4前後の面間隔dA,dB,dCと、光分岐素子21及び遠赤外透過フィルタ22間の面間隔dDとを変化させた。実施例1,2,3において、フィルタ厚みtの変化に対する面間隔dDの変化は、別々に設定した。 As shown in the surface distance data D14 in FIG. 10, in the numerical simulation described above, the filter thickness t was varied within the range of 0 to 1.6 mm in this embodiment. In accordance with this, the surface distances dA, dB, dC before and after the aperture filter 4 and the surface distance dD between the light branching element 21 and the far-infrared transmission filter 22 were changed. In Examples 1, 2, and 3, changes in the interplanar spacing dD with respect to changes in the filter thickness t were set separately.
 又、因子データD15は、本実施形態の実施例1~3におけるフィルタ部41の光学材料に応じた条件(1)の因子Q,2Qの計算結果を示す。以上の数値実施例により、本実施形態の光学系2において、図6~図8のシミュレーション結果が得られた。 Further, the factor data D15 indicates the calculation results of the factors Q and 2Q of condition (1) according to the optical material of the filter section 41 in Examples 1 to 3 of the present embodiment. According to the above numerical examples, the simulation results shown in FIGS. 6 to 8 were obtained for the optical system 2 of this embodiment.
3.まとめ
 以上のように、本実施形態における光学系2は、可視域における波長を有する第1の光の一例としての可視光L11を、第1の撮像素子の一例としての可視撮像センサ11に結像する。又、光学系2は、遠赤外域における波長を有する第2の光の一例としての遠赤外光L12を、第2の撮像素子の一例としての遠赤外撮像センサ12に結像する。光学系2は、光軸Z0に沿って配置され、可視光L11及び遠赤外光L12をそれぞれ透過する1以上のレンズの一例としての第1~第3レンズ素子31~33と、開口絞りの一例としての開口フィルタ4とを備える。開口フィルタ4には、光軸Z0が通過する開口部40が設けられ、光学系2に入射した可視光L11及び遠赤外光L12が出射する光量を規定する。例えば、開口部40により可視光L11の光量が規定される。開口フィルタ4は、開口部40の周囲において可視光L11を遮光して遠赤外光L12を透過させる光学フィルタの一例としてフィルタ部41を備える。光学系2は、以下の式(1a)を満たす。
t<2×(4npf)/{(n-1)D}  …(1a)
 ここで、tは光軸Z0の方向におけるフィルタ部41の厚みである。nはフィルタ部41における遠赤外光L12の屈折率である。pは遠赤外撮像センサ12の画素ピッチ(或いは遠赤外光L12の結像における画素ピッチ)である。fは光学系2における遠赤外光L12の焦点距離である。Dは開口フィルタ4におけるフィルタ部41の有効径である。
3. Summary As described above, the optical system 2 according to the present embodiment forms an image of the visible light L11, which is an example of the first light having a wavelength in the visible range, on the visible image sensor 11, which is an example of the first imaging element. do. Further, the optical system 2 forms an image of far-infrared light L12, which is an example of second light having a wavelength in the far-infrared region, on a far-infrared imaging sensor 12, which is an example of a second imaging element. The optical system 2 is arranged along the optical axis Z0, and includes first to third lens elements 31 to 33 as an example of one or more lenses that respectively transmit the visible light L11 and the far infrared light L12, and an aperture stop. and an aperture filter 4 as an example. The aperture filter 4 is provided with an aperture 40 through which the optical axis Z0 passes, and defines the amount of emitted visible light L11 and far-infrared light L12 incident on the optical system 2 . For example, the aperture 40 defines the amount of visible light L11. The aperture filter 4 includes a filter section 41 as an example of an optical filter that shields the visible light L11 around the aperture 40 and transmits the far-infrared light L12. The optical system 2 satisfies the following formula (1a).
t<2×(4npf)/{(n−1)D} (1a)
Here, t is the thickness of the filter section 41 in the direction of the optical axis Z0. n is the refractive index of the far-infrared light L12 in the filter section 41; p is the pixel pitch of the far-infrared imaging sensor 12 (or the pixel pitch in the imaging of the far-infrared light L12). f is the focal length of the far-infrared light L12 in the optical system 2; D is the effective diameter of the filter portion 41 in the aperture filter 4 .
 以上の光学系2によると、フィルタ部41及び開口部40において可視光L11の光量を制限しながら、より多くの遠赤外光L12の光量を取り込む開口フィルタ4において、フィルタ厚みtを最適化して遠赤外撮像の光学性能を低下し得る問題点を解消できる。これにより、可視域における撮像と遠赤外域における撮像とを各々に適した光量で行い易くする光学系2を提供することができる。 According to the above-described optical system 2, the filter thickness t is optimized in the aperture filter 4 that captures a larger amount of far-infrared light L12 while limiting the amount of visible light L11 in the filter portion 41 and the aperture 40. It is possible to solve the problem that the optical performance of far-infrared imaging can be degraded. Accordingly, it is possible to provide the optical system 2 that makes it easy to perform imaging in the visible range and imaging in the far-infrared range with light amounts suitable for each.
