WO2023281727A1 - モータ制御装置、電動パワーステアリング装置、及びモータ制御方法 - Google Patents

モータ制御装置、電動パワーステアリング装置、及びモータ制御方法 Download PDF

Info

Publication number
WO2023281727A1
WO2023281727A1 PCT/JP2021/025897 JP2021025897W WO2023281727A1 WO 2023281727 A1 WO2023281727 A1 WO 2023281727A1 JP 2021025897 W JP2021025897 W JP 2021025897W WO 2023281727 A1 WO2023281727 A1 WO 2023281727A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
unit
failure determination
short
drive element
Prior art date
Application number
PCT/JP2021/025897
Other languages
English (en)
French (fr)
Inventor
憲人 荻原
千明 藤本
誠晋 澤田
侑大 前田
基宏 則皮
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023533009A priority Critical patent/JP7466778B2/ja
Priority to PCT/JP2021/025897 priority patent/WO2023281727A1/ja
Priority to CN202180098952.XA priority patent/CN117501618A/zh
Priority to EP21949360.8A priority patent/EP4369596A1/en
Publication of WO2023281727A1 publication Critical patent/WO2023281727A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0243Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being a broken phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0487Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting motor faults

Definitions

  • the present disclosure relates to a motor control device, an electric power steering device, and a motor control method.
  • An electric power steering device that applies a steering assist force to a steering mechanism of a vehicle such as an automobile includes a motor that generates a steering assist torque to a steering wheel and a motor control device that controls the motor. It works all the time inside. Therefore, in the electric power steering system, when a part that drives the motor fails during operation, it is necessary to specify the failed part and to stop or continue the assist operation depending on the details of the failure.
  • Patent Documents 1 and 2, for example In conventional electric power steering devices, techniques for monitoring and judging failures of drive elements of an inverter circuit that drives a motor are known (see Patent Documents 1 and 2, for example).
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a motor control device, an electric power steering device, and a motor control method capable of diagnosing failures of drive elements with a simple configuration. That's what it is.
  • one aspect of the present disclosure is a motor drive unit that supplies electric power to a motor having windings of multiple phases, wherein each phase of the multiple phases is connected in series with an upper a motor drive unit having a drive element and a lower drive element; a motor terminal voltage detection unit for detecting a motor terminal voltage value based on the motor terminal voltage of each phase of the motor; and a voltage value across the drive element.
  • a drive element failure determination unit that executes failure determination for each of the upper drive element and the lower drive element based on and outputs the failure determination result; and the failure determination result output by the drive element failure determination unit.
  • a failure determination based on the motor terminal voltage value detected by the motor terminal voltage detection unit, whether the upper drive element and the lower drive element are short-circuited or open-circuited It is a motor control device comprising a short/open failure determination unit that determines.
  • one aspect of the present disclosure includes the motor control device described above, the motor that assists steering, and a torque sensor that detects steering torque of the steering, wherein the motor control device detects the torque
  • the electric power steering apparatus controls driving of the motor according to the steering torque detected by a sensor.
  • one aspect of the present disclosure is a motor drive unit that supplies electric power to a motor having windings of multiple phases, wherein an upper drive element and a lower drive element connected in series to each of the multiple phases are provided.
  • a motor control method for a motor control device comprising a motor drive section having a drive element and a motor terminal voltage detection section for detecting a motor terminal voltage value based on a motor terminal voltage of each phase of the motor, the drive element failure a drive element failure determination step in which the determination unit performs failure determination for each of the upper drive element and the lower drive element based on the voltage value across the drive element and outputs the failure determination result;
  • the failure determination result output by the drive element failure determination step is a failure determination
  • the short/open failure determination unit determines the upper side voltage based on the motor terminal voltage value detected by the motor terminal voltage detection unit. and a short-circuit/open-circuit failure determination step of determining whether a short-circuit failure or an open-circuit failure occurs for each of the lower drive elements.
  • FIG. 1 is a block diagram showing an example of an electric power steering system according to an embodiment
  • FIG. 4 is a flow chart showing an example of the operation of the motor control device according to the embodiment
  • 5 is a flowchart showing an example of processing for determining a short/open failure of a drive element of an upper arm of the motor control device according to the present embodiment
  • 7 is a flowchart showing an example of processing for determining a short/open failure of a drive element of a lower arm of the motor control device according to the present embodiment
  • FIG. 1 is a block diagram showing an example of an electric power steering device 1 according to this embodiment.
  • the electric power steering device 1 includes a motor 2, a motor control device 10, an angle detection unit 20, a steering wheel 21, a torque sensor 22, a driving force transmission mechanism 23, a shaft 24, and a steering device 25 .
  • the motor 2 is a rotating electric machine having multi-phase windings (for example, three-phase windings) and functions as a driving force source that assists the steering (steering device 25).
  • the motor 2 includes a stator (not shown) provided with multi-phase windings, and a rotor (not shown) provided with magnets arranged radially inside the stator.
  • the magnet is, for example, a permanent magnet.
  • the motor 2 is, for example, a permanent magnet synchronous rotating electric machine.
  • the magnet may be an electromagnet having a field winding.
  • the three-phase windings may be star-connected or delta-connected.
  • the angle detection unit 20 is, for example, a rotation sensor such as a resolver, encoder, or MR sensor.
  • the angle detection unit 20 is provided on the rotor and detects the rotation angle of the rotor.
  • the angle detection unit 20 detects the rotation angle of the rotor. It is output to an electrical angle calculator 36 of the motor control device 10, which will be described later.
  • the steering device 25 is, for example, a steering device for steering a vehicle such as an automobile.
  • the steering device 25 transmits steering torque from the steering wheel 21 to the wheels 26 .
  • the steering wheel 21 is turned left and right by the driver to steer a vehicle such as an automobile.
  • the torque sensor 22 is attached to the shaft 24 and detects steering torque of the steering wheel 21 .
  • the torque sensor 22 outputs the detected steering torque to the motor current control calculator 31 of the motor control device 10 .
  • the driving force transmission mechanism 23 is connected to the rotating shaft of the rotor of the motor 2 and transmits the driving force of the motor 2 to the steering device 25 of the vehicle.
  • the driving force transmission mechanism 23 is, for example, a worm gear mechanism or the like that connects the rotating shaft of the motor 2 to the shaft 24 .
  • the shaft 24 is connected to the steering wheel 21 and transmits steering torque from the steering wheel 21 to the steering device 25 .
  • the motor control device 10 controls driving of the motor 2 according to the steering torque detected by the torque sensor 22 .
  • the motor control device 10 includes a DC power supply 11, a power supply voltage cutoff section 12, a power supply voltage detection section 13, a motor drive section 14, a motor drive current cutoff section 15, a power supply voltage charge section 17, and a motor terminal voltage detection.
  • a unit 18 and a control unit 30 are provided.
  • the motor drive unit 14 is, for example, an inverter circuit that generates an AC signal (AC power) for driving the motor 2 from the DC power supply 11 .
  • a motor drive unit 14 supplies power to the motor 2 .
  • the motor drive unit 14 includes positive drive elements (QHu, QHv, QHw), negative drive elements (QLu, QLv, QLw), a smoothing capacitor 141, and current sensors (142u, 142v, 142w). Prepare.
  • the motor drive unit 14 includes drive elements (QHu, QHv, QHw) on the positive electrode side connected to the positive electrode side of the DC power supply 11 via the power supply voltage cutoff unit 12 and the power supply voltage detection unit 13 , and the DC power supply 11 .
  • the drive elements on the positive electrode side correspond to the drive elements on the upper arm (upper drive element)
  • the drive elements on the negative electrode side correspond to the drive elements on the lower arm. Corresponds to the element (lower driving element).
  • each of the upper arm drive elements may be any upper arm drive element included in the motor drive unit 14, or may be a drive element when not particularly distinguished.
  • the element QH will be described.
  • each of the drive elements (QLu, QLv, QLw) of the lower arm will be described as a drive element QL when indicating any drive element of the lower arm provided in the motor drive unit 14 or when not particularly distinguished.
  • each of the driving element QH and the driving element QL will be described as the driving element Q when indicating any driving element provided in the motor driving section 14 or when not particularly distinguished.
  • connection point of the two drive elements (the drive element QH and the drive element QL) in the series circuit of each phase is connected to the winding of the corresponding phase of the motor 2 via the motor drive current cutoff section 15. It is connected.
  • a U-phase upper arm drive element QHu and a U-phase lower arm drive element QLu are connected in series, and the connection point between the two drive elements (QHu and QLu) is is connected to the U-phase winding of the motor 2 via the motor drive current interrupter 15 .
  • the V-phase upper arm drive element QHv and the V-phase lower arm drive element QLv are connected in series, and the connection point between the two drive elements (QHv, QLv) is the motor driving element. It is connected to the V-phase winding of the motor 2 via the current interrupter 15 .
  • the W-phase upper arm drive element QHw and the W-phase lower arm drive element QLw are connected in series, and the connection point between the two drive elements (QHw, QLw) is the motor driving element. It is connected to the W-phase winding of the motor 2 via the current interrupter 15 .
  • the smoothing capacitor 141 is connected between the positive side and the negative side of the DC power supply 11 via the power supply voltage cutoff section 12 and the power supply voltage detection section 13 . Smoothing capacitor 141 smoothes the power supply voltage of DC power supply 11 via power supply voltage cutoff section 12 and power supply voltage detection section 13 .
  • the drive element Q is, for example, a semiconductor switching element such as a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor).
  • a drive signal is supplied from the gate drive section 33 to the gate terminal of each drive element Q of the upper arm drive elements (QHu, QHv, QHw) and the lower arm drive elements (QLu, QLv, QLw).
  • Each drive element Q is driven by a drive signal (DHu, DHv, DHw, DLu, DLv, DLw) output from the gate drive section 33, thereby causing the motor 2 to A predetermined phase voltage is applied to each phase coil (winding of each phase).
  • each drive element Q causes a predetermined drive current to flow through the motor 2, causing the motor 2 to generate torque.
  • the current sensors are sensors such as shunt resistors and Hall elements, for example, and detect the current flowing through the windings of each phase.
  • the current sensor 142u is connected in series with the drive element QLu of the lower arm and detects the current flowing through the U-phase winding.
  • a current sensor 142v is connected in series with the drive element QLv of the lower arm and detects the current flowing through the V-phase winding.
  • a current sensor 142w is connected in series with the drive element QLw of the lower arm and detects the current flowing through the W-phase winding.
  • the DC power supply 11 supplies a DC voltage Vdc to the motor drive unit 14 .
  • the DC voltage Vdc is, for example, 12 V
  • the DC power supply 11 is, for example, a battery, a DC-DC converter, a diode rectifier, a PWM rectifier, or any other device that outputs the DC voltage Vdc. equipment.
  • the power supply voltage cutoff unit 12 cuts off the DC voltage of the DC power supply 11 applied to the motor drive unit 14 in accordance with a power supply voltage cutoff instruction from the cutoff management unit 32, which will be described later. That is, the power supply voltage cutoff unit 12 cuts off the power supply voltage applied to the motor driving unit 14 .
  • the power supply voltage detection unit 13 detects the voltage of the DC power supply 11 .
  • the power supply voltage detection unit 13 outputs the detected voltage value of the DC power supply 11 to the motor current control calculation unit 31 and the short/open failure determination unit 37, which will be described later.
  • the power supply voltage charging section 17 forcibly applies a voltage to the motor driving section 14 when performing failure determination processing for the drive element QH of the upper arm.
  • the power supply voltage charging unit 17 charges the smoothing capacitor 141 in order to keep constant the voltage applied to the motor drive unit 14, which decreases over time when the power supply voltage is cut off in the power supply voltage cutoff unit 12.
  • a voltage is applied by applying It should be noted that the power supply voltage charging unit 17 operates only when the power supply voltage is equal to or lower than a predetermined threshold when executing the failure determination process for the driving element QH of the upper arm. Also, if the motor control device 10 does not include the power supply voltage cutoff section 12 , the motor control device 10 does not need to include the power supply voltage charging section 17 .
  • the motor drive current cutoff unit 15 includes a parasitic diode and has a switching element that cuts off power supply from the motor drive unit 14 to each phase of the motor 2 .
  • the motor drive current cutoff unit 15 is arranged between each phase output line of the motor drive unit 14 and each phase terminal of the motor 2 . cuts off the drive current that is the output of
  • the switching element included in the motor drive current cutoff unit 15 is, for example, an FET, and the parasitic diodes are arranged in the forward direction from the output lines of the respective phases of the motor drive unit 14 toward the respective phase terminals of the motor 2. It is
  • the motor terminal voltage detection unit 18 detects the motor terminal voltage value based on the voltage of the motor terminal of each phase of the motor 2 .
  • the motor terminal voltage value is a voltage value obtained by combining the terminal voltages of each phase coil (winding of each phase) of the motor 2.
  • the terminal voltage of each phase coil (winding of each phase) It is the total value of the voltage, the average value, and the like.
  • the motor terminal voltage detection unit 18 is realized by, for example, a CPU (Central Processing Unit) having an AD converter (analog/digital converter), and each voltage value detected by the AD converter is subjected to predetermined arithmetic processing by the CPU. etc. to output the motor terminal voltage value.
  • the motor terminal voltage detection unit 18 is an interface unit between hardware and software in the motor control device 10, and includes an AD converter of the CPU.
  • the motor terminal voltage detection unit 18 detects, for example, the voltage value of the signal line (the total value of the terminal voltages of the coils of each phase) obtained by combining the signal lines connected to the motor terminals of each phase into one, As a voltage value, it is detected using an AD converter.
  • the measurable upper limit of the motor terminal voltage value is lower than the voltage value of the DC power supply 11, and the motor terminal voltage value when the motor 2 is normally driven is a value with sufficient margin for the measurable upper limit value.
  • the control unit 30 is implemented by, for example, a processor including a CPU, a pre-driver IC, etc., and executes various processes in controlling the motor 2 .
  • the control unit 30 includes a motor current control calculation unit 31, an interruption management unit 32, a gate drive unit 33, a drive element failure determination unit 34, a detected current calculation unit 35, an electrical angle calculation unit 36, and a short/open circuit. and a failure determination unit 37 .
  • the detected current calculator 35 calculates the phase currents (Iu, Iv, Iw) flowing through the phases of the motor 2 from the output signals of the current sensors (142u, 142v, 142w) of the motor driver 14 .
  • the detected current calculator 35 calculates, for example, the phase currents (Iu, Iv, Iw) flowing in each phase by using an amplifier to calculate the potential difference across the shunt resistors, which are the current sensors (142u, 142v, 142w).
  • the phase currents (Iu, Iv, Iw) flowing in each phase thus obtained are output to the motor current control calculation section 31 .
  • the electrical angle calculator 36 calculates the electrical angle based on the rotation angle of the rotor detected by the angle detector 20 .
  • the electrical angle calculator 36 outputs the calculated electrical angle to the motor current control calculator 31 .
  • the motor current control calculation unit 31 is an example of a motor control unit that outputs a drive command value to the gate drive unit 33 to control driving of the motor 2 .
  • the motor current control calculator 31 acquires the steering torque output from the torque sensor 22, the vehicle speed information Vc output from the external device, and the electrical angle output from the electrical angle calculator 36. Further, the motor current control calculation unit 31 calculates the motor rotation speed based on the acquired electrical angle. Based on the steering torque, the vehicle speed information Vc, the electrical angle, and the motor rotation speed, the motor current control calculation unit 31 generates a q-axis current command Iq_t, which is a current command on two rotation axes (dq axes), and A d-axis current command Id_t is calculated.
  • the motor current control calculation unit 31 performs detection by converting each phase current (Iu, Iv, Iw) output by the detection current calculation unit 35 into currents on two rotation axes (dq axes) in three phases and two axes. Generate phase currents (Iq_m, Id_m).
  • the motor current control calculation unit 31 Based on the calculated q-axis current command Iq_t and d-axis current command Id_t, and the detected phase currents (Iq_m, Id_m), the motor current control calculation unit 31 performs known control calculation processing (for example, PI (Proportional Integral) control processing) to generate a U-phase PWM signal, a V-phase PWM signal, and a W-phase PWM signal corresponding to the results of processing calculations. The motor current control calculation unit 31 outputs the generated U-phase PWM signal, V-phase PWM signal, and W-phase PWM signal to the subsequent gate driving unit 33 .
  • known control calculation processing for example, PI (Proportional Integral) control processing
  • the motor current control calculation unit 31 stops the driving of the motor 2 when the short/open failure determination result output from the short/open failure determination unit 37 described later indicates that the drive element Q has a short failure. . That is, when it is determined that the drive element Q has a short-circuit failure, the motor current control calculation unit 31 changes the q-axis current command Iq_t and the d-axis current command Id_t, and the detected phase currents (Iq_m, Id_m) described above.
  • a U-phase PWM signal, a V-phase PWM signal, and a W-phase PWM signal are generated so that a current is not applied to each phase of the motor 2, and output to the subsequent gate driving section 33 .
  • the motor current control calculation unit 31 performs the faulty phase identification process and the motor control processing.
  • the motor current control calculation unit 31 identifies the failed phase, which is the failed phase, when it is determined that there is an open failure. The drive is stopped, and the motor 2 is driven by the phase other than the faulty phase.
  • the gate drive unit 33 is, for example, a pre-driver IC of a drive element, and based on the PWM signals of each phase (U-phase PWM signal, V-phase PWM signal, W-phase PWM signal) output by the motor current control calculation unit 31 , and outputs a driving signal for driving each driving element Q of the motor driving section 14 .
  • the gate driving section 33 uses a drive signal DHu for driving the drive element QHu, a drive signal DHv for driving the drive element QHv, and a drive signal DHw for driving the drive element QHw. Output.
  • the gate drive unit 33 uses a drive signal DLu for driving the drive element QLu, a drive signal DLv for driving the drive element QLv, and a drive signal DLw for driving the drive element QLw. Output.
  • the cut-off management unit 32 puts the motor drive current cut-off unit 15 and the power supply voltage cut-off unit 12 into the cut-off state in response to the cut-off instruction from the short/open failure determination unit 37 .
  • the cut-off management unit 32 outputs cut-off instructions to the power supply voltage cut-off unit 12 and the motor drive current cut-off unit 15 according to cut-off instructions from the motor current control calculation unit 31 and the short/open failure determination unit 37, for example.
  • the cutoff management unit 32 In response to the instruction to stop driving the motor 2 from the motor current control calculation unit 31 , the cutoff management unit 32 also outputs a drive stop instruction to the gate driving unit 33 .
