WO2022096025A1 - 一种外场对气体水合物物性影响的综合测试装置 - Google Patents

一种外场对气体水合物物性影响的综合测试装置 Download PDF

Info

Publication number
WO2022096025A1
WO2022096025A1 PCT/CN2021/139031 CN2021139031W WO2022096025A1 WO 2022096025 A1 WO2022096025 A1 WO 2022096025A1 CN 2021139031 W CN2021139031 W CN 2021139031W WO 2022096025 A1 WO2022096025 A1 WO 2022096025A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
field
gas
external field
reaction kettle
Prior art date
Application number
PCT/CN2021/139031
Other languages
English (en)
French (fr)
Inventor
史伶俐
梁德青
卢静生
何勇
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Publication of WO2022096025A1 publication Critical patent/WO2022096025A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the invention relates to the field of gas hydrate testing, in particular to a comprehensive testing device for the influence of an external field on the physical properties of gas hydrates.
  • Gas hydrate is an ice-like cage crystal compound formed by gas molecules (such as methane, carbon dioxide, nitrogen, hydrogen sulfide, etc.) and water molecules under low temperature and high pressure conditions.
  • gas molecules such as methane, carbon dioxide, nitrogen, hydrogen sulfide, etc.
  • the present invention provides a comprehensive testing device for the influence of an external field on the physical properties of gas hydrate, with simple equipment system and convenient operation.
  • a comprehensive testing device for the influence of an external field on the physical properties of gas hydrate comprising a gas-liquid supply unit, a temperature control unit, a reactor unit, an external field generating unit, a physical property testing unit, and a data acquisition and processing unit, wherein,
  • the reactor unit is used to provide a place where the gas-liquid system reacts to generate hydrate
  • the gas-liquid supply unit is used for supplying or emptying the gas and/or liquid in the reactor unit and its connected pipeline;
  • the temperature control unit is used to control the ambient temperature of the reactor unit by controlling the temperature of the circulating air, thereby controlling the reaction temperature of the gas-liquid system in the reactor unit;
  • the external field generating unit is used to generate a single or coupled external field affecting the reactor unit;
  • the physical property testing unit is used to obtain data in the test process of the reactor unit
  • the data acquisition and processing unit is used for processing the acquired data.
  • the reaction kettle unit includes a reaction kettle, an adjustable stirring device is arranged in the reaction kettle, and an external field shield is arranged on the outer periphery of the reaction kettle device.
  • the temperature control unit includes a constant temperature air bath, and the reaction kettle unit is arranged in the constant temperature air bath.
  • the external field generating unit includes a laser Raman tester, an X-ray diffraction tester, a force field displacement test device and a temperature and pressure test device, wherein,
  • the laser Raman tester and the X-ray diffraction tester are used in combination to obtain spectra of different spectral intensities I during the experiment;
  • the force field displacement testing device is used to obtain the force field displacement s obtained during the experiment;
  • the temperature and pressure testing device is used to obtain the temperature T and pressure P during the experiment.
  • the gas-liquid supply unit includes a gas cylinder tank, a buffer tank, a vacuum pump, and a liquid inlet and outlet device, wherein,
  • the gas cylinder tank is arranged outside the constant temperature air bath, the buffer tank is arranged inside the constant temperature air bath, and the gas in the gas cylinder tank is supplemented into the reaction kettle through the buffer tank;
  • the vacuum pump is connected to the top of the reactor, and is used to evacuate the gas in the reactor unit and its connected pipeline;
  • the liquid inlet and outlet device is connected to the bottom of the reactor, and is used for supplying or emptying the liquid in the reactor unit and its connected pipeline.
  • the external field generating unit includes an external field generating board and an external field generating controller, wherein,
  • the external field generating board is arranged around the reaction kettle to shield the influence of the external field to be measured, and the external field generating board is connected with the control signal of the external field generating controller.
  • the data acquisition and processing unit includes a camera device, a rotational speed and torque acquisition device, a temperature and pressure data acquisition control card, and a computer data processing system, wherein,
  • the camera device is used to record the process of the gas-liquid system reacting to generate hydrate during the experiment;
  • the rotational speed and torque acquisition device is used to collect rotational speed r and torque ⁇ during the experiment;
  • the temperature and pressure data acquisition control card is connected with the control signal of the temperature and pressure testing device, and transmits the collected temperature T and pressure P to the computer data processing system,
  • the computer data processing system is used to process the acquired parameters during the experiment.
  • the external field includes any one of electric field, magnetic field, light field and force field or any combination thereof, wherein,
  • the electric field is generated by an electric field generating device, and the electric field generating device generates a direct current electric field, a cosine alternating electric field, a square alternating electric field and a pulsed alternating electric field of different intensities through a power supply and an amplifier;
  • the magnetic field is generated by a magnetic field generating device for generating magnetic fields of different strengths
  • the light field is generated by a light field generating device, and the light field generating device is used to generate light fields with different intensities through different light sources;
  • the force field is generated by force field generating means for generating pressures of different intensities.
  • the present invention has the beneficial effects that: the device of the present invention can deeply study the comprehensive physical properties of hydrates, especially the comprehensive physical properties of hydrates under the influence of external fields, and can regulate and control the gas storage and transportation process of the hydrate method. Evaluation is of great significance, and the device has good market prospects; the invention has the advantages of wide application range, accurate testing, real-time monitoring, and the like.
  • FIG. 1 is a schematic structural diagram of a comprehensive testing device according to an embodiment of the present invention.
  • connection means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • installed should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection.
  • the connection can also be an electrical connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.
  • the specific meanings of the above terms in the present invention can be understood in specific situations.
  • a first feature "on” or “under” a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • FIG. 1 is a schematic structural diagram of a comprehensive testing device according to an embodiment of the present invention.
  • a comprehensive testing device for the influence of an external field on the physical properties of gas hydrate comprising a gas-liquid supply unit, a temperature control unit, a reactor unit, an external field generating unit, a physical property testing unit, and a data acquisition and processing unit, wherein,
  • the reactor unit is used to provide a place where the gas-liquid system reacts to generate hydrate
  • the gas-liquid supply unit is used for supplying or emptying the gas and/or liquid in the reactor unit and its connected pipeline;
  • the temperature control unit is used to control the ambient temperature of the reactor unit by controlling the temperature of the circulating air, thereby controlling the reaction temperature of the gas-liquid system in the reactor unit;
  • the external field generating unit is used to generate a single or coupled external field affecting the reactor unit;
  • the physical property testing unit is used to obtain data in the test process of the reactor unit
  • the data acquisition and processing unit is used for processing the acquired data.
  • the reaction kettle unit includes a reaction kettle, an adjustable stirring device 10 is arranged in the reaction kettle, and an external field shielding device 13 is arranged on the outer periphery of the reaction kettle .
  • the temperature control unit includes a constant temperature air bath 1 , and the reactor unit is arranged in the constant temperature air bath 1 .
  • the external field generating unit includes a laser Raman tester, an X-ray diffraction tester, a force field displacement test device, and a temperature and pressure test device, wherein,
  • the laser Raman tester and the X-ray diffraction tester are used in combination to obtain spectra of different spectral intensities I during the experiment;
  • the force field displacement testing device is used to obtain the force field displacement s obtained during the experiment;
  • the temperature and pressure testing device is used to obtain the temperature T and pressure P during the experiment.
  • the gas-liquid supply unit includes a gas cylinder tank 3, a buffer tank 2, a vacuum pump 8, and a liquid inlet and outlet device 9, wherein,
  • the gas cylinder tank 3 is arranged outside the constant temperature air bath 1, the buffer tank 2 is arranged inside the constant temperature air bath 1, and the gas in the gas cylinder tank 3 is supplemented to the reaction kettle through the buffer tank 2.
  • the buffer tank 2 is arranged inside the constant temperature air bath 1, and the gas in the gas cylinder tank 3 is supplemented to the reaction kettle through the buffer tank 2.
  • the vacuum pump 8 is connected to the top of the reactor for emptying the gas in the reactor unit and its connected pipeline;
  • the liquid inlet and outlet device 9 is connected to the bottom of the reactor, and is used for supplying or emptying the liquid in the reactor unit and its connected pipeline.
  • the external field generating unit includes an external field generating board 12 and an external field generating controller 4, wherein,
  • the external field generating board 12 is arranged around the reaction kettle to shield the influence of the external field to be measured, and the external field generating board 12 is connected with the control signal of the external field generating controller 4 .
  • the data acquisition and processing unit includes a camera device, a rotational speed and torque acquisition device, a temperature and pressure data acquisition control card, and a computer 6 data processing system, wherein,
  • the camera device is used to record the process of the gas-liquid system reacting to generate hydrate during the experiment;
  • the rotational speed and torque acquisition device is used to collect rotational speed r and torque ⁇ during the experiment;
  • the temperature and pressure data acquisition control card is connected with the control signal of the temperature and pressure testing device, and transmits the collected temperature T and pressure P to the computer 6 data processing system,
  • the computer 6 data processing system is used to process the parameters acquired during the experiment.
  • the external field includes any one of an electric field, a magnetic field, a light field and a force field or any combination thereof, wherein,
  • the electric field is generated by an electric field generating device, and the electric field generating device generates a direct current electric field, a cosine alternating electric field, a square alternating electric field and a pulsed alternating electric field of different intensities through a power supply and an amplifier;
  • the magnetic field is generated by a magnetic field generating device for generating magnetic fields of different strengths
  • the light field is generated by a light field generating device, and the light field generating device is used to generate light fields with different intensities through different light sources;
  • the force field is generated by force field generating means for generating pressures of different intensities.
  • the comprehensive testing process of the influence of the external field on the physical properties of gas hydrates includes the following steps:
  • the data acquisition and processing device 5 and the computer 6 collect the temperature T, the pressure P, the force field displacement s, the rotational speed r and the torque ⁇ during the experiment in real time, and when it is displayed that the system has reached a steady state balance, the external field generation controller 4 is turned off. , an adjustable stirring device 10 and a constant temperature air bath 1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种外场对气体水合物物性影响的综合测试装置,涉及气体水合物试验领域,包括气液供应单元、温度控制单元、反应釜单元、外场发生单元、物性测试单元、数据采集处理单元,其中,反应釜单元用于提供气液体系反应生成水合物的场所;气液供应单元用于提供或排空反应釜单元及其所连接的管线中的气体和/或液体;温度控制单元用于通过控制循环空气的温度来控制反应釜单元的环境温度,进而控制反应釜单元中气液体系的反应温度;外场发生单元用于产生影响反应釜单元的单一或耦合的外场;物性测试单元用于获取反应釜单元试验过程中的数据;数据采集处理单元用于处理获取的数据。

Description

一种外场对气体水合物物性影响的综合测试装置 技术领域
本发明涉及气体水合物试验领域,具体涉及一种外场对气体水合物物性影响的综合测试装置。
背景技术
气体水合物是由气体分子(如甲烷、二氧化碳、氮气、硫化氢等)与水分子在低温高压条件下生成的一种类冰状的笼型晶体化合物。近年来,随着气体水合物研究的深入,发现利用气体水合物进行气体分离及储运可以成为一种新型高效的工业技术。
在模拟研究中,发现磁场、电场等外场对水合物的生成动力学性质,特别是诱导时间和储气量的影响很大。但是,单一或耦合的电场、磁场、光场、力场等外场对水合物的结构、密度等物性的影响还不明确。只有准确掌握了多种外场影响下的水合物的综合物性,才能指导水合物法气体储运技术中的水合物生成、输运和分解利用等不同阶段的顺利进行,提高能源利用效率。
因此,有必要提供一种能研究外场影响下的水合物的综合物性的设备。
发明内容
针对现有技术中的不足,本发明提供一种外场对气体水合物物性影响的综合测试装置,设备系统简单、操作方便。
为实现上述目的,本发明技术方案如下:
一种外场对气体水合物物性影响的综合测试装置,包括气液供应单元、温度控制单元、反应釜单元、外场发生单元、物性测试单元、数据采集处理单元,其中,
所述反应釜单元用于提供气液体系反应生成水合物的场所;
所述气液供应单元用于提供或排空所述反应釜单元及其所连接的管线中的气体和/或液体;
所述温度控制单元用于通过控制循环空气的温度来控制所述反应釜单元的环境温度,进而控制反应釜单元中气液体系的反应温度;
所述外场发生单元用于产生影响所述反应釜单元的单一或耦合的外场;
所述物性测试单元用于获取所述反应釜单元试验过程中的数据;
所述数据采集处理单元用于处理获取的数据。
如上所述的外场对气体水合物物性影响的综合测试装置,进一步地,所述反应釜单元包括反应釜,所述反应釜内设有可调式搅拌装置且所述反应釜的外周设有外场屏蔽装置。
如上所述的外场对气体水合物物性影响的综合测试装置,进一步地,所述温度控制单元包括恒温空气浴,所述反应釜单元设置于所述恒温空气浴内。
如上所述的外场对气体水合物物性影响的综合测试装置,进一步地,所述外场发生单元包括激光拉曼测试仪、X射线衍射测试仪、力场位移测试装置和温度压力测试装置,其中,
所述激光拉曼测试仪和所述X射线衍射测试仪组合使用获取实验过程中的不同光谱强度I的谱图;
所述力场位移测试装置用于获取实验过程中的获取力场位移s;
所述温度压力测试装置用于获取实验过程中的温度T和压力P。
如上所述的外场对气体水合物物性影响的综合测试装置,进一步地,所述气液供应单元包括气瓶罐、缓冲罐、真空泵、进排液装置,其中,
所述气瓶罐设置于恒温空气浴的外部,所述缓冲罐设置于恒温空气浴的内部,所述气瓶罐内的气体经过所述缓冲罐补充到所述反应釜内;
所述真空泵连接至所述反应釜的顶部,用于排空所述反应釜单元及其所连接的管线中的气体;
所述进排液装置接至所述反应釜的底部,用于提供或排空所述反应釜单元及其所连接的管线中的液体。
如上所述的外场对气体水合物物性影响的综合测试装置,进一步地,所述外场发生单元包括外场发生板和外场发生控制器,其中,
所述外场发生板围绕所述反应釜设置,以屏蔽外界对待测外场的影响,且所述外场发生板与所述外场发生控制器控制信号相连。
如上所述的外场对气体水合物物性影响的综合测试装置,进一步地,所述数据采集处理单元包括摄像装置、转速及扭矩采集装置、温度压力数据采集控制卡、计算机数据处理系统,其中,
所述摄像装置用于记录实验过程中的气液体系反应生成水合物的过程;
所述转速及扭矩采集装置用于采集实验过程中的转速r和扭矩τ;
所述温度压力数据采集控制卡与所述温度压力测试装置控制信号相连,将采集的温度T和压力P传递到所述计算机数据处理系统,
所述计算机数据处理系统用于处理实验过程中的获取的参数。
如上所述的外场对气体水合物物性影响的综合测试装置,进一步地,所述外场包括电场、磁场、光场和力场的任一种或其任意组合,其中,
电场通过电场发生装置产生,所述电场发生装置通过电源及放大器产生不同强度的直流电场、余弦交变电场、方形交变电场、脉冲式交变电场;
磁场通过磁场发生装置产生,所述磁场发生装置用于产生不同强度的磁场;
光场通过光场发生装置产生,所述光场发生装置用于通过不同的光源产生不同强度的光场;
力场通过力场发生装置产生,所述力场发生装置用于产生不同强度的压力。
本发明与现有技术相比,其有益效果在于:本发明的装置能深入研究水合物的综合物性,特别是外场影响下的水合物的综合物性,对水合物法气体储运过程的调控和评价具有重要意义,该装置具有较好的市场前景;本发明具有应用范围广、精确测试、实时监测等优点。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图进行简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的综合测试装置的结构示意图。
附图标记说明:1、恒温空气浴;2、缓冲罐;3、气瓶罐;4、外场发生控制器;5、数据采集处理装置;6、计算机;7、激光拉曼测试仪和X射线衍射测试仪;8、真空泵;9、进排液装置;10、可调式搅拌装置;11、蓝宝石反应釜;12、外场发生板;13、外场屏蔽装置。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例:
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是 用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,本发明实施例的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。此外,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
参见图1,图1是本发明实施例的综合测试装置的结构示意。
一种外场对气体水合物物性影响的综合测试装置,包括气液供应单元、温度控制单元、反应釜单元、外场发生单元、物性测试单元、数据采集处理单元,其中,
所述反应釜单元用于提供气液体系反应生成水合物的场所;
所述气液供应单元用于提供或排空所述反应釜单元及其所连接的管线中的气体和/或液体;
所述温度控制单元用于通过控制循环空气的温度来控制所述反应釜单元的环境温度,进而控制反应釜单元中气液体系的反应温度;
所述外场发生单元用于产生影响所述反应釜单元的单一或耦合的外场;
所述物性测试单元用于获取所述反应釜单元试验过程中的数据;
所述数据采集处理单元用于处理获取的数据。
作为一种可选的实施方式,在某些实施例中,所述反应釜单元包括反应釜,所述反应釜内设有可调式搅拌装置10且所述反应釜的外周设有外场屏蔽装置13。
作为一种可选的实施方式,在某些实施例中,所述温度控制单元包括恒温空气浴1,所述反应釜单元设置于所述恒温空气浴1内。
作为一种可选的实施方式,在某些实施例中,所述外场发生单元包括激光拉曼测试仪、X射线衍射测试仪、力场位移测试装置和温度压力测试装置,其中,
所述激光拉曼测试仪和所述X射线衍射测试仪组合使用获取实验过程中的不同光谱强度I的谱图;
所述力场位移测试装置用于获取实验过程中的获取力场位移s;
所述温度压力测试装置用于获取实验过程中的温度T和压力P。
作为一种可选的实施方式,在某些实施例中,所述气液供应单元包括气瓶罐3、缓冲罐2、真空泵8、进排液装置9,其中,
所述气瓶罐3设置于恒温空气浴1的外部,所述缓冲罐2设置于恒温空气浴1的内部,所述气瓶罐3内的气体经过所述缓冲罐2补充到所述反应釜内;
所述真空泵8连接至所述反应釜的顶部,用于排空所述反应釜单元及其所连接的管线中的气体;
所述进排液装置9接至所述反应釜的底部,用于提供或排空所述反应釜单元及其所连接的管线中的液体。
作为一种可选的实施方式,在某些实施例中,所述外场发生单元包括外场发生板12和外场发生控制器4,其中,
所述外场发生板12围绕所述反应釜设置,以屏蔽外界对待测外场的影响,且所述外场发生板12与所述外场发生控制器4控制信号相连。
作为一种可选的实施方式,在某些实施例中,所述数据采集处理单元包括摄像装置、转速及扭矩采集装置、温度压力数据采集控制卡、计算机6数据处理系统,其中,
所述摄像装置用于记录实验过程中的气液体系反应生成水合物的过程;
所述转速及扭矩采集装置用于采集实验过程中的转速r和扭矩τ;
所述温度压力数据采集控制卡与所述温度压力测试装置控制信号相连,将采集的温度T和压力P传递到所述计算机6数据处理系统,
所述计算机6数据处理系统用于处理实验过程中的获取的参数。
作为一种可选的实施方式,在某些实施例中,所述外场包括电场、磁场、光场和力场的任一种或其任意组合,其中,
电场通过电场发生装置产生,所述电场发生装置通过电源及放大器产生不同强度的直流电场、余弦交变电场、方形交变电场、脉冲式交变电场;
磁场通过磁场发生装置产生,所述磁场发生装置用于产生不同强度的磁场;
光场通过光场发生装置产生,所述光场发生装置用于通过不同的光源产生不同强度的光场;
力场通过力场发生装置产生,所述力场发生装置用于产生不同强度的压力。
本实施实例中,外场对气体水合物物性影响的综合测试过程包括如下步骤:
(1)将蓝宝石反应釜11清洗并干燥处理;
(2)启动恒温空气浴1,并设定恒定温度;
(3)打开排气阀门,并启动真空泵8,排出反应釜及管路中的空气,打开进排液装置9,待待测液体进入蓝宝石反应釜11后,关闭进排液装置9、排气阀门和真空泵8;
(4)打开进气阀门,向蓝宝石反应釜11中充入反应气体至预定压力后关闭进气阀门;
(5)启动外场发生控制器4和可调式搅拌装置10,使气体和水在单一或耦合外场影响下发生水合反应;
(6)启动激光拉曼测试仪和X射线衍射测试仪7,通过不同光谱强度I的谱图,实时监测分析体系内生成的气体水合物的结构变化。
(7)数据采集处理装置5和计算机6实时采集实验过程中的温度T、压力P、力场位移s、转速r和扭矩τ,当显示系统运行达到稳态平衡后,关闭外场发生控制器4、可调式搅拌装置10和恒温空气浴1。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本 发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (4)

  1. 一种外场对气体水合物物性影响的综合测试装置,其特征在于,包括气液供应单元、温度控制单元、反应釜单元、外场发生单元、物性测试单元、数据采集处理单元,其中,
    所述反应釜单元用于提供气液体系反应生成水合物的场所;
    所述气液供应单元用于提供或排空所述反应釜单元及其所连接的管线中的气体和/或液体;
    所述温度控制单元用于通过控制循环空气的温度来控制所述反应釜单元的环境温度,进而控制反应釜单元中气液体系的反应温度;
    所述外场发生单元用于产生影响所述反应釜单元的单一或耦合的外场;
    所述物性测试单元用于获取所述反应釜单元试验过程中的数据;
    所述数据采集处理单元用于处理获取的数据。
  2. 根据权利要求1所述的外场对气体水合物物性影响的综合测试装置,其特征在于,所述反应釜单元包括反应釜,所述反应釜内设有可调式搅拌装置且所述反应釜的外周设有外场屏蔽装置。
  3. 根据权利要求1所述的外场对气体水合物物性影响的综合测试装置,其特征在于,所述外场发生单元包括激光拉曼测试仪、X射线衍射测试仪、力场位移测试装置和温度压力测试装置,其中,
    所述激光拉曼测试仪和所述X射线衍射测试仪组合使用获取实验过程中的不同光谱强度I的谱图;
    所述力场位移测试装置用于获取实验过程中的获取力场位移s;
    所述温度压力测试装置用于获取实验过程中的温度T和压力P。
  4. 根据权利要求1所述的外场对气体水合物物性影响的综合测试装置,其特征在于,所述外场包括电场、磁场、光场和力场的任一种或其任意组合,其中,
    电场通过电场发生装置产生,所述电场发生装置通过电源及放大器产生不同强度的直流电场、余弦交变电场、方形交变电场、脉冲式交变电场;
    磁场通过磁场发生装置产生,所述磁场发生装置用于产生不同强度的磁场;
    光场通过光场发生装置产生,所述光场发生装置用于通过不同的光源产生不同强度的光场;
    力场通过力场发生装置产生,所述力场发生装置用于产生不同强度的压力。
PCT/CN2021/139031 2021-01-20 2021-12-17 一种外场对气体水合物物性影响的综合测试装置 WO2022096025A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110076594.4A CN112903732A (zh) 2021-01-20 2021-01-20 一种外场对气体水合物物性影响的综合测试装置
CN202110076594.4 2021-01-20

Publications (1)

Publication Number Publication Date
WO2022096025A1 true WO2022096025A1 (zh) 2022-05-12

Family

ID=76116847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139031 WO2022096025A1 (zh) 2021-01-20 2021-12-17 一种外场对气体水合物物性影响的综合测试装置

Country Status (2)

Country Link
CN (1) CN112903732A (zh)
WO (1) WO2022096025A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112903732A (zh) * 2021-01-20 2021-06-04 中国科学院广州能源研究所 一种外场对气体水合物物性影响的综合测试装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201603545U (zh) * 2009-12-01 2010-10-13 广东省广州石油机械厂 水合物实验装置
US20110081729A1 (en) * 2008-01-03 2011-04-07 Baker Hughes Incorporated Hydrate Inhibition Test Loop
CN104374800A (zh) * 2014-11-18 2015-02-25 中国科学院广州能源研究所 一种气体水合物导热系数原位测试装置和方法
CN105301205A (zh) * 2015-11-30 2016-02-03 中国科学院广州能源研究所 一种可视化的气体水合物动力学实验装置
CN106512885A (zh) * 2016-10-27 2017-03-22 山东科技大学 一种采用物理场协同技术的气体分离提纯装置
CN109696537A (zh) * 2019-01-28 2019-04-30 中国地质大学(武汉) 高压静电场条件下水合物形成分解观测装置及其方法
CN109758976A (zh) * 2018-12-24 2019-05-17 中国科学院广州能源研究所 一种中子衍射水合物高压生成装置
CN110586013A (zh) * 2019-10-15 2019-12-20 中国地质大学(北京) 二氧化碳水合物可视化实验装置及其实验方法
CN112903732A (zh) * 2021-01-20 2021-06-04 中国科学院广州能源研究所 一种外场对气体水合物物性影响的综合测试装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109513B (zh) * 2010-12-23 2014-01-08 中国科学院广州能源研究所 一种天然气水合物三维生成开采物性检测实验装置
CN105606634B (zh) * 2016-01-12 2018-02-16 大连理工大学 一种用于x射线ct设备观测盲管中天然气水合物生长特性的装置
CN106969957A (zh) * 2017-04-20 2017-07-21 天津大学 一种多功能气体水合物实验系统
CN209803129U (zh) * 2019-01-28 2019-12-17 中国地质大学(武汉) 高压静电场条件下水合物形成分解观测装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110081729A1 (en) * 2008-01-03 2011-04-07 Baker Hughes Incorporated Hydrate Inhibition Test Loop
CN201603545U (zh) * 2009-12-01 2010-10-13 广东省广州石油机械厂 水合物实验装置
CN104374800A (zh) * 2014-11-18 2015-02-25 中国科学院广州能源研究所 一种气体水合物导热系数原位测试装置和方法
CN105301205A (zh) * 2015-11-30 2016-02-03 中国科学院广州能源研究所 一种可视化的气体水合物动力学实验装置
CN106512885A (zh) * 2016-10-27 2017-03-22 山东科技大学 一种采用物理场协同技术的气体分离提纯装置
CN109758976A (zh) * 2018-12-24 2019-05-17 中国科学院广州能源研究所 一种中子衍射水合物高压生成装置
CN109696537A (zh) * 2019-01-28 2019-04-30 中国地质大学(武汉) 高压静电场条件下水合物形成分解观测装置及其方法
CN110586013A (zh) * 2019-10-15 2019-12-20 中国地质大学(北京) 二氧化碳水合物可视化实验装置及其实验方法
CN112903732A (zh) * 2021-01-20 2021-06-04 中国科学院广州能源研究所 一种外场对气体水合物物性影响的综合测试装置

Also Published As

Publication number Publication date
CN112903732A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2022096025A1 (zh) 一种外场对气体水合物物性影响的综合测试装置
CN106769474A (zh) 加载双向拉伸应力试样腐蚀电化学实验装置及测试方法
CN106124998B (zh) 一种锂电池内部短路测试方法
WO2023279859A1 (zh) 分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置及其使用方法
CN111261903A (zh) 一种基于模型的质子交换膜燃料电池阻抗在线估计方法
CN111948090B (zh) 一种监测真空干燥工艺中物料水分含量变化的方法及装置
CN111289468A (zh) 一种含有氢氟酸的锂离子电池热失控产气分析方法及其系统
CN215640823U (zh) 一种实时、原位监测与表征水合物生成微观动力学过程的装置
CN208239380U (zh) 一种光催化分解水活性评价装置
CN103869091A (zh) 一种在线检测生物发酵尾气中氧气和二氧化碳的装置及方法
CN208297685U (zh) 一种获取锂离子电池内部状态分布的无损检测装置
CN106546646A (zh) 一种低浓度磷化氢浓度在线监测方法
CN213748560U (zh) 空气源热泵冷暖机组的测试装置
CN209841664U (zh) 基于激光光声光谱法的油中气体检测装置
CN208188664U (zh) 多元化能源管理系统
CN209117620U (zh) 催化燃烧传感器
CN113237824A (zh) 一种锅炉汽水系统腐蚀模拟实验装置及其实验方法
CN113964405A (zh) 一种在线监测高电压钴酸锂表面残碱浓度的方法
CN208060097U (zh) 一种智能化气密保压水检试验台
CN215389354U (zh) 一种高低温试验箱换气装置
CN202052528U (zh) 自动碳化塔
CN209764503U (zh) 一种便携式真空取样器
CN214622576U (zh) 一种面包二氧化硫残留快速检测装置
CN214702939U (zh) 一种随身携带式空气质量在线自动监测仪
CN209802905U (zh) 一种全自动瓦斯和页岩气吸附常数测定仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888717

Country of ref document: EP

Kind code of ref document: A1