 本実施形態において、光学系2は、以下の式(1b)を満たす。
0.1<t                …(1b)
 これにより、開口フィルタ4において遠赤外光L12の干渉の影響を抑制して、遠赤外撮像の光学性能を得やすくすることができる。
In this embodiment, the optical system 2 satisfies the following formula (1b).
0.1<t (1b)
Thereby, the influence of the interference of the far-infrared light L12 can be suppressed in the aperture filter 4, and the optical performance of far-infrared imaging can be easily obtained.
 本実施形態において、光学系2は、以下の式(1c)を満たす。
t<(4npf)/{(n-1)D}    …(1c)
 これにより、開口フィルタ4においてフィルタ部41を通る遠赤外光線L12aと通らない遠赤外光線L12bとの間のずれ量Δtを焦点深度dの範囲内に収めて、遠赤外撮像の光学性能を安定的に確保できる。
In this embodiment, the optical system 2 satisfies the following formula (1c).
t<(4npf)/{(n−1)D} (1c)
As a result, in the aperture filter 4, the amount of deviation Δt between the far-infrared rays L12a that pass through the filter section 41 and the far-infrared rays L12b that do not pass through the filter section 41 is kept within the range of the depth of focus d, and the optical performance of far-infrared imaging is improved. can be stably secured.
 本実施形態において、光学系2は、以下の式(2)を満たす。
0.2×|fa|>f           …(2)
 ここで、faは、光学系2のレンズ群30全体のうちの開口フィルタ4よりも可視光L11及び遠赤外光L12の入射側すなわち拡大側に配置されたレンズ群即ち前群30aによる遠赤外光L12の合成焦点距離である。上式(2)によると、開口フィルタ4に入射する遠赤外光L12の光束を全体的に平行化して、ずれ量Δtを低減でき、遠赤外撮像の光学性能を良くすることができる。
In this embodiment, the optical system 2 satisfies the following formula (2).
0.2×|fa|>f (2)
Here, fa is the far-infrared light generated by the lens group, ie, the front group 30a, arranged on the incident side, ie, the enlargement side, of the visible light L11 and the far-infrared light L12, relative to the aperture filter 4 in the entire lens group 30 of the optical system 2. It is the combined focal length of the external light L12. According to the above formula (2), the luminous flux of the far-infrared light L12 incident on the aperture filter 4 can be totally collimated, the shift amount Δt can be reduced, and the optical performance of far-infrared imaging can be improved.
 本実施形態において、光学系2は、以下の式(3)及び式(4)を満たす。
D≦f/2                …(3)
Dap≧fvis/4           …(4)
 ここで、Dapは、開口部40の開口径である。fvisは、光学系2における可視光L11の焦点距離である。これにより、光学系2において遠赤外L12についてはF値を4以上として光量を取り込みながら、且つ、可視光L11についてはF値を2以下として絞り込むことができる。これにより、可視撮像と遠赤外撮像とを各々に最適な光量で行い易くできる。
In this embodiment, the optical system 2 satisfies the following formulas (3) and (4).
D≤f/2 (3)
Dap≧fvis/4 (4)
Here, Dap is the opening diameter of the opening 40 . fvis is the focal length of the visible light L11 in the optical system 2; As a result, the optical system 2 can narrow down the visible light L11 by setting the F value to 2 or less while taking in the amount of light by setting the F value to 4 or more for the far infrared rays L12 in the optical system 2 . As a result, visible imaging and far-infrared imaging can be easily performed with the optimum amount of light for each.
 本実施形態の光学系2において、開口フィルタ4は、開口部40において中空に構成される。これにより、可視光L11と遠赤外光L12との双方を透過する構成を簡単に得られる。又、この場合であっても、本実施形態の光学系2によると、遠赤外撮像の光学性能を低下し得る問題点を解消して、可視撮像と遠赤外撮像とを各々に適した光量で行い易くできる。 In the optical system 2 of this embodiment, the aperture filter 4 is hollow at the aperture 40 . This makes it possible to easily obtain a configuration that transmits both the visible light L11 and the far-infrared light L12. Even in this case, according to the optical system 2 of the present embodiment, the problem that the optical performance of far-infrared imaging may be degraded is solved, and visible imaging and far-infrared imaging are suitable for each. It can be done easily with the amount of light.
 本実施形態の光学系2において、開口絞り4における開口部40と、フィルタ部41とは、光軸Z0を中心として同心円状に設けられる。これにより、可視光L11と遠赤外光L12のそれぞれに関して光学系2の偏心を抑制でき、可視撮像と遠赤外撮像との両立を行い易くできる。 In the optical system 2 of this embodiment, the aperture 40 of the aperture stop 4 and the filter section 41 are provided concentrically around the optical axis Z0. Thereby, the eccentricity of the optical system 2 can be suppressed for each of the visible light L11 and the far-infrared light L12, and it is possible to easily perform both visible imaging and far-infrared imaging.
 本実施形態において、光学系2は、レンズ群30と可視撮像センサ11及び遠赤外光L12との間に配置された光分岐素子21をさらに備える。光分岐素子21は、レンズ群30から光軸Z0に沿って入射する可視光L11及び遠赤外光L12を互いに分岐して、可視光L11を可視撮像センサ11に導光し、遠赤外光L12を遠赤外撮像センサ12に導光する。これにより、光分岐素子21を介して可視光L11及び遠赤外光L12をそれぞれ別々の結像位置P1,P2に導光して、可視撮像と遠赤外撮像との両立を行い易くできる。 In this embodiment, the optical system 2 further includes a light branching element 21 arranged between the lens group 30, the visible image sensor 11, and the far-infrared light L12. The light splitting element 21 splits the visible light L11 and the far-infrared light L12 incident along the optical axis Z0 from the lens group 30, guides the visible light L11 to the visible imaging sensor 11, and L12 is guided to the far-infrared imaging sensor 12. FIG. Thus, the visible light L11 and the far-infrared light L12 can be guided to different imaging positions P1 and P2 via the light branching element 21, making it easy to achieve both visible imaging and far-infrared imaging.
 本実施形態において、撮像装置1は、光学系2と、第1の撮像部の一例である可視撮像センサ11と、第2の撮像部の一例である遠赤外撮像センサ12とを備える。可視撮像センサ11は、光学系2を介して結像される、可視光L11による画像を撮像する。遠赤外撮像センサ12は、光学系2を介して結像される、遠赤外光L12による画像を撮像する。本実施形態の撮像装置1によると、光学系2により、可視撮像と遠赤外撮像とを各々に適した光量で行い易くすることができる。又、可視撮像と遠赤外撮像を両立する構成を小型化したり、双方の結像性能を良くしたりできる。 In this embodiment, the imaging device 1 includes an optical system 2, a visible imaging sensor 11 that is an example of a first imaging section, and a far-infrared imaging sensor 12 that is an example of a second imaging section. The visible image sensor 11 captures an image of visible light L11 formed via the optical system 2 . The far-infrared imaging sensor 12 captures an image formed by far-infrared light L12 through the optical system 2 . According to the imaging apparatus 1 of the present embodiment, the optical system 2 makes it easy to perform visible imaging and far-infrared imaging with the amount of light suitable for each. In addition, it is possible to reduce the size of the configuration that achieves both visible imaging and far-infrared imaging, and to improve the imaging performance of both.
 本実施形態において、撮像システム20は、撮像装置1と、撮像装置1において撮像された各種画像Im1,Im2を解析する制御部15とを備える。本システム20によると、撮像装置1の光学系2により、可視撮像と遠赤外撮像とを各々に適した光量で行い易くすることができる。これにより、可視画像Im1の解析と遠赤外画像Im2の解析との両立を行い易くすることができる。 In this embodiment, the imaging system 20 includes an imaging device 1 and a control unit 15 that analyzes various images Im1 and Im2 captured by the imaging device 1. According to the present system 20, the optical system 2 of the imaging device 1 can facilitate visible imaging and far-infrared imaging with the amount of light suitable for each. Accordingly, it is possible to easily perform both analysis of the visible image Im1 and analysis of the far-infrared image Im2.
(実施形態2)
 以下、図11~図16を用いて実施形態2を説明する。実施形態1では、レンズ枚数が3枚の光学系2の例を説明したが、本開示はこれに限定されない。実施形態2では、レンズ枚数が2枚の光学系2Aの例を説明する。
(Embodiment 2)
Embodiment 2 will be described below with reference to FIGS. 11 to 16. FIG. Although the example of the optical system 2 having three lenses has been described in the first embodiment, the present disclosure is not limited to this. In the second embodiment, an example of an optical system 2A having two lenses will be described.
 以下、実施形態1と同様の説明は適宜、省略して、本実施形態に係る光学系2Aを説明する。 Hereinafter, the optical system 2A according to the present embodiment will be described, omitting the same description as in the first embodiment as appropriate.
 図11は、実施形態2に係る光学系2Aの構成を示す。本実施形態に係る光学系2Aは、実施形態1の光学系2と同様の構成において、3枚のレンズ素子31~33の代わりに2枚のレンズ素子31,32を備える。本実施形態の開口フィルタ4は、例えば
2枚のレンズ素子31,32の間に配置される。
FIG. 11 shows the configuration of an optical system 2A according to the second embodiment. An optical system 2A according to this embodiment has the same configuration as the optical system 2 according to the first embodiment, but includes two lens elements 31 and 32 instead of the three lens elements 31-33. The aperture filter 4 of this embodiment is arranged, for example, between two lens elements 31 and 32 .
 以上のような本実施形態の光学系2Aについても、実施形態1の図6~図8と同様に数値シミュレーションを行った。この際、実施形態1の実施例1~3と同様に、開口フィルタ4のフィルタ部41に各種材料を採用した。 For the optical system 2A of the present embodiment as described above, numerical simulations were performed in the same manner as in FIGS. 6 to 8 of the first embodiment. At this time, various materials were adopted for the filter portion 41 of the aperture filter 4 in the same manner as in Examples 1 to 3 of the first embodiment.
 図12は、実施形態2の実施例1における光学系2Aのシミュレーション結果を、図6と同様に示す。図13,図14は、実施形態2の実施例2,3における光学系2Aのシミュレーション結果を、それぞれ図7,図8と同様に示す。 FIG. 12 shows simulation results of the optical system 2A in Example 1 of Embodiment 2, similarly to FIG. 13 and 14 show simulation results of the optical system 2A in Examples 2 and 3 of Embodiment 2, respectively, similarly to FIGS. 7 and 8. FIG.
 図15,図16は、実施形態2における光学系2Aの数値実施例を、実施形態1と同様に示す。具体的に、図15における面データD21と、非球面データD22と、各種データD23とが、それぞれ本実施形態における光学系2Aについての情報を、図9の各データD11~D13と同様に示す。又、図16における面間隔データD24と因子データD25とが、それぞれ本実施形態の実施例1~3における光学系2Aについての情報を、図10の各データD14,D15と同様に示す。 15 and 16 show numerical examples of the optical system 2A according to the second embodiment, similarly to the first embodiment. Specifically, surface data D21, aspheric surface data D22, and various data D23 in FIG. 15 respectively indicate information about the optical system 2A in this embodiment, similarly to each data D11 to D13 in FIG. Further, the surface distance data D24 and the factor data D25 in FIG. 16 respectively show information about the optical system 2A in Examples 1 to 3 of the present embodiment, similarly to the data D14 and D15 in FIG.
 本実施形態の光学系2Aによっても、図12~図14に示すように、条件(1)により実施形態1と同様の効果が得られることが確認された。 As shown in FIGS. 12 to 14, it was confirmed that the optical system 2A of the present embodiment also provided the same effects as those of the first embodiment under condition (1).
(実施形態3)
 以下、図17~図22を用いて実施形態3を説明する。実施形態1では、光学系2におけるレンズ素子間でレンズ材料が異なる例を説明した。実施形態3では、レンズ材料が同じレンズ素子で構成される光学系2Bについて説明する。
(Embodiment 3)
Embodiment 3 will be described below with reference to FIGS. 17 to 22. FIG. In the first embodiment, an example in which the lens materials of the lens elements in the optical system 2 are different has been described. In Embodiment 3, an optical system 2B composed of lens elements made of the same lens material will be described.
 以下、実施形態1,2と同様の説明は適宜、省略して、本実施形態に係る光学系2Bを説明する。 Hereinafter, descriptions similar to those of Embodiments 1 and 2 will be omitted as appropriate, and an optical system 2B according to this embodiment will be described.
 図17は、実施形態3に係る光学系2Bの構成を示す。実施形態1では、第2レンズ素子32のレンズ材料として硫化亜鉛を例示した。本実施形態に係る光学系2Bでは、実施形態1の光学系2と同様の構成において、第2レンズ素子32Bのレンズ材料が、第1レンズ素子31と同じカルコハライドガラスで構成される。本実施形態の光学系2Bによると、生産性や加工性の高いガラスでレンズ群30を構成でき、各種用途において利用し易い。 FIG. 17 shows the configuration of an optical system 2B according to the third embodiment. In Embodiment 1, zinc sulfide is exemplified as the lens material of the second lens element 32 . In the optical system 2B according to this embodiment, the lens material of the second lens element 32B is the same chalcohalide glass as that of the first lens element 31 in the same configuration as the optical system 2 of the first embodiment. According to the optical system 2B of the present embodiment, the lens group 30 can be made of glass with high productivity and workability, and can be easily used in various applications.
 以上のような本実施形態の光学系2Bについても、実施形態1,2と同様に数値シミュレーションを行った。この際、実施形態1,2の実施例1~3と同様に、開口部4のフィルタ部41に各種材料を採用した。図18~図20は、それぞれ実施形態3の実施例1~3における光学系2Bのシミュレーション結果を、図6~図8と同様に示す。 Also for the optical system 2B of this embodiment as described above, numerical simulations were performed in the same manner as in the first and second embodiments. At this time, as in Examples 1 to 3 of Embodiments 1 and 2, various materials were used for the filter portion 41 of the opening portion 4 . 18 to 20 show simulation results of the optical system 2B in Examples 1 to 3 of the third embodiment, respectively, similarly to FIGS. 6 to 8. FIG.
 図21,22は、実施形態3における光学系2Bの数値実施例を、実施形態1と同様に示す。具体的に、図21における面データD31と、非球面データD32と、各種データD33とが、それぞれ本実施形態における光学系2Bについての情報を、図9の各データD11~D13と同様に示す。又、図22における面間隔データD34と因子データD35とが、それぞれ本実施形態の実施例1~3における光学系2Bについての情報を、図10の各データD14,D15と同様に示す。 FIGS. 21 and 22 show numerical examples of the optical system 2B in Embodiment 3, similarly to Embodiment 1. FIG. Specifically, the surface data D31, the aspheric data D32, and the various data D33 in FIG. 21 each indicate information about the optical system 2B in this embodiment, similarly to the data D11 to D13 in FIG. Also, the surface distance data D34 and the factor data D35 in FIG. 22 respectively show information about the optical system 2B in Examples 1 to 3 of the present embodiment, similarly to the data D14 and D15 in FIG.
 本実施形態の光学系2Bによっても、図18~図20に示すように、条件(1)により実施形態1,2と同様の効果が得られることが確認された。 As shown in FIGS. 18 to 20, it was confirmed that the optical system 2B of the present embodiment also provided the same effects as those of the first and second embodiments under condition (1).
(他の実施形態)
 以上のように、本出願において開示する技術の例示として、実施形態1~3を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置換、付加、省略などを行った実施の形態にも適用可能である。また、上記各実施形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。そこで、以下、他の実施形態を例示する。
(Other embodiments)
As described above, Embodiments 1 to 3 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments in which modifications, substitutions, additions, omissions, etc. are made as appropriate. Moreover, it is also possible to combine the constituent elements described in the above embodiments to form a new embodiment. Therefore, other embodiments will be exemplified below.
 上記の実施形態1~3では、光分岐素子21が可視光L11を透過して遠赤外光L12を反射する光学系2~2Bを例示したが、本開示はこれに限定されない。例えば、本実施形態の光学系2は、上記の光分岐素子21の代わりに、可視光L11を反射し、遠赤外光L12を透過する光分岐素子23を備えてもよい。例えば、本実施形態の光分岐素子は、予め遠赤外光L12の波長帯が透過帯に設定されたバンドパスフィルタで構成される。また、本実施形態の光学系2において、遠赤外透過フィルタ22は、例えば光分岐素子よりも+Z側に配置される。本実施形態の光学系2によっても、上記各実施形態と同様に開口フィルタ4を用いて、可視撮像と遠赤外撮像とを両立する撮像装置1を実現し易くすることができる。 In Embodiments 1 to 3 above, the optical systems 2 to 2B in which the light branching element 21 transmits the visible light L11 and reflects the far-infrared light L12 are illustrated, but the present disclosure is not limited to this. For example, the optical system 2 of this embodiment may include a light branching element 23 that reflects the visible light L11 and transmits the far-infrared light L12 instead of the light branching element 21 described above. For example, the optical branching element of this embodiment is configured by a bandpass filter in which the wavelength band of the far-infrared light L12 is set in advance to the transmission band. Further, in the optical system 2 of the present embodiment, the far-infrared transmission filter 22 is arranged, for example, on the +Z side of the light branching element. With the optical system 2 of the present embodiment as well, the aperture filter 4 can be used in the same manner as in the above-described embodiments to facilitate the realization of the imaging apparatus 1 capable of both visible imaging and far-infrared imaging.
 上記の各実施形態では、光分岐素子21がバンドパスフィルタで構成される例を説明した。本実施形態において、光分岐素子21はバンドパスフィルタに限らず、各種のバンドスプリッタで構成でき、例えばハイパスフィルタ又はローパスフィルタで構成されてもよい。また、本実施形態において、光分岐素子21は、必ずしも光学系2に設けられなくてもよい。 In each of the above embodiments, an example in which the optical branching element 21 is composed of a bandpass filter has been described. In this embodiment, the optical branching element 21 is not limited to a band-pass filter, and can be configured by various band splitters, for example, a high-pass filter or a low-pass filter. Moreover, in the present embodiment, the optical branching element 21 does not necessarily have to be provided in the optical system 2 .
 上記の各実施形態では、開口フィルタ4の各部40~42を同心円状に構成する例を説明した。本実施形態において、開口フィルタ4の各部40~42は、必ずしも同心円状に構成されなくてもよい。又、開口フィルタ4の各部40~42は、円形状に形成されなくてもよく、例えば楕円状または多角形状などに形成されてもよい。 In each of the above-described embodiments, an example in which the respective portions 40 to 42 of the aperture filter 4 are configured concentrically has been described. In this embodiment, the parts 40 to 42 of the aperture filter 4 do not necessarily have to be concentrically arranged. Moreover, the parts 40 to 42 of the aperture filter 4 may not be formed in a circular shape, but may be formed in an elliptical or polygonal shape, for example.
 上記の各実施形態では、開口フィルタ4が遮光部42を備える例を説明した。本実施形態において、開口フィルタ4は、必ずしも遮光部42を備えなくてもよい。本実施形態の開口フィルタ4において、例えば遠赤外光L12の絞り値を開放に設定する場合など、遮光部42が省略されてもよい。 In each of the above embodiments, an example in which the aperture filter 4 includes the light shielding portion 42 has been described. In this embodiment, the aperture filter 4 does not necessarily have to include the light shielding portion 42 . In the aperture filter 4 of the present embodiment, the light shielding section 42 may be omitted when, for example, the aperture value of the far-infrared light L12 is set to open.
 上記の各実施形態において、開口フィルタ4のフィルタ部41において可視光L11を遮光して遠赤外光L12を透過する光学材料を例示した。本実施形態において、開口フィルタ4のフィルタ部41は、可視光L11及び遠赤外光L12を透過する光学材料で構成された基材に、可視光L11を遮光するコーティング等を施して構成されてもよい。 In each of the above embodiments, the optical material that blocks the visible light L11 and transmits the far-infrared light L12 in the filter portion 41 of the aperture filter 4 is exemplified. In the present embodiment, the filter portion 41 of the aperture filter 4 is configured by applying a coating or the like that blocks the visible light L11 to a base material made of an optical material that transmits the visible light L11 and the far-infrared light L12. good too.
 上記の各実施形態では、光学系2~2Bに遠赤外透過フィルタ22が設けられる例を説明した。本実施形態において、遠赤外透過フィルタ22は、遠赤外撮像センサ12又は光分岐素子21と一体的に設けられてもよい。遠赤外透過フィルタ22は、光学系2~2Bから省略されてもよい。 In each of the above embodiments, an example in which the far-infrared transmission filter 22 is provided in the optical systems 2 to 2B has been described. In this embodiment, the far-infrared transmission filter 22 may be provided integrally with the far-infrared imaging sensor 12 or the light branching element 21 . The far-infrared transmission filter 22 may be omitted from the optical systems 2-2B.
 上記の各実施形態では、光分岐素子21と各結像位置P1,P2との間に、遠赤外透過フィルタ22以外の光学素子が配置されない例を説明したが、本開示はこれに限定されない。本実施形態において、光分岐素子21と各結像位置P1,P2との間に各種の光学素子が配置されてもよく、例えば各種の波長フィルタ、偏光フィルタ、偏光板、及びミラー等が配置されてもよい。また、本実施形態では、必ずしも、光分岐素子21と各結像位置P1,P2との間に配置できる光学素子から、レンズ素子を除外しなくてもよく、例えば屈折力の小ささに依ってはレンズ素子も配置可能である。 In each of the above embodiments, an example in which no optical element other than the far-infrared transmission filter 22 is arranged between the light branching element 21 and each of the imaging positions P1 and P2 has been described, but the present disclosure is not limited thereto. . In this embodiment, various optical elements may be arranged between the light branching element 21 and the image forming positions P1 and P2. For example, various wavelength filters, polarizing filters, polarizing plates, and mirrors may be arranged. may Further, in this embodiment, it is not always necessary to exclude lens elements from the optical elements that can be arranged between the light branching element 21 and the image forming positions P1 and P2. can also place lens elements.
 上記の各実施形態では、非球面のレンズ面を含む光学系2~2Bを例示した。本実施形態の光学系は、非球面のレンズ面を含まなくてもよく、例えばレンズ群30に含まれるレンズ素子の全てが球面レンズであってもよい。また、本実施形態の光学系は、回転対称でない自由曲面を有するレンズ素子をレンズ群30に含んでもよい。 In each of the above embodiments, optical systems 2 to 2B including aspherical lens surfaces are illustrated. The optical system of this embodiment may not include an aspherical lens surface, and for example, all of the lens elements included in the lens group 30 may be spherical lenses. Further, the optical system of this embodiment may include a lens element having a free-form surface that is not rotationally symmetrical in the lens group 30 .
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。 As described above, the embodiment has been described as an example of the technology of the present disclosure. To that end, the accompanying drawings and detailed description have been provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Therefore, among the components described in the attached drawings and detailed description, there are not only components essential for solving the problem, but also components not essential for solving the problem in order to illustrate the above technology. can also be included. Therefore, it should not be immediately recognized that those non-essential components are essential just because they are described in the attached drawings and detailed description.
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において、種々の変更、置換、付加、省略などを行うことができる。 In addition, since the above-described embodiment is for illustrating the technology in the present disclosure, various changes, substitutions, additions, omissions, etc. can be made within the scope of claims or equivalents thereof.
 本開示は、可視撮像と遠赤外撮像とを組み合わせる各種の用途に適用可能である。 The present disclosure is applicable to various applications that combine visible imaging and far-infrared imaging.

Claims (10)

  1.  可視域における波長を有する第1の光を第1の撮像素子に結像し、遠赤外域における波長を有する第2の光を第2の撮像素子に結像する光学系であって、
     光軸に沿って配置され、前記第1及び第2の光をそれぞれ透過する1以上のレンズと、
     前記光軸が通過する開口部が設けられた開口絞りとを備え、
     前記開口絞りは、前記開口部の周囲において前記第1の光を遮光して前記第2の光を透過させる光学フィルタを備え、
     以下の式(1a)を満たす、
    t<2×(4npf)/{(n-1)D}  …(1a)
     ここで、
    t:前記光軸の方向における前記光学フィルタの厚み、
    n:前記光学フィルタにおける前記第2の光の波長の屈折率、
    p:前記第2の撮像素子の画素ピッチ、
    f:前記光学系における前記第2の光の焦点距離、
    D:前記開口絞りにおける前記光学フィルタの有効径
    である、光学系。
    An optical system that forms an image of a first light having a wavelength in the visible range on a first imaging device and forms an image of a second light having a wavelength in the far-infrared region on a second imaging device,
    one or more lenses arranged along an optical axis and transmitting the first and second lights, respectively;
    an aperture stop provided with an opening through which the optical axis passes;
    The aperture stop comprises an optical filter that blocks the first light and transmits the second light around the opening,
    satisfying the following formula (1a),
    t<2×(4npf)/{(n−1)D} (1a)
    here,
    t: the thickness of the optical filter in the direction of the optical axis;
    n: refractive index of the wavelength of the second light in the optical filter;
    p: pixel pitch of the second imaging element;
    f: the focal length of the second light in the optical system;
    D: Optical system, which is the effective diameter of the optical filter at the aperture stop.
  2.  以下の式(1b)を満たす、
    0.1<t                …(1b)
    請求項1に記載の光学系。
    satisfying the following formula (1b),
    0.1<t (1b)
    The optical system according to claim 1.
  3.  以下の式(1c)を満たす、
    t<(4npf)/{(n-1)D}    …(1c)
    請求項1又は2に記載の光学系。
    satisfying the following formula (1c),
    t<(4npf)/{(n−1)D} (1c)
    3. The optical system according to claim 1 or 2.
  4.  以下の式(2)を満たす、
    0.2×|fa|>f           …(2)
     ここで、
    fa:前記1以上のレンズにおいて前記開口絞りよりも前記第1及び第2の光の拡大側に配置されたレンズ群による前記第2の光の合成焦点距離
    である、請求項1~3のいずれか1項に記載の光学系。
    satisfying the following formula (2),
    0.2×|fa|>f (2)
    here,
    fa: any of claims 1 to 3, wherein fa is a synthetic focal length of the second light by a lens group arranged on the expansion side of the first and second lights with respect to the aperture stop in the one or more lenses. 1. The optical system according to item 1.
  5.  以下の式(3)及び式(4)を満たす、
    D≦f/2                …(3)
    Dap≧fvis/4           …(4)
     ここで、
    Dap:前記開口部の開口径、
    fvis:前記光学系における前記第1の光の焦点距離
    である、請求項1~4のいずれか1項に記載の光学系。
    satisfying the following formulas (3) and (4),
    D≤f/2 (3)
    Dap≧fvis/4 (4)
    here,
    Dap: opening diameter of the opening;
    The optical system according to any one of claims 1 to 4, wherein fvis is the focal length of the first light in the optical system.
  6.  前記開口絞りは、前記開口部において中空に構成される
    請求項1~5のいずれか1項に記載の光学系。
    The optical system according to any one of claims 1 to 5, wherein the aperture stop is hollow at the aperture.
  7.  前記開口部と、前記光学フィルタとは、前記光軸を中心として同心円状に設けられる
    請求項1~6のいずれか1項に記載の光学系。
    The optical system according to any one of claims 1 to 6, wherein the opening and the optical filter are provided concentrically about the optical axis.
  8.  前記1以上のレンズと前記第1及び第2の撮像部との間に配置され、前記1以上のレンズから前記光軸に沿って入射する第1及び第2の光を互いに分岐して、前記第1の光を前記第1の撮像部に導光し、前記第2の光を前記第2の撮像部に導光する光分岐素子をさらに備える
    請求項1~7のいずれか1項に記載の光学系。
    arranged between the one or more lenses and the first and second imaging units, and splitting the first and second lights incident from the one or more lenses along the optical axis to 8. The device according to claim 1, further comprising an optical branching element that guides the first light to the first imaging section and guides the second light to the second imaging section. optics.
  9.  請求項1~8のいずれか1項に記載の光学系と、
     前記光学系を介して結像される、前記第1の光による画像を撮像する第1の撮像部と、
     前記光学系を介して結像される、前記第2の光による画像を撮像する第2の撮像部と
    を備えた撮像装置。
    an optical system according to any one of claims 1 to 8;
    a first imaging unit that captures an image formed by the first light and formed via the optical system;
    and a second imaging unit that captures an image formed by the second light and formed via the optical system.
  10.  請求項9に記載の撮像装置と、
     前記撮像装置において撮像された画像を解析する制御部と
    を備える撮像システム。
    an imaging device according to claim 9;
    and a control unit that analyzes an image captured by the imaging device.
PCT/JP2022/015933 2021-07-05 2022-03-30 Optical system, image capturing device, and image capturing system WO2023281877A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021111575A JP2024116428A (en) 2021-07-05 2021-07-05 Optical system, imaging device, and imaging system
JP2021-111575 2021-07-05

Publications (1)

Publication Number Publication Date
WO2023281877A1 true WO2023281877A1 (en) 2023-01-12

Family

ID=84801408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015933 WO2023281877A1 (en) 2021-07-05 2022-03-30 Optical system, image capturing device, and image capturing system

Country Status (2)

Country Link
JP (1) JP2024116428A (en)
WO (1) WO2023281877A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369223A (en) * 2001-06-08 2002-12-20 Pentax Corp Image detector and diaphragm
US20080165322A1 (en) * 2007-01-10 2008-07-10 Clarity Medical Systems, Inc. Working distance and alignment sensor for a fundus camera
JP2010175713A (en) * 2009-01-28 2010-08-12 Kyocera Corp Imaging optical system and imaging device
US20200249379A1 (en) * 2019-02-01 2020-08-06 Rays Optics Inc. Lens
JP2021021892A (en) * 2019-07-30 2021-02-18 株式会社東海理化電機製作所 Imaging apparatus and imaging system
US20210072519A1 (en) * 2019-09-10 2021-03-11 Rays Optics Inc. Imaging lens and manufacturing method of light-shielding element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369223A (en) * 2001-06-08 2002-12-20 Pentax Corp Image detector and diaphragm
US20080165322A1 (en) * 2007-01-10 2008-07-10 Clarity Medical Systems, Inc. Working distance and alignment sensor for a fundus camera
JP2010175713A (en) * 2009-01-28 2010-08-12 Kyocera Corp Imaging optical system and imaging device
US20200249379A1 (en) * 2019-02-01 2020-08-06 Rays Optics Inc. Lens
JP2021021892A (en) * 2019-07-30 2021-02-18 株式会社東海理化電機製作所 Imaging apparatus and imaging system
US20210072519A1 (en) * 2019-09-10 2021-03-11 Rays Optics Inc. Imaging lens and manufacturing method of light-shielding element

Also Published As

Publication number Publication date
JP2024116428A (en) 2024-08-28

Similar Documents

Publication Publication Date Title
TWI490537B (en) Zoom lens and zoom lens module
US20160187625A1 (en) Vis-infrared correctiv fisheye lens system for extreme temperatures
CN112269255B (en) Ultra-high zoom ratio infrared zoom optical system
US6423969B1 (en) Dual infrared band objective lens
CN110568590A (en) Starlight-level optical lens and imaging method thereof
JP2011112908A (en) Variable magnification optical system and imaging apparatus
CN102722017B (en) Multi-waveband parfocal continuous focal length change optical device
JP2015055719A (en) Reflection telescope
GB2537070A (en) Zoom objective and camera system
WO2023281877A1 (en) Optical system, image capturing device, and image capturing system
CA2466788C (en) Optical apparatus
EP3015902B1 (en) Compact multispectral wide angle refractive optical system
JP2011107235A (en) Camera
JP2021096283A (en) Lens system
KR101127907B1 (en) An asymmetric wide angle infrared optical system in which anamorphic lenses are applied and a thermal observation device having the optical system
CN107121760A (en) A kind of infrared refractive and reflective panorama camera lens of broadband refrigeration
GB2433608A (en) Ancillary optical system for imaging optics in the infrared spectral region
KR20190055862A (en) Short Wave Infrared Camera Optical System for The Long Range Image Monitoring
CN114460729A (en) Large-relative-aperture large-target-surface uncooled infrared continuous zooming optical system
WO2020153355A1 (en) Optical system, optical instrument, imaging device, and methods for manufacturing optical system and imaging device
CN113589502A (en) Large-visual-field visible light and near-infrared light common-path zooming imaging system
CN207164377U (en) The refrigeration mode target seeker Optical devices that a kind of non-stop layer blocks
RU2662032C1 (en) Photographic telephoto lens
WO2022044398A1 (en) Optical system, imaging device, and imaging system
RU2366987C2 (en) Mirror-lens system of day-round surveillance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22837298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP