WO2023279859A1 - 分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置及其使用方法 - Google Patents

分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置及其使用方法 Download PDF

Info

Publication number
WO2023279859A1
WO2023279859A1 PCT/CN2022/093384 CN2022093384W WO2023279859A1 WO 2023279859 A1 WO2023279859 A1 WO 2023279859A1 CN 2022093384 W CN2022093384 W CN 2022093384W WO 2023279859 A1 WO2023279859 A1 WO 2023279859A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
gas
temperature
pressure
infrared spectrometer
Prior art date
Application number
PCT/CN2022/093384
Other languages
English (en)
French (fr)
Inventor
公英华
李天铎
崔敏
胡伟
李迎州
维诺库罗夫·弗拉基米尔
斯托波列夫·安德烈
谢苗诺夫·安东
Original Assignee
齐鲁工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 齐鲁工业大学 filed Critical 齐鲁工业大学
Publication of WO2023279859A1 publication Critical patent/WO2023279859A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Definitions

  • the invention relates to the technical field of on-line infrared in-situ analysis of gas hydrates at the molecular level, in particular to a device for in-situ monitoring of gas hydrate formation and decomposition processes with an on-line infrared spectrometer on the molecular level and a method for using the same.
  • Natural gas hydrate mainly occurs in terrestrial permafrost areas and marine sediments. It has the characteristics of wide distribution, large reserves, and high energy density. It has become a new energy that replaces traditional energy such as coal, charcoal, oil, and natural gas. Hydrate technology can also be applied to gas separation, natural gas storage and transportation, carbon dioxide capture and storage, cold storage technology and other fields. However, the formation of gas hydrates can also lead to blockage of natural gas pipelines and endanger the safety of deep-sea mining platform equipment.
  • gas hydrate The formation and decomposition mechanism of gas hydrate is of great significance to the accumulation mechanism, exploitation and application of related technologies of gas hydrate.
  • the formation of gas hydrate needs to meet the conditions of gas diffusion into liquid, low temperature and high pressure, which limits the microscopic monitoring and characterization methods of gas hydrate formation and decomposition process.
  • Commonly used characterization methods for hydrates include XRD, RAMAN, and NMR. They need to generate hydrates in a reactor, and then transfer the hydrates to a low-temperature platform for detection. During the sampling process, changes in the surrounding environment will cause hydrate decomposition or internal structure transformation, making it impossible to characterize the microstructure of hydrate in situ.
  • the purpose of the present invention is to overcome the deficiencies of the prior art, and provide a device for in-situ monitoring of gas hydrate formation and decomposition process with an online infrared spectrometer on the molecular level and a method for using the same.
  • the purpose of the present invention is to provide a device for in-situ monitoring of gas hydrate formation and decomposition process with an online infrared spectrometer at the molecular level.
  • the device can monitor the gas hydrate online and in situ. The changing behavior of molecules before and after transformation into hydrates.
  • the present invention adopts modern precision monitoring instruments with high accuracy, and can be directly used in conjunction with high-pressure reactors without customizing complicated reactors with perspective windows.
  • a device for in-situ monitoring of gas hydrate formation and decomposition process with an online infrared spectrometer at the molecular level including a reactor system S2, a reactor system S2 and an online infrared spectrum detection system S1, a liquid automatic sampling device S3, and a pre-cooling system S4 , pressure-controlled gas supply system S5, vacuum system S6 and data acquisition and processing system S7 are connected respectively, and data acquisition and processing system S7 is connected with online infrared spectrum detection system S1 and pre-cooling system S4 respectively.
  • the reactor system S2 includes a reactor, a temperature sensor A capable of detecting the temperature of the hydrate in the reactor and a pressure sensor A for detecting the pressure used in conjunction with the reactor, and a pressure sensor A arranged inside the reactor mixer.
  • the reaction kettle adopts a quick-opening structure, and the ring is fastened to meet the high-pressure sealing requirements.
  • the outside of the kettle body is equipped with a water bath jacket, and the temperature inside the kettle can be controlled by connecting a low-temperature constant temperature water bath control device.
  • the temperature range is -20°C-50°C.
  • the pressure range is 0-15MPa.
  • the cover of the reaction kettle is equipped with mechanical stirring to promote the uniform stirring of the solution and accelerate the formation of hydrate; the temperature sensor inside the reaction kettle can accurately measure the temperature in the solution.
  • the temperature sensor inside the reaction kettle can accurately measure the temperature in the solution, and the measurement accuracy is ⁇ 0.1°C.
  • the pressure sensor connected to the reactor measures the pressure inside the reactor, and the pressure measurement accuracy is ⁇ 0.1MPa.
  • the top of the reaction kettle is provided with a sampling needle valve 18, which can be closed after the sampling is completed, and has a detachable dip tube and filter.
  • the reactor is provided with a sampling pipeline for sampling the samples inside the reactor.
  • the online infrared spectrum detection system S1 includes an online infrared spectrometer, an optical fiber probe detector connected thereto, the probe of the optical fiber probe detector 2 is connected to the reaction kettle through an adapter, inserted into the reaction kettle and positioned above the agitator , to avoid the impeller hitting the probe.
  • the spectral range of the online infrared spectrometer is 3000-650cm -1 , the resolution is 8cm -1 , the probe material is diamond, the maximum withstand pressure is 69bar, the temperature range is -80°C-180°C, and the pH range is 0-14.
  • the liquid automatic sampling device S3 includes a liquid automatic sampler, which is arranged on the top of the reactor, and is used for adding liquid to the reactor during the high-pressure reaction, so as to prevent the liquid from being drawn out of the reactor when vacuuming.
  • the pressure-controlled gas supply system S5 includes a gas cylinder that can form hydrates, and a pressure regulating valve on the gas cylinder.
  • the pressure regulating valve is used to switch the pipeline and adjust the pipeline pressure according to the target pressure to provide stable gas .
  • the pre-cooling system S4 includes a cooling balance tank, and a temperature sensor B that can detect the temperature in the cooling balance tank and a pressure sensor B that detects the pressure used in conjunction with the cooling balance tank, and the inlet port of the cooling balance tank is connected to the The cylinders are connected, and a needle valve is set between the outlet end and the reactor.
  • the outside of the reaction kettle is equipped with a water-bath jacket A
  • the outside of the cooling equilibrium kettle is equipped with a water-bath jacket B
  • the water-bath jacket A and the water-bath jacket B are connected to a low-temperature constant-temperature water-bath control device.
  • the inlet of the cooling balance tank is connected to the gas cylinder of the pressure-controlled gas supply system, and the pre-cooled gas is added to the reactor to prevent the gas from carrying heat into the reactor during gas injection, causing the decomposition of ice or hydrate and affecting the infrared signal.
  • the outlet of the sample pre-cooling system is connected to the reactor of the reactor system, and the pre-cooled gas is sent into the reactor.
  • the kettle body is equipped with a water bath jacket B to maintain the low temperature inside the kettle, and the low temperature constant temperature water bath control device connected to it controls the realization of its temperature.
  • the vacuum system includes a vacuum pump connected to the pipeline by a tee, which is used to evacuate the reactor before the reaction, eliminate the influence of impurity gases in the reactor on the infrared analysis, and quickly exhaust after the reaction.
  • the data collection and processing system is used for online collection of various data of temperature, pressure and characteristic peaks of the infrared spectrum of the sample for analysis.
  • the device can detect the formation and decomposition process of one or more mixed gas hydrates of methane, ethane, propane and carbon dioxide.
  • the spectral change of the system substance can be monitored in real time from the molecular level: the probe of the online infrared spectrometer can be inserted into the solution to monitor the change of the molecular infrared absorption peak in the solution in real time, and to deepen the dissolution of the guest molecule at the molecular level , induction, nucleation, and hydrate growth process mechanisms, and the mechanism of the influence of additives on hydrate formation kinetics can also be further studied.
  • the online infrared spectrometer mentioned in the present invention is a device for in-situ monitoring of hydrate formation and decomposition process with high measurement precision.
  • the monitoring technology of the present invention has good accuracy and can be used for quantitative analysis: according to Lambert-Beer's law, the variation of the molecular concentration in the solution can be accurately obtained.
  • the invention is easy to operate, and can realize online infrared continuous microscopic characterization by inserting the ATR probe into the reaction system without taking out samples for detection, avoiding the disadvantages of difficult sampling and sample transfer and decomposition.
  • the structure of the present invention is simple, no special treatment such as placing in the dark is required, and it is convenient for control and maintenance.
  • the present invention has high repeatability.
  • Fig. 1 is a device system diagram
  • Fig. 2 is a device diagram of an in-situ monitoring gas hydrate formation and decomposition process of an online infrared spectrometer at the molecular level of the present invention
  • Fig. 3 is the infrared spectrum of CO 2 before and after formation of CO 2 -tetrahydrofuran hydrate.
  • a device for monitoring the formation and decomposition process of gas hydrate in situ with an online infrared spectrometer at the molecular level including a reactor system S2, characterized in that the reactor system S2, the online infrared spectrum detection system S1, the liquid automatic sampling device S3, the pre- The cooling system S4, the pressure-controlled air supply system S5, the vacuum system S6 and the data acquisition and processing system S7 are respectively connected, and the data acquisition and processing system S7 is connected to the online infrared spectrum detection system S1 and the pre-cooling system S4 respectively.