  • the drive element failure determination unit 34 executes failure determination for each of the upper arm drive element QH and the lower arm drive element QL based on the voltage value (potential difference) across the drive element Q of the motor drive unit 14, Output the failure determination result. That is, the drive element failure determination section 34 determines the voltage between the high potential side terminal and the low potential side terminal of the drive element QH of the upper arm of the motor drive section 14 (the voltage value between both ends) and the drive element QL of the lower arm. Two voltages are monitored, one between the high potential side terminal and the voltage between the low potential side terminal of the . If the period during which these voltages are not within the normal threshold voltage range is equal to or longer than a predetermined period, the driving element failure determination unit 34 determines that the driving element Q is defective, and outputs the driving element failure determination result. Output.
  • the drive element failure determination unit 34 determines that the voltage value across the drive element QH of the upper arm is within a predetermined normal voltage range in a state where the drive element QH of the upper arm is controlled to be in the ON state (conducting state). If the period outside is equal to or longer than a predetermined period, it is determined that the drive element QH of the upper arm is out of order. In addition, the drive element failure determination unit 34 determines that the period during which the voltage value across the lower arm drive element QL is outside a predetermined normal voltage range when the lower arm drive element QL is controlled to be in a conductive state is If it is longer than the predetermined period, it is determined that the driving element QL of the lower arm is out of order. It should be noted that the drive element failure determination unit 34 performs failure determination at predetermined intervals before the motor 2 is driven and while the motor 2 is being driven.
  • the drive element Q instructs the gate drive unit 33 to turn on
  • the voltage between the terminals of the high potential side potential and the low potential side potential (the voltage value between both ends) is abnormal because it does not fall within the normal threshold voltage range. is a high value, a current greater than that which normally flows flows. In this case, it can be determined that the drive element Q has a short failure.
  • the drive element Q instructs the gate drive unit 33 to turn on, the voltage between the terminals of the high potential side potential and the low potential side potential (the voltage value between both ends) does not fall within the normal threshold voltage range and is abnormal. is a low value, it can be determined that the drive element Q has an open failure.
  • the failure determination results of the upper arm drive element QH and the lower arm drive element QL may be collectively output.
  • the short/open failure determination section 37 executes the determination processing of whether any of the drive elements QL is defective and the determination processing of the failure mode. Also, the voltage monitoring described above can always be executed under the motor driving condition.
  • the drive element failure determination section 34 may be configured to output the failure determination results of the upper arm drive element QH and the lower arm drive element QL as failure determination results. In this case, there is no need for the short/open failure determination unit 37 to determine whether either the upper arm drive element QH or the lower arm drive element QL has failed.
  • the short/open failure determination unit 37 drives the upper arm based on the motor terminal voltage value detected by the motor terminal voltage detection unit 18 when the failure determination result output by the drive element failure determination unit 34 is failure determination. It is determined whether the element QH and the drive element QL of the lower arm are short-circuited or open-circuited. The short/open failure determination unit 37 determines whether the drive element QH of the upper arm is on the basis of the drive element failure determination result output by the drive element failure determination unit 34 and the motor terminal voltage value output by the motor terminal voltage detection unit 18. A failure determination process and a failure determination process for the driving element QL of the lower arm are executed. The short/open failure determination section 37 outputs the determination result to the motor current control calculation section 31 .
  • the short/open failure determination unit 37 In the failure determination process of the drive element QH of the upper arm, the short/open failure determination unit 37, when the period during which the motor terminal voltage value is equal to or greater than the upper arm short failure determination threshold is longer than or equal to a predetermined period, It is determined that the driving element QH of the upper arm is short-circuited.
  • the short/open failure determination unit 37 determines that the drive element QH of the upper arm has an open failure when it determines that the drive element QH of the upper arm does not have a short failure in the determination processing of the drive element QH of the upper arm. .
  • the short/open failure determination unit 37 determines when the period during which the motor terminal voltage value is equal to or less than the lower arm short-circuit failure determination threshold becomes equal to or less than a predetermined period in the determination processing of the drive element QL of the lower arm. , the drive element QL of the lower arm is determined to be short-circuited. The short/open failure determination unit 37 determines that the drive element QL of the lower arm has an open failure when it determines that the drive element QL of the lower arm does not have a short failure in the determination processing of the drive element QL of the lower arm. .
  • the short/open failure determination unit 37 When executing the failure determination process, the short/open failure determination unit 37 shuts off instructions to the power supply voltage shutoff unit 12 and the motor drive current shutoff unit 15 and instructs the gate drive unit 33 to stop driving. Output via the management unit 32 .
  • the short/open failure determination unit 37 detects the upper arm drive element QH based on the motor terminal voltage value applied via the parasitic diode in a state in which the motor drive current cutoff unit 15 cuts off the power supply to the motor 2 . Execute the determination process of
  • the short/open failure determination unit 37 executes determination processing of the drive element QL of the lower arm based on the motor terminal voltage value while the switching element of the motor drive current cutoff unit 15 is in the conducting state.
  • the short/open failure determination unit 37 detects that the detected voltage detected by the power supply voltage detection unit 13 is equal to or higher than a predetermined threshold in a state where the power supply voltage cutoff unit 12 cuts off the power supply voltage. Execute QH determination processing. When the detected voltage is smaller than a predetermined threshold, the short/open failure determination section 37 causes the power supply voltage charging section 17 to forcibly apply a voltage to the motor driving section 14 . Further, the short/open failure determination unit 37 executes determination processing of the drive element QH of the upper arm when the detected voltage reaches a predetermined threshold within a predetermined period.
  • the short/open failure determination unit 37 determines that the drive element QH of the upper arm has a short failure when the detected voltage does not reach a predetermined threshold value within a predetermined period. Note that the short/open failure determination unit 37 executes the determination process of the lower arm drive element QL after performing the determination process of the upper arm drive element QH. Further, when the short-circuit/open-circuit failure determining unit 37 determines that the drive element QH of the upper arm has a short-circuit failure, it does not perform the determination process of the drive element QL of the lower arm.
  • FIG. 2 is a flow chart showing an example of the operation of the motor control device 10 according to this embodiment.
  • failure monitoring processing and failure determination processing of the driving element Q of the motor driving section 14 by the motor control device 10 will be described.
  • the drive element failure determination unit 34 of the motor control device 10 first executes failure determination processing for the drive element Q (step S101). For example, when the high-potential-side terminals of the upper-arm drive element QH and the lower-arm drive element QL are in the ON state, the drive-element failure determination unit 34 determines whether the high-potential-side terminal of the upper-arm drive element QH and the low-potential terminal are in the ON state.
  • the drain-source voltage which is the voltage between the side terminals
  • the drain-source voltage which is the voltage between the high potential side terminal and the low potential side terminal of the driving element QL of the lower arm, are monitored.
  • the drive element failure determination unit 34 outputs a failure determination result indicating that the drive element Q has failed when the inter-terminal voltage value is out of the normal value range for a predetermined period of time.
  • the driving element failure determination unit 34 outputs a failure determination result indicating that no failure has occurred when the voltage value between the terminals is within the normal value range. It should be noted that the normal value range of the inter-terminal voltage value and the predetermined period used for determining the occurrence of a failure differ depending on the characteristics of the pre-driver IC and driving element used. Further, the drive element failure determination unit 34 always executes the failure determination process of the drive element Q while the motor is being driven.
  • the short/open failure determination unit 37 of the motor control device 10 determines whether or not a failure has occurred based on the failure determination result of the drive element failure determination process (step S102). If the failure determination result indicates that a failure has occurred (step S102: YES), the short/open failure determination unit 37 advances the process to step S103. Further, when the failure determination result indicates that a failure has not occurred (step S102: NO), the short/open failure determination unit 37 ends the drive element failure determination process and returns to normal processing of the motor control device 10. FIG.
  • step S103 the short/open failure determination unit 37 executes short failure determination processing for the driving element QH of the upper arm.
  • the short-circuit/open-circuit failure determination unit 37 performs the short-circuit failure determination process for the drive element QH of the upper arm in a state in which the power supply voltage is cut off by the power supply voltage cut-off unit 12 and the smoothing capacitor 141 is charged, and the motor is driven. This is executed when the motor rotation speed becomes equal to or less than a predetermined rotation speed threshold while the voltage supplied to the unit 14 is at a predetermined voltage value.
  • the short/open failure determination section 37 executes short-circuit failure determination processing for the driving element QH of the upper arm. The details of the short-circuit failure determination process for the driving element QH of the upper arm will be described later with reference to FIG.
  • the short/open failure determination unit 37 determines whether or not a short failure has occurred (step S104). If the result of the short-circuit failure determination processing of the upper arm drive element QH is that there is a short circuit failure in the upper arm drive element QH (step S104: YES), the short/open failure determination unit 37 advances the process to step S109. Further, when the result of the short-circuit failure determination processing of the drive element QH of the upper arm is that there is no short-circuit failure of the drive element QH of the upper arm (step S104: NO), the short/open failure determination unit 37 advances the process to step S105. .
  • step S105 the short/open failure determination unit 37 executes short-circuit failure determination processing for the drive element QL of the lower arm.
  • the details of the short-circuit failure determination process for the driving element QL of the lower arm will be described later with reference to FIG.
  • the short/open failure determination unit 37 determines whether or not a short failure has occurred (step S106). If the result of the short-circuit failure determination process for the lower-arm drive element QL is that there is a short-circuit failure in the lower-arm drive element QL (step S106: YES), the short-circuit/open-circuit failure determination unit 37 advances the process to step S109. Further, when the result of the short-circuit failure determination processing of the drive element QL of the lower arm is that there is no short-circuit failure of the drive element QL of the lower arm (step S106: NO), the short/open failure determination unit 37 advances the process to step S107. .
  • the short/open failure determination unit 37 determines whether the driving element QH of the upper arm has a short failure or an open failure, and also determines whether the driving element QH of the lower arm A determination is made as to whether the element QL has a short failure or an open failure.
  • step S107 the motor current control calculation unit 31 of the motor control device 10 executes a failure phase determination process.
  • the motor current control calculation unit 31 first changes the power supply voltage cutoff unit 12 and the motor drive current cutoff unit 15 to the connected state and the gate drive unit 33 to the driven state through the cutoff management unit 32 .
  • the motor current control calculation unit 31 outputs a PWM signal for each phase at a predetermined value, puts the motor in a motor driving state, and executes motor control.
  • the motor current control calculation unit 31 calculates the electrical angle output by the electrical angle calculation unit 36, each phase current value output by the detected current calculation unit 35, and the duty of each phase PWM signal output by the motor control means.
  • the open failure phase is determined based on the value (duty value) or the calculation result obtained by the PI control process. Note that the motor current control calculation unit 31 may use any process as the failure phase determination process as long as the failure phase can be determined.
  • the motor current control calculation unit 31 executes two-phase drive processing (step S108).
  • the motor current control calculation unit 31 executes control for driving the motor with two phases other than the faulty phase. Note that any means for executing the two-phase driving process may be used as long as the motor can be driven with the remaining two phases other than the failed phase. Further, the motor current control calculation section 31 may set the motor drive current cutoff section 15 corresponding to the determined failure phase to the cutoff state. After the process of step S108, the motor control device 10 terminates the failure determination process.
  • step S109 the motor current control calculation unit 31 stops driving the motor.
  • the motor current control calculator 31, for example, stops outputting the PWM signal of each phase.
  • the motor current control calculation unit 31 outputs a cutoff instruction for the power supply voltage cutoff unit 12 and the motor drive current cutoff unit 15 to the cutoff management unit 32 and outputs a cutoff instruction to the gate drive unit 33 .
  • the cut-off management unit 32 outputs cut-off instructions to the power supply voltage cut-off unit 12 and the motor drive current cut-off unit 15, and outputs drive stop instructions to the gate drive unit 33, thereby stopping the motor drive.
  • the motor control device 10 terminates the failure determination process.
  • the drive element failure determination unit 34 connects the high potential side terminals of the upper arm drive element QH and the lower arm drive element QL to the low potential side terminals. By monitoring the voltage between the potential side terminals, it is determined that the drive element Q of either arm is out of order. Then, using this determination result and the motor terminal voltage value detected by the motor terminal voltage detection unit 18, the short/open failure determination unit 37 determines for each upper arm drive element QH and for each lower arm drive element QL , to determine whether the fault is a short circuit or an open fault. It should be noted that the failure determination process of the motor control device 10 according to the present embodiment is executed at predetermined intervals before and during motor driving.
  • FIG. 3 is a flowchart showing an example of processing for determining a short/open failure of the drive element QH of the upper arm of the motor control device 10 according to the present embodiment.
  • the short/open failure determination unit 37 of the motor control device 10 first executes an instruction to cut off the power supply voltage, an instruction to cut off the motor drive current, and an instruction to stop the gate drive (step S201).
  • the short/open failure determination unit 37 outputs to the shutdown management unit 32 an instruction to cut off the power supply voltage, an instruction to cut off the motor drive current, and an instruction to stop the gate drive.
  • the power supply voltage cutoff unit 12 and the motor drive current cutoff unit 15 are brought into the cutoff state, and the gate drive unit 33 stops driving. In this state, the short/open failure determination unit 37 executes short failure determination processing for the drive element QH of the upper arm.
  • the short/open failure determination unit 37 acquires the motor rotation speed (step S202).
  • the short/open failure determination section 37 calculates the motor rotation speed from the electrical angle calculated by the electrical angle calculation section 36 .
  • the short/open failure determination unit 37 determines whether or not the motor rotation speed is equal to or less than the threshold value Rth (step S203). If the motor rotation speed is equal to or less than the threshold value Rth (step S203: YES), the short/open failure determination unit 37 advances the process to step S204. Further, when the motor rotation speed is greater than the threshold value Rth (step S203: NO), the short/open failure determination unit 37 returns the process to step S203.
  • the short-circuit/open-circuit failure determination unit 37 repeats the process of step S203 until the number of revolutions reaches a predetermined rotational speed threshold value (threshold value Rth) at which no erroneous determination occurs. Also, instead of the process of step S203, a brake mode (a process of driving all drive elements Q of the upper or lower arm for a short period of time) may be used.
  • step S204 the short/open failure determination unit 37 determines whether or not the power supply voltage value is equal to or greater than the threshold value Vth1.
  • the motor drive unit 14 has a smoothing capacitor 141 , and the power supply voltage value used in the short-circuit failure determination process of the drive element QH of the upper arm is the voltage value due to the charge accumulated in the smoothing capacitor 141 . Therefore, it is possible for the power supply voltage cutoff unit 12 to perform the short circuit failure determination even in the short circuit failure determination process for the driving element QH of the upper arm which is executed in the power supply voltage cutoff state.
  • step S204 the short/open failure determination unit 37 confirms whether or not the power supply voltage value has reached a short-circuit failure-determinable value.
  • the threshold Vth1 used for determining the power supply voltage value is set to an appropriate value based on the configurations of the DC power supply 11 and the motor terminal voltage detection section 18 .
  • step S204: YES If the power supply voltage value is equal to or greater than the threshold Vth1 (step S204: YES), the short/open failure determination unit 37 advances the process to step S205. Further, when the power supply voltage value is smaller than the threshold value Vth1 (step S204: NO), the short/open failure determination unit 37 advances the process to step S209.
  • step S205 the short/open failure determination unit 37 acquires the motor terminal voltage.
  • the short/open failure determination section 37 acquires the motor terminal voltage detected by the motor terminal voltage detection section 18 .
  • the short/open failure determination unit 37 determines whether the motor terminal voltage is equal to or greater than the threshold value Vth2 and whether a predetermined period of time has elapsed (step S206). That is, the short-circuit/open-circuit failure determination unit 37 determines whether or not the period during which the motor terminal voltage value is equal to or higher than the upper arm short-circuit failure determination threshold (threshold Vth2 or higher) is equal to or longer than a predetermined period. If the motor terminal voltage is equal to or greater than the threshold Vth2 and a predetermined period of time has elapsed (step S206: YES), the short/open failure determination unit 37 advances the process to step S207. Further, when the motor terminal voltage is equal to or higher than the threshold Vth2 and the predetermined period has not elapsed (step S206: NO), the short/open failure determination unit 37 advances the process to step S208.
  • step S207 the short/open failure determination unit 37 determines that there is a short failure.
  • the short-circuit/open-circuit failure determination unit 37 outputs an output indicating a short-circuit failure to the motor current control calculation unit 31 as a determination result.
  • the short/open failure determination unit 37 terminates the short/open failure determination process for the driving element QH of the upper arm.
  • step S208 the short/open failure determination unit 37 determines that there is an open failure.
  • the short/open failure determination unit 37 outputs an output indicating an open failure to the motor current control calculation unit 31 as a determination result.
  • the short/open failure determination unit 37 terminates the short/open failure determination process for the driving element QH of the upper arm.
  • step S209 the short/open failure determination unit 37 executes charging processing of the power supply voltage.
  • the short/open failure determination unit 37 operates the power supply voltage charging unit 17 to apply charge to the smoothing capacitor 141 to raise the power supply voltage.
  • the short/open failure determination unit 37 determines whether or not a predetermined period has elapsed (step S210). The short/open failure determination unit 37 determines whether or not the operating period of the power supply voltage charging unit 17 has passed a predetermined period. If the predetermined period has passed (step S210: YES), the short/open failure determination unit 37 advances the process to step S211. If the predetermined period has not elapsed (step S210: NO), the short/open failure determination unit 37 returns the process to step S204.
  • step S211 the short/open failure determination unit 37 determines that the failure includes a short circuit. That is, the short/open failure determination section 37 determines that some failure including the short failure of the drive element Q of the motor drive section 14 has occurred, and outputs an output indicating a short failure as a determination result. Output to the current control calculation unit 31 .
  • the short/open failure determination unit 37 terminates the short/open failure determination process for the driving element QH of the upper arm.
  • step S210 is set to an appropriate value by the configuration of the smoothing capacitor 141, the power supply voltage charging section 17, and the motor driving section . Further, in a motor control device in which the power supply voltage cutoff unit 12 does not exist, the processing of steps S209 and S210 described above is unnecessary. In this case, in step S204, if the power supply voltage value is smaller than the threshold value Vth1, the process of step S211 may be executed.
  • the drive elements QH of the upper arm if any of the drive elements QH of the upper arm is short-circuited, the power supply voltage applied to the motor drive section 14 is short-circuited. It is applied to the motor terminal voltage detected by the motor terminal voltage detector 18 via the drive element QH of the upper arm and the parasitic diode of the switching element of the motor drive current interrupter 15 . In a motor control device in which the motor drive current cutoff unit 15 does not exist, the drive element QH of the upper arm and the motor terminal voltage detection unit 18 may be directly connected.
  • the measurable upper limit of the motor terminal voltage value is lower than the voltage value of the DC power supply 11, and the motor terminal voltage value in normal times is set to a value with sufficient leeway with respect to the measurable upper limit value. Must be set.
  • the measurable upper limit of the motor terminal voltage is, for example, the measurable upper limit of the motor terminal voltage when a short circuit occurs.
  • the used short-circuit failure determination becomes executable.
  • the short-circuit/open-circuit failure determination unit 37 determines that there is either an open-circuit failure or no failure if the short-circuit failure is not determined. Make a decision and proceed with the process.
  • FIG. 4 is a flow chart showing an example of processing for determining a short/open failure of the drive element QL of the lower arm of the motor control device 10 according to the present embodiment.
  • the short/open failure determination unit 37 of the motor control device 10 first cancels the instruction to cut off the motor drive current (step S301).
  • the short/open failure determination unit 37 outputs an instruction to cancel the interruption of the motor drive current to the interruption management unit 32 .
  • the motor drive current cutoff unit 15 releases the cutoff state. In this state, the short/open failure determination unit 37 executes short failure determination processing for the drive element QL of the lower arm.
  • the determination processing is performed in a state in which the motor drive current interrupting section 15 is in a normal state, that is, in an uninterrupted state, and the gate driving section 33 and the motor driving section 14 are connected. need to run.
  • the drive element QL of the lower arm short-circuits, it becomes equivalent to a state in which the motor terminals are connected to the ground, and the voltage value of the motor terminals, which had been a predetermined voltage value, becomes approximately 0V.
  • the short/open failure determination unit 37 acquires the motor terminal voltage value (step S302).
  • the short/open failure determination section 37 acquires the motor terminal voltage detected by the motor terminal voltage detection section 18 .
  • the short-circuit/open-circuit failure determination unit 37 determines whether the motor terminal voltage is equal to or less than the threshold Vth3 and whether a predetermined period of time has elapsed (step S303). That is, the short-circuit/open-circuit failure determination unit 37 determines whether or not the period during which the motor terminal voltage value is equal to or less than the lower arm short-circuit failure determination threshold value (threshold value Vth3 or less) is longer than or equal to a predetermined period. If the motor terminal voltage is equal to or less than the threshold Vth3 and a predetermined period of time has elapsed (step S303: YES), the short/open failure determination unit 37 advances the process to step S304. Further, when the motor terminal voltage is equal to or less than the threshold Vth3 and the predetermined period has not elapsed (step S303: NO), the short/open failure determination unit 37 advances the process to step S205.
  • step S304 the short/open failure determination unit 37 determines that there is a short failure.
  • the short-circuit/open-circuit failure determination unit 37 outputs an output indicating a short-circuit failure to the motor current control calculation unit 31 as a determination result.
  • the short/open failure determination unit 37 terminates the short/open failure determination process for the driving element QL of the lower arm.
  • step S305 the short/open failure determination unit 37 determines that there is an open failure.
  • the short/open failure determination unit 37 outputs an output indicating an open failure to the motor current control calculation unit 31 as a determination result.
  • the short/open failure determination unit 37 terminates the short/open failure determination process for the driving element QL of the lower arm.
  • the motor control device 10 includes the motor drive section 14, the motor terminal voltage detection section 18, the drive element failure determination section 34, and the short/open failure determination section 37.
  • the motor driving unit 14 supplies electric power to the motor 2 having windings of multiple phases.
  • the motor drive unit 14 has upper arm drive elements QH (QHu, QHv, QHw) and lower arm drive elements QL (QLu, QLv, QLw) connected in series for each of a plurality of phases.
  • the motor terminal voltage detector 18 detects a motor terminal voltage value based on the voltage of the motor terminal of each phase of the motor 2 .
  • the drive element failure determination unit 34 Based on the voltage value between both ends of the drive element Q, the drive element failure determination unit 34 detects the failure of each drive element QH (upper drive element) of the upper arm and the drive element QL (lower drive element) of the lower arm. The determination is executed and the failure determination result is output.
  • the short/open failure determination unit 37 drives the upper arm based on the motor terminal voltage value detected by the motor terminal voltage detection unit 18 when the failure determination result output by the drive element failure determination unit 34 is failure determination. It is determined whether the element QH and the drive element QL of the lower arm are short-circuited or open-circuited.
  • the motor control device 10 uses the motor terminal voltage value based on the voltage of the motor terminal of each phase to detect the short-circuit failure or open-circuit failure for each of the upper arm drive element QH and the lower arm drive element QL.
  • the motor control device 10 does not need to use a pre-driver IC having a monitoring function for each driving element Q. FIG. Therefore, the motor control device 10 according to the present embodiment can perform failure diagnosis of the drive element Q with a simple configuration, and can be made smaller and less expensive.
  • the short/open failure determination unit 37 determines that the motor terminal voltage value is equal to or higher than the upper arm short-circuit failure determination threshold value (e.g., threshold value Vth2 or higher) in the determination processing of the driving element QH of the upper arm. If the period of time is equal to or longer than a predetermined period, it is determined that the drive element QH of the upper arm has a short-circuit failure. Further, the short-circuit/open-circuit failure determination unit 37 determines that the period during which the motor terminal voltage value is equal to or less than the lower-arm short-circuit failure determination threshold value (for example, the threshold value Vth3 or less) in the determination processing of the drive element QL of the lower arm is predetermined. If the period is less than or equal to the period, it is determined that the driving element QL of the lower arm has a short failure.
  • the upper arm short-circuit failure determination threshold value e.g., threshold value Vth2 or higher
  • the motor control device 10 can appropriately perform determination processing for the upper arm driving element QH and determination processing for the lower arm driving element QL with a simpler configuration.
  • the short/open failure determining unit 37 determines that the upper arm driving element QH does not have a short failure in the determination processing of the upper arm driving element QH, the upper arm driving element QH is It is judged to be an open failure.
  • the short/open failure determination unit 37 determines that the drive element QL of the lower arm has an open failure when it determines that the drive element QL of the lower arm does not have a short failure in the determination processing of the drive element QL of the lower arm. .
  • the motor control device 10 can determine an open failure by determining a short failure, thereby simplifying the processing.
  • the drive element failure determination unit 34 determines that the voltage value across the drive element QH of the upper arm is outside the predetermined normal voltage range when the drive element QH of the upper arm is controlled to be in a conducting state. is equal to or greater than a predetermined period, it is determined that the driving element QH of the upper arm is out of order.
  • the drive element failure determination unit 34 determines that a period in which the voltage value across the lower arm drive element QL is outside a predetermined normal voltage range in a state where the lower arm drive element QL is controlled to be in a conductive state is a predetermined period. If it is equal to or longer than the period, it is determined that the driving element QL of the lower arm is out of order.
  • the motor control device 10 can constantly monitor the failure of the driving element Q and appropriately detect the failure of the driving element Q by a simple method.
  • the motor control device 10 includes a motor drive current cutoff section 15 .
  • the motor drive current cutoff unit 15 includes a parasitic diode and has a switching element that cuts off power supply from the motor drive unit 14 to each phase of the motor 2 .
  • the short/open failure determination unit 37 detects the upper arm drive element QH based on the motor terminal voltage value applied via the parasitic diode in a state in which the motor drive current cutoff unit 15 cuts off the power supply to the motor 2 . Execute the determination process of The short/open failure determination unit 37 executes determination processing of the drive element QL of the lower arm based on the motor terminal voltage value while the switching element of the motor drive current cutoff unit 15 is in the conductive state.
  • the motor control device 10 can reduce erroneous determinations in the determination processing of the upper arm driving element QH and the determination processing of the lower arm driving element QL.
  • the motor control device 10 includes a power supply voltage cutoff unit 12 that cuts off the power supply voltage applied to the motor drive unit 14, and a power supply voltage detection unit 13 that detects the voltage applied to the motor drive unit 14. , and a power supply voltage charging unit 17 for forcibly applying a voltage to the motor driving unit 14 .
  • a predetermined threshold value for example, the threshold value Vth1 or higher
  • the short/open failure determination unit 37 Determination processing for the drive element QH of the upper arm is executed.
  • the short/open failure determination unit 37 forces the power supply voltage charging unit 17 to apply a voltage to the motor driving unit 14 so that the detected voltage reaches a predetermined level within a predetermined period. is reached, the determination processing of the driving element QH of the upper arm is executed. The short/open failure determination unit 37 determines that the drive element QH of the upper arm has a short failure when the detected voltage does not reach a predetermined threshold within a predetermined period.
  • the motor control device 10 includes the power supply voltage cutoff unit 12, the power supply voltage detection unit 13, and the power supply voltage charge unit 17, thereby making the state suitable for determination when executing the determination process. can be kept within a certain range, and erroneous determination can be reduced.
  • the short/open failure determination unit 37 performs the determination process of the lower arm drive element QL after performing the determination process of the upper arm drive element QH.
  • the short-circuit/open-circuit failure determining unit 37 determines that the drive element QH of the upper arm has a short-circuit failure, it does not perform the determination process of the drive element QL of the lower arm.
  • the motor control device 10 executes the determination processing in an appropriate determination order and does not perform useless determination processing, so that the determination processing can be performed more appropriately.
  • the motor control device 10 includes the interruption management section 32 that puts the motor drive current interruption section 15 and the power supply voltage interruption section 12 into the interruption state in response to the interruption instruction from the short/open failure determination section 37. Prepare.
  • the motor control device 10 according to the present embodiment can easily change the state of the driving element Q for failure determination processing using the interruption management unit 32. failure diagnosis can be performed appropriately.
  • the motor control device 10 also includes a gate drive section 33 that outputs a drive signal to the upper arm drive element QH and the lower arm drive element QL of each phase of the motor drive section 14 .
  • the shutdown management unit 32 outputs an instruction to stop the gate driving unit 33 in response to the shutdown instruction.
  • the motor control device 10 can easily stop the motor drive section 14 by stopping the gate drive section 33 when performing the failure determination process for the drive element Q.
  • the motor control device 10 also includes a motor current control calculation section 31 (motor control section) that outputs a drive command value to the gate drive section 33 to control driving of the motor 2 .
  • the motor current control calculation unit 31 stops driving the motor 2 when it is determined that there is a short failure in either the determination processing of the drive element QH of the upper arm or the determination process of the drive element QL of the lower arm. Monkey.
  • the motor current control calculation unit 31 determines that the phase is faulty when an open fault is determined in both the determination processing of the drive element QH of the upper arm and the determination process of the drive element QL of the lower arm. A faulty phase is specified, and when there is one faulty phase, the motor 2 is stopped from being driven by the faulty phase, and the motor 2 is driven by phases other than the faulty phase.
  • the motor control device 10 for example, when an open fault of the drive element Q is detected in one phase, drives the motor 2 by phases other than the faulty phase. , the motor 2 can continue to be driven.
  • the drive element failure determination unit 34 performs failure determination before the motor 2 is driven and during the motor 2 is driven.
  • the motor control device 10 according to the present embodiment can appropriately perform failure monitoring and failure determination of the drive element Q.
  • the electric power steering device 1 includes the motor control device 10, the motor 2, and the torque sensor 22 described above.
  • the motor 2 assists the steering of the steering device 25 (steering).
  • the torque sensor 22 detects steering torque of the steering device 25 .
  • the motor control device 10 controls driving of the motor 2 according to the steering torque detected by the torque sensor 22 .
  • the electric power steering apparatus 1 has the same effect as the motor control apparatus 10 described above, and can perform failure diagnosis of the driving element Q with a simple configuration, and is compact and low cost. can be
  • the motor control method is a motor control method for the motor control device 10 including the motor drive unit 14 and the motor terminal voltage detection unit 18 described above, and includes a failure determination step and a short/open failure determination step. step.
  • the failure determination step the drive element failure determination unit 34 performs failure determination for each of the upper arm drive element QH and the lower arm drive element QL based on the voltage value between both ends of the drive element, and outputs the failure determination result. to output
  • the motor terminal voltage value detected by the motor terminal voltage detection unit 18 is detected by the short/open failure determination unit 37 when the failure determination result output by the drive element failure determination step is failure determination. Based on the above, it is determined whether or not there is a short circuit failure or an open circuit failure for each of the drive element QH of the upper arm and the drive element QL of the lower arm.
  • the motor control method according to the present embodiment has the same effect as the motor control device 10 described above, and can diagnose the failure of the drive element Q with a simple configuration, thereby reducing the size and cost. be able to.
  • the present disclosure is not limited to the above-described embodiments, and can be modified without departing from the gist of the present disclosure.
  • the motor control device 10 includes the power supply voltage cutoff unit 12
  • the present invention is not limited to this, and a configuration without the power supply voltage cutoff unit 12 is also possible. It is possible.
  • the motor control device 10 does not need the power supply voltage charging section 17, and the processing order of the short-circuit failure determination processing of the drive element QH of the upper arm and the short-circuit failure determination processing of the lower arm drive element QL is can be executed first.
  • the present invention is not limited to this, and may be configured without the motor drive current interrupter 15.
  • the use of the parasitic diode of the motor drive current cutoff unit 15 in the short failure determination process of the drive element QH of the upper arm, and the use of the motor drive current cutoff unit 15 in the short failure determination process of the drive element QL of the lower arm It becomes unnecessary to control the shut-off state of (shut-off instruction or cancel the shut-off).
  • part of the configuration provided by the control unit 30 may be provided outside the control unit 30.
  • the gate driving section 33 is included in the control section 30 , but it is not limited to this and may be provided outside the control section 30 .
  • the motor terminal voltage detection unit 18 is provided outside the control unit 30.
  • the present invention is not limited to this. may be configured to include
  • the drive element Q is a MOSFET
  • the drive element Q is a MOSFET
  • IGBT Insulated Gate Bipolar Transistor
  • Each component of the motor control device 10 and the electric power steering device 1 described above has a computer system inside. Then, a program for realizing the function of each configuration provided in the motor control device 10 and the electric power steering device 1 described above is recorded in a computer-readable recording medium, and the program recorded in this recording medium is transferred to the computer system. By reading and executing, the processing in each configuration provided in the motor control device 10 and the electric power steering device 1 may be performed.
  • “loading and executing the program recorded on the recording medium into the computer system” includes installing the program in the computer system.
  • the "computer system” here includes hardware such as an OS and peripheral devices.
  • the "computer system” may include multiple computer devices connected via a network including communication lines such as the Internet, WAN, LAN, and dedicated lines.
  • the term "computer-readable recording medium” refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems.
  • the recording medium storing the program may be a non-transitory recording medium such as a CD-ROM.
  • Recording media also include internal or external recording media that can be accessed from the distribution server in order to distribute the program.
  • the program is divided into a plurality of programs, each of which is downloaded at different timings and then combined in each configuration provided in the motor control device 10 and the electric power steering device 1, and the distribution servers that distribute each of the divided programs are different.
  • a "computer-readable recording medium” is a volatile memory (RAM) inside a computer system that acts as a server or client when the program is transmitted via a network, and retains the program for a certain period of time. It shall also include things.
  • the program may be for realizing part of the functions described above.
  • it may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer system.
  • part or all of the functions described above may be realized as an integrated circuit such as LSI (Large Scale Integration).
  • LSI Large Scale Integration
  • Each function mentioned above may be processor-ized individually, and may integrate
  • the method of circuit integration is not limited to LSI, but may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on this technology may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

モータ制御装置は、複数相の巻線を有するモータに電力を供給するモータ駆動部であって、前記複数相の各相に、直列に接続された上側の駆動素子及び下側の駆動素子を有するモータ駆動部と、前記モータの各相のモータ端子の電圧に基づくモータ端子電圧値を検出するモータ端子電圧検出部と、前記駆動素子の両端間の電圧値に基づいて、前記上側の駆動素子及び下側の駆動素子ごとに故障判定を実行し、当該故障判定結果を出力する駆動素子故障判定部と、前記駆動素子故障判定部が出力した前記故障判定結果が故障判定である場合に、前記モータ端子電圧検出部が検出した前記モータ端子電圧値に基づいて、前記上側の駆動素子及び前記下側の駆動素子ごとにショート故障又はオープン故障であるか否かを判定するショート/オープン故障判定部とを備える。

Description

モータ制御装置、電動パワーステアリング装置、及びモータ制御方法
 本開示は、モータ制御装置、電動パワーステアリング装置、及びモータ制御方法に関する。
 自動車等の車両の操舵機構に操舵補助力を付加する電動パワーステアリング装置は、ハンドルに対して操舵補助トルクを発生させるモータと、そのモータを制御するモータ制御装置とを備えており、車両の運転中は常時動作している。そのため、電動パワーステアリング装置は、運転中にモータを駆動する部品が故障した場合に、故障部品の特定を実施し、故障内容によってはアシスト動作を停止、又は継続する等の制御が必要となる。
 従来の電動パワーステアリング装置では、モータを駆動するインバータ回路の駆動素子の故障監視、及び故障判定する技術が知られている(例えば、特許文献1及び特許文献2を参照)。
特開2019-221089号公報 特開2019-187187号公報
 しかしながら、特許文献1に記載の技術では、モータ端子の電圧であるモータ端子電圧と所定値とを比較する比較器をモータの駆動信号の各相に独立して備える必要があり、構成が複雑になるという課題があった。
 また、特許文献2に記載の技術では、駆動素子毎に監視機能を備えたプリドライバIC(Integrated Circuit)を用いることが前提となっており、構成が複雑になるという課題があった。
 このように、上述した従来の電動パワーステアリング装置では、簡易な構成により、駆動素子の故障診断を行うことが困難であった。
 本開示は、上記問題を解決すべくなされたもので、その目的は、簡易な構成により、駆動素子の故障診断を行うことができるモータ制御装置、電動パワーステアリング装置、及びモータ制御方法を提供することにある。
 上記問題を解決するために、本開示の一態様は、複数相の巻線を有するモータに電力を供給するモータ駆動部であって、前記複数相の各相に、直列に接続された上側の駆動素子及び下側の駆動素子を有するモータ駆動部と、前記モータの各相のモータ端子の電圧に基づくモータ端子電圧値を検出するモータ端子電圧検出部と、前記駆動素子の両端間の電圧値に基づいて、前記上側の駆動素子及び下側の駆動素子ごとに故障判定を実行し、当該故障判定結果を出力する駆動素子故障判定部と、前記駆動素子故障判定部が出力した前記故障判定結果が故障判定である場合に、前記モータ端子電圧検出部が検出した前記モータ端子電圧値に基づいて、前記上側の駆動素子及び前記下側の駆動素子ごとにショート故障又はオープン故障であるか否かを判定するショート/オープン故障判定部とを備えるモータ制御装置である。
 また、本開示の一態様は、上記に記載のモータ制御装置と、ステアリングの操舵をアシストする前記モータと、前記ステアリングの操舵トルクを検出するトルクセンサとを備え、前記モータ制御装置は、前記トルクセンサが検出した前記操舵トルクに応じて、前記モータの駆動を制御する電動パワーステアリング装置である。
 また、本開示の一態様は、複数相の巻線を有するモータに電力を供給するモータ駆動部であって、前記複数相の各相に、直列に接続された上側の駆動素子及び下側の駆動素子を有するモータ駆動部と、前記モータの各相のモータ端子の電圧に基づくモータ端子電圧値を検出するモータ端子電圧検出部とを備えるモータ制御装置のモータ制御方法であって、駆動素子故障判定部が、前記駆動素子の両端間の電圧値に基づいて、前記上側の駆動素子及び下側の駆動素子ごとに故障判定を実行し、当該故障判定結果を出力する駆動素子故障判定ステップと、ショート/オープン故障判定部が、前記駆動素子故障判定ステップによって出力された前記故障判定結果が故障判定である場合に、前記モータ端子電圧検出部が検出した前記モータ端子電圧値に基づいて、前記上側の駆動素子及び前記下側の駆動素子ごとにショート故障又はオープン故障であるか否かを判定するショート/オープン故障判定ステップとを含むモータ制御方法である。
 本開示によれば、簡易な構成により、駆動素子の故障診断を行うことができる。
本実施形態による電動パワーステアリング装置の一例を示すブロック図である。 本実施形態によるモータ制御装置の動作の一例を示すフローチャートである。 本実施形態おけるモータ制御装置の上アームの駆動素子のショート/オープン故障の判定処理の一例を示すフローチャートである。 本実施形態おけるモータ制御装置の下アームの駆動素子のショート/オープン故障の判定処理の一例を示すフローチャートである。
 以下、本開示の一実施形態によるモータ制御装置、及び電動パワーステアリング装置について、図面を参照して説明する。
 図1は、本実施形態による電動パワーステアリング装置1の一例を示すブロック図である。
 図1に示すように、電動パワーステアリング装置1は、モータ2と、モータ制御装置10と、角度検出部20と、ハンドル21と、トルクセンサ22と、駆動力伝達機構23と、シャフト24と、操舵装置25とを備える。
 モータ2は、複数相の巻線(例えば、3相の巻線)を有する回転電機であり、ステアリング(操舵装置25)の操舵をアシストする駆動力源として機能する。モータ2は、複数相の巻線が設けられているステータ(不図示)と、ステータの径方向内側に配置された磁石が設けられているロータ(不図示)とを備えている。本実施形態では、磁石は、例えば、永久磁石である。モータ2は、例えば、永久磁石式の同期回転電機である。なお、磁石は、界磁巻線を有する電磁石であってもよい。また、3相の巻線は、スター結線されてもよいし、デルタ結線されてもよい。
 角度検出部20は、例えば、レゾルバ、エンコーダ、MRセンサ等の回転センサである。角度検出部20は、ロータに備えられ、ロータの回転角度を検出する。角度検出部20は、検出したロータの回転角度を。後述するモータ制御装置10の電気角算出部36に出力する。
 操舵装置25は、例えば、自動車などの車両のステアリングの操舵を行うステアリング装置である。操舵装置25は、ハンドル21による操舵トルクを車輪26に伝達する。
 ハンドル21は、運転者が左右に回転し、例えば、自動車などの車両の操舵を行う。
 トルクセンサ22は、シャフト24に取り付けられ、ハンドル21の操舵トルクを検出する。トルクセンサ22は、検出した操舵トルクをモータ制御装置10のモータ電流制御演算部31に出力する。
 駆動力伝達機構23は、モータ2のロータの回転軸に連結され、モータ2の駆動力を車両の操舵装置25に伝達する。駆動力伝達機構23は、例えば、モータ2の回転軸をシャフト24に連結するウォームギヤ機構等である。
 シャフト24は、ハンドル21に連結され、ハンドル21による操舵トルクを操舵装置25に伝達する。
 モータ制御装置10は、トルクセンサ22が検出した操舵トルクに応じて、モータ2の駆動を制御する。モータ制御装置10は、直流電源11と、電源電圧遮断部12と、電源電圧検出部13と、モータ駆動部14と、モータ駆動電流遮断部15と、電源電圧チャージ部17と、モータ端子電圧検出部18と、制御部30とを備える。
 モータ駆動部14は、例えば、直流電源11からモータ2を駆動する交流信号(交流電力)を生成するインバータ回路である。モータ駆動部14は、モータ2に電力を供給する。モータ駆動部14は、正極側の駆動素子(QHu、QHv、QHw)と、負極側の駆動素子(QLu、QLv、QLw)と、平滑コンデンサ141と、電流センサ(142u、142v、142w)とを備える。
 モータ駆動部14は、電源電圧遮断部12と、電源電圧検出部13とを介した直流電源11の正極側に接続される正極側の駆動素子(QHu、QHv、QHw)と、直流電源11の負極側に接続される負極側の駆動素子(QLu、QLv、QLw)とが直列接続された直列回路を、3相各相に対応して3セット備えている。ここで、正極側の駆動素子(QHu、QHv、QHw)は、上アームの駆動素子(上側の駆動素子)に対応し、負極側の駆動素子(QLu、QLv、QLw)は、下アームの駆動素子(下側の駆動素子)に対応する。
 なお、本実施形態において、上アームの駆動素子(QHu、QHv、QHw)のそれぞれは、モータ駆動部14が備える任意の上アームの駆動素子を示す場合、又は、特に区別しない場合には、駆動素子QHとして説明する。また、下アームの駆動素子(QLu、QLv、QLw)のそれぞれは、モータ駆動部14が備える任意の下アームの駆動素子を示す場合、又は、特に区別しない場合には、駆動素子QLとして説明する。また、駆動素子QHと駆動素子QLとのそれぞれは、モータ駆動部14が備える任意の駆動素子を示す場合、又は、特に区別しない場合には、駆動素子Qとして説明する。
 モータ駆動部14において、各相の直列回路における2つの駆動素子(駆動素子QH及び駆動素子QL)の接続点が、モータ駆動電流遮断部15を介して、モータ2の対応する相の巻線に接続されている。
 具体的には、U相の直列回路では、U相の上アームの駆動素子QHuと、U相の下アームの駆動素子QLuとが直列接続され、2つの駆動素子(QHu、QLu)の接続点がモータ駆動電流遮断部15を介して、モータ2のU相の巻線に接続されている。
 また、V相の直列回路では、V相の上アームの駆動素子QHvと、V相の下アームの駆動素子QLvとが直列接続され、2つの駆動素子(QHv、QLv)の接続点がモータ駆動電流遮断部15を介して、モータ2のV相の巻線に接続されている。
 また、W相の直列回路では、W相の上アームの駆動素子QHwと、W相の下アームの駆動素子QLwとが直列接続され、2つの駆動素子(QHw、QLw)の接続点がモータ駆動電流遮断部15を介して、モータ2のW相の巻線に接続されている。
 平滑コンデンサ141は、電源電圧遮断部12と、電源電圧検出部13とを介した直流電源11の正極側と負極側との間に接続されている。平滑コンデンサ141は、電源電圧遮断部12と、電源電圧検出部13とを介した直流電源11の電源電圧を平滑化する。
 駆動素子Qは、例えば、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)などの半導体スイッチング素子である。上アームの駆動素子(QHu、QHv、QHw)及び下アームの駆動素子(QLu、QLv、QLw)の各駆動素子Qのゲート端子には、ゲート駆動部33から駆動信号が供給される。各駆動素子Qは、ゲート駆動部33から出力される駆動信号(DHu、DHv、DHw、DLu、DLv、DLw)により駆動されることにより、後段のモータ駆動電流遮断部15を介してモータ2の各相コイル(各相の巻線)に所定の相電圧を印加する。これにより、各駆動素子Qは、モータ2に所定の駆動電流を流すことになり、モータ2にトルクを発生させる。
 電流センサ(142u、142v、142w)は、例えば、シャント抵抗、ホール素子などのセンサであり、各相の巻線に流れる電流を検出する。電流センサ142uは、下アームの駆動素子QLuと直列に接続され、U相の巻線に流れる電流を検出する。また、電流センサ142vは、下アームの駆動素子QLvと直列に接続され、V相の巻線に流れる電流を検出する。また、電流センサ142wは、下アームの駆動素子QLwと直列に接続され、W相の巻線に流れる電流を検出する。
 直流電源11は、モータ駆動部14に直流電圧Vdcを供給する。本実施形態では、直流電圧Vdcは、例えば、12Vであり、直流電源11は、例えば、バッテリ、DC-DCコンバータ、ダイオード整流器、PWM整流器等、直流電圧Vdcを出力する機器であれば、どのような機器であってもよい。
 電源電圧遮断部12は、モータ駆動部14に印加される直流電源11の直流電圧を、後述する遮断管理部32から電源電圧遮断指示に従って、遮断する。すなわち、電源電圧遮断部12は、モータ駆動部14に印加される電源電圧を遮断する。
 電源電圧検出部13は、直流電源11の電圧を検出する。電源電圧検出部13は、検出した直流電源11の電圧値を、後述するモータ電流制御演算部31及びショート/オープン故障判定部37に出力する。
 電源電圧チャージ部17は、上アームの駆動素子QHの故障判定処理を実行する際に、モータ駆動部14に強制的に電圧を印加させる。電源電圧チャージ部17は、電源電圧遮断部12において、電源電圧が遮断された際に、時間の経過とともに減少していくモータ駆動部14への印加電圧を一定に保つために平滑コンデンサ141に電荷を付与することで電圧を印加する。なお、電源電圧チャージ部17は、上アームの駆動素子QHの故障判定処理を実行する際の電源電圧が所定閾値以下であった場合のみ動作する。また、モータ制御装置10が、電源電圧遮断部12を備えていない場合には、モータ制御装置10は、電源電圧チャージ部17を備えなくてもよい。
 モータ駆動電流遮断部15は、寄生ダイオードを含み、モータ駆動部14からモータ2の各相への電力供給を遮断するスイッチング素子を有する。モータ駆動電流遮断部15は、モータ駆動部14の各相の出力線とモータ2の各相端子との間に配置され、遮断管理部32からのモータ駆動電流遮断指示に従って、モータ駆動部14からの出力である駆動電流を遮断する。
 モータ駆動電流遮断部15が備えるスイッチング素子は、例えば、FETであり、寄生ダイオードが、モータ駆動部14の各相の出力線から、モータ2の各相端子に向かって順方向になるように配置されている。
 モータ端子電圧検出部18は、モータ2の各相のモータ端子の電圧に基づくモータ端子電圧値を検出する。ここで、モータ端子電圧値は、モータ2の各相コイル(各相の巻線)の端子電圧を1つにまとめた電圧値であり、例えば、各相コイル(各相の巻線)の端子電圧の総和値、平均値、などである。
 モータ端子電圧検出部18は、例えば、AD変換器(アナログ・デジタル変換器)を有するCPU(Central Processing Unit)などにより実現され、AD変換器により検出された各電圧値をCPUにより所定の演算処理等を実行して、モータ端子電圧値を出力する。なお、モータ端子電圧検出部18は、モータ制御装置10において、ハードウェアとソフトウェアとのインターフェース部であり、CPUのAD変換器を含むものとする。モータ端子電圧検出部18は、例えば、各相のモータ端子に接続されている信号線を1つにまとめて結線した信号線の電圧値(各相コイルの端子電圧の総和値)を、モータ端子電圧値として、AD変換器を用いて検出する。
 また、モータ端子電圧値の測定可能上限値は、直流電源11の電圧値よりも小さく、且つモータ2の正常駆動時のモータ端子電圧値は、測定可能上限値に対して十分余裕のある値となるよう設定する必要がある。
 制御部30は、例えば、CPUを含むプロセッサやプリドライバICなどで実現され、モータ2の制御における各種処理を実行する。制御部30は、モータ電流制御演算部31と、遮断管理部32と、ゲート駆動部33と、駆動素子故障判定部34と、検出電流算出部35と、電気角算出部36と、ショート/オープン故障判定部37とを備える。
 検出電流算出部35は、モータ駆動部14の電流センサ(142u、142v、142w)の出力信号からモータ2の各相に流れている相電流(Iu、Iv、Iw)を算出する。検出電流算出部35は、例えば、各相に流れている相電流(Iu、Iv、Iw)を電流センサ(142u、142v、142w)であるシャント抵抗の両端電位差をアンプを用いて算出し、算出された各相に流れている相電流(Iu、Iv、Iw)はモータ電流制御演算部31に出力する。
 電気角算出部36は、角度検出部20が検出したロータの回転角度に基づいて、電気角を算出する。電気角算出部36は、算出した電気角をモータ電流制御演算部31に出力する。
 モータ電流制御演算部31は、ゲート駆動部33に駆動指令値を出力して、モータ2の駆動を制御するモータ制御部の一例である。モータ電流制御演算部31は、トルクセンサ22が出力する操舵トルクと、外部機器から出力された車速情報Vcと、電気角算出部36が出力する電気角とを取得する。また、モータ電流制御演算部31は、取得した電気角に基づいて、モータ回転数を算出する。モータ電流制御演算部31は、操舵トルクと、車速情報Vcと、電気角及びモータ回転数とに基づいて、回転二軸(d-q軸)上の電流指令であるq軸電流指令Iq_t、及びd軸電流指令Id_tを算出する。また、モータ電流制御演算部31は、検出電流算出部35が出力する各相電流(Iu、Iv、Iw)を、回転二軸(d-q軸)上の電流に三相二軸変換した検出相電流(Iq_m、Id_m)を生成する。
 モータ電流制御演算部31は、算出したq軸電流指令Iq_t及びd軸電流指令Id_tと、検出相電流(Iq_m、Id_m)とに基づいて、公知の制御演算処理(例えば、PI(Proportional Integral)制御処理)を実行し、処理演算結果に該当する、U相PWM信号と、V相PWM信号と、W相PWM信号とを生成する。モータ電流制御演算部31は、生成したU相PWM信号と、V相PWM信号と、W相PWM信号とを後段のゲート駆動部33に出力する。
 また、モータ電流制御演算部31は、後述するショート/オープン故障判定部37から出力されるショート/オープン故障判定結果が、駆動素子Qがショート故障であった場合に、モータ2の駆動を停止させる。すなわち、モータ電流制御演算部31は、駆動素子Qがショート故障であると判定された場合に、q軸電流指令Iq_t及びd軸電流指令Id_tと、上述した検出相電流(Iq_m、Id_m)とに依らずに、モータ2の各相に電流が印加されないような、U相PWM信号と、V相PWM信号と、W相PWM信号とを生成し、後段のゲート駆動部33に出力する。
 また、モータ電流制御演算部31は、上アームの駆動素子QH及び下アームの駆動素子QLの両方において、オープン故障であると判定された場合に、故障相特定処理、及び故障相以外の相でのモータ制御処理を実行する。モータ電流制御演算部31は、オープン故障であると判定された場合に、故障している相である故障相を特定し、当該故障相が1つである場合に、当該故障相によるモータ2の駆動を停止させて、当該故障相以外の相により、モータ2を駆動させる。
 ゲート駆動部33は、例えば、駆動素子のプリドライバICであり、モータ電流制御演算部31が出力する各相のPWM信号(U相PWM信号、V相PWM信号、W相PWM信号)に基づいて、モータ駆動部14の各駆動素子Qを駆動させる駆動信号を出力する。ゲート駆動部33は、上アームの駆動素子QHを駆動する駆動信号として、駆動素子QHuを駆動する駆動信号DHu、駆動素子QHvを駆動する駆動信号DHv、及び駆動素子QHwを駆動する駆動信号DHwを出力する。ゲート駆動部33は、下アームの駆動素子QLを駆動する駆動信号として、駆動素子QLuを駆動する駆動信号DLu、駆動素子QLvを駆動する駆動信号DLv、及び駆動素子QLwを駆動する駆動信号DLwを出力する。
 遮断管理部32は、ショート/オープン故障判定部37からの遮断指示に応じて、モータ駆動電流遮断部15、及び電源電圧遮断部12を遮断状態にさせる。遮断管理部32は、例えば、モータ電流制御演算部31、及びショート/オープン故障判定部37の遮断指示に応じて、電源電圧遮断部12、及びモータ駆動電流遮断部15に遮断指示を出力する。また、遮断管理部32は、モータ電流制御演算部31からのモータ2の駆動の停止指示に応じて、ゲート駆動部33も駆動停止指示を出力する。
 駆動素子故障判定部34は、モータ駆動部14の駆動素子Qの両端間の電圧値(電位差)に基づいて、上アームの駆動素子QH及び下アームの駆動素子QLごとに故障判定を実行し、当該故障判定結果を出力する。すなわち、駆動素子故障判定部34は、モータ駆動部14の上アームの駆動素子QHの高電位側端子と低電位側端子と間の電圧(両端間の電圧値)と、下アームの駆動素子QLの高電位側端子と低電位側端子と間の電圧との2つの電圧を監視する。駆動素子故障判定部34は、これらの電圧が正常時の閾値電圧範囲に収まっていない期間がある所定の期間以上であった場合に、駆動素子Qの故障と判定し、駆動素子故障判定結果を出力する。
 具体的に、駆動素子故障判定部34は、上アームの駆動素子QHがオン状態(導通状態)に制御された状態において、上アームの駆動素子QHの両端間の電圧値が所定の正常電圧範囲外である期間が、所定の期間以上である場合に、上アームの駆動素子QHが故障であると判定する。また、駆動素子故障判定部34は、下アームの駆動素子QLが導通状態に制御された状態において、下アームの駆動素子QLの両端間の電圧値が所定の正常電圧範囲外である期間が、所定の期間以上である場合に、下アームの駆動素子QLが故障であると判定する。
 なお、駆動素子故障判定部34は、モータ2の駆動前、及び、モータ2の駆動中に、所定の周期で故障判定を実行する。
 なお、駆動素子Qがゲート駆動部33のオン駆動指示時において、高電位側電位と低電位側電位との端子間電圧(両端間の電圧値)が、正常時の閾値電圧範囲に収まらず異常に高い値であった場合、正常時に流れる電流以上の電流が流れる。この場合、駆動素子Qがショート故障していると判定することができる。
 また、駆動素子Qがゲート駆動部33のオン駆動指示時において、高電位側電位と低電位側電位との端子間電圧(両端間の電圧値)が、正常時の閾値電圧範囲に収まらず異常に低い値であった場合、駆動素子Qがオープン故障していると判定することができる。
 なお、駆動素子故障判定部34の故障判定結果は、上アームの駆動素子QH、及び下アームの駆動素子QLの故障判定結果をまとめて出力するものあり、上アームの駆動素子QH、及び下アームの駆動素子QLのいずれかの故障であるかの判定処理、及び故障モードの判定処理は、ショート/オープン故障判別部37が、実行する。また、上述した電圧監視は、モータ駆動状態下では常時実行可能である。
 また、駆動素子故障判定部34は、故障判定結果として、上アーム駆動素子QH、及び下アームの駆動素子QLの故障判定結果をそれぞれ出力するような構成であってもよい。この場合は、ショート/オープン故障判別部37によって、上アームの駆動素子QH、及び下アームの駆動素子QLのいずれかが故障したかの判定処理は、不要になる。
 ショート/オープン故障判定部37は、駆動素子故障判定部34が出力した故障判定結果が故障判定である場合に、モータ端子電圧検出部18が検出したモータ端子電圧値に基づいて、上アームの駆動素子QH及び下アームの駆動素子QLごとにショート故障又はオープン故障であるか否かを判定する。ショート/オープン故障判定部37は、駆動素子故障判定部34が出力する駆動素子故障判定結果と、モータ端子電圧検出部18が出力するモータ端子電圧値とに基づいて、上アームの駆動素子QHの故障判定処理と、下アームの駆動素子QLの故障判定処理とを実行する。ショート/オープン故障判定部37は、判定結果をモータ電流制御演算部31に出力する。
 ショート/オープン故障判定部37は、上アームの駆動素子QHの故障判定処理において、モータ端子電圧値が上アームのショート故障判定閾値以上となっている期間が、所定期間以上となった場合に、上アームの駆動素子QHがショート故障であると判定する。ショート/オープン故障判定部37は、上アームの駆動素子QHの判定処理において、上アームの駆動素子QHがショート故障でないと判定した場合に、上アームの駆動素子QHがオープン故障であると判定する。
 また、ショート/オープン故障判定部37は、下アームの駆動素子QLの判定処理において、モータ端子電圧値が下アームのショート故障判定閾値以下となっている期間が、所定期間以下となった場合に、下アームの駆動素子QLがショート故障であると判定する。ショート/オープン故障判定部37は、下アームの駆動素子QLの判定処理において、下アームの駆動素子QLがショート故障でないと判定した場合に、下アームの駆動素子QLがオープン故障であると判定する。
 なお、ショート/オープン故障判定部37は、故障判定処理を実行する際に、電源電圧遮断部12及びモータ駆動電流遮断部15への遮断指示と、ゲート駆動部33への駆動指示停止を、遮断管理部32を介して出力する。ショート/オープン故障判定部37は、モータ駆動電流遮断部15によりモータ2への電力供給を遮断した状態において、寄生ダイオードを介して印加されるモータ端子電圧値に基づいて、上アームの駆動素子QHの判定処理を実行する。
 また、ショート/オープン故障判定部37は、モータ駆動電流遮断部15のスイッチング素子を導通状態にした状態において、モータ端子電圧値に基づいて、下アームの駆動素子QLの判定処理を実行する。
 また、ショート/オープン故障判定部37は、電源電圧遮断部12が電源電圧を遮断した状態において、電源電圧検出部13が検出した検出電圧が所定の閾値以上である場合に、上アームの駆動素子QHの判定処理を実行する。ショート/オープン故障判定部37は、検出電圧が所定の閾値よりも小さい場合に、電源電圧チャージ部17により、モータ駆動部14に強制的に電圧を印加させる。また、ショート/オープン故障判定部37は、所定の期間内に検出電圧が所定の閾値に達した場合に、上アームの駆動素子QHの判定処理を実行する。
 また、ショート/オープン故障判定部37は、所定の期間内に検出電圧が所定の閾値に達しなかった場合に、上アームの駆動素子QHがショート故障であると判定する。
 なお、ショート/オープン故障判定部37は、上アームの駆動素子QHの判定処理を実行した後に、下アームの駆動素子QLの判定処理を実行する。また、ショート/オープン故障判定部37は、上アームの駆動素子QHがショート故障であると判定した場合に、下アームの駆動素子QLの判定処理を実行しない。
 次に、図面を参照して、本実施形態によるモータ制御装置10の動作について説明する。
 図2は、本実施形態によるモータ制御装置10の動作の一例を示すフローチャートである。ここでは、モータ制御装置10によるモータ駆動部14の駆動素子Qの故障監視処理、及び故障判定処理について説明する。
 図2に示すように、モータ制御装置10の駆動素子故障判定部34は、まず、駆動素子Qの故障判定処理を実行する(ステップS101)。駆動素子故障判定部34は、例えば、上アームの駆動素子QH及び下アームの駆動素子QLの高電位側端子がオン状態である際に、上アームの駆動素子QHの高電位側端子と低電位側端子間の電圧であるドレイン・ソース間電圧と、下アームの駆動素子QLの高電位側端子と低電位側端子間の電圧であるドレイン・ソース間電圧を監視する。駆動素子故障判定部34は、上記端子間電圧値が、正常値範囲に収まっていない時間が所定期間経過した場合に、駆動素子Qの故障発生を示す故障判定結果を出力する。
 また、駆動素子故障判定部34は、上記の端子間電圧値が正常値範囲に収まっている場合に、故障未発生の故障判定結果を出力する。なお、上記の端子間電圧値の正常値範囲、及び故障発生の判定に用いる所定の期間は、使用するプリドライバIC及び駆動素子の特性によって異なる。また、駆動素子故障判定部34は、駆動素子Qの故障判定処理を、モータ駆動中において常時実行する。
 次に、モータ制御装置10のショート/オープン故障判定部37は、駆動素子故障判定処理の故障判定結果に基づいて、故障が発生したか否かを判定する(ステップS102)。ショート/オープン故障判定部37は、故障判定結果が故障発生である場合(ステップS102:YES)に、処理をステップS103に進める。また、ショート/オープン故障判定部37は、故障判定結果が故障発生でない場合(ステップS102:NO)に、駆動素子故障判定処理を終了し、通常のモータ制御装置10の処理に戻る。
 ステップS103において、ショート/オープン故障判定部37は、上アームの駆動素子QHのショート故障判定処理を実行する。ショート/オープン故障判定部37は、上アームの駆動素子QHのショート故障判定処理を、電源電圧遮断部12にて電源電圧が遮断され、平滑コンデンサ141に電荷が溜まった状態で、且つ、モータ駆動部14に供給されている電圧が所定電圧値になっている状態で、モータ回転数が所定回転数閾値以下なった場合に実行する。ショート/オープン故障判定部37は、モータ端子電圧検出部18が検出したモータ端子電圧値に基づいて、上アームの駆動素子QHのショート故障判定処理を実行する。
 なお、上アームの駆動素子QHのショート故障判定処理の詳細については、図3を参照して後述する。
 次に、ショート/オープン故障判定部37は、ショート故障が発生しているか否かを判定する(ステップS104)。ショート/オープン故障判定部37は、上アームの駆動素子QHのショート故障判定処理の結果、上アームの駆動素子QHのショート故障である場合(ステップS104:YES)に、処理をステップS109に進める。また、ショート/オープン故障判定部37は、上アームの駆動素子QHのショート故障判定処理の結果、上アームの駆動素子QHのショート故障でない場合(ステップS104:NO)に、処理をステップS105に進める。
 ステップS105において、ショート/オープン故障判定部37は、下アームの駆動素子QLのショート故障判定処理を実行する。なお、下アームの駆動素子QLのショート故障判定処理の詳細については、図4を参照して後述する。
 次に、ショート/オープン故障判定部37は、ショート故障が発生しているか否かを判定する(ステップS106)。ショート/オープン故障判定部37は、下アームの駆動素子QLのショート故障判定処理の結果、下アームの駆動素子QLのショート故障である場合(ステップS106:YES)に、処理をステップS109に進める。また、ショート/オープン故障判定部37は、下アームの駆動素子QLのショート故障判定処理の結果、下アームの駆動素子QLのショート故障でない場合(ステップS106:NO)に、処理をステップS107に進める。
 なお、ステップS103からステップS106までの処理により、ショート/オープン故障判定部37は、上アームの駆動素子QHが、ショート故障であるか、オープン故障であるかの判定を行うとともに、下アームの駆動素子QLが、ショート故障であるか、オープン故障であるかの判定を行う。
 ステップS107において、モータ制御装置10のモータ電流制御演算部31は、故障相の判定処理を実行する。モータ電流制御演算部31は、まず、遮断管理部32を介して、電源電圧遮断部12、及びモータ駆動電流遮断部15を接続状態に、ゲート駆動部33を駆動状態に、それぞれ変更する。モータ電流制御演算部31は、各相PWM信号を所定値で出力し、モータ駆動状態にして、モータ制御を実行する。
 次に、モータ電流制御演算部31は、電気角算出部36が出力する電気角と、検出電流算出部35が出力する各相電流値と、モータ制御手段の出力である各相PWM信号のDuty値(デューティ値)、もしくはPI制御処理より求められた演算結果とに基づいて、オープン故障相を判定する。なお、モータ電流制御演算部31は、故障相判定処理は、故障相の判定が可能な処理であれば、どのような処理を用いてもよい。
 次に、モータ電流制御演算部31は、二相駆動処理を実行する(ステップS108)。モータ電流制御演算部31は、故障相以外の2相でモータ駆動するための制御を実行する。なお、二相駆動処理の実行手段は、故障相以外の残り2相でモータ駆動が実施可能となる処理であればどのような処理を用いてもよい。また、モータ電流制御演算部31は、判定した故障相に対応したモータ駆動電流遮断部15を遮断状態にするようにしてもよい。ステップS108の処理後に、モータ制御装置10は、故障判定処理を終了する。
 また、ステップS109において、モータ電流制御演算部31は、モータの駆動を停止する。モータ電流制御演算部31は、例えば、各相PWM信号の出力を停止する。モータ電流制御演算部31は、遮断管理部32に、電源電圧遮断部12、及びモータ駆動電流遮断部15の遮断指示を出力するとともに、ゲート駆動部33に対する遮断指示を出力する。その結果、遮断管理部32は、電源電圧遮断部12、及びモータ駆動電流遮断部15に遮断指示を出力するとともに、ゲート駆動部33に駆動停止の指示を出力し、モータ駆動が停止される。
 ステップS109の処理後に、モータ制御装置10は、故障判定処理を終了する。
 図2に示すように、本実施形態によるモータ制御装置10の故障判定処理では、駆動素子故障判定部34が、上アームの駆動素子QH、及び下アームの駆動素子QLの高電位側端子と低電位側端子間の電圧を監視することにより、どちらかのアームの駆動素子Qが故障であることを判定する。そして、この判定結果とモータ端子電圧検出部18が検出したモータ端子電圧値とを用いて、ショート/オープン故障判定部37が、上アームの駆動素子QHごと、及び下アームの駆動素子QLごとに、ショート故障であるか、オープン故障であるかの判定処理を実行する。なお、本実施形態によるモータ制御装置10の故障判定処理は、モータ駆動前及びモータ駆動中において所定の周期で実行される。
 次に、図3を参照して、上述した図2のステップS103の処理の詳細について説明する。
 図3は、本実施形態おけるモータ制御装置10の上アームの駆動素子QHのショート/オープン故障の判定処理の一例を示すフローチャートである。
 図3に示すように、モータ制御装置10のショート/オープン故障判定部37は、まず、電源電圧の遮断指示、モータ駆動電流の遮断指示、及びゲート駆動の停止指示を実行する(ステップS201)。ショート/オープン故障判定部37は、電源電圧の遮断指示、モータ駆動電流の遮断指示、及びゲート駆動の停止指示を遮断管理部32に出力する。これにより、電源電圧遮断部12、及びモータ駆動電流遮断部15が遮断状態になり、ゲート駆動部33が駆動停止を実行する。この状態において、ショート/オープン故障判定部37は、上アームの駆動素子QHのショート故障判定処理を実行する。
 なお、電源電圧遮断部12、及びモータ駆動電流遮断部15が存在しないモータ制御装置においては、電源電圧遮断、モータ駆動電流遮断はする必要がない。
 次に、ショート/オープン故障判定部37は、モータ回転数を取得する(ステップS202)。ショート/オープン故障判定部37は、電気角算出部36が算出した電気角からモータ回転数を算出する。
 次に、ショート/オープン故障判定部37は、モータ回転数が閾値Rth以下であるか否かを判定する(ステップS203)。ショート/オープン故障判定部37は、モータ回転数が閾値Rth以下である場合(ステップS203:YES)に、処理をステップS204に進める。また、ショート/オープン故障判定部37は、モータ回転数が閾値Rthより大きい場合(ステップS203:NO)に、処理をステップS203に戻す。
 なお、モータ2が回転している状態であると、モータ端子電圧値は、誘起電圧の発生により、電圧値が上昇し、モータ回転状態におけるモータ端子電圧値を用いた上アームの駆動素子QHのショート故障判定処理において、ショート故障の誤判定を招く恐れがある。そのため、ショート/オープン故障判定部37は、誤判定が発生しない所定の回転数閾値(閾値Rth)以下に達するまで、ステップS203の処理を繰り返す。
 また、ステップS203の処理の代わりに、ブレーキモード(上又は下アームの全駆動素子Qを短時間駆動する処理)を使用してもよい。
 ステップS204において、ショート/オープン故障判定部37は、電源電圧値が閾値Vth1以上であるか否かを判定する。ここで、モータ駆動部14は、平滑コンデンサ141を備えており、上アームの駆動素子QHのショート故障判定処理において用いる電源電圧値は、平滑コンデンサ141に溜まった電荷による電圧値である。そのため、電源電圧遮断部12が、電源電圧遮断状態で実行される上アームの駆動素子QHのショート故障判定処理でもショート故障判定を行うことが可能である。
 また、平滑コンデンサ141の印加電圧が、何らかの要因により低下することで、電源電圧検出部13が検出した電圧値が、モータ端子電圧値の測定可能な上限値以下となった場合、ショート故障が発生したとしてもモータ端子電圧値が測定可能上限値にならず正常な判定を行うことができない。そのため、ステップS204において、ショート/オープン故障判定部37は、ショート故障判定可能な電源電圧値に達しているか否かを確認している。
 なお、電源電圧値の判定に用いる閾値Vth1は、直流電源11、及びモータ端子電圧検出部18の構成に基づいて、適切な値に設定されている。
 ショート/オープン故障判定部37は、電源電圧値が閾値Vth1以上である場合(ステップS204:YES)に、処理をステップS205に進める。また、ショート/オープン故障判定部37は、電源電圧値が閾値Vth1より小さい場合(ステップS204:NO)に、処理をステップS209に進める。
 ステップS205において、ショート/オープン故障判定部37は、モータ端子電圧を取得する。ショート/オープン故障判定部37は、モータ端子電圧検出部18が検出したモータ端子電圧を取得する。
 次に、ショート/オープン故障判定部37は、モータ端子電圧が閾値Vth2以上、且つ、所定の期間経過したか否かを判定する(ステップS206)。すなわち、ショート/オープン故障判定部37は、モータ端子電圧値が上アームのショート故障判定閾値以上(閾値Vth2以上)となっている期間が、所定期間以上となったか否かを判定する。ショート/オープン故障判定部37は、モータ端子電圧が閾値Vth2以上、且つ、所定の期間経過した場合(ステップS206:YES)に、処理をステップS207に進める。また、ショート/オープン故障判定部37は、モータ端子電圧が閾値Vth2以上、且つ、所定の期間経過していない場合(ステップS206:NO)に、処理をステップS208に進める。
 ステップS207において、ショート/オープン故障判定部37は、ショート故障であると判定する。ショート/オープン故障判定部37は、判定結果として、ショート故障であることを示す出力を、モータ電流制御演算部31に出力する。ステップS207の処理後に、ショート/オープン故障判定部37は、上アームの駆動素子QHのショート/オープン故障判定処理を終了する。
 また、ステップS208において、ショート/オープン故障判定部37は、オープン故障であると判定する。ショート/オープン故障判定部37は、判定結果として、オープン故障であることを示す出力を、モータ電流制御演算部31に出力する。ステップS207の処理後に、ショート/オープン故障判定部37は、上アームの駆動素子QHのショート/オープン故障判定処理を終了する。
 また、ステップS209において、ショート/オープン故障判定部37は、電源電圧のチャージ処理を実行する。ショート/オープン故障判定部37は、電源電圧チャージ部17を動作させ、平滑コンデンサ141に電荷を付与することで電源電圧を上昇させる。
 次に、ショート/オープン故障判定部37は、所定の期間経過したか否かを判定する(ステップS210)。ショート/オープン故障判定部37は、電源電圧チャージ部17の動作期間が、所定の期間経過したか否かを判定する。ショート/オープン故障判定部37は、所定の期間経過した場合(ステップS210:YES)に、処理をステップS211に進める。ショート/オープン故障判定部37は、所定の期間経過していない場合(ステップS210:NO)に、処理をステップS204に戻す。
 ステップS211において、ショート/オープン故障判定部37は、ショートを含む故障と判定する。すなわち、ショート/オープン故障判定部37は、モータ駆動部14の駆動素子Qのショート故障を含む、何らかの故障が発生したものと判定し、判定結果として、ショート故障であることを示す出力を、モータ電流制御演算部31に出力する。ステップS211の処理後に、ショート/オープン故障判定部37は、上アームの駆動素子QHのショート/オープン故障判定処理を終了する。
 なお、ステップS210における所定の期間は、平滑コンデンサ141、電源電圧チャージ部17、モータ駆動部14の構成により適切な値に設定されている。また、電源電圧遮断部12が存在しないモータ制御装置では、上述したステップS209及びステップS210の処理は、不要である。この場合、ステップS204において、電源電圧値が閾値Vth1より小さい場合に、ステップS211の処理を実行するようにしてもよい。
 また、上述した上アームの駆動素子QHのショート/オープン故障判定処理において、上アームの駆動素子QHのいずれかがショート故障であった場合、モータ駆動部14に印加された電源電圧が、ショートした上アームの駆動素子QHと、モータ駆動電流遮断部15のスイッチング素子の寄生ダイオードとを介して、モータ端子電圧検出部18で検出されるモータ端子電圧に印加されるこになる。なお、モータ駆動電流遮断部15が存在しないモータ制御装置においては、上アームの駆動素子QHとモータ端子電圧検出部18とが直接接続されるようにしてもよい。
 また、モータ端子電圧値の測定可能な上限値は、直流電源11の電圧値よりも小さく、且つ通常時のモータ端子電圧値は、測定可能な上限値に対して十分余裕のある値となるよう設定する必要がある。モータ端子電圧値の測定可能な上限値は、例えば、ショート発生時のモータ端子電圧値の測定可能な上限値となり、通常時のモータ端子電圧値と大きく異なる値となるため、モータ端子電圧値を使用したショート故障判定が実行可能になる。
 また、上アームの駆動素子QHのショート故障判定処理において、ショート/オープン故障判定部37は、ショート故障判定とならなかった場合に、オープン故障か故障なしのどちらかであり、まとめてオープン故障と判定して、処理を進める。
 次に、図4を参照して、上述した図2のステップS105の処理の詳細について説明する。
 図4は、本実施形態おけるモータ制御装置10の下アームの駆動素子QLのショート/オープン故障の判定処理の一例を示すフローチャートである。
 図4に示すように、モータ制御装置10のショート/オープン故障判定部37は、まず、モータ駆動電流の遮断指示を解除する(ステップS301)。ショート/オープン故障判定部37は、モータ駆動電流の遮断の解除指示を遮断管理部32に出力する。これにより、モータ駆動電流遮断部15が遮断状態を解除する。この状態において、ショート/オープン故障判定部37は、下アームの駆動素子QLのショート故障判定処理を実行する。
 なお、下アームの駆動素子QLのショート故障判定処理では、モータ駆動電流遮断部15が通常状態、つまり未遮断状態で、ゲート駆動部33とモータ駆動部14とが接続された状態において判定処理を実行する必要がある。
 この状態において、下アームの駆動素子QLがショート故障すると、モータ端子がグラウンドと接続された状態と等価となり、ある所定の電圧値であったモータ端子の電圧値が約0Vになる。
 次に、ショート/オープン故障判定部37は、モータ端子電圧値を取得する(ステップS302)。ショート/オープン故障判定部37は、モータ端子電圧検出部18が検出したモータ端子電圧を取得する。
 次に、ショート/オープン故障判定部37は、モータ端子電圧が閾値Vth3以下、且つ、所定の期間経過したか否かを判定する(ステップS303)。すなわち、ショート/オープン故障判定部37は、モータ端子電圧値が下アームのショート故障判定閾値以下(閾値Vth3以下)となっている期間が、所定期間以上となったか否かを判定する。ショート/オープン故障判定部37は、モータ端子電圧が閾値Vth3以下、且つ、所定の期間経過した場合(ステップS303:YES)に、処理をステップS304に進める。また、ショート/オープン故障判定部37は、モータ端子電圧が閾値Vth3以下、且つ、所定の期間経過していない場合(ステップS303:NO)に、処理をステップS205に進める。
 ステップS304において、ショート/オープン故障判定部37は、ショート故障であると判定する。ショート/オープン故障判定部37は、判定結果として、ショート故障であることを示す出力を、モータ電流制御演算部31に出力する。ステップS304の処理後に、ショート/オープン故障判定部37は、下アームの駆動素子QLのショート/オープン故障判定処理を終了する。
 また、ステップS305において、ショート/オープン故障判定部37は、オープン故障であると判定する。ショート/オープン故障判定部37は、判定結果として、オープン故障であることを示す出力を、モータ電流制御演算部31に出力する。ステップS305の処理後に、ショート/オープン故障判定部37は、下アームの駆動素子QLのショート/オープン故障判定処理を終了する。
 以上説明したように、本実施形態によるモータ制御装置10は、モータ駆動部14と、モータ端子電圧検出部18と、駆動素子故障判定部34と、ショート/オープン故障判定部37とを備える。モータ駆動部14は、複数相の巻線を有するモータ2に電力を供給する。モータ駆動部14は、複数相の各相に、直列に接続された上アームの駆動素子QH(QHu、QHv、QHw)及び下アームの駆動素子QL(QLu、QLv、QLw)を有する。モータ端子電圧検出部18は、モータ2の各相のモータ端子の電圧に基づくモータ端子電圧値を検出する。駆動素子故障判定部34は、駆動素子Qの両端間の電圧値に基づいて、上アームの駆動素子QH(上側の駆動素子)及び下アームの駆動素子QL(下側の駆動素子)ごとに故障判定を実行し、当該故障判定結果を出力する。ショート/オープン故障判定部37は、駆動素子故障判定部34が出力した故障判定結果が故障判定である場合に、モータ端子電圧検出部18が検出したモータ端子電圧値に基づいて、上アームの駆動素子QH及び下アームの駆動素子QLごとにショート故障又はオープン故障であるか否かを判定する。
 これにより、本実施形態によるモータ制御装置10は、各相のモータ端子の電圧に基づくモータ端子電圧値を用いて、上アームの駆動素子QH及び下アームの駆動素子QLごとにショート故障又はオープン故障であるか否かを判定するため、例えば、駆動信号の各相に独立して、比較器を備える必要がなく、構成を簡略化することができる。また、本実施形態によるモータ制御装置10は、駆動素子Q毎に監視機能を備えたプリドライバICを用いる必要がない。よって、本実施形態によるモータ制御装置10は、簡易な構成により、駆動素子Qの故障診断を行うことができ、小型化、及び低コスト化することができる。
 また、本実施形態では、ショート/オープン故障判定部37は、上アームの駆動素子QHの判定処理において、モータ端子電圧値が上アームのショート故障判定閾値以上(例えば、閾値Vth2以上)となっている期間が、所定期間以上となった場合に、上アームの駆動素子QHがショート故障であると判定する。また、ショート/オープン故障判定部37は、下アームの駆動素子QLの判定処理において、モータ端子電圧値が下アームのショート故障判定閾値以下(例えば、閾値Vth3以下)となっている期間が、所定期間以下となった場合に、下アームの駆動素子QLがショート故障であると判定する。
 これにより、本実施形態によるモータ制御装置10は、上アームの駆動素子QHの判定処理及び下アームの駆動素子QLの判定処理を、より簡易な構成により適切に行うことができる。
 また、本実施形態では、ショート/オープン故障判定部37は、上アームの駆動素子QHの判定処理において、上アームの駆動素子QHがショート故障でないと判定した場合に、上アームの駆動素子QHがオープン故障であると判定する。ショート/オープン故障判定部37は、下アームの駆動素子QLの判定処理において、下アームの駆動素子QLがショート故障でないと判定した場合に、下アームの駆動素子QLがオープン故障であると判定する。
 これにより、本実施形態によるモータ制御装置10は、ショート故障の判定を行うことで、オープン故障の判定を行うことができ、処理を簡略化することができる。
 また、本実施形態では、駆動素子故障判定部34は、上アームの駆動素子QHが導通状態に制御された状態において、上アームの駆動素子QHの両端間の電圧値が所定の正常電圧範囲外である期間が、所定の期間以上である場合に、上アームの駆動素子QHが故障であると判定する。駆動素子故障判定部34は、下アームの駆動素子QLが導通状態に制御された状態において、下アームの駆動素子QLの両端間の電圧値が所定の正常電圧範囲外である期間が、所定の期間以上である場合に、下アームの駆動素子QLが故障であると判定する。
 これにより、本実施形態によるモータ制御装置10は、簡易な手法により適切に、駆動素子Qの故障を常時監視することができるとともに、駆動素子Qの故障を適切に検出することができる。
 また、本実施形態によるモータ制御装置10は、モータ駆動電流遮断部15を備る。モータ駆動電流遮断部15は、寄生ダイオードを含み、モータ駆動部14からモータ2の各相への電力供給を遮断するスイッチング素子を有する。ショート/オープン故障判定部37は、モータ駆動電流遮断部15によりモータ2への電力供給を遮断した状態において、寄生ダイオードを介して印加されるモータ端子電圧値に基づいて、上アームの駆動素子QHの判定処理を実行する。ショート/オープン故障判定部37は、モータ駆動電流遮断部15のスイッチング素子を導通状態にした状態において、モータ端子電圧値に基づいて、下アームの駆動素子QLの判定処理を実行する。
 これにより、本実施形態によるモータ制御装置10は、上アームの駆動素子QHの判定処理、及び下アームの駆動素子QLの判定処理において、誤判定を低減することができる。
 また、本実施形態によるモータ制御装置10は、モータ駆動部14に印加される電源電圧を遮断する電源電圧遮断部12と、モータ駆動部14に印加される電圧を検出する電源電圧検出部13と、モータ駆動部14に強制的に電圧を印加させる電源電圧チャージ部17とを備える。ショート/オープン故障判定部37は、電源電圧遮断部12が電源電圧を遮断した状態において、電源電圧検出部13が検出した検出電圧が所定の閾値以上(例えば、閾値Vth1以上)である場合に、上アームの駆動素子QHの判定処理を実行する。ショート/オープン故障判定部37は、検出電圧が所定の閾値よりも小さい場合に、電源電圧チャージ部17により、モータ駆動部14に強制的に電圧を印加させ、所定の期間内に検出電圧が所定の閾値に達した場合に、上アームの駆動素子QHの判定処理を実行する。ショート/オープン故障判定部37は、所定の期間内に検出電圧が所定の閾値に達しなかった場合に、上アームの駆動素子QHがショート故障であると判定する。
 これにより、本実施形態によるモータ制御装置10は、電源電圧遮断部12と、電源電圧検出部13と、電源電圧チャージ部17とを備えることにより、判定処理を実行する際の状態を判定に適した一定の範囲に収めることができ、誤判定を低減することができる。
 また、本実施形態では、ショート/オープン故障判定部37は、上アームの駆動素子QHの判定処理を実行した後に、下アームの駆動素子QLの判定処理を実行する。ショート/オープン故障判定部37は、上アームの駆動素子QHがショート故障であると判定した場合に、下アームの駆動素子QLの判定処理を実行しない。
 これにより、本実施形態によるモータ制御装置10は、判定処理を適切な判定順序で実行し、無駄な判定処理を行わないため、判定処理をより適切に行うことができる。
 また、本実施形態によるモータ制御装置10は、ショート/オープン故障判定部37からの遮断指示に応じて、モータ駆動電流遮断部15、及び電源電圧遮断部12を遮断状態にさせる遮断管理部32を備える。
 これにより、本実施形態によるモータ制御装置10は、駆動素子Qの故障判定処理のための状態変更を、遮断管理部32を用いて、簡単に行うことができ、簡易な構成により、駆動素子Qの故障診断を適切に行うことができる。
 また、本実施形態によるモータ制御装置10は、モータ駆動部14の各相の上アームの駆動素子QH及び下アームの駆動素子QLに駆動信号を出力するゲート駆動部33を備える。遮断管理部32は、遮断指示に応じて、ゲート駆動部33の停止指示を出力する。
 これにより、本実施形態によるモータ制御装置10は、駆動素子Qの故障判定処理を行う際に、ゲート駆動部33の停止させることで、モータ駆動部14を簡単に停止することができる。
 また、本実施形態によるモータ制御装置10は、ゲート駆動部33に駆動指令値を出力して、モータ2の駆動を制御するモータ電流制御演算部31(モータ制御部)を備える。モータ電流制御演算部31は、上アームの駆動素子QHの判定処理、及び下アームの駆動素子QLの判定処理のいずれかにおいて、ショート故障であると判定された場合に、モータ2の駆動を停止さる。モータ電流制御演算部31は、上アームの駆動素子QHの判定処理、及び下アームの駆動素子QLの判定処理の両方において、オープン故障であると判定された場合に、故障している相である故障相を特定し、当該故障相が1つである場合に、当該故障相によるモータ2の駆動を停止させて、当該故障相以外の相により、モータ2を駆動させる。
 これにより、本実施形態によるモータ制御装置10は、例えば、1つの相において、駆動素子Qのオープン故障が検出された場合に、故障相以外の相により、モータ2を駆動させるため、駆動素子Qのオープン故障が発生した場合に、モータ2の駆動を継続させることができる。
 また、本実施形態では、駆動素子故障判定部34は、モータ2の駆動前、及び、モータ2の駆動中に、故障判定を実行する。
 これにより、本実施形態によるモータ制御装置10は、駆動素子Qの故障監視、及び故障判定を適切に行うことができる。
 また、本実施形態による電動パワーステアリング装置1は、上述したモータ制御装置10と、モータ2と、トルクセンサ22とを備える。モータ2は、操舵装置25(ステアリング)の操舵をアシストする。トルクセンサ22は、操舵装置25の操舵トルクを検出する。モータ制御装置10は、トルクセンサ22が検出した操舵トルクに応じて、モータ2の駆動を制御する。
 これにより、本実施形態による電動パワーステアリング装置1は、上述したモータ制御装置10と同様の効果を奏し、簡易な構成により、駆動素子Qの故障診断を行うことができ、小型化、及び低コスト化することができる。
 また、本実施形態によるモータ制御方法は、上述したモータ駆動部14と、モータ端子電圧検出部18とを備えるモータ制御装置10のモータ制御方法であって、故障判定ステップと、ショート/オープン故障判定ステップとを含む。故障判定ステップにおいて、駆動素子故障判定部34が、駆動素子の両端間の電圧値に基づいて、上アームの駆動素子QH及び下アームの駆動素子QLごとに故障判定を実行し、当該故障判定結果を出力する。ショート/オープン故障判定ステップにおいて、ショート/オープン故障判定部37が、駆動素子故障判定ステップによって出力された故障判定結果が故障判定である場合に、モータ端子電圧検出部18が検出したモータ端子電圧値に基づいて、上アームの駆動素子QH及び下アームの駆動素子QLごとにショート故障又はオープン故障であるか否かを判定する。
 これにより、本実施形態によるモータ制御方法は、上述したモータ制御装置10と同様の効果を奏し、簡易な構成により、駆動素子Qの故障診断を行うことができ、小型化、及び低コスト化することができる。
 なお、本開示は、上記の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で変更可能である。
 例えば、上記の実施形態において、モータ制御装置10が、電源電圧遮断部12を備えている例を説明したが、これに限定されるものではなく、電源電圧遮断部12を備えていない構成にも適当可能である。この場合には、モータ制御装置10は、電源電圧チャージ部17も不要であるとともに、上アームの駆動素子QHのショート故障判定処理、及び、下アームの駆動素子QLのショート故障判定処理の処理順は、どちらが先に実行されてもよい。
 上記の実施形態において、モータ制御装置10が、モータ駆動電流遮断部15を備えている例を説明したが、これに限定されるものではなく、モータ駆動電流遮断部15を備えていない構成であってもよい。その場合には、上アームの駆動素子QHのショート故障判定処理でのモータ駆動電流遮断部15の寄生ダイオードの使用、及び下アームの駆動素子QLのショート故障判定処理でのモータ駆動電流遮断部15の遮断状態の制御(遮断指示、又は遮断解除)が不要となる。
 また、上記の実施形態において、制御部30が備える構成の一部が、制御部30の外部に備えられるようにしてもよい。例えば、ゲート駆動部33は、制御部30に含まれる例を説明したが、これに限定されるものではなく、制御部30の外部に備えるようにしてもよい。
 また、上記の実施形態において、モータ端子電圧検出部18は、制御部30の外部に備える例を説明したが、これに限定されるものではなく、制御部30が、モータ端子電圧検出部18を含むように構成してもよい。
 また、上記の実施形態において、駆動素子Qが、MOSFETである例を説明したが、これに限定されるものではなく、例えば、IGBT(Insulated Gate Bipolar Transistor)など、他の半導体スイッチング素子であってもよい。
 なお、上述したモータ制御装置10及び電動パワーステアリング装置1が備える各構成は、内部に、コンピュータシステムを有している。そして、上述したモータ制御装置10及び電動パワーステアリング装置1が備える各構成の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより上述したモータ制御装置10及び電動パワーステアリング装置1が備える各構成における処理を行ってもよい。ここで、「記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行する」とは、コンピュータシステムにプログラムをインストールすることを含む。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータシステム」は、インターネットやWAN、LAN、専用回線等の通信回線を含むネットワークを介して接続された複数のコンピュータ装置を含んでもよい。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。このように、プログラムを記憶した記録媒体は、CD-ROM等の非一過性の記録媒体であってもよい。
 また、記録媒体には、当該プログラムを配信するために配信サーバからアクセス可能な内部又は外部に設けられた記録媒体も含まれる。なお、プログラムを複数に分割し、それぞれ異なるタイミングでダウンロードした後にモータ制御装置10及び電動パワーステアリング装置1が備える各構成で合体される構成や、分割されたプログラムのそれぞれを配信する配信サーバが異なっていてもよい。さらに「コンピュータ読み取り可能な記録媒体」とは、ネットワークを介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、上述した機能の一部を実現するためのものであってもよい。さらに、上述した機能をコンピュータシステムに既に記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 また、上述した機能の一部又は全部を、LSI(Large Scale Integration)等の集積回路として実現してもよい。上述した各機能は個別にプロセッサ化してもよいし、一部、又は全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。
 1…電動パワーステアリング装置、2…モータ、10…モータ制御装置、11…直流電源、12…電源電圧遮断部、13…電源電圧検出部、14…モータ駆動部、15…モータ駆動電流遮断部、17…電源電圧チャージ部、18…モータ端子電圧検出部、20…角度検出部、21…ハンドル、22…トルクセンサ、23…駆動力伝達機構、24…シャフト、25…操舵装置、26…車輪、30…制御部、31…モータ電流制御演算部、32…遮断管理部、33…ゲート駆動部、34…駆動素子故障判定部、35…検出電流算出部、36…電気角算出部、37…ショート/オープン故障判定部、141…平滑コンデンサ、142u,142v,142w…電流センサ、QHu,QHv,QHw,QLu,QLv,QLw…駆動素子

Claims (14)

  1.  複数相の巻線を有するモータに電力を供給するモータ駆動部であって、前記複数相の各相に、直列に接続された上側の駆動素子及び下側の駆動素子を有するモータ駆動部と、
     前記モータの各相のモータ端子の電圧に基づくモータ端子電圧値を検出するモータ端子電圧検出部と、
     前記駆動素子の両端間の電圧値に基づいて、前記上側の駆動素子及び下側の駆動素子ごとに故障判定を実行し、当該故障判定結果を出力する駆動素子故障判定部と、
     前記駆動素子故障判定部が出力した前記故障判定結果が故障判定である場合に、前記モータ端子電圧検出部が検出した前記モータ端子電圧値に基づいて、前記上側の駆動素子及び前記下側の駆動素子ごとにショート故障又はオープン故障であるか否かを判定するショート/オープン故障判定部と
     を備えるモータ制御装置。
  2.  前記ショート/オープン故障判定部は、
     前記上側の駆動素子の判定処理において、前記モータ端子電圧値が上側のショート故障判定閾値以上となっている期間が、所定期間以上となった場合に、前記上側の駆動素子がショート故障であると判定し、
     前記下側の駆動素子の判定処理において、前記モータ端子電圧値が下側のショート故障判定閾値以下となっている期間が、所定期間以下となった場合に、前記下側の駆動素子がショート故障であると判定する
     請求項1に記載のモータ制御装置。
  3.  前記ショート/オープン故障判定部は、
     前記上側の駆動素子の判定処理において、前記上側の駆動素子がショート故障でないと判定した場合に、前記上側の駆動素子がオープン故障であると判定し、
     前記下側の駆動素子の判定処理において、前記下側の駆動素子がショート故障でないと判定した場合に、前記下側の駆動素子がオープン故障であると判定する
     請求項2に記載のモータ制御装置。
  4.  前記駆動素子故障判定部は、
     前記上側の駆動素子が導通状態に制御された状態において、前記上側の駆動素子の前記両端間の電圧値が所定の正常電圧範囲外である期間が、所定の期間以上である場合に、前記上側の駆動素子が故障であると判定し、
     前記下側の駆動素子が導通状態に制御された状態において、前記下側の駆動素子の前記両端間の電圧値が所定の正常電圧範囲外である期間が、所定の期間以上である場合に、前記下側の駆動素子が故障であると判定する
     請求項1から請求項3のいずれか一項に記載のモータ制御装置。
  5.  寄生ダイオードを含み、前記モータ駆動部から前記モータの各相への電力供給を遮断するスイッチング素子を有するモータ駆動電流遮断部を備え、
     前記ショート/オープン故障判定部は、
     前記モータ駆動電流遮断部により前記モータへの電力供給を遮断した状態において、前記寄生ダイオードを介して印加される前記モータ端子電圧値に基づいて、前記上側の駆動素子の判定処理を実行し、
     前記モータ駆動電流遮断部の前記スイッチング素子を導通状態にした状態において、前記モータ端子電圧値に基づいて、前記下側の駆動素子の判定処理を実行する
     請求項1から請求項4のいずれか一項に記載のモータ制御装置。
  6.  前記モータ駆動部に印加される電源電圧を遮断する電源電圧遮断部と、
     前記モータ駆動部に印加される電圧を検出する電源電圧検出部と、
     前記モータ駆動部に強制的に電圧を印加させる電源電圧チャージ部と
     を備え、
     前記ショート/オープン故障判定部は、
     前記電源電圧遮断部が前記電源電圧を遮断した状態において、前記電源電圧検出部が検出した検出電圧が所定の閾値以上である場合に、前記上側の駆動素子の判定処理を実行し、
     前記検出電圧が前記所定の閾値よりも小さい場合に、前記電源電圧チャージ部により、前記モータ駆動部に強制的に電圧を印加させ、所定の期間内に前記検出電圧が前記所定の閾値に達した場合に、前記上側の駆動素子の判定処理を実行し、
     前記所定の期間内に前記検出電圧が前記所定の閾値に達しなかった場合に、前記上側の駆動素子がショート故障であると判定する
     請求項1から請求項5のいずれか一項に記載のモータ制御装置。
  7.  前記ショート/オープン故障判定部は、
     前記上側の駆動素子の判定処理を実行した後に、前記下側の駆動素子の判定処理を実行し、
     前記上側の駆動素子がショート故障であると判定した場合に、前記下側の駆動素子の判定処理を実行しない
     請求項6に記載のモータ制御装置。
  8.  前記ショート/オープン故障判定部からの遮断指示に応じて、前記電源電圧遮断部を遮断状態にさせる遮断管理部を備える
     請求項6又は請求項7に記載のモータ制御装置。
  9.  前記ショート/オープン故障判定部からの遮断指示に応じて、前記モータ駆動電流遮断部を遮断状態にさせる遮断管理部を備える
     請求項5に記載のモータ制御装置。
  10.  前記モータ駆動部の各相の前記上側の駆動素子及び前記下側の駆動素子に駆動信号を出力するゲート駆動部を備え、
     前記遮断管理部は、前記遮断指示に応じて、前記ゲート駆動部の停止指示を出力する
     請求項8又は請求項9に記載のモータ制御装置。
  11.  前記ゲート駆動部に駆動指令値を出力して、前記モータの駆動を制御するモータ制御部を備え、
     前記モータ制御部は、
     前記上側の駆動素子の判定処理、及び前記下側の駆動素子の判定処理のいずれかにおいて、前記ショート故障であると判定された場合に、前記モータの駆動を停止させ、
     前記上側の駆動素子の判定処理、及び前記下側の駆動素子の判定処理の両方において、前記オープン故障であると判定された場合に、故障している相である故障相を特定し、当該故障相が1つである場合に、当該故障相による前記モータの駆動を停止させて、当該故障相以外の相により、前記モータを駆動させる
     請求項10に記載のモータ制御装置。
  12.  前記駆動素子故障判定部は、前記モータの駆動前、及び、前記モータの駆動中に、前記故障判定を実行する
     請求項1から請求項11のいずれか一項に記載のモータ制御装置。
  13.  請求項1から請求項12のいずれか一項に記載のモータ制御装置と、
     ステアリングの操舵をアシストする前記モータと、
     前記ステアリングの操舵トルクを検出するトルクセンサと
     を備え、
     前記モータ制御装置は、前記トルクセンサが検出した前記操舵トルクに応じて、前記モータの駆動を制御する
     電動パワーステアリング装置。
  14.  複数相の巻線を有するモータに電力を供給するモータ駆動部であって、前記複数相の各相に、直列に接続された上側の駆動素子及び下側の駆動素子を有するモータ駆動部と、前記モータの各相のモータ端子の電圧に基づくモータ端子電圧値を検出するモータ端子電圧検出部とを備えるモータ制御装置のモータ制御方法であって、
     駆動素子故障判定部が、前記駆動素子の両端間の電圧値に基づいて、前記上側の駆動素子及び下側の駆動素子ごとに故障判定を実行し、当該故障判定結果を出力する駆動素子故障判定ステップと、
     ショート/オープン故障判定部が、前記駆動素子故障判定ステップによって出力された前記故障判定結果が故障判定である場合に、前記モータ端子電圧検出部が検出した前記モータ端子電圧値に基づいて、前記上側の駆動素子及び前記下側の駆動素子ごとにショート故障又はオープン故障であるか否かを判定するショート/オープン故障判定ステップと
     を含むモータ制御方法。
PCT/JP2021/025897 2021-07-09 2021-07-09 モータ制御装置、電動パワーステアリング装置、及びモータ制御方法 WO2023281727A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023533009A JP7466778B2 (ja) 2021-07-09 2021-07-09 モータ制御装置、電動パワーステアリング装置、及びモータ制御方法
PCT/JP2021/025897 WO2023281727A1 (ja) 2021-07-09 2021-07-09 モータ制御装置、電動パワーステアリング装置、及びモータ制御方法
CN202180098952.XA CN117501618A (zh) 2021-07-09 2021-07-09 电动机控制装置、电动助力转向装置、以及电动机控制方法
EP21949360.8A EP4369596A1 (en) 2021-07-09 2021-07-09 Motor control device, electric power steering device, and motor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025897 WO2023281727A1 (ja) 2021-07-09 2021-07-09 モータ制御装置、電動パワーステアリング装置、及びモータ制御方法

Publications (1)

Publication Number Publication Date
WO2023281727A1 true WO2023281727A1 (ja) 2023-01-12

Family

ID=84800570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025897 WO2023281727A1 (ja) 2021-07-09 2021-07-09 モータ制御装置、電動パワーステアリング装置、及びモータ制御方法

Country Status (4)

Country Link
EP (1) EP4369596A1 (ja)
JP (1) JP7466778B2 (ja)
CN (1) CN117501618A (ja)
WO (1) WO2023281727A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035783A1 (ja) * 2014-09-04 2016-03-10 日本精工株式会社 モータ制御装置、故障検出方法並びにそれらを搭載した電動パワーステアリング装置及び車両
JP6305605B1 (ja) * 2017-05-22 2018-04-04 三菱電機株式会社 モータ制御装置
WO2018180274A1 (ja) * 2017-03-31 2018-10-04 日本電産株式会社 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP2019187187A (ja) 2018-04-17 2019-10-24 日本電産エレシス株式会社 インバータ回路の故障診断方法
JP2019221089A (ja) 2018-06-21 2019-12-26 日本電産エレシス株式会社 インバータ回路の故障診断方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035783A1 (ja) * 2014-09-04 2016-03-10 日本精工株式会社 モータ制御装置、故障検出方法並びにそれらを搭載した電動パワーステアリング装置及び車両
WO2018180274A1 (ja) * 2017-03-31 2018-10-04 日本電産株式会社 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP6305605B1 (ja) * 2017-05-22 2018-04-04 三菱電機株式会社 モータ制御装置
JP2019187187A (ja) 2018-04-17 2019-10-24 日本電産エレシス株式会社 インバータ回路の故障診断方法
JP2019221089A (ja) 2018-06-21 2019-12-26 日本電産エレシス株式会社 インバータ回路の故障診断方法

Also Published As

Publication number Publication date
JP7466778B2 (ja) 2024-04-12
CN117501618A (zh) 2024-02-02
EP4369596A1 (en) 2024-05-15
JPWO2023281727A1 (ja) 2023-01-12

Similar Documents

Publication Publication Date Title
US10177694B2 (en) Current sensor abnormality diagnosis device
US6989641B2 (en) Methods and apparatus for fault-tolerant control of electric machines
CN110460254B (zh) 用于电力转换器的控制电路
US10611400B2 (en) Electric power steering device and method for controlling same
KR101622011B1 (ko) 3상 교류 모터 제어 방법 및 장치
US9312683B2 (en) Vehicle-mounted electric rotating machine
WO2012160694A1 (ja) モータ制御装置
KR101354792B1 (ko) 인버터 시스템에서 전력 케이블의 분리 검출 방법
JP2018074880A (ja) 回転電機システム
JP2019122238A (ja) モータ制御装置およびモータ制御装置の制御方法
JP6983305B2 (ja) 車両制御装置
WO2020032084A1 (ja) モータ駆動装置、電動オイルポンプおよびモータ駆動装置の故障検知方法
JP2021035178A (ja) モータ制御装置
JP2015029393A (ja) 車両用回転電機
US20230179136A1 (en) Motor control device, motor unit, and vehicle
CN110481335B (zh) 车辆的驱动装置及车辆的控制方法
JP5724906B2 (ja) 電子制御装置、異常検出方法
WO2023281727A1 (ja) モータ制御装置、電動パワーステアリング装置、及びモータ制御方法
WO2013035424A1 (ja) 車両用電動補機装置
US20220315098A1 (en) Electric power steering device and method
KR101365276B1 (ko) 인버터 시스템에서 전력 케이블의 분리 검출 방법
WO2019220780A1 (ja) 故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
US20240136915A1 (en) Power converter and control method for power converter
WO2024057708A1 (ja) 電力変換装置および駆動装置
US20240235379A9 (en) Power converter and control method for power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949360

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023533009

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180098952.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021949360

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021949360

Country of ref document: EP

Effective date: 20240209