WO2023279927A1 - 微纳结构的增材制造方法 - Google Patents

微纳结构的增材制造方法 Download PDF

Info

Publication number
WO2023279927A1
WO2023279927A1 PCT/CN2022/098811 CN2022098811W WO2023279927A1 WO 2023279927 A1 WO2023279927 A1 WO 2023279927A1 CN 2022098811 W CN2022098811 W CN 2022098811W WO 2023279927 A1 WO2023279927 A1 WO 2023279927A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
printing
dispersed phase
electric field
additive manufacturing
Prior art date
Application number
PCT/CN2022/098811
Other languages
English (en)
French (fr)
Inventor
冯继成
刘仕荣
刘柄言
Original Assignee
上海科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海科技大学 filed Critical 上海科技大学
Priority to EP22836681.1A priority Critical patent/EP4349567A1/en
Publication of WO2023279927A1 publication Critical patent/WO2023279927A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • Micro-nano additive manufacturing (also known as micro-nano-scale 3D printing) is a new micro-nano processing technology based on the principle of additive manufacturing of micro-nano structures. Compared with the existing micro-nano manufacturing technology, it has the advantages of low cost, simple structure, many types of available materials, no laser, no vacuum, no liquid reagent, direct forming, etc., especially in the complex three-dimensional micro-nano structure, high aspect ratio Micro-nano structures, multi-material and multi-scale micro-nano structures, parallel mode printing of multiple micro-nano structures, and embedded heterostructures have outstanding potential and advantages.
  • the existing micro-nano scale printing has certain limitations.
  • the printing material of micro-stereolithography is single and the resolution is low, especially it is difficult to print the structure that must support the material; although the two-photon polymerization laser direct writing has high resolution, the printing cost is high and the printing speed is slow; the electrojet printing Printing has high requirements on the characteristics of electrofluid, and there are problems such as nozzle clogging, fluid impurities, and the inability to print multiple array structures at the same time.
  • electron beam and ion beam printing can reach the micro-nano scale, the printing material is single, the printing is extremely slow, and the operating conditions and precursor materials are demanding.
  • the above micro-nano-scale printing technologies cannot achieve fast printing and parallel printing of metal materials, and the mechanical and electrical properties of metal materials have unique advantages. The study of materials and photonic crystals is of great significance.
  • the purpose of the present invention is to provide a method for additive manufacturing of micro-nano structures, which is used to solve the problems in the prior art that it is difficult to print with multiple materials, fast, and in parallel mode.
  • the invention provides a method for additive manufacturing of micro-nano structures, which controls the directional migration of charged dispersed phases in gas based on the action of an electric field, so that the charged dispersed phases are stacked on a substrate to form a required micro-nano structure.
  • the size of the charged dispersed phase is 0.1 nm-10 ⁇ m.
  • the material of the charged dispersed phase is selected from one or more of inorganic materials, organic materials and composite materials.
  • the substrate is covered with a hollow pattern layer, and the charged dispersed phase migrates to the substrate through the channels in the hollow pattern layer during the migration process.
  • the intensity of the electric field is 1-10000V/cm or -10000--1V/cm.
  • the shape and size of the print are controlled by regulating the distribution and strength of the electric field action and the movement of the substrate.
  • the gas is used in an amount of 0.1-100 L/min.
  • the action of the electric field causes directional migration of the charged dispersed phase in the gas.
  • the substrate is connected to an external circuit.
  • the conductive dispersed phase is prepared by means of discharge plasma technology, gas atomization or electrospray.
  • the migration of the dispersed phase in the gas is at least three orders of magnitude corresponding to that in the liquid phase, so that the printing has ultra-fast kinetic characteristics, and a large-area micro-nano structure array can be printed at one time, making the printing fast and efficient.
  • the invention provides a micro-nano structure additive manufacturing technology, which can realize low-cost, high-purity, multi-material, ultra-high resolution, ultra-fast and one-time large-area printing of micro-nano structures, and can solve the problem of micro-nano structures There are few types of printable materials, low printing resolution, slow printing speed and serial printing.
  • FIG. 1 shows a schematic diagram of a 3D printer formed based on the mechanism of the additive manufacturing method of the present invention.
  • Fig. 3 shows the second SEM image of a specific 3D micro-nano structure product printed based on the additive manufacturing method of the present invention.
  • Fig. 4 shows the third SEM image of a specific 3D micro-nano structure product printed based on the additive manufacturing method of the present invention.
  • the applicant provides a method for additive manufacturing of micro-nano structures, which can also be used in actual manufacturing.
  • a printer is designed, which can realize the micro-nano additive manufacturing of all materials that can form a charged dispersed phase in the gas.
  • the printed structure can be controlled. Shape and size, to achieve rapid printing of multi-material, parallel mode, and large-area micro-nano structures.
  • the above-mentioned additive manufacturing method in this application is to use the spatial electric field to pull the directional migration of the charged dispersed phase for printing, which can be carried out at normal temperature and pressure without introducing any other impurities, and the resulting structure has high uniformity and purity.
  • the gas involved in the present invention is essentially a multiphase fluid in which the gaseous state is the continuous phase and the solid and/or liquid state is the dispersed phase.
  • the charged dispersed phase refers to charged liquid and/or solid substances dispersed in the gas.
  • the size of the charged dispersed phase is 0.1 nm-10 ⁇ m.
  • the directional migration along the path of the electric field line ensures effective and controllable printing; the charge distribution of the micro-nano-scale dispersed phase is relatively uniform, and the uniform migration path ensures high-precision printing.
  • the material of the charged dispersed phase is selected from one or more of inorganic materials, organic materials and composite materials. More preferably, the inorganic material is a metal material, such as a single metal or an alloy. More preferably, the organic material is a polymer material, and may also be a biomolecular material or the like.
  • the charged dispersed phase is prepared by a discharge plasma method.
  • the metal material is a single substance or an alloy, and the metal elements in the metal material are selected from magnesium, aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, yttrium, One or more of zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, indium, tin, antimony, hafnium, tantalum, tungsten, rhenium, iridium, platinum, gold, lead, bismuth.
  • the conductive material further includes a non-metal element, and the non-metal element is selected from one or more of boron, carbon, silicon and arsenic.
  • the non-metal element may be a single substance or form a compound with the metal element.
  • the carrier gas is one or more of nitrogen, inert gas, oxygen, hydrogen and chlorine.
  • the material of the dispersed phase when the material of the dispersed phase is a solution, it needs to use means such as gas atomization or electrospray to make it into a gaseous dispersed phase, and finally form a material that can be printed by the above-mentioned additive manufacturing method in this application.
  • the material can be an inorganic material, an organic material or a composite material.
  • the intensity of the electric field is 1-10000V/cm or -10000--1V/cm.
  • the space electric field required for printing is constructed, so that the electric field lines are bundled in the central area of the hole of the hollow pattern layer, and the size of the convergence is far Smaller than the pore size, the size after converging is in the sub-nanometer to micron range, and the electric field intensity in the converging area is increased by about 2 orders of magnitude, which can induce the injection of the charged dispersed phase and accelerate its directional migration.
  • the converging effect of the electric field lines is related to the strength of the external electric field.
  • the hollow pattern layer its material can be a dielectric, such as silicon nitride, silicon oxide or photoresist; it can also be a conductive layer, such as a metal material.
  • the hollow pattern layer is a conductive layer, and the hollow pattern layer coated with a conductive film layer is embedded in an insulator to accumulate charges on its surface, thereby improving the ability of electric field lines to converge, and at the same time realizing fast Print.
  • the conductive film layer can also be connected to a power source, and the potential difference can be controlled to further adjust the spatial electric field, such as the converging ability, strength, and three-dimensional characteristics.
  • the shape and size of the printed structure are controlled by regulating the distribution and strength of the spatial electric field and the movement of the substrate.
  • the printing resolution of the charged dispersed phase is controlled by an electric field.
  • the three-dimensional shape of the converging electric field lines is changed by the movement of the substrate, so that the migration path of the charged dispersed phase can be precisely laid out to realize the printing of complex three-dimensional structures;
  • the dispersed phase will complete the printing of precise positions along the narrowed fixed channel, and the printing shape is determined by the movement mode of the substrate, so that the movement of the substrate can be controlled by programming to print complex two-dimensional or three-dimensional structures.
  • the gas is used in an amount of 0.1-100 L/min.
  • the action of the electric field causes three-dimensional directional migration of the charged dispersed phase.
  • the printing method described in this application can be carried out in a closed space or in an open space. In order to prevent the interference of the external environment and the safety of the preparation, the printing method is carried out in a closed space.
  • the substrate is connected to an external circuit and controls the charge distribution in the printed structure.
  • the three-dimensional shape of the converging electric field lines can be changed, and then the migration route of the charged dispersed phase can be changed to realize the printing of various desired structures, and micro-nano structures from 1nm to 10 ⁇ m can be printed Product; if the moving speed of the substrate is increased, the shape of the converging electric field lines remains unchanged, but the printing of the precise position of the charged dispersed phase can be induced by moving with the substrate.
  • the applicant has formed a specific micro-nano-scale product printer based on the above-mentioned additive manufacturing method of micro-nano structure, which at least includes a charged dispersed phase formation system and a printing system.
  • the printer in the present invention does not limit this method.
  • any other additive manufacturing method that contains a charged dispersed phase produced by a particle source system and its directional migration under the action of a space electric field is a labor-free work.
  • the particle source of the charged dispersed phase is prepared by discharge plasma technology, and the counterbalancing effect of the external electric field and the local electric field formed on the surface of the hollow pattern layer is used to construct the space electric field required for printing.
  • FIG. 1 is a schematic diagram of the principle of a 3D printer formed based on the mechanism of the additive manufacturing method described above in the present invention.
  • Example 1 is to spin-coat a layer of S1805 photoresist with a thickness of about 500nm on a silicon wafer, and then form an array of circular holes with a diameter of 2 ⁇ m and a center distance of 6 ⁇ m by photolithography, and print such as The array structure shown in Figure 2.
  • a dielectric layer with an array of hollow patterns is prepared on a silicon wafer.
  • Another silicon wafer in Example 2 is coated with a layer of about 100nm thick 950 PMMA A3 photoresist, and obtained by electron beam exposure is a circular hole array with a diameter of 300nm and a center distance of 600nm, through additive manufacturing in the present invention
  • the method prints the array structure shown in Figure 3.
  • a dielectric layer with an array of hollow patterns is prepared on a silicon wafer.
  • photolithography and deep silicon etching were used to prepare a suspended hollow pattern layer coated with a silicon nitride film layer, and the array structure shown in FIG. 4 was printed by the additive manufacturing method of the present invention.
  • the present invention can achieve low-cost, high-efficiency, ultra-high-resolution (0.1nm-1 ⁇ m) three-dimensional structure printing, and can solve the problem of low resolution of micro-nano scale additive manufacturing, few types of printable materials and difficult printing of metals. materials etc.
  • the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

本发明提供了微纳结构的增材制造方法,基于电场作用操控气体中带电分散相的定向迁移,使所述带电分散相在基底上堆垛形成特定微纳结构。本发明的微纳结构增材制造技术不借助化学反应、无需激光源、无需离子/电子束、无需光敏材料,可常温常压操作,所提供的技术方案能够以低成本、高纯度、多材料、超高分辨率、超快速和一次性大面积打印微纳结构,可解决微纳尺度增材制造中所面临的打印材料种类少、打印分辨率低、打印速度慢和序列式打印等难题。

Description

微纳结构的增材制造方法 技术领域
本发明涉及微纳尺度的打印领域,特别是涉及微纳结构的增材制造方法。
背景技术
微纳增材制造(亦称为微纳尺度3D打印)是一种基于增材原理制造微纳结构的新型微纳加工技术。与现有微纳制造技术相比,它具有成本低、结构简单、可用材料种类多、无需激光、无需真空、无需液态试剂、直接成形等优点,尤其是在复杂三维微纳结构、高深宽比微纳结构、多材料和多尺度的微纳结构、平行模式打印多个微纳结构以及嵌入异质结构制造方面具有突出的潜力和优势。
但是,现有的各种微纳尺度打印具有一定的局限性。如微立体光刻打印材料单一,分辨率较低,尤其对于必须支撑材料的结构难以实现打印;双光子聚合激光直写虽然具有高分辨率,但是打印成本较高、打印速度慢;电喷印打印对电流体的特性要求高,且存在喷嘴堵塞、流体杂质和无法一次性同时打印多个阵列结构等问题。电子束和离子束打印虽可达微纳尺度,但打印材料单一、打印极慢、操作条件和前驱体材料要求苛刻等。更重要的是,以上的微纳尺度打印技术无法实现对金属材料的快速打印和平行打印,而金属材料的力学和导电性能等具有独特的优势,金属材料的微纳制造对微电子、超构材料和光子晶体等的研究具有极为重要的意义。
为满足科学和实际需求,需开发新型的微纳尺度打印增材制造方法、工艺和装备,实现多材料、平行模式、大面积的微纳结构的快速打印。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种微纳结构的增材制造方法,用于解决现有技术中难以多材料、快速、以平行模式打印等问题。
为实现上述目的及其他相关目的,本发明是通过包括如下技术方案实现的。
本发明提供一种微纳结构的增材制造方法,基于电场作用操控气体中带电分散相的定向迁移,使所述带电分散相在基底上堆垛形成所需的微纳结构。
优选地,所述带电分散相的尺寸为0.1nm~10μm。
优选地,所述带电分散相的材料选自无机材料、有机材料和复合材料中的一种或多种。
优选地,所述基底上罩设有镂空图案层,所述带电分散相在迁移过程中穿过所述镂空图案层中的孔道迁移至基底上。
优选地,所述电场作用的强度为1~10000V/cm或-10000~-1V/cm。
优选地,通过调控电场作用的分布和强度、基底的运动,控制打印的形状和尺寸。
优选地,所述气体的使用量为0.1~100L/min。
优选地,所述电场作用使得所述气体中的带电分散相产生定向迁移。
优选地,所述基底连接外部电路。
优选地,所述导电分散相通过放电等离子体技术、气雾化法或者电喷雾手段制备。
本发明提供的微纳结构的增材制造方法,具有以下有益效果:
1)整个打印过程可直接在常温常压下进行,极大地简化了设备配置,降低了成本,拓宽了操作范围和材料选择。
2)整个打印过程由电场和带电分散相本身控制,不引入任何其他杂质,所打印的结构均匀性和纯度高。
3)所使用的气体中的分散相材料种类广泛,使打印材料具有多种性。
4)气体中分散相的迁移至少是对应液相中的三个数量级,使打印具备超快动力学特征,并可大面积一次性打印微纳结构阵列,使打印具有快速度和高效率。
5)使用电场精确控制带电分散相的迁移,可实现单颗粒甚至单原子的打印分辨率,打印精度为(0.1nm~1μm)。
本发明提供一种微纳结构的增材制造技术,能够以实现低成本、高纯度、多材料的、超高分辨率、超快速和一次性大面积打印微纳结构,可解决微纳尺度下可打印材料种类少、打印分辨率低、打印速度慢和序列式打印等难题。
附图说明
图1显示为基于本发明的增材制造方法的机理的形成的3D打印机的原理示意图。
图2显示为基于本发明的增材制造方法所打印成的一种具体的3D微纳结构产品的SEM图之一。
图3显示为基于本发明的增材制造方法所打印成的一种具体的3D微纳结构产品的SEM图之二。
图4显示为基于本发明的增材制造方法所打印成的一种具体的3D微纳结构产品的SEM图之三。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,用于验证本发明方法的现实可行性,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
请参阅图1至图4。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
本申请中申请人为了解决现有技术中微纳尺度打印分辨率低、可打印材料种类少以及难以打印金属材料等难题,提供一种微纳结构的增材制造方法,在实际制造时也可以基于这一增材制造方法原理设计成打印机,其能够实现对所有可在气体中形成带电分散相的材料进行微纳增材制造,通过调控电场的分布和强度、基底的运动,控制打印结构的形状和尺寸,实现多材料、平行模式、大面积微纳结构的快速打印。
本申请人首先提供一种微纳结构的增材制造方法,基于电场作用操控气体中带电分散相的定向迁移,使所述带电分散相在基底上堆垛形成所需的微纳结构。
本申请中的上述所述的增材制造方法是利用空间电场牵引带电分散相的定向迁移进行打印,可以在常温常压下进行,不引入任何其他杂质,所得到的结构均匀性和纯度高。
本发明所涉及的气体,实质上是以气态为连续相,固态和/或液态为分散相的多相流体。本申请中,所述带电分散相是指气体中分散着的带电的液态和/或固态物质。在一个优选的实施方式中,所述带电分散相的尺寸为0.1nm~10μm。在所述电场强度的环境中将沿电场线路径定向迁移,确保了打印的有效可控;微纳尺度的分散相的电荷分布较均匀,其迁移路径统一确保了打印的高精度。
在一个优选的方式中,所述带电分散相的材料选自无机材料、有机材料和复合材料中的一种或多种。更优选地,所述无机材料为金属材料,如金属单质或合金。更优选地,所述有机材料为高分子材料,也可以是生物分子材料等。
在一个具体的实施方式中,所述材料为具有导电或半导电性质时,如为金属材料或者半导体材料,所述带电分散相是采用放电等离子体方法制得。优选地,所述金属材料为单质或合金,所述金属材料中的金属元素选自镁、铝、钛、钒、铬、锰、铁、钴、镍、铜、锌、镓、 锗、钇、锆、铌、钼、锝、钌、铑、钯、银、镉、铟、锡、锑、铪、钽、钨、铼、铱、铂、金、铅、铋中的一种或多种。优选地,所述导电材料还包括非金属元素,所述非金属元素选自硼、碳、硅和砷中的一种或多种。所述非金属元素可以是单质也可以是与所述金属元素形成化合物。在一个优选的实施方式中,所述载气为氮气、惰性气体、氧气、氢气和氯气中的一种或多种。
在另一个具体的实施方式中,所述分散相的材料为溶液时,需采用气雾化法或电喷雾等手段使其成为气态分散相,最终形成可利用本申请中上述增材制造方法打印的带电分散相。此时材料可以为无机材料、有机材料或复合材料。
在一个优选的实施方式中,所述基底上罩设有镂空图案层,所述带电分散相在迁移过程中穿过所述镂空图案中的孔道迁移至基底上。本申请中镂空图案层上的孔道可以是连续的,也可以是分散的。优选地,所述镂空图案层中孔道的尺寸在微纳范围,孔道形状不受限制,可规则或不规则。优选的,镂空图案层下表面与基底可接触,也可分开一定距离(0~100μm)。
在一个优选的实施方式中,所述电场作用的强度为1~10000V/cm或-10000~-1V/cm。
通过外加电场和镂空图案层表面所形成的局部电场以及两者的对抗平衡作用,进而构造打印所需的空间电场,使电场线聚束于镂空图案层孔道的中心区域,其收束的尺寸远小于孔道尺寸,收束后的尺寸在亚纳米到微米的范围,聚束区域电场强度提升约2个数量级,可诱导带电分散相的注入并加速其定向迁移。电场线的收束效果与外电场强度相关,当外电场强度较小时,电场线收束能力变强,导致打印精度提高,但由此导致的分散相所受的牵引力减弱,使得打印速度变慢;另外,当外电场强度继续减小到临界强度以下,电场线收束则无法完成,致使打印失败;若外电场较大,电场线则难以收束,不能完成高精度打印,若电场强度继续增大并超过上限,则面临在气相中被击穿的问题,破坏整个打印。
对于所述镂空图案层,其材料可为电介质,如氮化硅、氧化硅或光刻胶;也可为导电层,如金属材料等。在一个优选的实施方式中,所述镂空图案层为导电层,将涂覆导电膜层的镂空图案层镶嵌于绝缘体中,使其表面积累电荷,从而提高电场线收束能力,并同时实现快速打印。另外,优选地,也可将导电膜层连接电源,控制电势差来进一步调控空间电场,比如收束能力、强度和三维特性等。
在一个优选的实施方式中,通过调控空间电场的分布和强度、基底的运动,控制打印结构的形状和尺寸。通过电场来控制带电分散相的打印分辨率。通过基底的运动来改变收束电场线的三维形状,从而精确布设带电分散相的迁移路径,实现复杂三维结构的打印;若加快基底的运动速度,收束电场线的形状则不再改变,带电分散相将沿该收束后的固定通道完成 精确位点的打印,打印形状由基底的运动模式决定,由此可通过编程化控制基底运动从而打印复杂的二维或三维结构。
在一个优选的实施方式中,所述气体的使用量为0.1~100L/min。
在一个优选的实施方式中,所述电场作用使得所述带电分散相产生三维定向迁移。
本申请中所述的打印方法可以在封闭空间中,也可以在开放空间中进行,为了防止外界环境的干扰以及制备的安全性考虑,所述打印方法在封闭空间中进行。
在本申请的一个具体的实施方式中,所述基底连接外部电路,并控制打印结构中的电荷分布。另外,通过以不同模式移动基底,可以改变收束的电场线的三维形状,进而改变带电分散相的迁移路线,实现对各种所需结构的打印,可打印出从1nm到10μm的微纳结构产品;若加快基底移动速度,收束的电场线形状不变,但可通过与基底移动来诱导带电分散相的精确位点的打印。
在一个优选的实施方式中,带电分散相可以通过载气辅助将其传输至空间电场作用范围内,以构造的空间电场将其迁移至基底上并按照预设方式堆垛形成特定的微纳结构。所述载气为氮气、惰性气体、氧气、氢气或氯气中的一种或多种。
本申请中申请人基于上述微纳结构的增材制造方法形成了一种具体的微纳尺度产品的打印机,其至少包含带电分散相的形成系统和打印系统,本发明中的打印机不限制该法民方法的使用范围,其他任何打印机含有颗粒源系统制造的带电分散相及其在空间电场作用下定向迁移的增材制造方法皆属不费劳动力的工作。
在一个优选的实施方式中,通过放电等离子体技术制备带电分散相的颗粒源,采用外加电场和镂空图案层表面所形成的局部电场两者的对抗平衡作用,进而构造打印所需的空间电场。
图1为基于本发明上述所述的增材制造方法的机理形成的3D打印机的原理示意图。
图2、图3和图4显示为采用上述所述的增材制造方法所打印的微纳结构产品的SEM图。具体的制备步骤及各步骤的参数具体如下。
实施例1~3中的硅片连接-2KV的电压,持续通入5L/min的氩气,其纯度为99.999%。利用放电等离子体技术制备带电分散相的纳米颗粒,所采用的圆柱电极为99.999%纯度的Ag或Cu,击穿电压约为1.5KV,打印如图3所示的微纳结构数约7000个,打印时间仅需1.5h。
实施例1
在硅片上制备具有镂空图案阵列的电介质层。
实施例1是在硅片上旋涂一层约500nm厚的S1805光刻胶,再通过光刻形成直径为2μm 和中心距为6μm的阵列圆孔,通过本发明中的增材制造方法打印如图2所示的阵列结构。
实施例2
在硅片上制备具有镂空图案阵列的电介质层。实施例2中的另一硅片涂覆一层约100nm厚的950 PMMA A3光刻胶,通过电子束曝光得到直径为300nm和中心距为600nm的圆孔阵列,通过本发明中的增材制造方法打印如图3所示的阵列结构。
实施例3
在硅片上制备具有镂空图案阵列的电介质层。实施例3中利用光刻与深硅刻蚀手段制备涂覆氮化硅膜层的悬浮镂空图案层,通过本发明中的增材制造方法打印如图4所示的阵列结构。
综上所述,本发明能够实现低成本、高效、超高分辨率(0.1nm~1μm)的三维结构打印,可解决微纳尺度增材制造分辨率低、可打印材料种类少以及难以打印金属材料等难题。
所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

  1. 微纳结构的增材制造方法,其特征在于,基于电场作用操控气体中带电分散相的定向迁移,使所述带电分散相在基底上堆垛形成所需的微纳结构。
  2. 根据权利要求1所述的方法,其特征在于,所述带电分散相的尺寸为0.1nm~10μm。
  3. 根据权利要求1所述的方法,其特征在于,所述带电分散相的材料选自无机材料、有机材料和复合材料中的一种或多种。
  4. 根据权利要求1所述的方法,其特征在于,所述基底上罩设有镂空图案层,所述带电分散相在迁移过程中穿过所述镂空图案层中的孔道迁移至基底上。
  5. 根据权利要求1所述的方法,其特征在于,所述电场作用的强度为1~10000V/cm或-10000~-1V/cm。
  6. 根据权利要求1所述的方法,其特征在于,通过控制电场的分布和强度、基底的运动,控制打印的形状和尺寸。
  7. 根据权利要求1所述的方法,其特征在于,所述气体的使用量为0.1~100L/min。
  8. 根据权利要求1所述的方法,其特征在于,所述电场作用使得所述气体中的带电分散相产生定向迁移。
  9. 根据权利要求1所述的方法,其特征在于,所述基底连接外部电路。
  10. 根据权利要求1所述的方法,其特征在于,所述带电分散相通过放电等离子体技术、气雾化法或者电喷雾手段制备。
PCT/CN2022/098811 2021-07-06 2022-06-15 微纳结构的增材制造方法 WO2023279927A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22836681.1A EP4349567A1 (en) 2021-07-06 2022-06-15 Additive manufacturing method for micro-nano structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110761096.3A CN113478809B (zh) 2021-07-06 2021-07-06 微纳结构的增材制造方法
CN202110761096.3 2021-07-06

Publications (1)

Publication Number Publication Date
WO2023279927A1 true WO2023279927A1 (zh) 2023-01-12

Family

ID=77941115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098811 WO2023279927A1 (zh) 2021-07-06 2022-06-15 微纳结构的增材制造方法

Country Status (3)

Country Link
EP (1) EP4349567A1 (zh)
CN (1) CN113478809B (zh)
WO (1) WO2023279927A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113478809B (zh) * 2021-07-06 2023-05-30 上海科技大学 微纳结构的增材制造方法
CN114602762B (zh) * 2022-02-26 2023-04-14 宁波大学 一种电场辅助功能涂层制备方法
CN117655356A (zh) * 2022-08-25 2024-03-08 上海科技大学 应用于3d打印的空间电场控制装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269913A (ja) * 2003-03-05 2004-09-30 National Institute For Materials Science 微細構造の作製方法および作製装置
CN102204414A (zh) * 2008-08-20 2011-09-28 视觉动力控股有限公司 产生用于对衬底表面进行构图的等离子体放电的设备
CN107214945A (zh) * 2017-06-30 2017-09-29 青岛理工大学 一种电场驱动喷射沉积3d打印装置及其工作方法
CN108026304A (zh) * 2015-07-31 2018-05-11 加拿大国家研究委员会 用于在基底上气雾剂沉积纳米颗粒的装置和方法
CN113478809A (zh) * 2021-07-06 2021-10-08 上海科技大学 微纳结构的增材制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4624764A (en) * 1984-04-17 1986-11-25 Exxon Research And Engineering Company Separation of dispersed phase from continuous fluid phase
RU2242532C1 (ru) * 2003-09-09 2004-12-20 Гуревич Сергей Александрович Способ получения наночастиц
KR100740984B1 (ko) * 2005-04-12 2007-07-19 재단법인서울대학교산학협력재단 나노입자의 집속 증착 패터닝 방법
CN100590096C (zh) * 2008-03-13 2010-02-17 大连理工大学 一种控制微细粒子聚集形态的方法
CN102747363B (zh) * 2012-07-17 2014-10-29 河南理工大学 一种纳米级金属颗粒冷喷涂工艺
CN102760845A (zh) * 2012-07-27 2012-10-31 深圳市华星光电技术有限公司 有机发光二极管的薄膜成形方法及设备
WO2017078987A1 (en) * 2015-11-02 2017-05-11 Lawrence Livermore National Security, Llc Additively manufacturing bio-based conductive shape memory polymer macrostructure parts with highly ordered microstructures
US20180311736A1 (en) * 2017-04-28 2018-11-01 Te Connectivity Corporation System and Method for Forming Nano-Particles in Additively-Manufactured Metal Alloys
CN107715789B (zh) * 2017-10-23 2023-10-03 中国石油大学(北京) 一种制备聚合物颗粒的新方法及装置
CN109228305B (zh) * 2018-09-28 2020-04-28 大连理工大学 一种电场诱导辅助电喷射的三维打印方法
CN109535464A (zh) * 2018-11-27 2019-03-29 陈涛 一种树脂基体陶瓷喷涂方法
CN109482893A (zh) * 2018-12-30 2019-03-19 北京康普锡威科技有限公司 一种增材制造用球形金属粉末的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269913A (ja) * 2003-03-05 2004-09-30 National Institute For Materials Science 微細構造の作製方法および作製装置
CN102204414A (zh) * 2008-08-20 2011-09-28 视觉动力控股有限公司 产生用于对衬底表面进行构图的等离子体放电的设备
CN108026304A (zh) * 2015-07-31 2018-05-11 加拿大国家研究委员会 用于在基底上气雾剂沉积纳米颗粒的装置和方法
CN107214945A (zh) * 2017-06-30 2017-09-29 青岛理工大学 一种电场驱动喷射沉积3d打印装置及其工作方法
CN113478809A (zh) * 2021-07-06 2021-10-08 上海科技大学 微纳结构的增材制造方法

Also Published As

Publication number Publication date
CN113478809B (zh) 2023-05-30
EP4349567A1 (en) 2024-04-10
CN113478809A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
WO2023279927A1 (zh) 微纳结构的增材制造方法
US11845216B2 (en) 3D printed electronics using directional plasma jet
Hanson et al. Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction
Liang et al. An efficient templating approach for synthesis of highly uniform CdTe and PbTe nanowires
EP3468763B1 (en) Method and apparatus for producing large-area monolayer films of solution dispersed nanomaterials
US6744065B1 (en) Single electron devices
Ageev et al. Photoactivation of the processes of formation of nanostructures by local anodic oxidation of a titanium film
KR20110081683A (ko) 금속 나노입자를 이용하고 환원된 그래핀 산화물에 기반한 양쪽극 기억소자 및 이의 제조방법
TW200522213A (en) Fabrication of nano-object array
WO2021253978A1 (zh) 一种3d微/纳米结构的构筑方法
Liang et al. Polymer-assisted self-assembly of silver nanoparticles into interconnected morphology and enhanced surface electric conductivity
EP2862839B1 (en) Hydrogen surface-treated graphene, formation method thereof and electronic device comprising the same
Kang et al. Solvent-induced charge formation and electrophoretic deposition of colloidal iron oxide nanoparticles
US20240217168A1 (en) Additive manufacturing method for fabricating micro-nano structures
KR101798381B1 (ko) 그래핀-나노입자 하이브리드 소재 제조방법
WO2015157501A1 (en) Ultra-long silicon nanostructures, and methods of forming and transferring the same
Filatov et al. Atomic-Force Microscopy of Resistive Nonstationary Signal Switching in ZrO 2 (Y) Films
WO2011119231A2 (en) Irradiation assisted nucleation of quantum confinements by atomic layer deposition
KR101833914B1 (ko) 나노 와이어 어레이의 제조방법
Deng et al. Fabrication of ordered poly (methyl methacrylate) nanobowl arrays using SiO2 colloidal crystal templates
Dziomkina et al. Layer-by-layer templated growth of colloidal crystals with packing and pattern control
RU2777199C1 (ru) Способ изготовления проводящей наноячейки с квантовыми точками
KR20160086305A (ko) 그래핀의 제조방법 및 그래핀 원자층이 식각되는 그래핀 제조방법 및 웨이퍼결합방법을 구비하는 그래핀 굽힘 트랜지스터, 및 그래핀 굽힘 트랜지스터
KR20150140516A (ko) 그래핀의 하나 이상의 굽힘변형, 위치이동, 중 하나 이상 선택되는 것을 구비하여 일 함수를 하나 이상 조절하는 트랜지스터
KR20150121682A (ko) 그래핀의 제조방법 및 그래핀 원자층이 식각되는 그래핀 제조방법 및 웨이퍼결합방법을 구비하는 그래핀 굽힘 트랜지스터, 및 그래핀 굽힘 트랜지스터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836681

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18570047

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022836681

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022836681

Country of ref document: EP

Effective date: 20231214

NENP Non-entry into the national phase

Ref country code: DE