  • the reactor system S2 includes a reactor 3, a temperature sensor A7 capable of detecting the temperature of hydrates in the reactor and a pressure sensor A6 for detecting pressure used in conjunction with the reactor, and a stirring tank arranged inside the reactor. device 5.
  • the reaction kettle adopts a quick-opening structure, and the ring is fastened to meet the high-pressure sealing requirements.
  • the outside of the kettle body is equipped with a water bath jacket, and the temperature inside the kettle can be controlled by connecting a low-temperature constant temperature circulating water bath.
  • the temperature range is -20°C-50°C.
  • the pressure range is 0-15MPa.
  • the cover of the reaction kettle is equipped with mechanical stirring to promote the uniform stirring of the solution and accelerate the formation of hydrate; the temperature sensor inside the reaction kettle can accurately measure the temperature in the solution.
  • the temperature sensor inside the reaction kettle can accurately measure the temperature in the solution, and the measurement accuracy is ⁇ 0.1°C.
  • the pressure sensor connected to the reactor measures the pressure inside the reactor, and the pressure measurement accuracy is ⁇ 0.1MPa.
  • the top of the reaction kettle is provided with a sampling needle valve 18, which can be closed after the sampling is completed, and has a detachable dip tube and filter.
  • the reactor is provided with a sampling pipeline 8 for sampling the samples inside the reactor.
  • the online infrared spectrum detection system S1 includes an online infrared spectrometer 1, an optical fiber probe detector 2 connected thereto, the probe of the optical fiber probe detector 2 is connected to the reaction kettle 3 through an adapter, inserted into the reaction kettle and placed above the stirrer 5 position to prevent the impeller from striking the probe.
  • the spectral range of the online infrared spectrometer is 3000-650cm -1 , the resolution is 8cm -1 , the ATR probe is made of diamond, the maximum withstand pressure is 69bar, the temperature range is -80°C-180°C, and the pH range of the probe is 1-14.
  • the liquid auto-sampling device S3 includes a liquid auto-sampler 10, which is arranged on the upper part of the reactor 3, and is used for adding liquid into the reactor 3 during high-pressure reaction, so as to prevent the liquid from being drawn out of the reactor during vacuuming.
  • the pressure-controlled gas supply system S5 includes a gas cylinder 17 that can form hydrates, and a pressure regulating valve 16 on the gas cylinder.
  • the pressure regulating valve is used to switch pipelines and adjust pipeline pressure according to the target pressure to provide stable gas.
  • the pre-cooling system S4 includes a cooling balance tank 11, a temperature sensor B12 and a pressure sensor B13 for detecting the temperature in the cooling balance tank that are used in conjunction with the cooling balance tank, and the inlet port of the cooling balance tank is connected to the gas cylinder. 17 is connected, and a needle valve 18 is set between the outlet port and the reactor 3.
  • the outside of the reaction kettle 3 is equipped with a water bath jacket A4, and the outside of the cooling balance kettle 11 is equipped with a water bath jacket B14, and the water bath jacket A and the water bath jacket B are connected to the low temperature constant temperature water bath control device 9.
  • the inlet of the cooling balance tank 11 is connected to the gas cylinder 17 of the pressure-controlled gas supply system, and the pre-cooled gas is added to the reactor to prevent the gas from carrying heat into the reactor 3 during gas injection, causing the decomposition of ice or hydrate and affecting the infrared signal .
  • the outlet end of the sample pre-cooling system is connected to the reactor 3 of the reactor system, and the pre-cooled gas is sent into the reactor 3 .
  • the kettle body is equipped with a water bath jacket B to maintain the low temperature inside the kettle, and the low temperature constant temperature water bath control device connected to it controls the realization of its temperature.
  • Vacuum system S6 includes a vacuum pump 15 connected to the pipeline by a tee, used to vacuumize the reactor before the reaction, remove the impact of impurity gases in the reactor on infrared analysis, and quickly exhaust after the reaction.
  • the data collection and processing system S7 is used for online collection and analysis of various data of temperature, pressure and characteristic peaks of the infrared spectrum of the sample, and the collection system here can be operated by a computer.
  • the detection method of the above-mentioned online monitoring hydrate formation microscopic reaction kinetic process and quantitative device includes the following steps:
  • the online infrared spectrometer collects data every 1 minute, and can obtain the change information of molecular infrared absorption peaks during the continuous hydrate formation process.
  • the double peaks at 2360cm -1 and 2342cm -1 belong to the absorption peak of CO2 in the initial stage of aqueous solution.
  • CO2 dissolves in aqueous solution and enters the induction period
  • its peak becomes a single peak at 2042cm -1
  • its intensity gradually increases to
  • the nucleation temperature suddenly increased, and the absorbance of this peak decreased greatly, indicating that CO 2 -THF hydrate was formed, and CO 2 occupied the small cage of sII hydrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置及其使用方法,装置包括反应釜系统(S2),反应釜系统(S2)与在线红外光谱检测系统(S1)、液体自动进样装置(S3)、控压供气系统(S5)、真空系统(S6)和数据采集与处理系统(S7)分别相连,反应釜系统(S2)与控压供气系统(S5)之间设置预冷系统(S4)。能实时、原位监测溶液中组分的红外光谱变化和浓度变化情况,无需取样。

Description

分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置及其使用方法 技术领域
本发明涉及一种分子层面上在线红外原位分析气体水合物技术领域,尤其涉及一种分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置及其使用方法。
背景技术
天然气水合物主要赋存于陆地永久冻土区和海洋沉积物中,具有分布广、储量大和能量密度高等特征,已经成为替代煤、炭、石油与天然气等传统能源的新能源。水合物技术也可应用于气体分离、天然气储运、二氧化碳捕获与封存、蓄冷技术等领域。然而天然气水合物的形成也会导致天然气管道堵塞、危及深海开采平台设备的安全。
气体水合物的形成与分解机理对于天然气水合物成藏机理、开采及相关技术的应用具有重要意义。气体水合物的生成需要满足气体扩散到液体、低温、高压的条件,这使得气体水合物形成与分解过程的微观监测及表征方法受到限制。水合物常用的表征方法有XRD,RAMAN,NMR,它们需要是借助反应釜生成水合物,然后转移水合物至低温台进行检测。取样过程中由于周围环境的变化,会引起水合物的分解或内部结构转变,从而无法实现原位表征水合物的微观结构。而对水合物的微观机理研究,目前主要通过反应釜透视窗直接观察,宏观压力、温度、电阻率等间接变量,以及计算机模拟和理论计算等方法。目前难以实时、原位获得水合物生成过程中高精度的分子变化行为,以及促进剂或抑制剂对水合物生成/分解机理的影响。为了满足水合物领域研究的需求,迫切需要一套能够从分子层面、在线原位监测气体水合物生成与分解过程的装置和表征方法。
发明内容
本发明的目的在于克服现有技术的不足,提供一种分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置及其使用方法。通过在线红外光谱仪实时、原位监测体系分子的光谱变化,无需取样,结合宏观温度、压力随时间的变化,可以得到体系中的分子在水合物生成/分解前后的变化行为,从而在分子水平上加深对客体分子溶解、诱导、成核及水合物生长机理的理解,而且添加 剂对水合物生成动力学的影响机理也可以得到进一步研究。
本发明的目的在于提供一种分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置,通过该装置结合宏观上温度变化以及微观分子的光谱变化,可以在线、原位监测溶液中分子转化为水合物前后的变化行为。
本发明采用现代精密监测仪器,准确度高,可以直接联合高压反应釜使用,无需定做带透视窗的复杂反应釜。
本发明是通过以下技术方案实现的:
一种分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置,包括反应釜系统S2,反应釜系统S2与在线红外光谱检测系统S1、液体自动进样装置S3、预冷系统S4、控压供气系统S5、真空系统S6和数据采集与处理系统S7分别相连,数据采集与处理系统S7与在线红外光谱检测系统S1、预冷系统S4分别相连。
进一步地,所述的反应釜系统S2包括反应釜,及与所述反应釜配合使用的能检测反应釜内水合物的温度的温度传感器A和检测压力的压力传感器A,以及设置在反应釜内部的搅拌器。
反应釜采用快开式结构,抱环紧固,可实现高压密封要求,釜体外部配有水浴夹套,连接低温恒温水浴控制装置可以控制釜内温度,温度范围是-20℃-50℃,承压范围是0-15MPa。反应釜盖设有机械搅拌,促使溶液搅拌均匀,加快水合物的生成;反应釜内部的温度传感器,可以精确测量溶液中的温度。反应釜内部的温度传感器,可以精确测量溶液中的温度,测量精度为士0.1℃。连接在反应釜上的压力传感器测量反应釜内压力,压力测量精度为士0.1MPa。反应釜顶端设有进样针阀18,可以在进样结束后关闭,带可拆卸探底管和过滤器。
进一步地,反应釜设置采样管道,用于对反应釜内部的样品进行取样。
进一步地,所述的在线红外光谱检测系统S1包括在线红外光谱仪,与之相连的光纤探头检测器,光纤探头检测器2的探头通过适配器与反应釜连接,插入反应釜内部并处于搅拌器以上位置,避免搅拌桨撞击探头。在线红外光谱仪的光谱范围是3000-650cm -1,分辨率8cm -1,探头材质为金刚石,最大耐受压力为69bar,温度范围-80℃-180℃,pH范围为0-14。
进一步地,所述的液体自动进样装置S3包括液体自动进样器,设置在反应 釜上部,用于高压反应时向反应釜内加入液体,避免抽真空时液体被抽出反应釜。
进一步地,所述的控压供气系统S5包括可形成水合物的气体气瓶,及气瓶上的压力调节阀,压力调节阀用于开关管路并根据目标压力调节管道压力,提供稳定气体。
进一步地,所述的预冷系统S4包括冷却平衡釜,及与所述冷却平衡釜配合使用的能检测冷却平衡釜内温度的温度传感器B和检测压力的压力传感器B,冷却平衡釜入口端与气瓶相连,出口端与反应釜之间设置针阀。
进一步地,所述的反应釜外部配有水浴夹套A,所述的冷却平衡釜外部配有水浴夹套B,水浴夹套A和水浴夹套B与低温恒温水浴控制装置相连。
反应釜与气瓶之间设有样品预冷系统,包括冷却平衡釜、温度传感器B和压力传感器器B。冷却平衡釜入口端与控压供气系统的气瓶相连,将预冷后气体加入反应釜,防止注气时气体携带热量进入反应釜,引起冰或水合物的分解,影响红外信号。样品预冷系统出口端与反应釜系统的反应釜相连,将预冷后气体送入反应釜。釜体外部配有水浴夹套B,以维持釜内低温状态,与之相连的低温恒温水浴控制装置控制其温度的实现。
进一步地,真空系统,包括由一个三通连接到管路上的真空泵,用于反应前对反应釜抽真空,排除反应釜中杂质气体对红外分析的影响,以及反应结束后快速排气。
进一步地,所述的数据采集与处理系统,用于在线采集温度、压力以及样品的红外光谱特征峰的各项数据进行分析。
该装置可以检测甲烷、乙烷、丙烷和二氧化碳中的一种或两种以上的混合气体水合物生成与分解过程。
有益效果:
(1)使用本发明装置,可以从分子层面实时监测体系物质的光谱变化:在线红外光谱仪的探头可插入溶液中,实时监测溶液中分子红外吸收峰的变化,在分子水平上加深对客体分子溶解、诱导、成核及水合物生长等过程机理的理解,而且添加剂对水合物生成动力学的影响机理也可以得到进一步研究。
(2)本发明提到的在线红外光谱仪原位监测水合物生成和分解过程的装置测量精密度高。
(3)本发明监测技术准确性好,可用于定量分析:根据朗伯比尔定律,可以准确的得到溶液中分子浓度的变化情况。
(4)本发明操作方便、通过ATR探头插入反应体系中,能够实现在线红外连续微观表征,无需取出样品进行检测,避免取样困难、样品转移分解的缺点。
(5)本发明结构简单,无需放置黑暗中等特殊处理,便于控制和维护。
(6)本发明可重复性高。
附图说明
图1为装置系统图;
图2为本发明的一种分子层面在线红外光谱仪原位监测气体水合物生成与分解过程的装置图;
图中:在线红外光谱检测系统S1、反应釜系统S2、液体自动进样装置S3、预冷系统S4、控压供气系统S5、真空系统S6和数据采集与处理系统S7;
1.在线红外光谱仪;2.探头检测器;3.反应釜;4水浴夹套A;5.搅拌器;6.压力传感器A;7.温度传感器A;8.采样管道;9.低温恒温水浴控制装置;10.液体自动进样装置;11.冷却平衡釜;12.温度传感器B;13.压力传感器B;14.水浴夹套B;15.真空泵;16.压力调节阀;17.气瓶;18.针阀。
图3为CO 2-四氢呋喃水合物生成前后CO 2的红外光谱图。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
一种分子层面在线红外光谱仪原位监测气体水合物生成与分解过程的装置,包括反应釜系统S2,其特征在于,反应釜系统S2与在线红外光谱检测系统S1、液体自动进样装置S3、预冷系统S4、控压供气系统S5、真空系统S6和数据采集与处理系统S7分别相连,数据采集与处理系统S7与在线红外光谱检测系统S1、预冷系统S4分别相连。
所述的反应釜系统S2包括反应釜3,及与所述反应釜配合使用的能检测反应釜内水合物的温度的温度传感器A7和检测压力的压力传感器A6,以及设置在 反应釜内部的搅拌器5。反应釜采用快开式结构,抱环紧固,可实现高压密封要求,釜体外部配有水浴夹套,连接低温恒温循环水浴可以控制釜内温度,温度范围是-20℃-50℃,承压范围是0-15MPa。反应釜盖设有机械搅拌,促使溶液搅拌均匀,加快水合物的生成;反应釜内部的温度传感器,可以精确测量溶液中的温度。反应釜内部的温度传感器,可以精确测量溶液中的温度,测量精度为士0.1℃。连接在反应釜上的压力传感器测量反应釜内压力,压力测量精度为士0.1MPa。反应釜顶端设有进样针阀18,可以在进样结束后关闭,带可拆卸探底管和过滤器。反应釜设置采样管道8,用于对反应釜内部的样品进行取样。
所述的在线红外光谱检测系统S1包括在线红外光谱仪1,与之相连的光纤探头检测器2,光纤探头检测器2的探头通过适配器与反应釜3连接,插入反应釜内部并处于搅拌器5以上位置,避免搅拌桨撞击探头。
在线红外光谱仪的光谱范围是3000-650cm -1,分辨率8cm -1,ATR探头材质为金刚石,其最大耐受压力为69bar,温度范围-80℃-180℃,探头pH范围是1-14。
所述的液体自动进样装置S3包括液体自动进样器10,设置在反应釜3上部,用于高压反应时向反应釜3内加入液体,避免抽真空时液体被抽出反应釜。
所述的控压供气系统S5包括可形成水合物的气体气瓶17,及气瓶上的压力调节阀16,压力调节阀用于开关管路并根据目标压力调节管道压力,提供稳定气体。
所述的预冷系统S4包括冷却平衡釜11,及与所述冷却平衡釜配合使用的能检测冷却平衡釜内温度的温度传感器B12和检测压力的压力传感器B13,冷却平衡釜入口端与气瓶17相连,出口端与反应釜3之间设置针阀18。所述的反应釜3外部配有水浴夹套A4,所述的冷却平衡釜11外部配有水浴夹套B14,水浴夹套A和水浴夹套B与低温恒温水浴控制装置9相连。冷却平衡釜11入口端与控压供气系统的气瓶17相连,将预冷后气体加入反应釜,防止注气时气体携带热量进入反应釜3,引起冰或水合物的分解,影响红外信号。样品预冷系统出口端与反应釜系统的反应釜3相连,将预冷后气体送入反应釜3。釜体外部配有水浴夹套B,以维持釜内低温状态,与之相连的低温恒温水浴控制装置控制其温度的实现。
真空系统S6,包括由一个三通连接到管路上的真空泵15,用于反应前对反 应釜抽真空,排除反应釜中杂质气体对红外分析的影响,以及反应结束后快速排气。
所述的数据采集与处理系统S7,用于在线采集温度、压力以及样品的红外光谱特征峰的各项数据进行分析,此处的采集系统可以使用计算机进行操作。
上述在线监测水合物生成微观反应动力学过程及定量的装置的检测方法包括如下步骤:
以CO 2水合物生成和分解为例:生成实验过程如下:
1.首先检查所有管线、电器等设备连线是否正常,打开在线红外光谱仪和数据采集与处理系统。
2.连接在线红外光谱仪和光纤探头,加入液氮冷却探头2-4h。
3.开启低温恒温水浴装置,开启预冷系统与反应釜之间的针阀,调节反应釜温度至实验目标温度。
4.设置在线红外光谱仪的参数、收集背景,稳定以后待机工作。
5.开始实验前,先将反应釜清洗干净并干燥待用。
6.开启真空泵与阀门,将反应釜抽真空后关闭真空泵与阀门。
7.配置5.6mol%的四氢呋喃(THF)液体自动进样装置将溶液加入反应釜,确保探头浸入液面以下,开启搅拌使溶液混合均匀,稳定10min达到初始温度。
8.开启在线红外光谱仪监测软件、数据采集与处理系统,通过计算机实时记录、采集反应釜内水合物生成过程中分子红外光谱、温度和压力。
9.关闭预冷系统与反应釜连接处的针阀,旋开控压供气系统中气瓶旋钮并调节减压阀至目标压力,对各连接部位进行气密性检查,平衡稳定一段时间至数字压力表稳定,气体预冷至目标温度。
10.打开预冷系统针阀缓慢地将预冷好的气体CO 2通入反应釜加压至30bar关闭反应釜进气口,待反应体系稳定后,降低恒温循环水浴温度至2℃以生成水合物。
11.水合物生成过程中,在线红外光谱仪每1分钟采集一次数据,可以得到连续的整个水合物生成过程中分子红外吸收峰的变化信息。2360cm -1和2342cm -1双峰归属于CO 2在水溶液初始期的吸收峰,随着CO 2在水溶液中不断溶解进入诱导期,其峰变为2042cm -1处的单峰,强度逐渐增强至恒定,经过诱导期成核温度 突然升高,该峰的吸光度大幅降低,表明CO 2-THF水合物生成,CO 2占据sII水合物的小笼。
12.反应釜内温度、压力和红外吸收峰的吸光度达到稳定后,水合物生成结束。
13.利用恒温循环水浴的程序升温,设置到所需温度,使水合物分解,采集分解过程中在线红外光谱图,温度和压力数据,可以获得物质结构变化信息。

Claims (10)

  1. 一种分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置,包括反应釜系统S2,其特征在于,反应釜系统S2与在线红外光谱检测系统S1、液体自动进样装置S3、预冷系统S4、控压供气系统S5、真空系统S6和数据采集与处理系统S7分别相连,数据采集与处理系统S7与在线红外光谱检测系统S1、预冷系统S4分别相连。
  2. 根据权利要求1所述的一种分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置,其特征在于,所述的反应釜系统S2包括反应釜(3),及与所述反应釜配合使用的能检测反应釜内水合物的温度的温度传感器A(7)和检测压力的压力传感器A(6),设置在反应釜一侧的采样管道(8)以及设置在反应釜内部的搅拌器(5)。
  3. 根据权利要求1所述的一种分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置,其特征在于,所述的在线红外光谱检测系统S1包括在线红外光谱仪(1),与之相连的光纤探头检测器(2),光纤探头检测器2的探头通过适配器与反应釜(3)连接,插入反应釜内部并处于搅拌器5以上位置。
  4. 根据权利要求1所述的分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置,其特征在于,所述的液体自动进样装置S3包括液体自动进样器(10),设置在反应釜(3)上部,用于高压反应时向反应釜(3)内加入液体。
  5. 根据权利要求1所述的分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置,其特征在于,所述的控压供气系统S5包括可形成水合物的气体气瓶(17),及气瓶上的压力调节阀(16)。
  6. 根据权利要求1所述的一种分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置,其特征在于,所述的预冷系统S4包括冷却平衡釜(11),及与所述冷却平衡釜配合使用的能检测冷却平衡釜内温度的温度传感器B(12)和检测压力的压力传感器B(13),冷却平衡釜入口端与气瓶(17)相连,出口端与反应釜(3)相连。
  7. 根据权利要求6所述的分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置,其特征在于,所述的反应釜(3)外部配有水浴夹套A (4),所述的冷却平衡釜(11)外部配有水浴夹套B,水浴夹套A和水浴夹套B与低温恒温水浴控制装置(9)相连。
  8. 根据权利要求1所述的一种分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置,其特征在于,所述的真空系统S6包括真空泵(15)。
  9. 一种使用权利要求1-8之一所述的装置检测气体水合物生成与分解的微观反应动力学的方法,其特征在于,包括以下步骤:
    (1)连接在线红外光谱仪和光纤探头,加入液氮冷却探头2-4h;
    (2)开启低温恒温水浴装置,开启预冷系统与反应釜之间的针阀,调节反应釜温度至实验目标温度;
    (3)开启真空泵与阀门,将反应釜抽真空后关闭真空泵与阀门;
    (4)配置水溶液,通过液体自动进样装置加入反应釜密封,确保探头浸入溶液内部,开启搅拌使溶液混合均匀,稳定达到初始温度;
    (5)关闭预冷系统与反应釜连接处的针阀,旋开控压供气系统中气瓶旋钮并调节至目标压力,对各连接部位进行气密性检查,平衡稳定至数字压力表稳定,气体预冷至目标温度;
    (6)打开预冷系统针阀缓慢地将预冷好的待测气体通入反应釜加压到目标压力,关闭反应釜进气口,待反应体系稳定后,降低恒温循环水浴温度至生成水合物;
    (7)开启在线红外光谱仪监测软件、数据采集与处理系统,通过计算机实时记录、采集反应釜内水合物生成过程中分子红外光谱、温度和压力以及它们的变化规律。
  10. 根据权利要求9所述的方法,其特征在于,所述的待测气体为甲烷、乙烷、丙烷和二氧化碳中的一种或两种以上的混合气体。
PCT/CN2022/093384 2021-07-09 2022-05-17 分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置及其使用方法 WO2023279859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110776903.9A CN113433069A (zh) 2021-07-09 2021-07-09 分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置及其使用方法
CN202110776903.9 2021-07-09

Publications (1)

Publication Number Publication Date
WO2023279859A1 true WO2023279859A1 (zh) 2023-01-12

Family

ID=77759819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093384 WO2023279859A1 (zh) 2021-07-09 2022-05-17 分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置及其使用方法

Country Status (2)

Country Link
CN (1) CN113433069A (zh)
WO (1) WO2023279859A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117516992A (zh) * 2024-01-04 2024-02-06 广东林工工业装备有限公司 反应釜自动取样方法和系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433069A (zh) * 2021-07-09 2021-09-24 齐鲁工业大学 分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置及其使用方法
CN117213642A (zh) * 2023-10-17 2023-12-12 江苏大学 基于红外成像的水合物成核相变温度测试系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139404A (ja) * 2008-12-12 2010-06-24 National Institute Of Advanced Industrial Science & Technology ガスハイドレートの生成・分解状況の検知方法及びその装置
CN102243183A (zh) * 2011-04-07 2011-11-16 青岛海洋地质研究所 水合物相平衡原位监测实验装置
CN204064903U (zh) * 2014-09-30 2014-12-31 中山大学惠州研究院 一种原位高压紫外光谱的测量装置
CN106680239A (zh) * 2017-02-24 2017-05-17 中国科学院广州能源研究所 原位红外表征气体水合物生成和分解过程的装置及其使用方法
CN110487771A (zh) * 2019-08-31 2019-11-22 大连理工大学 用于原位拉曼分析的气体水合物生成/分解系统及方法
CN110530844A (zh) * 2019-08-31 2019-12-03 大连理工大学 原位拉曼定量的气液多相水合物生成/分解装置及方法
US20210072216A1 (en) * 2019-08-31 2021-03-11 Dalian University Of Technology Device and method of gas hydrate pressure maintaining replacement for in-situ raman analysis
CN113433069A (zh) * 2021-07-09 2021-09-24 齐鲁工业大学 分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置及其使用方法
CN215640823U (zh) * 2021-07-09 2022-01-25 齐鲁工业大学 一种实时、原位监测与表征水合物生成微观动力学过程的装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139404A (ja) * 2008-12-12 2010-06-24 National Institute Of Advanced Industrial Science & Technology ガスハイドレートの生成・分解状況の検知方法及びその装置
CN102243183A (zh) * 2011-04-07 2011-11-16 青岛海洋地质研究所 水合物相平衡原位监测实验装置
CN204064903U (zh) * 2014-09-30 2014-12-31 中山大学惠州研究院 一种原位高压紫外光谱的测量装置
CN106680239A (zh) * 2017-02-24 2017-05-17 中国科学院广州能源研究所 原位红外表征气体水合物生成和分解过程的装置及其使用方法
CN110487771A (zh) * 2019-08-31 2019-11-22 大连理工大学 用于原位拉曼分析的气体水合物生成/分解系统及方法
CN110530844A (zh) * 2019-08-31 2019-12-03 大连理工大学 原位拉曼定量的气液多相水合物生成/分解装置及方法
US20210072216A1 (en) * 2019-08-31 2021-03-11 Dalian University Of Technology Device and method of gas hydrate pressure maintaining replacement for in-situ raman analysis
CN113433069A (zh) * 2021-07-09 2021-09-24 齐鲁工业大学 分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置及其使用方法
CN215640823U (zh) * 2021-07-09 2022-01-25 齐鲁工业大学 一种实时、原位监测与表征水合物生成微观动力学过程的装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIA ZIQI, DONG JIAO,LI QINGRUI,LI JING,XIONG YINMING,DAI XIAODONG,LIU CHENG : "Hydrate formation process of tetrahydrofuran tested by RC1e and ReactIR", CHINESE MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE &TECHNOLOGY II, vol. 31, no. 11, 30 November 2012 (2012-11-30), pages 865 - 867, XP093021492, ISSN: 1000-8241, DOI: 10.6047/j.issn.1000-8241.2012.11.017 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117516992A (zh) * 2024-01-04 2024-02-06 广东林工工业装备有限公司 反应釜自动取样方法和系统
CN117516992B (zh) * 2024-01-04 2024-04-09 广东林工工业装备有限公司 反应釜自动取样方法和系统

Also Published As

Publication number Publication date
CN113433069A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2023279859A1 (zh) 分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置及其使用方法
WO2017107639A1 (zh) 一种原位观测水合物微观反应动力学过程的高压冷热台装置及使用方法
CN101477086B (zh) 气体水合物生成取样分析方法及装置
CN111650354B (zh) 一种水合物评价实验系统及方法
US11796526B2 (en) Device and method of gas hydrate pressure maintaining replacement for in-situ Raman analysis
CN107345894B (zh) 一种原位观测气体水合物粒度分布的高压冷台装置及使用方法
CN105301205A (zh) 一种可视化的气体水合物动力学实验装置
CN110879271A (zh) 一种模拟地层条件下co2-水-岩反应的实验装置及方法
CN215640823U (zh) 一种实时、原位监测与表征水合物生成微观动力学过程的装置
CN110487771B (zh) 用于原位拉曼分析的气体水合物生成/分解系统及方法
CN109000751B (zh) 天然气水合物的体积测量设备及方法
WO2019109417A1 (zh) 一种适用于低温高压材料x射线衍射测量的高压冷台装置及使用方法
CN111289468A (zh) 一种含有氢氟酸的锂离子电池热失控产气分析方法及其系统
CN110441286B (zh) 用于原位拉曼分析的气体水合物保压置换装置及方法
Acosta et al. Dew and bubble point measurements for carbon dioxide-propane mixtures
CN110530844B (zh) 原位拉曼定量的气液多相水合物生成/分解装置及方法
CN108318100B (zh) 测量液氮冷冻水合物样品分解释放气体体积的系统及方法
CN111650352A (zh) 一种多功能水合物合成及分解模拟的实验系统及实验方法
CN111638201B (zh) 一种同步在线表征气体水合物微观反应动力学过程和宏观定性及定量的装置和方法
CN201138344Y (zh) 一种雷德饱和蒸汽压测量装置
CN207675655U (zh) 一种变压器溶解气分析装置
CN212321603U (zh) 一种水合物法气体分离实验系统
CN212622573U (zh) 一种水合物评价实验系统
WO2022096025A1 (zh) 一种外场对气体水合物物性影响的综合测试装置
CN113533246A (zh) 常压下在线红外光谱仪原位监测水合物微观动力学过程的装置及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE