WO2023279778A1 - 空调器的控制方法、控制装置、空调器和可读存储介质 - Google Patents

空调器的控制方法、控制装置、空调器和可读存储介质 Download PDF

Info

Publication number
WO2023279778A1
WO2023279778A1 PCT/CN2022/082777 CN2022082777W WO2023279778A1 WO 2023279778 A1 WO2023279778 A1 WO 2023279778A1 CN 2022082777 W CN2022082777 W CN 2022082777W WO 2023279778 A1 WO2023279778 A1 WO 2023279778A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
air conditioner
temperature
parameter
refrigerant outlet
Prior art date
Application number
PCT/CN2022/082777
Other languages
English (en)
French (fr)
Inventor
杨坤
周柏松
Original Assignee
广东美的暖通设备有限公司
合肥美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 合肥美的暖通设备有限公司 filed Critical 广东美的暖通设备有限公司
Priority to EP22836537.5A priority Critical patent/EP4328508A1/en
Publication of WO2023279778A1 publication Critical patent/WO2023279778A1/zh
Priority to US18/515,147 priority patent/US20240085048A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the present application belongs to the technical field of air conditioner control, and specifically relates to an air conditioner control method, an air conditioner control device, an air conditioner, and a readable storage medium.
  • the air conditioner is provided with multiple temperature sensors, and the multiple temperature sensors can detect multiple temperature parameter values in the air conditioner.
  • the temperature sensor of the indoor unit of the air conditioner breaks down, the air conditioner will be controlled to stop running in the prior art, which will bring inconvenience to the user.
  • This application aims to solve one of the technical problems existing in the prior art or related art.
  • the first aspect of the present application proposes a method for controlling an air conditioner.
  • the second aspect of the present application provides a control device for an air conditioner.
  • the third aspect of the present application proposes an air conditioner.
  • a fourth aspect of the present application proposes an air conditioner.
  • a fifth aspect of the present application provides a readable storage medium.
  • an air conditioner control method is proposed, the air conditioner includes an indoor unit and at least two temperature sensors, and the at least two temperature sensors are used to obtain at least two corresponding temperatures in the indoor unit Parameter value, the control method of the air conditioner includes: based on any temperature sensor in the at least two temperature sensors being in a fault state, obtaining the fault parameter value among the at least two temperature parameter values; according to the operating parameters of the air conditioner, obtaining the fault parameter value The parameter substitution value corresponding to the value; control the operation of the air conditioner according to the parameter substitution value.
  • the air conditioner control method provided in this application is used to control the air conditioner.
  • the air conditioner is provided with an indoor unit and a plurality of temperature sensors.
  • the plurality of temperature sensors are arranged at different positions of the indoor unit.
  • the plurality of temperature sensors can control the The temperature parameter values at different locations are collected.
  • the indoor unit is also provided with a throttle valve and a fan, and the throttle valve and the fan of the indoor unit are controlled according to the corresponding multiple temperature parameter values collected by multiple temperature sensors, thereby realizing the control of the operation of the indoor unit.
  • the indoor unit of the air conditioner continuously collects temperature parameter values and operating parameters of the air conditioner through multiple temperature sensors, and controls the operation of the air conditioner according to the collected temperature parameter values and operating parameters.
  • the temperature parameter value controls the throttle valve and fan in the indoor unit.
  • the air conditioner Detect whether there is a fault in the temperature sensor installed in the indoor unit.
  • the faulty sensor among the faulty multiple temperature sensors is detected and located, so that the faulty parameter value among the temperature parameter values collected by multiple temperature sensors can be determined, and the air conditioner Other operating parameters estimate the real value of the fault parameter value to obtain the parameter substitution value.
  • the faulty parameter value among the plurality of temperature parameter values is replaced by the parameter substitution value, so as to update the collected temperature parameter values, and continue to control the operation of the air conditioner through the parameter substitution value.
  • the indoor unit of the air conditioner can still keep running, ensuring that the air conditioner can still run while waiting for maintenance, and reducing the number of air conditioners waiting for maintenance.
  • the length of downtime in the system improves the user experience.
  • the indoor unit includes a heat exchanger
  • the at least two temperature sensors include a first temperature sensor, a second temperature sensor and a third temperature sensor
  • the first temperature sensor and the second temperature sensor are arranged on the heat exchanger
  • the third temperature sensor is arranged at the air inlet of the indoor unit
  • the step of obtaining the fault parameter value of at least two temperature parameter values includes: determining the temperature of the first temperature sensor, the second temperature sensor and the third temperature sensor Fault state; determine the fault parameter value according to the fault state; wherein, the fault parameter value includes a refrigerant inlet temperature value, a refrigerant outlet temperature value and an ambient temperature value.
  • the indoor unit of the air conditioner includes a heat exchanger.
  • the refrigerant flows through the first end of the heat exchanger to the second end.
  • the air conditioner operates in heating mode, the refrigerant Flow through the second end of the heat exchanger to the first end.
  • Multiple temperature sensors are also arranged in the indoor unit.
  • the multiple temperature sensors include a first temperature sensor arranged at the first end of the heat exchanger. In the cooling mode, the first temperature sensor can collect the temperature value of the refrigerant inlet of the indoor unit. In the heating mode, the first temperature The sensor can collect the refrigerant outlet temperature value of the indoor unit.
  • the multiple temperature sensors also include a second temperature sensor arranged at the second end of the heat exchanger.
  • the second temperature sensor can collect the temperature value of the refrigerant outlet of the indoor unit.
  • the second temperature The sensor can collect the refrigerant inlet temperature value of the indoor unit.
  • the multiple temperature sensors also include a third temperature sensor arranged at the air inlet of the indoor unit, the third temperature sensor can collect the temperature of the air entering the indoor unit, that is, the third temperature sensor can collect the ambient temperature value of the indoor unit.
  • the indoor unit of the air conditioner is provided with a throttle valve and a fan.
  • the operation of the indoor unit is controlled by controlling parameters such as the opening of the throttle valve and the speed of the fan.
  • the specific control method is to adjust the opening degree of the throttle valve and adjust the speed of the fan according to the collected refrigerant inlet temperature value, refrigerant outlet temperature value and ambient temperature value.
  • each of the multiple temperature sensors in the indoor unit of the air conditioner has a fault, it is judged whether there is a faulty parameter value among at least two temperature parameter values.
  • it is detected that there is a faulty temperature sensor among the plurality of temperature sensors it is determined that there is also a faulty parameter value in at least two collected temperature parameter values.
  • the operation mode of the air conditioner by separately determining whether the three temperature sensors are faulty, it is possible to determine the faulty parameter value among the temperature parameter values collected by the three temperature sensors.
  • the faulty parameter value in the collected temperature parameter values can be quickly determined to avoid continuing to control the air conditioner according to the faulty parameter value, thereby reducing the operating time of the air conditioner in a faulty state duration.
  • the step of obtaining the parameter replacement value corresponding to the fault parameter value according to the operating parameters of the air conditioner also includes: controlling the air conditioner to operate in the set operation mode; obtaining the air conditioner in the set operation mode Operating parameters; wherein, the set operating mode includes a cooling mode and a heating mode.
  • the operation mode of the air conditioner also includes the air supply mode, and when the air conditioner is in the air supply mode, the compressor of the air conditioner does not need to run, and the shut-off valve in the indoor unit does not need to be opened. Therefore, the failure of the temperature sensor will not affect the air supply operation of the air conditioner, and there is no need to estimate the corresponding parameter substitution value.
  • the first temperature sensor is in a fault state, and the number of indoor units is at least two.
  • the step of obtaining a parameter replacement value corresponding to the fault parameter value specifically includes: The air conditioner is running in heating mode, determine the fault parameter value as the refrigerant outlet temperature value, and obtain the number of indoor units in the running state of the air conditioner; obtain the high pressure saturation temperature, target subcooling degree, and refrigerant outlet pressure of at least two indoor units value and set heating output; according to the number of indoor units, high pressure saturation temperature, target subcooling degree, refrigerant outlet pressure value and set heating output, determine the parameter substitution value corresponding to the refrigerant outlet temperature value.
  • the air conditioner is a multi-connected air conditioner, that is, the air conditioner includes multiple indoor units.
  • the air conditioner operates in the heating mode, and the high-temperature and high-pressure refrigerant generated by the compressor flows through the second end of the heat exchanger of the indoor unit to the first end. Since the first temperature sensor is arranged at the first end of the heat exchanger, the temperature parameter value collected by the first temperature sensor is the refrigerant outlet temperature value, and if the first temperature sensor is in a fault state, it can be determined that the refrigerant outlet temperature value is a fault parameter value .
  • the refrigerant outlet temperature is the fault parameter value
  • the operating parameters of the air conditioner such as the refrigerant outlet pressure value and the target subcooling degree of the indoor unit.
  • the parameter substitution value is estimated, and the refrigerant outlet temperature value in the collected temperature parameter values is replaced by the parameter substitution value.
  • Use the updated temperature parameter value to control the operation of the throttle valve and fan in the indoor unit of the air conditioner, so as to avoid the inability to accurately control the operation of the air conditioner in the heating mode due to inaccurate refrigerant outlet temperature values.
  • the high pressure saturation temperature is a hardware parameter of the air conditioner system, so when calculating the parameter substitution value, the high pressure protection temperature of the system can be directly called.
  • the target subcooling degree is a parameter value calculated according to the operation instruction after the air conditioner receives the operation instruction.
  • the refrigerant outlet pressure value can be collected directly by setting a pressure sensor, or can be calculated by using other parameter values such as the refrigerant outlet temperature.
  • the set heating output can be calculated based on the high pressure saturation temperature and the ambient temperature.
  • the step of determining the parameter substitution value corresponding to the refrigerant outlet temperature value specifically includes: determining that the number of indoor units is less than the set number, and calculating the corresponding value of the refrigerant outlet temperature value according to the high pressure saturation temperature and the target subcooling degree.
  • Parameter substitution value determine that the number of indoor units is greater than or equal to the set number, and calculate the parameter substitution value corresponding to the refrigerant outlet temperature value according to the refrigerant outlet pressure value and the set heating output.
  • the estimated value is obtained by calculating the difference between the high pressure saturation temperature and the target subcooling degree
  • the estimated refrigerant outlet temperature value is used as a parameter substitution value of the refrigerant outlet temperature value.
  • T 1 T C -SCS
  • T1 is the parameter substitution value corresponding to the refrigerant outlet temperature value
  • T C is the high pressure saturation temperature
  • SCS is the target subcooling degree.
  • the refrigerant outlet pressure value of the faulty indoor unit and the refrigerant outlet pressure value of the indoor unit with a faulty calculation sensor are calculated according to the two refrigerant outlet pressure values to obtain the set heating output, and then calculated according to the set heating output
  • the refrigerant outlet enthalpy value of the heat exchanger is estimated according to the refrigerant outlet enthalpy value to the refrigerant outlet temperature value, thereby calculating the parameter substitution value corresponding to the refrigerant outlet temperature value.
  • P 1 P C -dP 1 ;
  • P 1 is the refrigerant outlet pressure value of the indoor unit with no sensor failure
  • P C is the highest pressure value of the outdoor unit
  • dP 1 is the pressure drop at both ends of the electronic expansion valve of the indoor unit with no sensor failure.
  • the pressure drop at both ends of the electronic expansion valve of the indoor unit with no sensor failure can be calculated by using the pressure value collected by the sensor at both ends of the electronic expansion valve. It can also be calculated from the refrigerant flow value, the refrigerant outlet enthalpy value and the set heating output of the indoor unit.
  • P 2 P 1 +(H 1 -H 2 ) ⁇ den ⁇ 9.8;
  • H 1 is the liquid column pressure value caused by the drop between the faulty indoor unit and the reference point
  • H 2 is the liquid column pressure value caused by the drop between the faulty indoor unit and the reference point
  • den is the refrigerant of the faulty indoor unit density
  • P 2 is the refrigerant outlet pressure value of the faulty indoor unit
  • P 1 is the refrigerant outlet pressure value of the indoor unit with no sensor fault.
  • the liquid column pressure value caused by the drop between the indoor unit and the reference point is calculated during the trial operation of the air conditioner.
  • the density of the refrigerant can be calculated through the physical function of the liquid refrigerant, and the segmental fitting curve can be used in the process of calculating the density of the refrigerant.
  • mf is the refrigerant flow value
  • dP 2 is the pressure drop across the electronic expansion valve of the indoor unit with sensor failure
  • cv is the opening value of the electronic expansion valve
  • den is the refrigerant density of the faulty indoor unit.
  • dP 2 is the pressure drop across the electronic expansion valve of the indoor unit with sensor failure
  • P C is the highest pressure value of the outdoor unit
  • P 2 is the refrigerant outlet pressure value of the indoor unit with failure.
  • Q is the set heating output
  • K A is the coefficient
  • T C is the high pressure saturation temperature
  • T 3 is the ambient temperature value.
  • h 1 is the enthalpy value of the refrigerant outlet
  • h 2 is the enthalpy value of the refrigerant inlet
  • Q is the set heating output
  • mf is the refrigerant flow value.
  • T 1 f 1 (h 1 , T C );
  • T 1 is the parameter substitution value corresponding to the temperature value of the refrigerant outlet
  • h 1 is the enthalpy value of the refrigerant outlet
  • T C is the high-pressure saturation temperature
  • f 1 is the setting function.
  • the first temperature sensor is in a fault state
  • the step of obtaining the parameter replacement value corresponding to the fault parameter value specifically includes: based on the operation of the air conditioner in cooling mode, determine the fault
  • the parameter value is the refrigerant inlet temperature value; the refrigerant outlet temperature value of the indoor unit is obtained every first set time period; and the parameter substitution value corresponding to the refrigerant inlet temperature value is calculated according to the refrigerant outlet temperature value.
  • the air conditioner is a multi-connected air conditioner, that is, the air conditioner includes multiple indoor units.
  • the air conditioner operates in cooling mode, and the refrigerant flows from the first end of the heat exchanger to the second end. Since the first temperature sensor is arranged at the first end of the heat exchanger, the temperature parameter value collected by the first temperature sensor is the refrigerant inlet temperature value, and if the first temperature sensor is faulty, it can be determined that the refrigerant inlet temperature value is the fault parameter value.
  • the refrigerant inlet temperature value is the fault parameter value.
  • a substitute value for the refrigerant inlet temperature value can be estimated based on the refrigerant outlet temperature value.
  • the low-temperature refrigerant flows through the first end of the heat exchanger of the indoor unit to the second end of the heat exchanger. During the process of the refrigerant flowing through the heat exchanger, the low-temperature refrigerant continuously exchanges heat with the ambient air.
  • the outlet temperature value of the refrigerant should be higher than the inlet temperature value of the refrigerant, and the estimated refrigerant inlet temperature value can be obtained by calculating the difference between the refrigerant outlet temperature value and the first set value, and the estimated refrigerant inlet temperature value is used as the refrigerant inlet temperature. value, and use the parameter substitution value to replace the refrigerant inlet temperature value in the collected temperature parameter values.
  • the operation of the throttle valve and the fan in the indoor unit of the air conditioner is controlled by using the updated temperature parameter value, so as to prevent the air conditioner from being unable to accurately control the operation of the air conditioner in the heating mode due to inaccurate refrigerant inlet temperature values.
  • T 1 T 2 +Z 1 ;
  • T 1 is the parameter substitution value corresponding to the refrigerant inlet temperature value
  • T 2 is the refrigerant outlet temperature value
  • Z 1 is the first set difference
  • the estimated replacement value of the refrigerant inlet parameter is updated at intervals of the first set period of time.
  • the update method is to collect the refrigerant outlet temperature value every time the first set time period passes, and then re-estimate the parameter substitution value of the refrigerant inlet temperature value according to the refrigerant outlet temperature value. Realize continuous updating of the parameter replacement of the refrigerant inlet temperature value, and further improve the stability of the control of the air conditioner with sensor failure.
  • the indoor unit includes a fan, and before the step of obtaining the temperature value of the refrigerant outlet of the indoor unit, further includes: controlling the fan to stop running for a second set duration.
  • the refrigerant outlet temperature value is collected every interval of the first set time, and the parameters are estimated based on the refrigerant outlet temperature value substitute value.
  • the fan is controlled to stop for a second set time. It is understandable that the fan operation will speed up the heat exchange between the heat exchanger and the ambient air. Therefore, before collecting the temperature value of the refrigerant outlet, controlling the second set duration of fan shutdown can reduce the energy value lost by the refrigerant during the heat exchange process, and further improve the accuracy of the parameter substitution value of the estimated refrigerant inlet temperature value.
  • the second temperature sensor is in a fault state
  • the step of obtaining a parameter replacement value corresponding to the fault parameter value specifically includes: based on the operation of the air conditioner in the heating mode, determine The fault parameter value is the refrigerant inlet temperature value, and the high pressure saturation temperature of the indoor unit is obtained; according to the high pressure saturation temperature, the parameter substitution value corresponding to the refrigerant inlet temperature value is calculated.
  • the air conditioner is a multi-connected air conditioner, that is, the air conditioner includes multiple indoor units.
  • the air conditioner operates in heating mode, and the refrigerant flows from the second end of the heat exchanger to the first end. Since the second temperature sensor is arranged at the second end of the heat exchanger, the temperature parameter value collected by the second temperature sensor is the refrigerant inlet temperature value, and if the second temperature sensor is faulty, it can be determined that the refrigerant inlet temperature value is the fault parameter value.
  • the refrigerant inlet temperature value is the fault parameter value.
  • a substitute value for the refrigerant inlet temperature value can be estimated based on the high pressure saturation temperature.
  • the high-pressure saturation temperature is the corresponding temperature value of the refrigerant under a certain pressure. It can be considered that the high-pressure saturation temperature is the temperature value of the high-pressure and high-temperature refrigerant output by the compressor.
  • the high-temperature and high-pressure refrigerant flows through the refrigerant pipeline to the second end of the heat exchanger of the indoor unit.
  • the second setting difference is designed according to the heat loss.
  • the refrigerant inlet temperature value of the heat exchanger in the heating mode can be estimated, and the estimated refrigerant inlet temperature value can be used as a parameter substitution value of the refrigerant inlet temperature value, And replace the refrigerant inlet temperature value in the collected temperature parameter value with the parameter substitution value.
  • the operation of the throttle valve and the fan in the indoor unit of the air conditioner is controlled by using the updated temperature parameter value, so as to prevent the air conditioner from being unable to accurately control the operation of the air conditioner in the heating mode due to inaccurate refrigerant inlet temperature values.
  • T 2 T C +Z 2 ;
  • T 2 is the parameter substitution value corresponding to the refrigerant inlet temperature value
  • T C is the high pressure saturation temperature
  • Z 2 is the second set difference.
  • the compressor will continue to operate in the set working state, that is, the pressure value and temperature value of the refrigerant output by the compressor vary within a small range. Therefore, only when the fault parameter value is detected as the refrigerant inlet temperature value, the parameter substitution value calculated according to the high pressure saturation temperature and the second set difference value continues to control the operation of the air conditioner, and there is no need to frequently check the parameter substitution value. renew.
  • the second temperature sensor is in a fault state, and the number of indoor units is at least two.
  • the step of obtaining a parameter replacement value corresponding to the fault parameter value specifically includes: If the air conditioner is running in cooling mode, determine the fault parameter value as the refrigerant outlet temperature value, and obtain the number of indoor units in the running state of the air conditioner; obtain the refrigerant inlet temperature value, target superheat degree, and set heating value of at least two indoor units.
  • the air conditioner is a multi-connected air conditioner, that is, the air conditioner includes multiple indoor units.
  • the air conditioner operates in cooling mode, and the refrigerant flows from the first end of the heat exchanger to the second end. Since the second temperature sensor is arranged at the second end of the heat exchanger, the temperature parameter value collected by the second temperature sensor is the refrigerant outlet temperature value, and if the second temperature sensor is faulty, it can be determined that the refrigerant outlet temperature value is the fault parameter value.
  • the refrigerant outlet temperature value is the fault parameter value
  • the parameter substitution value is estimated, and the refrigerant outlet temperature value in the collected temperature parameter values is replaced by the parameter substitution value.
  • the operation of the throttle valve and the fan in the indoor unit of the air conditioner is controlled by using the updated temperature parameter value, so as to prevent the air conditioner from being unable to accurately control the operation of the air conditioner in the heating mode due to inaccurate refrigerant outlet temperature values.
  • the step of determining the parameter substitution value corresponding to the refrigerant outlet temperature value specifically includes: determining that the number of indoor units is less than the set number, and calculating the corresponding value of the refrigerant outlet temperature value according to the refrigerant inlet temperature value and the target degree of superheat Parameter substitution value; determine that the number of indoor units is greater than or equal to the set number, and calculate the parameter substitution value corresponding to the refrigerant outlet temperature value according to the exhaust superheat, exhaust temperature, refrigerant inlet temperature and target superheat.
  • T 2 T 1 +SHS
  • T 2 is the parameter substitution value corresponding to the refrigerant outlet temperature value
  • T 1 is the refrigerant inlet temperature value
  • SHS is the target superheat degree
  • T2 (DSH-DSHS)/4+T1+SHS;
  • T 2 is the parameter substitution value corresponding to the refrigerant outlet temperature value
  • T 1 is the refrigerant inlet temperature value
  • SHS is the target superheat degree
  • DSHS is the target exhaust superheat degree
  • DSH exhaust temperature is the parameter substitution value corresponding to the refrigerant outlet temperature value
  • the parameter substitution value of the refrigerant outlet temperature value of the indoor unit with sensor failure is obtained by collecting the corresponding parameters of the indoor unit and accurately calculating according to these parameters.
  • the accuracy of controlling the operation of the air conditioner through the parameter substitution value is further improved, and other faults during the operation of the air conditioner are avoided.
  • the third temperature sensor is in a fault state, and according to the operating parameters of the air conditioner, the step of obtaining a parameter replacement value corresponding to the fault parameter value includes: determining the fault parameter value as the ambient temperature value; The third setting duration is to obtain the refrigerant outlet temperature value; and calculate the parameter substitution value corresponding to the ambient temperature value according to the refrigerant outlet temperature value.
  • the third temperature sensor is faulty during the operation of the air conditioner, it is determined that the ambient temperature value collected by the third temperature sensor is a faulty parameter value.
  • a substitute value for the ambient temperature value can be estimated based on the refrigerant outlet temperature value.
  • the estimated ambient temperature value can be obtained, and the estimated ambient temperature value can be used as the parameter substitution value of the ambient temperature value, and the collected temperature parameter value can be replaced by the parameter substitution value
  • the ambient temperature value in is controlled by using the updated temperature parameter value, so as to prevent the air conditioner from being unable to accurately control the operation of the air conditioner in the heating mode due to inaccurate refrigerant inlet temperature values.
  • T 3 T 2 +Z 3 ;
  • T 3 is the parameter substitution value of the ambient temperature value
  • T 2 is the outlet temperature value of the refrigerant
  • Z 3 is the third set difference
  • the air conditioner when the air conditioner operates in the cooling mode and the heating mode, the difference between the refrigerant outlet temperature value and the ambient temperature value is different.
  • the mode selects a different third set difference.
  • the substitute value of the estimated ambient temperature value is updated at intervals of a third set period of time.
  • the update method is to collect the refrigerant outlet temperature value every time the third set time period passes, and then re-estimate the parameter substitution value of the ambient temperature value according to the refrigerant outlet temperature value.
  • the continuous update of the parameter replacement of the ambient temperature value is realized, and the stability of the control of the air conditioner with sensor failure is further improved.
  • the indoor unit includes a throttle valve, and before the step of obtaining the temperature value of the refrigerant outlet of the indoor unit, further includes: controlling the throttle valve to close for a fourth set duration.
  • the refrigerant outlet temperature value is collected every third set time, and the parameter substitution value is estimated based on the refrigerant outlet temperature value.
  • the throttle valve is controlled to be closed for a fourth set period of time. It can be understood that when the throttle valve is in the conduction state, the low-temperature or high-temperature refrigerant will continue to flow into the heat exchanger, resulting in a large difference between the refrigerant outlet temperature value and the ambient temperature value.
  • control Closing the throttle valve for the fourth set time can reduce the gap between the refrigerant outlet temperature value and the ambient temperature value, and further improve the accuracy of the parameter substitution value of the estimated refrigerant inlet temperature value.
  • the step of determining the fault state of the first temperature sensor, the second temperature sensor and the third temperature sensor specifically includes: obtaining the numerical relationship between the refrigerant inlet temperature value, the refrigerant outlet temperature value and the ambient temperature value; According to the numerical relationship, the failure states of the first temperature sensor, the second temperature sensor and the third temperature sensor are respectively determined.
  • the three temperature sensors Whether there is a faulty temperature sensor is detected, and the faulty temperature sensor among the three temperature sensors can be located.
  • control method of the air conditioner further includes: timing and controlling the operation duration of the air conditioner according to the parameter substitution value; determining that the duration reaches the fourth set duration, and controlling the air conditioner to stop running.
  • the air conditioner is controlled to stop. Since the parameter substitution values of the temperature parameter values are all estimated temperature parameter values, there is a certain gap between them and the real values of the temperature parameter values. After the air conditioner is controlled to run for a fourth time according to the estimated temperature parameter value, controlling the air conditioner to stop can avoid failure caused by the air conditioner operating in a temperature sensor failure state for a long time. Improve the stability of air conditioner operation.
  • a control device for an air conditioner including: a failure parameter acquisition unit, configured to acquire at least two temperature parameter values based on any temperature sensor in the at least two temperature sensors being in a failure state The fault parameter value; the parameter determination unit is used to obtain the parameter replacement value corresponding to the fault parameter value according to the operating parameter of the air conditioner; the operation control unit is used to control the operation of the air conditioner according to the parameter replacement value.
  • the air conditioner control device provided in this application is used to control the air conditioner.
  • the air conditioner is provided with an indoor unit and a plurality of temperature sensors.
  • the plurality of temperature sensors are arranged at different positions of the indoor unit.
  • the plurality of temperature sensors can respectively The temperature parameter values at different locations are collected.
  • the indoor unit is also provided with a throttle valve and a fan, and the throttle valve and the fan of the indoor unit are controlled according to the corresponding multiple temperature parameter values collected by multiple temperature sensors, thereby realizing the control of the operation of the indoor unit.
  • the indoor unit of the air conditioner continuously collects temperature parameter values and operating parameters of the air conditioner through multiple temperature sensors, and controls the operation of the air conditioner according to the collected temperature parameter values and operating parameters.
  • the temperature parameter value controls the throttle valve and fan in the indoor unit.
  • the air conditioner Detect whether there is a fault in the temperature sensor installed in the indoor unit.
  • the faulty sensor among the faulty multiple temperature sensors is detected and located, so that the faulty parameter value among the temperature parameter values collected by multiple temperature sensors can be determined, and the air conditioner Other operating parameters estimate the real value of the fault parameter value to obtain the parameter substitution value.
  • the faulty parameter value among the multiple temperature parameter values is replaced by the parameter substitute value, so as to update the collected multiple temperature parameter values, and continue to control the operation of the air conditioner through the updated temperature parameter value.
  • the indoor unit of the air conditioner can still keep running, ensuring that the air conditioner can still run while waiting for maintenance, and reducing the number of air conditioners waiting for maintenance.
  • the length of downtime in the system improves the user experience.
  • an air conditioner including: an indoor unit; and the control device for the air conditioner as in the second aspect above is arranged on the indoor unit.
  • the air conditioner provided by the present application includes an indoor unit and a control device for the air conditioner.
  • the control device of the air conditioner is the control device of the air conditioner in the above-mentioned second aspect, so it has all the beneficial effects of the control device of the air-conditioner in the above-mentioned second aspect, and will not be repeated here.
  • the air conditioner also includes an outdoor unit and a refrigerant pipeline, and the outdoor unit is connected to the indoor unit through the refrigerant pipeline.
  • an air conditioner including: at least two indoor units; a memory, in which programs or instructions are stored; and a processor, in which the processor executes the programs or instructions stored in the memory to achieve the above-mentioned first Steps in an air conditioner control method in one aspect.
  • the air conditioner provided by the present application includes at least two indoor units, a memory and a processor. There are programs or instructions stored in the memory; the processor executes the programs or instructions stored in the memory to realize the steps of the control method of the air conditioner in the first aspect above, and thus has the advantages of the control method of the air conditioner in the first aspect above All the beneficial effects will not be repeated here.
  • the air conditioner also includes an outdoor unit and a refrigerant pipeline, and the outdoor unit is connected to at least two indoor units through the refrigerant pipeline.
  • a readable storage medium on which a program or instruction is stored, and when the program or instruction is executed by a processor, the steps of the control method of the air conditioner in any of the above possible designs are realized .
  • Fig. 1 shows one of the schematic flowcharts of the control method of the air conditioner in the first embodiment of the present application
  • Fig. 2 shows the schematic structural view of the indoor unit in the air conditioner in the first embodiment of the present application
  • Fig. 3 shows the second schematic flowchart of the control method of the air conditioner in the first embodiment of the present application
  • Fig. 4 shows the third schematic flowchart of the control method of the air conditioner in the first embodiment of the present application
  • Fig. 5 shows the fourth schematic flowchart of the control method of the air conditioner in the first embodiment of the present application
  • Fig. 6 shows the fifth schematic flowchart of the control method of the air conditioner in the first embodiment of the present application
  • Fig. 7 shows the sixth schematic flowchart of the control method of the air conditioner in the first embodiment of the present application
  • Fig. 8 shows the seventh schematic flowchart of the control method of the air conditioner in the first embodiment of the present application
  • Fig. 9 shows the eighth schematic flowchart of the control method of the air conditioner in the first embodiment of the present application.
  • Fig. 10 shows the ninth schematic flowchart of the control method of the air conditioner in the first embodiment of the present application
  • Fig. 11 shows the tenth schematic flowchart of the control method of the air conditioner in the first embodiment of the present application
  • Fig. 12 shows the eleventh schematic flowchart of the control method of the air conditioner in the first embodiment of the present application
  • Fig. 13 shows the twelfth schematic flowchart of the control method of the air conditioner in the first embodiment of the present application
  • Fig. 14 shows a schematic block diagram of the control device of the air conditioner in the second embodiment of the present application
  • Fig. 15 shows the schematic block diagram of the air conditioner in the third embodiment of the present application.
  • Fig. 16 shows a schematic block diagram of an air conditioner in a fourth embodiment of the present application.
  • 200 indoor unit 202 heat exchanger, 204 first temperature sensor, 206 second temperature sensor, 208 third temperature sensor.
  • An air conditioner control method, an air conditioner control device, an air conditioner, and a readable storage medium according to some embodiments of the present application are described below with reference to FIGS. 1 to 16 .
  • the first embodiment of the present application provides a method for controlling an air conditioner.
  • the air conditioner includes at least two temperature sensors and an indoor unit.
  • the at least two temperature sensors are capable of collecting at least two temperature parameter values in the indoor unit, the at least two temperature parameter values correspond to the at least two temperature sensors, and each temperature sensor is used to collect a temperature parameter value.
  • Air conditioner control methods include:
  • Step 102 determining that any one of the at least two temperature sensors is in a fault state
  • Step 104 determining a fault parameter value among at least two temperature parameter values
  • Step 106 estimating the parameter substitution value through the operating parameters of the air conditioner
  • step 108 the operation of the air conditioner is controlled through the parameter substitution value.
  • the parameter substitution value corresponds to the fault parameter value.
  • the air conditioner control method provided in this embodiment is used to control the air conditioner.
  • the air conditioner is provided with an indoor unit and a plurality of temperature sensors.
  • the plurality of temperature sensors are located at different positions of the indoor unit.
  • the plurality of temperature sensors can respectively control the The temperature parameter values at different locations are collected.
  • the indoor unit is also provided with a throttle valve and a fan, and the throttle valve and the fan of the indoor unit are controlled according to the corresponding multiple temperature parameter values collected by multiple temperature sensors, thereby realizing the control of the operation of the indoor unit.
  • the indoor unit of the air conditioner continuously collects temperature parameter values and operating parameters of the air conditioner through multiple temperature sensors, and controls the operation of the air conditioner according to the collected temperature parameter values and operating parameters.
  • the temperature parameter value controls the throttle valve and fan in the indoor unit.
  • the air conditioner Detect whether there is a fault in the temperature sensor installed in the indoor unit.
  • the faulty sensor among the faulty multiple temperature sensors is detected and located, so that the faulty parameter value among the temperature parameter values collected by multiple temperature sensors can be determined, and the air conditioner Other operating parameters estimate the real value of the fault parameter value to obtain the parameter substitution value.
  • the faulty parameter value among the multiple temperature parameter values is replaced by the parameter substitution value, so as to update the collected multiple temperature parameter values, and continue to control the operation of the air conditioner through the parameter substitution value.
  • the indoor unit of the air conditioner can still keep running, ensuring that the air conditioner can still run while waiting for maintenance, and reducing the number of air conditioners waiting for maintenance.
  • the length of downtime in the system improves the user experience.
  • the air conditioner when it is detected that the temperature sensor in the air conditioner is faulty, the air conditioner outputs corresponding prompt information for prompting the fault of the temperature sensor.
  • the air conditioner after the air conditioner detects that there is a faulty temperature sensor among the plurality of temperature sensors, the air conditioner continues to perform the estimation of the parameter substitution value after receiving the user's operation instruction, and uses the parameter substitution value to update the air conditioner. The steps to control the operation of the machine.
  • the air conditioner can determine whether it needs to continue running according to the actual needs of the user. If the user's operation instruction is not received, the air conditioner is controlled to stop running after outputting a "failure shutdown" prompt message. The controllability of the air conditioner is improved, and the air conditioner can choose whether to continue running under the condition that the temperature sensor fails according to the needs of the user.
  • the indoor unit 200 is provided with a heat exchanger 202 , and the temperature sensors include a first temperature sensor 204 , a second temperature sensor 206 and a third temperature sensor 208 .
  • the first temperature sensor 204 and the second temperature sensor 206 are arranged at both ends of the heat exchanger 202
  • the third temperature sensor 208 is arranged at the air inlet of the indoor unit 200 .
  • the indoor unit 200 of the air conditioner includes a heat exchanger 202.
  • the air conditioner operates in the cooling mode, the refrigerant flows through the first end of the heat exchanger 202 to the second end, and the air conditioner operates in the heating mode.
  • the refrigerant flows through the second end of the heat exchanger 202 to the first end.
  • a plurality of temperature sensors are also provided in the indoor unit 200 .
  • the multiple temperature sensors include a first temperature sensor 204 disposed at the first end of the heat exchanger 202. In the cooling mode, the first temperature sensor 204 can collect the refrigerant inlet temperature value of the indoor unit 200. In the heating mode , the first temperature sensor 204 can collect the refrigerant outlet temperature value of the indoor unit 200 .
  • the multiple temperature sensors also include a second temperature sensor 206 arranged at the second end of the heat exchanger 202.
  • the second temperature sensor 206 can collect the refrigerant outlet temperature value of the indoor unit 200.
  • the second temperature sensor 206 can collect the refrigerant inlet temperature value of the indoor unit 200 .
  • the plurality of temperature sensors also includes a third temperature sensor 208 arranged at the air inlet of the indoor unit 200.
  • the third temperature sensor 208 can collect the temperature of the air entering the indoor unit 200, that is, the third temperature sensor 208 can collect the temperature of the air entering the indoor unit 200. ambient temperature value.
  • the step of determining the fault parameter value in at least two temperature parameter values specifically includes:
  • Step 302 respectively detecting the fault state of the first temperature sensor, the fault state of the second temperature sensor and the fault state of the third temperature sensor;
  • Step 304 according to the fault state of the first temperature sensor, the fault state of the second temperature sensor and the fault state of the third temperature sensor, determine the corresponding fault parameter value.
  • the fault parameter value includes a refrigerant inlet temperature value, a refrigerant outlet temperature value and an ambient temperature value.
  • the indoor unit of the air conditioner is provided with a throttle valve and a fan.
  • the operation of the indoor unit is controlled by controlling parameters such as the opening of the throttle valve and the speed of the fan.
  • the specific control method is to adjust the opening degree of the throttle valve and adjust the speed of the fan according to the collected refrigerant outlet temperature value, ambient temperature value and refrigerant inlet temperature value.
  • each of the multiple temperature sensors in the indoor unit of the air conditioner has a fault, it is determined whether there is a faulty parameter value among the multiple temperature parameter values.
  • the operation mode of the air conditioner by separately determining whether the three temperature sensors are faulty, it is possible to determine the faulty parameter value among the temperature parameter values collected by the three temperature sensors.
  • the faulty parameter value in the collected temperature parameter values can be quickly determined to avoid continuing to control the air conditioner according to the faulty parameter value, thereby reducing the operating time of the air conditioner in a faulty state duration.
  • Step 402 controlling the air conditioner to operate in a set operation mode
  • Step 404 collecting operating parameters of the air conditioner in a set operating mode.
  • the set operation mode includes a cooling mode and a heating mode.
  • the control parameters and operating parameters of the air conditioner operating in cooling mode and heating mode are different, and the air conditioner operates in different modes, the heat exchange of the refrigerant flowing through the indoor unit
  • the flow directions of the sensors are also different, so the temperature parameter values collected by the first temperature sensor and the second temperature sensor are also different.
  • the corresponding operating parameters are collected during the operation of the air conditioner according to the set operating mode, and then the parameter substitution value is estimated through the collected operating parameters, so that the calculated parameter substitution value is consistent with the operating mode of the air conditioner, which improves the basis
  • the accuracy of the parameter substitution value on the operation of the air conditioner can avoid the failure of the air conditioner caused by controlling the air conditioner according to the parameter substitution value that does not conform to the operation mode.
  • the operation mode of the air conditioner also includes the air supply mode, and when the air conditioner is in the air supply mode, the compressor of the air conditioner does not need to run, and the shut-off valve in the indoor unit does not need to be opened. Therefore, the failure of the temperature sensor will not affect the air supply operation of the air conditioner, and there is no need to estimate the corresponding parameter substitution value.
  • a fault is detected in the first temperature sensor of the air conditioner.
  • the temperature parameter value collected by the first temperature sensor is the refrigerant inlet temperature value
  • it is determined that the refrigerant inlet temperature value among the collected temperature parameter values is a fault parameter value.
  • the temperature parameter value collected by the first temperature sensor is the refrigerant outlet temperature value
  • it is determined that the refrigerant outlet temperature value in the collected temperature parameter values is a fault parameter value.
  • the second temperature sensor of the air conditioner it is detected that the second temperature sensor of the air conditioner is faulty.
  • the cooling mode since the temperature parameter value collected by the second temperature sensor is the refrigerant outlet temperature value, it is determined that the refrigerant outlet temperature value in the collected temperature parameter values is a fault parameter value.
  • the heating mode since the temperature parameter value collected by the second temperature sensor is the refrigerant inlet temperature value, it is determined that the refrigerant inlet temperature value among the collected temperature parameter values is a fault parameter value.
  • the ambient temperature value in the collected temperature parameter values is the fault parameter value .
  • the air conditioner includes multiple indoor units.
  • the steps of estimating the parameter substitution value through the operating parameters of the air conditioner include:
  • Step 502 according to the operation of the air conditioner in the heating mode, it is determined that the refrigerant outlet temperature value is a fault parameter value;
  • Step 504 determine the number of indoor units in the running state
  • Step 506 collecting the set heating output, refrigerant outlet pressure value, target subcooling degree and high pressure saturation temperature
  • Step 508 according to the set heating output, the refrigerant outlet pressure value, the target subcooling degree and the high pressure saturation temperature, estimate the parameter substitution value of the refrigerant outlet temperature value.
  • the air conditioner is a multi-connected air conditioner, that is, the air conditioner includes multiple indoor units.
  • the air conditioner operates in heating mode, and the high-temperature and high-pressure refrigerant generated by the compressor flows through the second end of the heat exchanger of the indoor unit to the first end. Since the first temperature sensor is installed at the first end of the heat exchanger, the temperature parameter value collected by the first temperature sensor is the refrigerant outlet temperature value, and if the first temperature sensor is in a fault state, it can be determined that the refrigerant outlet temperature value is a fault parameter value .
  • the refrigerant outlet temperature value is the fault parameter value
  • the operating parameters of the air conditioner such as the target subcooling degree and the set heating output.
  • the parameter substitution value is estimated, and the refrigerant outlet temperature value in the collected temperature parameter values is replaced by the parameter substitution value.
  • the operation of the throttle valve and the fan in the indoor unit of the air conditioner is controlled by using the updated temperature parameter value, so as to prevent the air conditioner from being unable to accurately control the operation of the air conditioner in the heating mode due to inaccurate refrigerant outlet temperature values.
  • the high pressure saturation temperature is a hardware parameter of the air conditioner system, so when calculating the parameter substitution value, the high pressure protection temperature of the system can be directly called.
  • the target subcooling degree is a parameter value calculated according to the operation instruction after the air conditioner receives the operation instruction.
  • the refrigerant outlet pressure value can be collected directly by setting a pressure sensor, or can be calculated by using other parameter values such as the refrigerant outlet temperature.
  • the set heating output can be calculated based on the high pressure saturation temperature and the ambient temperature.
  • the step of estimating the parameter substitution value of the refrigerant outlet temperature value specifically includes:
  • Step 602 determine that the air conditioner is running in heating mode
  • Step 604 judging whether the number of indoor units is less than the set number, if the judging result is yes, go to step 606, if the judging result is otherwise, go to step 608;
  • Step 606 according to the target subcooling degree and high pressure saturation temperature, estimate the parameter substitution value of the refrigerant outlet temperature
  • Step 608 Estimate the parameter substitution value of the refrigerant outlet temperature according to the set heating output and the refrigerant outlet pressure.
  • T 1 T C -SCS
  • T1 is the parameter substitution value corresponding to the refrigerant outlet temperature value
  • T C is the high pressure saturation temperature
  • SCS is the target subcooling degree.
  • the calculation sensor The refrigerant outlet pressure value of the non-faulty indoor unit and the refrigerant outlet pressure value of the indoor unit with a faulty calculation sensor are calculated according to the two refrigerant outlet pressure values to obtain the set heating output, and then calculated according to the set heating output.
  • the refrigerant outlet enthalpy value of the heat exchanger is obtained, and the refrigerant outlet temperature value is estimated according to the refrigerant outlet enthalpy value, thereby calculating the parameter substitution value of the refrigerant outlet temperature value.
  • P 1 P C -dP 1 ;
  • P 1 is the refrigerant outlet pressure value of the indoor unit with no sensor failure
  • P C is the highest pressure value of the outdoor unit
  • dP 1 is the pressure drop at both ends of the electronic expansion valve of the indoor unit with no sensor failure.
  • the pressure drop at both ends of the electronic expansion valve of the indoor unit with no sensor failure can be calculated by using the pressure value collected by the sensor at both ends of the electronic expansion valve. It can also be calculated from the refrigerant flow value, the refrigerant outlet enthalpy value and the set heating output of the indoor unit.
  • P 2 P 1 +(H 1 -H 2 ) ⁇ den ⁇ 9.8;
  • H 1 is the liquid column pressure value caused by the drop between the faulty indoor unit and the reference point
  • H 2 is the liquid column pressure value caused by the drop between the faulty indoor unit and the reference point
  • den is the refrigerant of the faulty indoor unit density
  • P 2 is the refrigerant outlet pressure value of the faulty indoor unit
  • P 1 is the refrigerant outlet pressure value of the indoor unit with no sensor fault.
  • the liquid column pressure value caused by the drop between the indoor unit and the reference point is calculated during the trial operation of the air conditioner.
  • the density of the refrigerant can be calculated through the physical function of the liquid refrigerant, and the segmental fitting curve can be used in the process of calculating the density of the refrigerant.
  • mf is the refrigerant flow value
  • dP 2 is the pressure drop across the electronic expansion valve of the indoor unit with sensor failure
  • cv is the opening value of the electronic expansion valve
  • den is the refrigerant density of the faulty indoor unit.
  • dP 2 is the pressure drop across the electronic expansion valve of the indoor unit with sensor failure
  • P C is the highest pressure value of the outdoor unit
  • P 2 is the refrigerant outlet pressure value of the indoor unit with failure.
  • Q is the set heating output
  • K A is the coefficient
  • T C is the high pressure saturation temperature
  • T 3 is the ambient temperature value.
  • h 1 is the enthalpy value of the refrigerant outlet
  • h 2 is the enthalpy value of the refrigerant inlet
  • Q is the set heating output
  • mf is the refrigerant flow value.
  • T 1 f 1 (h 1 ,T C )
  • T 1 is the parameter substitution value of the refrigerant outlet temperature
  • h 1 is the enthalpy value of the refrigerant outlet
  • T C is the high-pressure saturation temperature
  • f 1 is the setting function.
  • the value range of the set number is greater than or equal to 2.
  • the corresponding parameters of the indoor units with no faulty sensors are collected. Calculate the parameter substitution value of the refrigerant outlet temperature value of the indoor unit with sensor failure.
  • the first temperature sensor has a fault
  • the step of estimating the parameter substitution value through the operating parameters of the air conditioner specifically includes:
  • Step 702 according to the operation of the air conditioner in cooling mode, it is determined that the refrigerant inlet temperature value is a fault parameter value
  • Step 704 every interval of the first set time, control the fan to stop running for the second set time, and collect the temperature value of the refrigerant outlet;
  • Step 706 Estimate the parameter substitution value of the refrigerant inlet temperature value according to the refrigerant outlet temperature value.
  • the air conditioner is a multi-connected air conditioner, that is, the air conditioner includes multiple indoor units.
  • the air conditioner operates in cooling mode, and the refrigerant flows from the first end of the heat exchanger to the second end. Since the first temperature sensor is located at the first end of the heat exchanger, the temperature parameter value collected by the first temperature sensor is the refrigerant inlet temperature value, and if the first temperature sensor is faulty, it can be determined that the refrigerant inlet temperature value is a faulty parameter value.
  • the refrigerant inlet temperature value is the fault parameter value.
  • a substitute value for the refrigerant inlet temperature value can be estimated based on the refrigerant outlet temperature value.
  • the low-temperature refrigerant flows through the first end of the heat exchanger of the indoor unit to the second end of the heat exchanger. During the process of the refrigerant flowing through the heat exchanger, the low-temperature refrigerant continuously exchanges heat with the ambient air.
  • the outlet temperature value of the refrigerant should be higher than the inlet temperature value of the refrigerant, and the estimated refrigerant inlet temperature value can be obtained by calculating the difference between the refrigerant outlet temperature value and the first set value, and the estimated refrigerant inlet temperature value is used as the refrigerant inlet temperature. value, and use the parameter substitution value to replace the refrigerant inlet temperature value in the collected temperature parameter values.
  • the operation of the throttle valve and the fan in the indoor unit of the air conditioner is controlled by using the updated temperature parameter value, so as to prevent the air conditioner from being unable to accurately control the operation of the air conditioner in the heating mode due to inaccurate refrigerant inlet temperature values.
  • T 1 T 2 +Z 1 ;
  • T 1 is a parameter substitution value of the refrigerant inlet temperature value
  • T 2 is the refrigerant outlet temperature value
  • Z 1 is the first set difference
  • the estimated replacement value of the refrigerant inlet parameter is updated at intervals of the first set period of time.
  • the update method is to collect the refrigerant outlet temperature value every time the first set time period passes, and then re-estimate the parameter substitution value of the refrigerant inlet temperature value according to the refrigerant outlet temperature value. Realize continuous updating of the parameter replacement of the refrigerant inlet temperature value, and further improve the stability of the control of the air conditioner with sensor failure.
  • the refrigerant outlet temperature value is collected every first set time interval, and the parameter replacement value is estimated based on the refrigerant outlet temperature value.
  • the fan is controlled to stop for a second set time. It is understandable that the fan operation will speed up the heat exchange between the heat exchanger and the ambient air. Therefore, before collecting the temperature value of the refrigerant outlet, controlling the second set duration of fan shutdown can reduce the energy value lost by the refrigerant during the heat exchange process, and further improve the accuracy of the parameter substitution value of the estimated refrigerant inlet temperature value.
  • the value range of the second set duration is 10 seconds to 40 seconds.
  • the value of the second set duration is set to be greater than or equal to 10 seconds, so that the refrigerant outlet temperature has enough time to approach the refrigerant inlet temperature. Setting the value of the second set duration to be less than or equal to 40 seconds can avoid failure of the air conditioner caused by poor heat exchange of the refrigerant in the heat exchanger for a long time.
  • the second temperature sensor has a fault
  • the step of estimating the parameter substitution value through the operating parameters of the air conditioner specifically includes:
  • Step 802 according to the operation of the air conditioner in the heating mode, it is determined that the refrigerant inlet temperature value is a fault parameter value
  • Step 804 obtaining high pressure saturation temperature
  • Step 806 Estimating the parameter substitution value of the refrigerant inlet temperature according to the high pressure saturation temperature.
  • the air conditioner is a multi-connected air conditioner, that is, the air conditioner includes multiple indoor units.
  • the air conditioner operates in heating mode, and the refrigerant flows from the second end of the heat exchanger to the first end. Since the second temperature sensor is arranged at the second end of the heat exchanger, the temperature parameter value collected by the second temperature sensor is the refrigerant inlet temperature value, and if the second temperature sensor is faulty, it can be determined that the refrigerant inlet temperature value is the fault parameter value.
  • the refrigerant inlet temperature value is the fault parameter value.
  • a substitute value for the refrigerant inlet temperature value can be estimated based on the high pressure saturation temperature.
  • the high-pressure saturation temperature is the corresponding temperature value of the refrigerant under a certain pressure. It can be considered that the high-pressure saturation temperature is the temperature value of the high-pressure and high-temperature refrigerant output by the compressor.
  • the high-temperature and high-pressure refrigerant flows through the refrigerant pipeline to the second end of the heat exchanger of the indoor unit.
  • the second setting difference is designed according to the heat loss.
  • the refrigerant inlet temperature value of the heat exchanger in the heating mode can be estimated, and the estimated refrigerant inlet temperature value can be used as a parameter substitution value of the refrigerant inlet temperature value, And replace the refrigerant inlet temperature value in the collected temperature parameter value with the parameter substitution value.
  • the operation of the throttle valve and the fan in the indoor unit of the air conditioner is controlled by using the updated temperature parameter value, so as to prevent the air conditioner from being unable to accurately control the operation of the air conditioner in the heating mode due to inaccurate refrigerant inlet temperature values.
  • T 2 T C +Z 2 ;
  • T 2 is the parameter substitution value of the refrigerant inlet temperature value
  • T C is the high pressure saturation temperature
  • Z 2 is the second set difference
  • the compressor will continue to operate in the set working state, that is, the pressure value and temperature value of the refrigerant output by the compressor vary within a small range. Therefore, only when it is detected that the fault parameter value is the refrigerant inlet temperature value, the parameter substitution value calculated according to the high pressure saturation temperature and the second set difference value continues to control the operation of the air conditioner, and there is no need to frequently check the parameter substitution value. renew.
  • the second temperature sensor is faulty, and the air conditioner includes multiple indoor units, and the step of estimating the parameter substitution value through the operating parameters of the air conditioner specifically includes:
  • Step 902 according to the operation of the air conditioner in cooling mode, it is determined that the refrigerant outlet temperature value is a fault parameter value
  • Step 904 determine the number of indoor units in the running state
  • Step 906 collecting target superheat, refrigerant inlet temperature, compressor discharge temperature, set heating output and compressor target discharge superheat;
  • Step 908 according to the number of indoor units, target superheat, refrigerant inlet temperature, compressor discharge temperature, set heating output, and compressor target discharge superheat, estimate the parameter substitution value of refrigerant outlet temperature .
  • the air conditioner is a multi-connected air conditioner, that is, the air conditioner includes multiple indoor units.
  • the air conditioner operates in cooling mode, and the refrigerant flows from the first end of the heat exchanger to the second end. Since the second temperature sensor is located at the second end of the heat exchanger, the temperature parameter value collected by the second temperature sensor is the refrigerant outlet temperature value, and if the second temperature sensor is faulty, it can be determined that the refrigerant outlet temperature value is a faulty parameter value.
  • the refrigerant outlet temperature value is the fault parameter value
  • the parameter substitution value is estimated, and the refrigerant outlet temperature value in the collected temperature parameter values is replaced by the parameter substitution value.
  • the operation of the throttle valve and the fan in the indoor unit of the air conditioner is controlled by using the updated temperature parameter value, so as to prevent the air conditioner from being unable to accurately control the operation of the air conditioner in the heating mode due to inaccurate refrigerant outlet temperature values.
  • the step of estimating the parameter substitution value of the refrigerant outlet temperature value specifically includes:
  • Step 1002 determine that the air conditioner is running in cooling mode
  • Step 1004 judging whether the number of indoor units is less than the set number, if the judging result is yes, go to step 1006, if the judging result is no, go to step 1008;
  • Step 1006 estimating the parameter substitution value of the refrigerant outlet temperature value according to the target degree of superheat and the refrigerant inlet temperature value;
  • Step 1008 according to the exhaust temperature, exhaust superheat, target superheat and refrigerant inlet temperature, estimate the parameter substitution value of the refrigerant outlet temperature.
  • the target superheat degree and the refrigerant inlet temperature value are used for calculation, so as to obtain an estimate The value of the refrigerant outlet temperature, and the estimated refrigerant outlet temperature value is used as the parameter substitution value of the refrigerant outlet temperature value.
  • T 2 T 1 +SHS
  • T 2 is the parameter substitution value of the refrigerant outlet temperature value
  • T 1 is the refrigerant inlet temperature value
  • SHS is the target superheat degree
  • the superheated degree of the exhaust gas, the refrigerant inlet temperature value, the exhaust temperature and the target Calculate the degree of superheat to obtain an estimated refrigerant outlet temperature value, and use the estimated refrigerant outlet temperature value as a parameter substitution value for the refrigerant outlet temperature value.
  • T 2 (DSH-DSHS)/4+T 1 +SHS;
  • T2 is the parameter substitution value of the refrigerant outlet temperature value
  • T1 is the refrigerant inlet temperature value
  • SHS is the target superheat degree
  • DSHS is the target exhaust superheat degree
  • DSH is the exhaust gas temperature.
  • the parameter substitution value of the refrigerant outlet temperature value of the indoor unit with sensor failure is obtained by collecting the corresponding parameters of the indoor unit and accurately calculating according to these parameters.
  • the accuracy of controlling the operation of the air conditioner through the parameter substitution value is further improved, and other faults during the operation of the air conditioner are avoided.
  • the third temperature sensor has a fault
  • the step of estimating the parameter substitution value through the operating parameters of the air conditioner specifically includes:
  • Step 1102 determine that the ambient temperature value is a fault parameter value
  • Step 1104 every third set time, control the throttle valve to close for the fourth set time, and obtain the temperature value of the refrigerant outlet;
  • Step 1106 according to the outlet temperature value of the refrigerant, estimate the parameter substitution value of the ambient temperature value.
  • the ambient temperature value collected by the third temperature sensor is a fault parameter value.
  • a substitute value for the ambient temperature value can be estimated based on the refrigerant outlet temperature value.
  • the estimated ambient temperature value can be obtained, and the estimated ambient temperature value can be used as the parameter substitution value of the ambient temperature value, and the collected temperature parameter value can be replaced by the parameter substitution value
  • the ambient temperature value in .
  • the operation of the throttle valve and the fan in the indoor unit of the air conditioner is controlled by using the updated temperature parameter value, so as to prevent the air conditioner from being unable to accurately control the operation of the air conditioner in the heating mode due to inaccurate refrigerant inlet temperature values.
  • T 3 T 2 +Z 3 ;
  • T 3 is the parameter substitution value of the ambient temperature value
  • T 2 is the outlet temperature value of the refrigerant
  • Z 3 is the third set difference
  • the difference between the refrigerant outlet temperature value and the ambient temperature value is different, so before calculating the parameter substitution value of the ambient temperature value, select according to the different operating modes of the air conditioner A different third setting difference.
  • the substitute value of the estimated ambient temperature value is updated at intervals of a third set period of time.
  • the update method is to collect the refrigerant outlet temperature value every time the third set time period passes, and then re-estimate the parameter substitution value of the ambient temperature value according to the refrigerant outlet temperature value.
  • the continuous update of the parameter replacement of the ambient temperature value is realized, and the stability of the control of the air conditioner with sensor failure is further improved.
  • the refrigerant outlet temperature value is collected every third set time interval, and the parameter substitution value is estimated based on the refrigerant outlet temperature value.
  • the throttle valve is controlled to be in a closed state for a fourth set time period. It can be understood that when the throttle valve is in the conduction state, the low-temperature or high-temperature refrigerant will continue to flow into the heat exchanger, resulting in a large difference between the refrigerant outlet temperature value and the ambient temperature value.
  • control Closing the throttle valve for the fourth set time can reduce the gap between the refrigerant outlet temperature value and the ambient temperature value, and further improve the accuracy of the parameter substitution value of the estimated refrigerant inlet temperature value.
  • the value range of the fourth set duration is 60 seconds to 120 seconds.
  • the value of the fourth set duration is set to be greater than or equal to 60 seconds, so that the refrigerant outlet temperature value has a sufficient duration to approach the ambient temperature value. Setting the value of the fourth setting time to be less than or equal to 120 seconds can avoid the failure of the air conditioner caused by the failure of the refrigerant to enter the heat exchanger of the indoor unit for a long time
  • the steps of detecting the fault state of the first temperature sensor, the fault state of the second temperature sensor and the fault state of the third temperature sensor respectively include:
  • Step 1202 determining the numerical relationship between the refrigerant inlet temperature value, the ambient temperature value and the refrigerant outlet temperature value;
  • Step 1204 determine the fault state of each temperature sensor according to the numerical relationship.
  • the three temperature sensors Whether there is a faulty temperature sensor in the system is detected, and the faulty temperature sensor among the three temperature sensors can be located.
  • the refrigerant inlet temperature value, the ambient temperature value and the refrigerant outlet temperature value are collected, and it is determined that two of them are not faulty parameter values, and then it is judged whether the other one is a faulty parameter value.
  • the air conditioner operates in cooling mode. It is judged that another temperature parameter value is a fault parameter value when the following judgment conditions are met:
  • T 1 -T 3 -dT 2 ⁇ (T 2 -T 3 -dT 1 ) ⁇ (T 1 -T 2 -dT 3 ) is less than 0 and reaches the preset duration, and T 1 -T 2 ⁇ dT 2 , and T 1 -T 3 ⁇ dT 1 ;
  • the air conditioner operates in heating mode. It is judged that another temperature parameter value is a fault parameter value when the following judgment conditions are met:
  • T 3 -T 1 -dT 1 ) ⁇ (T 3 -T 2 -dT 1 ) ⁇ (T 1 -T 2 -dT 4 ) is less than 0 and reaches the preset duration, and T 1 -T 2 ⁇ dT 4 , and T 3 ⁇ T 1 ⁇ dT 1 .
  • T1 is the temperature parameter value collected by the first temperature sensor
  • T2 is the temperature parameter value collected by the second temperature sensor
  • T3 is the temperature parameter value collected by the third temperature sensor
  • dT1 is the first set value
  • dT 2 is the second set value
  • dT 3 is the third set value
  • dT 4 is the fourth set value.
  • control method of the air conditioner further includes:
  • Step 1302 timing the duration of controlling the operation of the air conditioner through the parameter substitution value
  • Step 1304 based on the duration reaching the fourth set duration, the air conditioner is controlled to stop.
  • the air conditioner is controlled to stop. Since the parameter substitution values of the temperature parameter values are all estimated temperature parameter values, there is a certain gap between them and the real values of the temperature parameter values. After the air conditioner is controlled to run for a fourth time according to the estimated temperature parameter value, controlling the air conditioner to stop can avoid failure caused by the air conditioner operating in a temperature sensor failure state for a long time. Improve the stability of air conditioner operation.
  • the first embodiment of the present application provides an air conditioner control device 1400 including:
  • the fault parameter acquisition unit 1402 is configured to determine that any one of the at least two temperature sensors is in a fault state, and determine a fault parameter value among the at least two temperature parameter values.
  • the parameter determination unit 1404 is configured to estimate the parameter substitution value through the operating parameters of the air conditioner.
  • the operation control unit 1406 is configured to control the operation of the air conditioner according to the parameter substitution value.
  • the air conditioner control device provided in this embodiment is used to control the air conditioner.
  • the air conditioner is provided with an indoor unit and a plurality of temperature sensors.
  • the plurality of temperature sensors are installed at different positions of the indoor unit.
  • the plurality of temperature sensors can be respectively The temperature parameter values at different locations are collected.
  • the indoor unit is also provided with a throttle valve and a fan, and the throttle valve and the fan of the indoor unit are controlled according to the corresponding multiple temperature parameter values collected by multiple temperature sensors, thereby realizing the control of the operation of the indoor unit.
  • the indoor unit of the air conditioner continuously collects temperature parameter values and operating parameters of the air conditioner through multiple temperature sensors, and controls the operation of the air conditioner according to the collected temperature parameter values and operating parameters.
  • the temperature parameter value controls the throttle valve and fan in the indoor unit.
  • the air conditioner Detect whether there is a fault in the temperature sensor installed in the indoor unit.
  • the faulty sensor among the faulty multiple temperature sensors is detected and located, so that the faulty parameter value among the temperature parameter values collected by multiple temperature sensors can be determined, and the air conditioner Other operating parameters estimate the real value of the fault parameter value to obtain the parameter substitution value.
  • the faulty parameter value among the multiple temperature parameter values is replaced by the parameter substitute value, so as to update the collected multiple temperature parameter values, and continue to control the operation of the air conditioner through the updated temperature parameter value.
  • the indoor unit of the air conditioner can still keep running, ensuring that the air conditioner can still run while waiting for maintenance, and reducing the number of air conditioners waiting for maintenance.
  • the length of downtime in the system improves the user experience.
  • the air conditioner when it is detected that the temperature sensor in the air conditioner is faulty, the air conditioner outputs corresponding prompt information for prompting the fault of the temperature sensor.
  • the air conditioner after the air conditioner detects that there is a faulty temperature sensor among the plurality of temperature sensors, the air conditioner continues to perform the estimation of the parameter substitution value and controls the air conditioner through the parameter substitution value after receiving the operation instruction from the user. steps to run the machine.
  • the air conditioner can determine whether it needs to continue running according to the actual needs of the user. If the user's operation instruction is not received, the air conditioner is controlled to stop running after outputting a "failure shutdown" prompt message. The controllability of the air conditioner is improved, and the air conditioner can choose whether to continue running under the condition that the temperature sensor fails according to the needs of the user.
  • the indoor unit 200 is provided with a heat exchanger 202 , and the temperature sensors include a first temperature sensor 204 , a second temperature sensor 206 and a third temperature sensor 208 .
  • the first temperature sensor 204 is set at the first end of the heat exchanger 202
  • the second temperature sensor 206 is set at the second end of the heat exchanger 202
  • the third temperature sensor 208 is set at the air inlet of the indoor unit 200 .
  • the indoor unit 200 of the air conditioner includes a heat exchanger 202.
  • the air conditioner operates in the cooling mode, the refrigerant flows through the first end of the heat exchanger 202 to the second end, and the air conditioner operates in the heating mode.
  • the refrigerant flows through the second end of the heat exchanger 202 to the first end.
  • the indoor unit 200 is also provided with a plurality of temperature sensors.
  • the multiple temperature sensors include a first temperature sensor 204 disposed at the first end of the heat exchanger 202.
  • the first temperature sensor 204 can collect the refrigerant inlet temperature value of the indoor unit 200.
  • the heating mode the first temperature sensor 204 can collect the refrigerant outlet temperature value of the indoor unit 200 .
  • the multiple temperature sensors also include a second temperature sensor 206 arranged at the second end of the heat exchanger 202.
  • the second temperature sensor 206 can collect the refrigerant outlet temperature value of the indoor unit 200.
  • the second temperature sensor 206 can collect the refrigerant inlet temperature value of the indoor unit 200 .
  • the plurality of temperature sensors also includes a third temperature sensor 208 arranged at the air inlet of the indoor unit 200.
  • the third temperature sensor 208 can collect the temperature of the air entering the indoor unit 200, that is, the third temperature sensor 208 can collect the temperature of the air entering the indoor unit 200. ambient temperature value.
  • the third embodiment of the present application provides an air conditioner 1500 , including: an indoor unit 1502 and a control device 1400 for the air conditioner.
  • the control device 1400 of the air conditioner is set in the indoor unit, and the control device 1400 of the air conditioner is selected as the control device 1400 of the air conditioner in the second embodiment above.
  • the control device 1400 of the air conditioner is used to control the air conditioner.
  • the air conditioner is provided with an indoor unit and a plurality of temperature sensors.
  • the plurality of temperature sensors are arranged at different positions of the indoor unit.
  • the temperature parameter value is collected.
  • the indoor unit is also provided with a throttle valve and a fan, and the throttle valve and the fan of the indoor unit are controlled according to the corresponding multiple temperature parameter values collected by multiple temperature sensors, thereby realizing the control of the operation of the indoor unit.
  • the indoor unit of the air conditioner continuously collects temperature parameter values and operating parameters of the air conditioner through multiple temperature sensors, and controls the operation of the air conditioner according to the collected temperature parameter values and operating parameters.
  • the temperature parameter value controls the throttle valve and fan in the indoor unit.
  • the air conditioner Detect whether there is a fault in the temperature sensor installed in the indoor unit.
  • the faulty sensor among the faulty multiple temperature sensors is detected and located, so that the faulty parameter value among the temperature parameter values collected by multiple temperature sensors can be determined, and the air conditioner Other operating parameters estimate the real value of the fault parameter value to obtain the parameter substitution value.
  • the faulty parameter value in multiple temperature parameter values is replaced by the parameter substitution value, so as to update the collected multiple temperature parameter values, and continue to control the operation of the air conditioner through the updated temperature parameter value.
  • the indoor unit of the air conditioner can still keep running, ensuring that the air conditioner can still run while waiting for maintenance, and reducing the number of air conditioners waiting for maintenance.
  • the length of downtime in the system improves the user experience.
  • the air conditioner when it is detected that the temperature sensor in the air conditioner is faulty, the air conditioner outputs corresponding prompt information for prompting the fault of the temperature sensor.
  • the air conditioner after the air conditioner detects that there is a faulty temperature sensor among the plurality of temperature sensors, the air conditioner continues to perform the estimation of the parameter substitution value and controls the air conditioner through the parameter substitution value after receiving the operation instruction from the user. steps to run the machine.
  • the air conditioner can determine whether it needs to continue running according to the actual needs of the user. If the user's operation instruction is not received, the air conditioner is controlled to stop running after outputting a "failure shutdown" prompt message. The controllability of the air conditioner is improved, and the air conditioner can choose whether to continue running under the condition that the temperature sensor fails according to the needs of the user.
  • the air conditioner further includes an outdoor unit and a refrigerant pipeline, and the outdoor unit is connected to the indoor unit through the refrigerant pipeline.
  • the fourth embodiment of the present application provides an air conditioner 1600 , including: at least two indoor units 200 , a memory 1602 and a processor 1604 .
  • a heat exchanger is disposed in the indoor unit 200 , and the temperature sensors include a first temperature sensor, a second temperature sensor and a third temperature sensor.
  • the first temperature sensor is arranged at the first end of the heat exchanger
  • the second temperature sensor is arranged at the second end of the heat exchanger
  • the third temperature sensor is arranged at the air inlet of the indoor unit 200 .
  • the indoor unit 200 is provided with a heat exchanger 202
  • the temperature sensors include a first temperature sensor 204 , a second temperature sensor 206 and a third temperature sensor 208 .
  • the first temperature sensor 204 is set at the first end of the heat exchanger 202
  • the second temperature sensor 206 is set at the second end of the heat exchanger 202
  • the third temperature sensor 208 is set at the air inlet of the indoor unit 200 .
  • the indoor unit 200 of the air conditioner 1600 includes a heat exchanger 202.
  • the air conditioner 1600 operates in cooling mode, the refrigerant flows through the first end of the heat exchanger 202 to the second end.
  • the refrigerant flows through the second end of the heat exchanger 202 to the first end.
  • a plurality of temperature sensors are also provided in the indoor unit 200 .
  • the multiple temperature sensors include a first temperature sensor 204 arranged at the first end of the heat exchanger 202. In the cooling mode, the first temperature sensor 204 can collect the temperature value of the refrigerant inlet of the indoor unit 200. In the heating mode , the first temperature sensor 204 can collect the refrigerant outlet temperature value of the indoor unit 200 .
  • the multiple temperature sensors also include a second temperature sensor 206 arranged at the second end of the heat exchanger 202.
  • the second temperature sensor 206 can collect the refrigerant outlet temperature value of the indoor unit 200.
  • the second temperature sensor 206 can collect the refrigerant inlet temperature value of the indoor unit 200 .
  • the plurality of temperature sensors also includes a third temperature sensor 208 arranged at the air inlet of the indoor unit 200.
  • the third temperature sensor 208 can collect the temperature of the air entering the indoor unit 200, that is, the third temperature sensor 208 can collect the temperature of the air entering the indoor unit 200. ambient temperature value.
  • Programs or instructions are stored in the memory 1602, and the processor 1604 executes the programs or instructions stored in the memory 1602 to implement the steps of the control method for the air conditioner 1600 in the first embodiment above.
  • the control method of the air conditioner 1600 is used to control the air conditioner 1600.
  • the air conditioner 1600 is provided with an indoor unit 200 and a plurality of temperature sensors.
  • the plurality of temperature sensors are arranged at different positions of the indoor unit 200.
  • the plurality of temperature sensors can be respectively The temperature parameter values at different locations are collected.
  • the indoor unit 200 is also provided with a throttle valve and a fan, and the throttle valve and the fan of the indoor unit 200 are controlled according to the corresponding multiple temperature parameter values collected by multiple temperature sensors, so as to realize the control of the operation of the indoor unit 200. control.
  • the indoor unit 200 of the air conditioner 1600 continuously collects temperature parameter values and operating parameters of the air conditioner 1600 through multiple temperature sensors, and controls the operation of the air conditioner 1600 according to the collected temperature parameter values and operating parameters.
  • the temperature parameter value collected by the temperature sensor controls the throttle valve and the fan in the indoor unit 200 .
  • the air conditioner 1600 During the operation of the air conditioner 1600. It is detected whether the temperature sensor provided in the indoor unit 200 has a failure. When it is detected that at least two temperature sensors are faulty, the faulty sensor among the faulty multiple temperature sensors is detected and located, so that the faulty parameter value among the temperature parameter values collected by multiple temperature sensors can be determined, and the air conditioner 1600 Estimate the real value of the fault parameter value to obtain the parameter replacement value. Replace the faulty parameter value among the multiple temperature parameter values by the parameter replacement value, so as to update the collected multiple temperature parameter values, and continue to control the operation of the air conditioner 1600 through the updated temperature parameter value.
  • the indoor unit 200 of the air conditioner 1600 can still keep running, ensuring that the air conditioner 1600 can still operate while waiting for maintenance, reducing the air conditioner.
  • the downtime of the server 1600 while waiting for maintenance is shortened, thereby improving user experience.
  • the air conditioner 1600 when it is detected that the temperature sensor in the air conditioner 1600 is faulty, the air conditioner 1600 outputs corresponding prompt information for prompting the fault of the temperature sensor.
  • the air conditioner 1600 after the air conditioner 1600 detects that there is a faulty temperature sensor among the plurality of temperature sensors, the air conditioner 1600 continues to perform the estimation of the parameter substitution value after receiving the user's operation instruction, and through the parameter substitution value Steps for controlling the operation of the air conditioner 1600 .
  • the air conditioner 1600 can determine whether it needs to continue running according to the actual needs of the user. If the user's operation instruction is not received, the air conditioner 1600 is controlled to stop running after outputting a "failure shutdown" prompt message. The controllability of the air conditioner 1600 is improved, and the air conditioner 1600 can choose whether to continue running in the event of a temperature sensor failure according to user requirements.
  • the fifth embodiment of the present application provides a readable storage medium, on which a program is stored, and when the program is executed by a processor, the air conditioner control method as in any of the above embodiments is implemented, thus having any of the above All the beneficial technical effects of the control method of the air conditioner in the embodiment.
  • the readable storage medium is, for example, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • magnetic disk or an optical disk and the like.
  • connection means two or more, unless otherwise clearly defined.
  • connection can be fixed connection, detachable connection, or integral connection; “connection” can be directly or indirectly through an intermediary.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请提出了一种空调器的控制方法、控制装置、空调器和可读存储介质。其中,空调器的控制方法,空调器包括室内机和至少两个温度传感器,至少两个温度传感器用于获取室内机中对应的至少两个温度参数值,空调器的控制方法包括:基于至少两个温度传感器中的任一温度传感器处于故障状态,获取至少两个温度参数值中的故障参数值;根据空调器的运行参数,得到与故障参数值对应的参数替代值;根据参数替代值控制空调器运行。实现了在空调器的室内机中的温度传感器存在故障的情况下,空调器的室内机依然能够保持运行,保证了空调器在等待检修的过程中依然能够运转,减少了空调器在等待检修过程中的停机时长。

Description

空调器的控制方法、控制装置、空调器和可读存储介质
本申请要求于2021年07月09日提交到中国国家知识产权局、申请号为“202110780857.X”,申请名称为“空调器的控制方法、控制装置、空调器和可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于空调器控制技术领域,具体而言,涉及一种空调器的控制方法、一种空调器的控制装置、一种空调器和一种可读存储介质。
背景技术
空调器中设置有多个温度传感器,多个温度传感器能够对空调器中的多个温度参数值进行检测。在空调器室内机的温度传感器出现故障的情况下,现有技术中均会控制空调器停止运行,这会给用户带来不便。
申请内容
本申请旨在解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一方面提出了一种空调器的控制方法。
本申请的第二方面提出了一种空调器的控制装置。
本申请的第三方面提出了一种空调器。
本申请的第四方面提出了一种空调器。
本申请的第五方面提出了一种可读存储介质。
有鉴于此,根据本申请的第一方面提出了一种空调器的控制方法,空调器包括室内机和至少两个温度传感器,至少两个温度传感器用于获取室内机中对应的至少两个温度参数值,空调器的控制方法包括:基于至少两个温度传感器中的任一温度传感器处于故障状态,获取至少两个温度参数值中的故障参数值;根据空调器的运行参数,得到与故障参数值对应的参数替代值;根据参数替代值控制空调器运行。
本申请提供的空调器的控制方法用于对空调器进行控制,空调器中设 置有室内机和多个温度传感器,多个温度传感器设置在室内机的不同位置处,多个温度传感器能够分别对不同位置处的温度参数值进行采集。室内机中还设置有节流阀和风机,根据多个温度传感器采集到的对应的多个温度参数值,对室内机的节流阀和风机进行控制,从而实现对室内机运行的控制。
空调器的室内机通过多个温度传感器持续采集温度参数值,以及持续采集空调器的运行参数,根据采集到的温度参数值和运行参数对空调器的运行进行控制,其中,通过温度传感器采集到的温度参数值对室内机中的节流阀和风机进行控制。
在空调器的运行过程中。对设置于室内机中的温度传感器是否存在故障进行检测。在检测到至少两个温度传感器存在故障,对存在故障的多个温度传感器中的故障传感器进行检测定位,从而能够确定多个温度传感器采集到的温度参数值中的故障参数值,通过空调器的其他运行参数对故障参数值的真实值进行估算,以得到参数替代值。通过参数替代值替代多个温度参数值中的故障参数值,实现对采集到的多个温度参数值进行更新,通过参数替代值继续对空调器的运行进行控制。实现了在空调器的室内机中的温度传感器存在故障的情况下,空调器的室内机依然能够保持运行,保证了空调器在等待检修的过程中依然能够运转,减少了空调器在等待检修过程中的停机时长,从而提高了用户的使用体验。
另外,根据本申请提供的上述技术方案中的空调器的控制方法,还可以具有如下附加技术特征:
在上述任一技术方案中,室内机包括换热器,至少两个温度传感器包括第一温度传感器、第二温度传感器和第三温度传感器,第一温度传感器和第二温度传感器设置在换热器的两端,第三温度传感器设置于室内机的进风口,获取至少两个温度参数值中的故障参数值的步骤,具体包括:确定第一温度传感器、第二温度传感器和第三温度传感器的故障状态;根据故障状态确定故障参数值;其中,故障参数值包括冷媒入口温度值、冷媒出口温度值和环境温度值。
在该设计中,空调器的室内机包括换热器,空调器在制冷模式下运行时,冷媒通过换热器的第一端流至第二端,空调器在制热模式下运行时, 冷媒通过换热器的第二端流至第一端。室内机中还设置有多个温度传感器。多个温度传感器包括设置在换热器的第一端的第一温度传感器,在制冷模式下,第一温度传感器能够对室内机的冷媒入口温度值进行采集,在制热模式下,第一温度传感器能够对室内机的冷媒出口温度值进行采集。多个温度传感器还包括设置在换热器的第二端的第二温度传感器,在制冷模式下,第二温度传感器能够对室内机的冷媒出口温度值进行采集,在制热模式下,第二温度传感器能够对室内机的冷媒入口温度值进行采集。多个温度传感器还包括设置在室内机进风口处的第三温度传感器,第三温度传感器能够对进入到室内机的空气温度进行采集,即第三温度传感器能够采集室内机的环境温度值。
空调器的室内机中设置有节流阀和风机,在对室内机运行过程中,通过控制节流阀的开度和风机的转速等参数,对室内机的运行进行控制。具体控制方法为,根据采集到的冷媒入口温度值、冷媒出口温度值和环境温度值调整节流阀的开度,以及调整风机的转速。
通过判断空调器的室内机中的多个温度传感器中每个温度温度传感器是否存在故障,以判定至少两个温度参数值中是否存在故障参数值。当检测到多个温度传感器中存在故障的温度传感器,则确定采集到的至少两个温度参数值中也存在故障参数值。在确定空调器的运行模式的情况下,通过分别判定三个温度传感器是否存在故障,能够确定三个温度传感器采集到的温度参数值中的故障参数值。实现了在室内机中存在故障的温度传感器时,快速确定采集到的温度参数值中的故障参数值,避免继续根据故障参数值对空调器进行控制,从而减少了空调器在故障状态下运行的时长。
在上述技术方案中,根据空调器的运行参数,得到与故障参数值对应的参数替代值的步骤之前,还包括:控制空调器以设定运行模式运行;获取空调器在设定运行模式下的运行参数;其中,设定运行模式包括制冷模式和制热模式。
在该设计中,由于空调器在制冷模式下运行和在制热模式下运行的控制参数和运行参数均不相同,并且空调器在不同的模式下运行,则冷媒流经室内机的换热器的流向也不相同,故第一温度传感器与第二温度传感器所采集到的温度参数值也不相同。在对参数替代值进行估算之前,需要确 定空调器当前的运行模式,根据运行模式和多个温度传感器中每个温度传感器是否存在故障确定故障参数值。并在空调器以设定运行模式运行的过程中采集相应的运行参数,再通过采集到的运行参数对参数替代值进行估算,使计算得到参数替代值与空调器的运行模式相符,提高了根据参数替代值对空调器运行的准确性,避免根据不符合运行模式的参数替代值对空调进行控制,导致的空调出现故障。
可以理解的是,空调器的运行模式还包括送风模式,当空调器处于送风模式下,无需空调器的压缩机运行,并且也不需要开启室内机中的截止阀。故温度传感器的故障不会影响到空调器的送风运行,不需要估算相应的参数替代值。
在上述任一技术方案中,第一温度传感器处于故障状态,室内机的数量为至少两台,根据空调器的运行参数,得到与故障参数值对应的参数替代值的步骤,具体包括:基于空调器在制热模式下运行,确定故障参数值为冷媒出口温度值,获取空调器中处于运行状态下的室内机数量;获取至少两台室内机的高压饱和温度、目标过冷度、冷媒出口压力值和设定制热输出量;根据室内机数量、高压饱和温度、目标过冷度、冷媒出口压力值和设定制热输出量,确定冷媒出口温度值对应的参数替代值。
在该设计中,空调器为多联机空调器,即空调器包括多台室内机。空调器在制热模式下运行,压缩机产生的高温高压冷媒经过室内机的换热器的第二端流至第一端。由于第一温度传感器设置于换热器的第一端,第一温度传感器采集到的温度参数值为冷媒出口温度值,第一温度传感器存在故障状态,则能够确定冷媒出口温度值为故障参数值。
在空调器处于制热模式下运行,且冷媒出口温度值为故障参数值的情况下,需要判定空调器中室内机的开机数量,并获取空调器的高压饱和温度、设定制热输出量、冷媒出口压力值、室内机的目标过冷度等空调器的运行参数。通过获取到的上述运行参数和室内机的开机数量,估算参数替代值,并通过参数替代值替换采集到的温度参数值中的冷媒出口温度值。利用更新后的温度参数值对空调器的室内机中的节流阀和风机的运行进行控制,避免由于冷媒出口温度值不准确,导致无法准确地控制空调器在制 热模式下运行。
值得说明的是,高压饱和温度为空调器系统的硬件参数,故在计算参数替代值时,能够直接调用系统高压保护温度。目标过冷度为空调器接收到运行指令后,根据运行指令计算得到的参数值。冷媒出口压力值能够通过设置压力传感器直接进行采集,也可以通过冷媒出口温度等其他参数值对冷媒出口压力值进行计算。设定制热输出量能够根据高压饱和温度和环境温度计算得到。
在上述任一技术方案中,确定冷媒出口温度值对应的参数替代值的步骤,具体包括:确定室内机数量小于设定数量,根据高压饱和温度和目标过冷度,计算冷媒出口温度值对应的参数替代值;确定室内机数量大于等于设定数量,根据冷媒出口压力值和设定制热输出量,计算冷媒出口温度值对应的参数替代值。
在该设计中,如果检测到开机的室内机的数量小于设定数量,在计算冷媒出口温度值的参数替代值时,通过对高压饱和温度与目标过冷度进行差值计算,从而得到估算的冷媒出口温度值,将估算得到的冷媒出口温度值作为冷媒出口温度值的参数替代值。
通过如下公式,根据压力饱和温度和目标过冷度估算冷媒出口温度值:
T 1=T C-SCS;
其中,T 1为冷媒出口温度值对应的参数替代值,T C为高压饱和温度,SCS为目标过冷度。
在该设计中,如果检测到开机的室内机的数量大于等于设定数量,则对每个室内机中的温度传感器是否存在故障进行检测,如果检测到存在无故障的室内机时,计算传感器无故障的室内机的冷媒出口压力值,以及计算传感器存在故障的室内机的冷媒出口压力值,根据两个冷媒出口压力值计算得到设定制热输出量,再根据设定制热输出量计算得到换热器的冷媒出口焓值,根据冷媒出口焓值对冷媒出口温度值进行估算,从而计算得到冷媒出口温度值对应的参数替代值。
通过以下公式,计算传感器无故障的室内机的冷媒出口压力值:
P 1=P C-dP 1
其中,P 1为传感器无故障的室内机的冷媒出口压力值,P C为室外机的最高压力值,dP 1为传感器无故障的室内机的电子膨胀阀两端的压降。
可以理解的是,能够通过传感器采集到的电子膨胀阀两端的压力值进行计算得到传感器无故障的室内机的电子膨胀阀两端的压降。还能够通过冷媒流量值、冷媒出口焓值和室内机的设定制热输出量计算得到。
通过以下公式,计算传感器存在故障的室内机的冷媒出口压力值:
P 2=P 1+(H 1-H 2)×den×9.8;
其中,H 1为故障的室内机与基准点的落差引起的液柱压力值,H 2为传感器存在故障的室内机与基准点的落差引起的液柱压力值,den为故障的室内机的冷媒的密度,P 2为存在故障的室内机的冷媒出口压力值,P 1为传感器无故障的室内机的冷媒出口压力值。
可以理解的是,室内机与基准点的落差引起的液柱压力值为在空调器试运行阶段计算得到的。冷媒的密度能够通过液态冷媒物性函数计算得到,在计算冷媒的密度过程中可采用分段拟合曲线计算。
通过以下公式,计算得到冷媒流量值:
mf=g(dp 2,cv,den);
其中,mf为冷媒流量值,dP 2为传感器存在故障的室内机的电子膨胀阀两端的压降,cv为电子膨胀阀的开度值,den为故障的室内机的冷媒的密度。
通过以下公式,计算得到传感器存在故障的室内机的电子膨胀阀两端的压降:
dp 2=P C-P 2
其中,dP 2为传感器存在故障的室内机的电子膨胀阀两端的压降,P C为室外机的最高压力值,P 2为存在故障的室内机的冷媒出口压力值。
通过以下公式,计算设定制热输出量:
Q=K A×(T C-T 3);
其中,Q为设定制热输出量、K A为系数、T C为高压饱和温度、T 3为环境温度值。
通过以下公式,根据设定制热输出量计算得到换热器的冷媒出口焓值:
h 1=h 2-Q/mf;
其中,h 1为冷媒出口焓值,h 2为冷媒入口焓值,Q为设定制热输出量,mf为冷媒流量值。
通过以下公式,根据冷媒出口焓值计算冷媒出口温度值的参数替代值:
T 1=f 1(h 1,T C);
其中,T 1为冷媒出口温度值对应的参数替代值,h 1为冷媒出口焓值,T C为高压饱和温度,f 1为设定函数。
通过上述公式,实现了在存在多个处于开机状态下的室内机的情况下,通过采集传感器无故障的室内机的相应参数,并根据这些参数准确计算得到传感器存在故障的室内机的冷媒出口温度值的参数替代值。进一步提高了通过参数替代值控制空调器运行的准确性,避免空调器在运行过程中出现其他故障。
可以理解的是,在设定数量选为大于2时,则能够通过采集一个。传感器无故障的室内机的相应参数,对多个传感器存在故障的室内机的冷媒出口温度值的参数替代值进行计算,实现了能够对空调器中多台存在传感器故障的室内机的运行进行控制,避免了空调器停止运行带来的不便。
在上述任一技术方案中,第一温度传感器处于故障状态,根据空调器的运行参数,得到与故障参数值对应的参数替代值的步骤,具体包括:基于空调器在制冷模式下运行,确定故障参数值为冷媒入口温度值;每隔第一设定时长,获取室内机的冷媒出口温度值;根据冷媒出口温度值,计算冷媒入口温度值对应的参数替代值。
在该设计中,空调器为多联机空调器,即空调器包括多台室内机。空调器在制冷模式下运行,冷媒从换热器的第一端流至第二端。由于第一温度传感器设置于换热器的第一端,第一温度传感器采集到的温度参数值为冷媒入口温度值,第一温度传感器存在故障,则能够确定冷媒入口温度值为故障参数值。
在空调器处于制冷模式下运行,且冷媒入口温度值为故障参数值的情况下。能够根据冷媒出口温度值对冷媒入口温度值的替代值进行估算。在制冷模式下运行,低温冷媒通过室内机的换热器的第一端流至换热器的第 二端,在冷媒流经换热器的过程中,低温冷媒不断与环境空气进行换热。因此冷媒的出口温度值应高于冷媒的入口温度值,通过冷媒出口温度值与第一设定差值进行计算,能够得到估算的冷媒入口温度值,将估算的冷媒入口温度值作为冷媒入口温度值的参数替代值,并通过参数替代值替换采集到的温度参数值中的冷媒入口温度值。利用更新后的温度参数值对空调器的室内机中的节流阀和风机的运行进行控制,避免由于冷媒入口温度值不准确,导致无法准确地控制空调器在制热模式下运行。
通过如下公式,根据冷媒出口温度值估算冷媒入口温度值的参数替代值:
T 1=T 2+Z 1
其中,T 1为冷媒入口温度值对应的参数替代值,T 2为冷媒出口温度值,Z 1为第一设定差值。
可以理解的是,在制冷模式运行过程中,由于室内机所处的环境的温度值在持续变化,换热器中的冷媒与空气在换热过程中的能量损失也处于变化状态,故设置每间隔第一设定时长,对估算得到冷媒入口的参数替代值进行更新。更新的方式为每经过第一设定时长采集以此冷媒出口温度值,再根据冷媒出口温度值对冷媒入口温度值的参数替代值进行重新估算。实现了持续对冷媒入口温度值的参数替代进行更新,进一步提高了对传感器存在故障的空调器的控制的稳定性。
在上述任一技术方案中,室内机包括风机,获取室内机的冷媒出口温度值的步骤之前,还包括:控制风机停止运行第二设定时长。
在该设计中,在空调器处于制冷模式下运行,且冷媒入口温度值为故障参数值的情况下,每间隔第一设定时长,则采集冷媒出口温度值,并根据冷媒出口温度值估算参数替代值。在每次采集冷媒出口温度值之前,均控制风机停机第二设定时长。可以理解的是,风机运行会加快换热器与环境空气进行换热。故在采集冷媒出口温度值之前,控制风机停机第二设定时长,能够减少冷媒在换热过程中损失的能量值,进一步提高估算得到的冷媒入口温度值的参数替代值的准确性。
在上述任一技术方案中,第二温度传感器处于故障状态,根据空调器的 运行参数,得到与故障参数值对应的参数替代值的步骤,具体包括:基于空调器在制热模式下运行,确定故障参数值为冷媒入口温度值,获取室内机的高压饱和温度;根据高压饱和温度,计算冷媒入口温度值对应的参数替代值。
在该设计中,空调器为多联机空调器,即空调器包括多台室内机。空调器在制热模式下运行,冷媒从换热器的第二端流至第一端。由于第二温度传感器设置于换热器的第二端,第二温度传感器采集到的温度参数值为冷媒入口温度值,第二温度传感器存在故障,则能够确定冷媒入口温度值为故障参数值。
在空调器处于制热模式下运行,且冷媒入口温度值为故障参数值的情况下。能够根据高压饱和温度对对冷媒入口温度值的替代值进行估算。在制热模式下运行,经过压缩机压缩后的高温冷媒直接流至换热器的第二端,故通过空调系统的硬件参数进行估算就能够得到相对准确的冷媒入口温度值的参数替代值。高压饱和温度为在一定压力下冷媒对应的温度值,可以认为高压饱和温度为压缩机输出的高压高温冷媒的温度值,高温高压冷媒经过冷媒管路流至室内机的换热器的第二端,存在部分的热量损耗,根据热量的损耗设计第二设定差值。通过高压饱和温度与第二设定差值进行计算,则能够对制热模式下的换热器的冷媒入口温度值进行估算,将估算的冷媒入口温度值作为冷媒入口温度值的参数替代值,并通过参数替代值替换采集到的温度参数值中的冷媒入口温度值。利用更新后的温度参数值对空调器的室内机中的节流阀和风机的运行进行控制,避免由于冷媒入口温度值不准确,导致无法准确地控制空调器在制热模式下运行。
通过如下公式,根据高压饱和温度计算冷媒入口温度值:
T 2=T C+Z 2
其中,T 2为冷媒入口温度值对应的参数替代值,T C为高压饱和温度,Z 2为第二设定差值。
可以理解的是,在制热模式运行过程中,压缩机会持续以设定工作状态运行,即压缩机输出的冷媒的压力值和温度值变化范围较小。因此,仅在检测到故障参数值为冷媒入口温度值时,根据高压饱和温度和第二设定差值计算到的参数替代值持续对空调器的运行进行控制,无需频繁对该参 数替代值进行更新。
在上述任一技术方案中,第二温度传感器处于故障状态,室内机的数量为至少两台,根据空调器的运行参数,得到与故障参数值对应的参数替代值的步骤,具体包括:基于空调器在制冷模式下运行,确定故障参数值为冷媒出口温度值,获取空调器中处于运行状态下的室内机数量;获取至少两台室内机的冷媒入口温度值、目标过热度、设定制热输出量、压缩机的排气温度和压缩机的目标排气过热度;根据室内机数量、冷媒入口温度值、目标过热度、设定制热输出量、排气温度值和目标排气过热度,确定冷媒出口温度值对应的参数替代值。
在该设计中,空调器为多联机空调器,即空调器包括多台室内机。空调器在制冷模式下运行,冷媒从换热器的第一端流至第二端。由于第二温度传感器设置于换热器的第二端,第二温度传感器采集到的温度参数值为冷媒出口温度值,第二温度传感器存在故障,则能够确定冷媒出口温度值为故障参数值。
在空调器处于制冷模式下运行,且冷媒出口温度值为故障参数值的情况下,需要判定空调器中的室内机的开机数量,并获取空调器的冷媒入口温度值、设定制热输出量和目标过热度,以及压缩机的排气温度和压缩机的目标排气过热度。通过获取到的上述运行参数和室内机的开机数量,估算参数替代值,并通过参数替代值替换采集到的温度参数值中的冷媒出口温度值。利用更新后的温度参数值对空调器的室内机中的节流阀和风机的运行进行控制,避免由于冷媒出口温度值不准确,导致无法准确地控制空调器在制热模式下运行。
在上述任一技术方案中,确定冷媒出口温度值对应的参数替代值的步骤,具体包括:确定室内机数量小于设定数量,根据冷媒入口温度值和目标过热度,计算冷媒出口温度值对应的参数替代值;确定室内机数量大于等于设定数量,根据排气过热度、排气温度、冷媒入口温度和目标过热度,计算冷媒出口温度值对应的参数替代值。
在该设计中,如果检测到开机的室内机数量小于设定数量,在计算冷媒出口温度值的参数替代值时,通过冷媒入口温度值和目标过热度进行计 算,从而得到估算得到的冷媒出口温度值,将估算得到的冷媒出口温度值作为冷媒后出口温度值的参数替代值。
通过以下公式,根据冷媒入口温度值和目标过热度估算冷媒出口温度值:
T 2=T 1+SHS;
其中,T 2为冷媒出口温度值对应的参数替代值,T 1为冷媒入口温度值,SHS为目标过热度。
在该设计中,如果检测到开机的室内机的数量大于等于设定数量,在计算冷媒后粗口温度值的参数替代值时,通过排气过热度、冷媒入口温度值、排气温度和目标过热度进行计算,从而得到估算得到的冷媒出口温度值,将估算得到的冷媒出口温度值作为冷媒后出口温度值的参数替代值。
通过以下公式,根据排气过热度、冷媒入口温度值、排气温度和目标过热度估算冷媒出口温度值:
T2=(DSH-DSHS)/4+T1+SHS;
其中,T 2为冷媒出口温度值对应的参数替代值,T 1为冷媒入口温度值,SHS为目标过热度,DSHS为目标排气过热度,DSH排气温度。
通过上述公式,实现了在通过采集室内机的相应参数,并根据这些参数准确计算得到传感器存在故障的室内机的冷媒出口温度值的参数替代值。进一步提高了通过参数替代值控制空调器运行的准确性,避免空调器在运行过程中出现其他故障。
在上述任一技术方案中,第三温度传感器处于故障状态,根据空调器的运行参数,得到与故障参数值对应的参数替代值的步骤,具体包括:确定故障参数值为环境温度值;每隔第三设定时长,获取冷媒出口温度值;根据冷媒出口温度值,计算环境温度值对应的参数替代值。
在该设计中,空调器运行过程中,第三温度传感器存在故障,则判定第三温度传感器采集到的环境温度值为故障参数值。能够根据冷媒出口温度值对环境温度值的替代值进行估算。通过冷媒出口温度值与第三设定差值进行计算,能够得到估算的环境温度值,将估算的环境温度值作为环境温度值的参数替代值,并通过参数替代值替换采集到的温度参数值中的环 境温度值。利用更新后的温度参数值对空调器的室内机中的节流阀和风机的运行进行控制,避免由于冷媒入口温度值不准确,导致无法准确地控制空调器在制热模式下运行。
通过如下公式,根据冷媒出口温度值估算环境温度值的参数替代值:
T 3=T 2+Z 3
其中,T 3为环境温度值的参数替代值,T 2为冷媒出口温度值,Z 3为第三设定差值。
值得说明的是,空调器运行制冷模式和运行制热模式时,冷媒出口温度值与环境温度值的差值不同,故在计算环境温度值的参数替代值的步骤之前,根据空调器不同的运行模式选择不同的第三设定差值。
可以理解的是,在空调器运行过程中,由于室内机所处的环境的温度值在持续变化,换热器中的冷媒与空气在换热过程中的能量损失也处于变化状态,故设置每间隔第三设定时长,对估算得到环境温度值的替代值进行更新。更新的方式为每经过第三设定时长采集以此冷媒出口温度值,再根据冷媒出口温度值对环境温度值的参数替代值进行重新估算。实现了持续对环境温度值的参数替代进行更新,进一步提高了对传感器存在故障的空调器的控制的稳定性。
在上述任一技术方案中,室内机包括节流阀,获取室内机的冷媒出口温度值的步骤之前,还包括:控制节流阀关闭第四设定时长。
在该设计中,在空调器运行状态,且环境温度值为故障参数值的情况下,每间隔第三设定时长,则采集冷媒出口温度值,并根据冷媒出口温度值估算参数替代值。在每次采集冷媒出口温度值之前,均控制节流阀关闭第四设定时长。可以理解的是,节流阀处于导通状态会使低温或高温冷媒继续流入换热器中,导致冷媒出口温度值与环境温度值的差值较大,故在采集冷媒出口温度值之前,控制节流阀关闭第四设定时长,能够减小冷媒出口温度值与环境温度值之间的差距,进一步提高估算得到的冷媒入口温度值的参数替代值的准确性。
在上述任一技术方案中,确定第一温度传感器、第二温度传感器和第三温度传感器的故障状态的步骤,具体包括:获取冷媒入口温度值、冷媒出口温 度值和环境温度值的数值关系;根据数值关系,分别确定第一温度传感器、第二温度传感器和第三温度传感器的故障状态。
在该设计中,根据第一温度传感器采集到的温度参数值、第二温度传感器采集到的温度参数值和第三温度传感器采集到的温度参数值之间的数据关系,对三个温度传感器中是否存在故障的温度传感器进行检测,并且能够对三个温度传感器中的存在故障的温度传感器进行定位。
在上述任一技术方案中,空调器的控制方法还包括:计时根据参数替代值控制空调器运行的持续时长;确定持续时长达到第四设定时长,控制空调器停止运行。
在该设计中,在根据估算得到的温度参数值控制空调器运行达到第四时长后,则控制空调器停机。由于温度参数值的参数替代值均为估算得到的温度参数值,其与温度参数值的真实值之间存在一定差距。在根据估算得到的温度参数值控制空调器运行达到第四时长后,控制空调器停机能够避免空调器长时间在温度传感器故障状态下运行导致的故障。提高了空调器运行的稳定性。
根据本申请第二方面提出了一种空调器的控制装置,包括:故障参数获取单元,用于基于至少两个温度传感器中的任一温度传感器处于故障状态,获取至少两个温度参数值中的故障参数值;参数确定单元,用于根据空调器的运行参数,得到与故障参数值对应的参数替代值;运行控制单元,用于根据参数替代值控制空调器运行。
本申请提供的空调器的控制装置用于对空调器进行控制,空调器中设置有室内机和多个温度传感器,多个温度传感器设置在室内机的不同位置处,多个温度传感器能够分别对不同位置处的温度参数值进行采集。室内机中还设置有节流阀和风机,根据多个温度传感器采集到的对应的多个温度参数值,对室内机的节流阀和风机进行控制,从而实现对室内机运行的控制。
空调器的室内机通过多个温度传感器持续采集温度参数值,以及持续采集空调器的运行参数,根据采集到的温度参数值和运行参数对空调器的运行进行控制,其中,通过温度传感器采集到的温度参数值对室内机中的 节流阀和风机进行控制。
在空调器的运行过程中。对设置于室内机中的温度传感器是否存在故障进行检测。在检测到至少两个温度传感器存在故障,对存在故障的多个温度传感器中的故障传感器进行检测定位,从而能够确定多个温度传感器采集到的温度参数值中的故障参数值,通过空调器的其他运行参数对故障参数值的真实值进行估算,以得到参数替代值。通过参数替代值替代多个温度参数值中的故障参数值,实现对采集到的多个温度参数值进行更新,通过更新后的温度参数值继续对空调器的运行进行控制。实现了在空调器的室内机中的温度传感器存在故障的情况下,空调器的室内机依然能够保持运行,保证了空调器在等待检修的过程中依然能够运转,减少了空调器在等待检修过程中的停机时长,从而提高了用户的使用体验。
根据本申请第三方面提出了一种空调器,包括:室内机;如上述第二方面中的空调器的控制装置,设置于室内机。
本申请提供的空调器包括室内机和空调器的控制装置。其中,空调器的控制装置为上述第二方面中的空调器的控制装置,因而具有上述第二方面中的空调器的控制装置的全部有益效果,在此不再做过多赘述。
空调器还包括室外机和冷媒管路,室外机通过冷媒管路与室内机相连。
根据本申请第四方面提出了一种空调器,包括:至少两个室内机;存储器,存储器中存储有程序或指令;处理器,处理器执行存储在存储器中的程序或指令以实现如上述第一方面中的空调器的控制方法的步骤。
本申请提供的空调器包括至少两个室内机、存储器和处理器。存储器中存储有程序或指令;处理器执行存储在存储器中的程序或指令以实现如上述第一方面中的空调器的控制方法的步骤,因而具有上述第一方面中的空调器的控制方法的全部有益效果,在此不再做过多赘述。
空调器还包括室外机和冷媒管路,室外机通过冷媒管路与至少两个室内机相连。
根据本申请第五方面提出了一种可读存储介质,可读存储介质上存储有程序或指令,程序或指令被处理器执行时实现如上述任一可能设计中的空调器的控制方法的步骤。因而具有上述任一可能设计中的空调器的控制方法的全部有 益技术效果,在此不再做过多赘述。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请的第一个实施例中的空调器的控制方法的示意流程图之一;
图2示出了本申请的第一个实施例中的空调器中室内机的结构示意图;
图3示出了本申请的第一个实施例中的空调器的控制方法的示意流程图之二;
图4示出了本申请的第一个实施例中的空调器的控制方法的示意流程图之三;
图5示出了本申请的第一个实施例中的空调器的控制方法的示意流程图之四;
图6示出了本申请的第一个实施例中的空调器的控制方法的示意流程图之五;
图7示出了本申请的第一个实施例中的空调器的控制方法的示意流程图之六;
图8示出了本申请的第一个实施例中的空调器的控制方法的示意流程图之七;
图9示出了本申请的第一个实施例中的空调器的控制方法的示意流程图之八;
图10示出了本申请的第一个实施例中的空调器的控制方法的示意流程图之九;
图11示出了本申请的第一个实施例中的空调器的控制方法的示意流程图之十;
图12示出了本申请的第一个实施例中的空调器的控制方法的示意流程图之十一;
图13示出了本申请的第一个实施例中的空调器的控制方法的示意流程图之十二;
图14示出了本申请的第二个实施例中的空调器的控制装置的示意框图;
图15示出了本申请的第三个实施例中的空调器的示意框图;
图16示出了本申请的第四个实施例中的空调器的示意框图。
其中,图2中附图标记与部件名称之间的对应关系为:
200室内机,202换热器,204第一温度传感器,206第二温度传感器,208第三温度传感器。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图16描述根据本申请一些实施例的一种空调器的控制方法、一种空调器的控制装置、一种空调器和一种可读存储介质。
实施例一:
如图1所示,本申请的第一个实施例中提供了一种空调器的控制方法,空调器包括至少两个温度传感器和室内机。至少两个温度传感器能够采集室内机中至少两个温度参数值,至少两个温度参数值与至少两个温度传感器相对应,每个温度传感器用于采集一个温度参数值。
空调器的控制方法包括:
步骤102,确定至少两个温度传感器中的任一温度传感器处于故障状态;
步骤104,确定至少两个温度参数值中的故障参数值;
步骤106,通过空调器的运行参数对参数替代值进行估算;
步骤108,通过参数替代值对空调器的运行进行控制。
其中,参数替代值与故障参数值相对应。
本实施例提供的空调器的控制方法用于对空调器进行控制,空调器中设置有室内机和多个温度传感器,多个温度传感器位于室内机的不同位置处,多个温度传感器能够分别对不同位置处的温度参数值进行采集。室内机中还设置有节流阀和风机,根据多个温度传感器采集到的对应的多个温度参数值,对室内机的节流阀和风机进行控制,从而实现对室内机运行的控制。
空调器的室内机通过多个温度传感器持续采集温度参数值,以及持续采集空调器的运行参数,根据采集到的温度参数值和运行参数对空调器的运行进行控制,其中,通过温度传感器采集到的温度参数值对室内机中的节流阀和风机进行控制。
在空调器的运行过程中。对设置于室内机中的温度传感器是否存在故障进行检测。在检测到至少两个温度传感器存在故障,对存在故障的多个温度传感器中的故障传感器进行检测定位,从而能够确定多个温度传感器采集到的温度参数值中的故障参数值,通过空调器的其他运行参数对故障参数值的真实值进行估算,以得到参数替代值。通过参数替代值替代多个温度参数值中的故障参数值,实现对采集到的多个温度参数值进行更新,通过参数替代值值继续对空调器的运行进行控制。实现了在空调器的室内机中的温度传感器存在故障的情况下,空调器的室内机依然能够保持运行,保证了空调器在等待检修的过程中依然能够运转,减少了空调器在等待检修过程中的停机时长,从而提高了用户的使用体验。
在一些实施例中,在检测到空调器中的温度传感器存在故障时,空调器输出相应的提示信息,用于提示温度传感器的故障。
在一些实施例中,在空调器检测到多个温度传感器中存在有一个故障的温度传感器后,空调器接收到用户的操作指令后,再继续执行估算参数替代值,以及通过参数替代值对空调器运行进行控制的步骤。
在这些实施例中,空调器能够根据用户的实际需求判定是否需要继续 运行,如果未接收到用户的操作指令,则输出“故障停机”提示信息后,控制空调器停止运行。提高了空调器的可操控性,空调器能够根据用户的需求选择是否在温度传感器故障的情况下继续运行。
如图2所示,在上述任一实施例中,室内机200中设置有换热器202,温度传感器包括第一温度传感器204、第二温度传感器206和第三温度传感器208。第一温度传感器204和第二温度传感器206设置在换热器202的两端,第三温度传感器208设置于室内机200的进风口。
在该实施例中,空调器的室内机200包括换热器202,空调器在制冷模式下运行时,冷媒通过换热器202的第一端流至第二端,空调器在制热模式下运行时,冷媒通过换热器202的第二端流至第一端。室内机200中还设置有多个温度传感器。多个温度传感器包括设置在换热器202的第一端的第一温度传感器204,在制冷模式下,第一温度传感器204能够对室内机200的冷媒入口温度值进行采集,在制热模式下,第一温度传感器204能够对室内机200的冷媒出口温度值进行采集。多个温度传感器还包括设置在换热器202的第二端的第二温度传感器206,在制冷模式下,第二温度传感器206能够对室内机200的冷媒出口温度值进行采集,在制热模式下,第二温度传感器206能够对室内机200的冷媒入口温度值进行采集。多个温度传感器还包括设置在室内机200进风口处的第三温度传感器208,第三温度传感器208能够对进入到室内机200的空气温度进行采集,即第三温度传感器208能够采集室内机200的环境温度值。
如图3所示,在上述任一实施例中,确定至少两个温度参数值中的故障参数值的步骤,具体包括:
步骤302,分别对第一温度传感器的故障状态、第二温度传感器的故障状态和第三温度传感器的故障状态进行检测;
步骤304,根据第一温度传感器的故障状态、第二温度传感器的故障状态和第三温度传感器的故障状态,确定相应的故障参数值。
其中,故障参数值包括冷媒入口温度值、冷媒出口温度值和环境温度值。
在该实施例中,空调器的室内机中设置有节流阀和风机,在对室内机运行过程中,通过控制节流阀的开度和风机的转速等参数,对室内机的运行 进行控制。具体控制方法为,根据采集到的冷媒出口温度值、环境温度值和冷媒入口温度值调整节流阀的开度,以及调整风机的转速。
通过判断空调器的室内机中的多个温度传感器中每个温度温度传感器是否存在故障,以判定多个温度参数值中是否存在故障参数值。当检测到多个温度传感器中存在故障的温度传感器,则确定采集到的多个温度参数值中也存在故障参数值。在确定空调器的运行模式的情况下,通过分别判定三个温度传感器是否存在故障,能够确定三个温度传感器采集到的温度参数值中的故障参数值。实现了在室内机中存在故障的温度传感器时,快速确定采集到的温度参数值中的故障参数值,避免继续根据故障参数值对空调器进行控制,从而减少了空调器在故障状态下运行的时长。
如图4所示,在上述任一实施例中,通过空调器的运行参数对参数替代值进行估算之前,包括:
步骤402,控制空调器运行在设定运行模式下;
步骤404,采集空调器在设定运行模式下的运行参数。
其中,设定运行模式包括制冷模式和制热模式。
在该实施例中,由于空调器在制冷模式下运行和在制热模式下运行的控制参数和运行参数均不相同,并且空调器在不同的模式下运行,则冷媒流经室内机的换热器的流向也不相同,故第一温度传感器与第二温度传感器所采集到的温度参数值也不相同。在对参数替代值进行估算之前,需要确定空调器当前的运行模式,根据运行模式和多个温度传感器中每个温度传感器是否存在故障确定故障参数值。并在空调器按照设定运行模式运行的过程中采集相应的运行参数,再通过采集到的运行参数对参数替代值进行估算,使计算得到参数替代值与空调器的运行模式相符,提高了根据参数替代值对空调器运行的准确性,避免根据不符合运行模式的参数替代值对空调进行控制,导致的空调出现故障。
可以理解的是,空调器的运行模式还包括送风模式,当空调器处于送风模式下,无需空调器的压缩机运行,并且也不需要开启室内机中的截止阀。故温度传感器的故障不会影响到空调器的送风运行,不需要估算相应的参数替代值。
在一些实施例中,检测到空调器的第一温度传感器存在故障。在制冷模式下,由于第一温度传感器所采集的温度参数值是冷媒入口温度值,故判定采集的温度参数值中的冷媒入口温度值为故障参数值。在制热模式下,由于第一温度传感器所采集的温度参数值是冷媒出口温度值,故判定采集的温度参数值中的冷媒出口温度值为故障参数值。
在另外一些实施例中,检测到空调器的第二温度传感器存在故障。在制冷模式下,由于第二温度传感器所采集温度参数值是冷媒出口温度值,故判定采集的温度参数值中的冷媒出口温度值为故障参数值。在制热模式下,由于第二温度传感器所采集温度参数值是冷媒入口温度值,故判定采集的温度参数值中的冷媒入口温度值为故障参数值。
在另外一些实施例中,检测到空调器的第三温度传感器存在故障,由于第三温度传感器所采集温度参数值为环境温度值,故判定采集的温度参数值中的环境温度值为故障参数值。
如图5所示,在上述任一实施例中,确定第一温度传感器存在故障,且空调器中包括多台室内机。通过空调器的运行参数对参数替代值进行估算的步骤,具体包括:
步骤502,根据空调器在制热模式下运行,判定冷媒出口温度值为故障参数值;
步骤504,确定处于运行状态下的室内机的数量;
步骤506,采集设定制热输出量、冷媒出口压力值、目标过冷度和高压饱和温度;
步骤508,根据设定制热输出量、冷媒出口压力值、目标过冷度和高压饱和温度,估算冷媒出口温度值的参数替代值。
在该实施例中,空调器为多联机空调器,即空调器包括多台室内机。空调器按照制热模式运行,压缩机产生的高温高压冷媒经过室内机的换热器的第二端流至第一端。由于第一温度传感器安装在换热器的第一端,第一温度传感器采集到的温度参数值是冷媒出口温度值,第一温度传感器存在故障状态,则能够确定冷媒出口温度值是故障参数值。
在空调器按照制热模式运行,且冷媒出口温度值为故障参数值的情况 下,需要判定空调器中室内机的开机数量,以及获取空调器的冷媒出口压力值、高压饱和温度、室内机的目标过冷度、设定制热输出量等空调器的运行参数。通过获取到的上述运行参数和室内机的开机数量,估算参数替代值,并通过参数替代值替换采集到的温度参数值中的冷媒出口温度值。利用更新后的温度参数值对空调器的室内机中的节流阀和风机的运行进行控制,避免由于冷媒出口温度值不准确,导致无法准确地控制空调器在制热模式下运行。
值得说明的是,高压饱和温度为空调器系统的硬件参数,故在计算参数替代值时,能够直接调用系统高压保护温度。目标过冷度为空调器接收到运行指令后,根据运行指令计算得到的参数值。冷媒出口压力值能够通过设置压力传感器直接进行采集,也可以通过冷媒出口温度等其他参数值对冷媒出口压力值进行计算。设定制热输出量能够根据高压饱和温度和环境温度计算得到。
如图6所示,在上述任一实施例中,估算冷媒出口温度值的参数替代值的步骤,具体包括:
步骤602,确定空调器在制热模式下运行;
步骤604,判断室内机数量是否小于设定数量,判断结果为是则执行步骤606,判断结果为否则执行步骤608;
步骤606,根据目标过冷度和高压饱和温度,对冷媒出口温度值的参数替代值进行估算;
步骤608,根据设定制热输出量和冷媒出口压力值,对冷媒出口温度值的参数替代值进行估算。
在该实施例中,如果检测到开机的室内机的数量相较于设定数量少,在计算冷媒出口温度值的参数替代值时,通过对高压饱和温度与目标过冷度进行差值计算,从而得到估算的冷媒出口温度值,将估算得到的冷媒出口温度值作为冷媒出口温度值的参数替代值。
通过如下公式,根据目标过冷度和压力饱和温度估算冷媒出口温度值:
T 1=T C-SCS;
其中,T 1为冷媒出口温度值对应的参数替代值,T C为高压饱和温度, SCS为目标过冷度。
在该实施例中,如果检测到开机的室内机的数量不小于设定数量,则对每个室内机中的温度传感器是否存在故障进行检测,如果检测到存在无故障的室内机时,计算传感器无故障的室内机的冷媒出口压力值,以及计算传感器存在故障的室内机的冷媒出口压力值,根据两个冷媒出口压力值计算得到设定制热输出量,再根据设定制热输出量计算得到换热器的冷媒出口焓值,根据冷媒出口焓值对冷媒出口温度值进行估算,从而计算得到冷媒出口温度值的参数替代值。
通过以下公式,计算传感器无故障的室内机的冷媒出口压力值:
P 1=P C-dP 1
其中,P 1为传感器无故障的室内机的冷媒出口压力值,P C为室外机的最高压力值,dP 1为传感器无故障的室内机的电子膨胀阀两端的压降。
可以理解的是,能够通过传感器采集到的电子膨胀阀两端的压力值进行计算得到传感器无故障的室内机的电子膨胀阀两端的压降。还能够通过冷媒流量值、冷媒出口焓值和室内机的设定制热输出量计算得到。
通过以下公式,计算传感器存在故障的室内机的冷媒出口压力值:
P 2=P 1+(H 1-H 2)×den×9.8;
其中,H 1为故障的室内机与基准点的落差引起的液柱压力值,H 2为传感器存在故障的室内机与基准点的落差引起的液柱压力值,den为故障的室内机的冷媒的密度,P 2为存在故障的室内机的冷媒出口压力值,P 1为传感器无故障的室内机的冷媒出口压力值。
可以理解的是,室内机与基准点的落差引起的液柱压力值为在空调器试运行阶段计算得到的。冷媒的密度能够通过液态冷媒物性函数计算得到,在计算冷媒的密度过程中可采用分段拟合曲线计算。
通过以下公式,计算得到冷媒流量值:
mf=g(dp 2,cv,den);
其中,mf为冷媒流量值,dP 2为传感器存在故障的室内机的电子膨胀阀两端的压降,cv为电子膨胀阀的开度值,den为故障的室内机的冷媒的密度。
通过以下公式,计算得到传感器存在故障的室内机的电子膨胀阀两端的压降:
dp 2=P C-P 2
其中,dP 2为传感器存在故障的室内机的电子膨胀阀两端的压降,P C为室外机的最高压力值,P 2为存在故障的室内机的冷媒出口压力值。
通过以下公式,计算设定制热输出量:
Q=K A×(T C-T 3);
其中,Q为设定制热输出量、K A为系数、T C为高压饱和温度、T 3为环境温度值。
通过以下公式,根据设定制热输出量计算得到换热器的冷媒出口焓值:
h 1=h 2-Q/mf;
其中,h 1为冷媒出口焓值,h 2为冷媒入口焓值,Q为设定制热输出量,mf为冷媒流量值。
通过以下公式,根据冷媒出口焓值计算冷媒出口温度值的参数替代值:
T 1=f 1(h 1,T C)
其中,T 1为冷媒出口温度值的参数替代值,h 1为冷媒出口焓值,T C为高压饱和温度,f 1为设定函数。
通过上述公式,实现了在存在多个处于开机状态下的室内机的情况下,通过采集传感器无故障的室内机的相应参数,并根据这些参数准确计算得到传感器存在故障的室内机的冷媒出口温度值的参数替代值。进一步提高了通过参数替代值控制空调器运行的准确性,避免空调器在运行过程中出现其他故障。
在一些实施例中,设定数量的取值范围大于等于2。
在这些实施例中,空调器中开机的室内机的台数大于等于2时,并且处于开机状态下的是室内机包括传感器无故障的室内机,通过采集传感器无故障的室内机的相应参数,对传感器存在故障的室内机的冷媒出口温度值的参数替代值进行计算。
可以理解的是,在设定数量选为大于2时,则能够通过采集一个。传感器无故障的室内机的相应参数,对多个传感器存在故障的室内机的冷媒 出口温度值的参数替代值进行计算,实现了能够对空调器中多台存在传感器故障的室内机的运行进行控制,避免了空调器停止运行带来的不便。
如图7所示,在上述任一实施例中,第一温度传感器存在故障,通过空调器的运行参数对参数替代值进行估算的步骤,具体包括:
步骤702,根据空调器以制冷模式运行,判定冷媒入口温度值为故障参数值;
步骤704,每间隔第一设定时长,控制风机停止运行第二设定时长,采集冷媒出口温度值;
步骤706,根据冷媒出口温度值,对冷媒入口温度值的参数替代值进行估算。
在该实施例中,空调器为多联机空调器,即空调器包括多台室内机。空调器在制冷模式下运行,冷媒从换热器的第一端流至第二端。由于第一温度传感器位于换热器的第一端,第一温度传感器采集到的温度参数值是冷媒入口温度值,第一温度传感器存在故障,则能够确定冷媒入口温度值是故障参数值。
在空调器处于制冷模式下运行,且冷媒入口温度值为故障参数值的情况下。能够根据冷媒出口温度值对冷媒入口温度值的替代值进行估算。在制冷模式下运行,低温冷媒通过室内机的换热器的第一端流至换热器的第二端,在冷媒流经换热器的过程中,低温冷媒不断与环境空气进行换热。因此冷媒的出口温度值应高于冷媒的入口温度值,通过冷媒出口温度值与第一设定差值进行计算,能够得到估算的冷媒入口温度值,将估算的冷媒入口温度值作为冷媒入口温度值的参数替代值,并通过参数替代值替换采集到的温度参数值中的冷媒入口温度值。利用更新后的温度参数值对空调器的室内机中的节流阀和风机的运行进行控制,避免由于冷媒入口温度值不准确,导致无法准确地控制空调器在制热模式下运行。
通过如下公式,根据冷媒出口温度值估算冷媒入口温度值的参数替代值:
T 1=T 2+Z 1
其中,T 1为冷媒入口温度值的参数替代值,T 2为冷媒出口温度值,Z 1 为第一设定差值。
可以理解的是,在制冷模式运行过程中,由于室内机所处的环境的温度值在持续变化,换热器中的冷媒与空气在换热过程中的能量损失也处于变化状态,故设置每间隔第一设定时长,对估算得到冷媒入口的参数替代值进行更新。更新的方式为每经过第一设定时长采集以此冷媒出口温度值,再根据冷媒出口温度值对冷媒入口温度值的参数替代值进行重新估算。实现了持续对冷媒入口温度值的参数替代进行更新,进一步提高了对传感器存在故障的空调器的控制的稳定性。
在空调器处于制冷模式下运行,且冷媒入口温度值为故障参数值的情况下,每间隔第一设定时长,则采集冷媒出口温度值,并根据冷媒出口温度值估算参数替代值。在每次采集冷媒出口温度值之前,均控制风机停机第二设定时长。可以理解的是,风机运行会加快换热器与环境空气进行换热。故在采集冷媒出口温度值之前,控制风机停机第二设定时长,能够减少冷媒在换热过程中损失的能量值,进一步提高估算得到的冷媒入口温度值的参数替代值的准确性。
在一些实施例中,第二设定时长的取值范围为10秒至40秒。
在这些实施例中,将第二设定时长的取值设置为大于等于10秒,使冷媒出口温度值有足够的时长接近冷媒入口温度值。将第二设定时长的取值设置为小于等于40秒,能够避免长时间换热器中的冷媒换热不良导致的空调器故障。
如图8所示,在上述任一实施例中,第二温度传感器存在故障,通过空调器的运行参数对参数替代值进行估算的步骤,具体包括:
步骤802,根据空调器以制热模式运行,判定冷媒入口温度值为故障参数值;
步骤804,获取高压饱和温度;
步骤806,根据高压饱和温度,对冷媒入口温度值的参数替代值进行估算。
在该实施例中,空调器为多联机空调器,即空调器包括多台室内机。空调器按照制热模式运行,冷媒从换热器的第二端流至第一端。由于第二温度传感器设置于换热器的第二端,第二温度传感器采集到的温度参数值为 冷媒入口温度值,第二温度传感器存在故障,则能够确定冷媒入口温度值为故障参数值。
在空调器处于制热模式下运行,且冷媒入口温度值为故障参数值的情况下。能够根据高压饱和温度对对冷媒入口温度值的替代值进行估算。在制热模式下运行,经过压缩机压缩后的高温冷媒直接流至换热器的第二端,故通过空调系统的硬件参数进行估算就能够得到相对准确的冷媒入口温度值的参数替代值。高压饱和温度为在一定压力下冷媒对应的温度值,可以认为高压饱和温度为压缩机输出的高压高温冷媒的温度值,高温高压冷媒经过冷媒管路流至室内机的换热器的第二端,存在部分的热量损耗,根据热量的损耗设计第二设定差值。通过高压饱和温度与第二设定差值进行计算,则能够对制热模式下的换热器的冷媒入口温度值进行估算,将估算的冷媒入口温度值作为冷媒入口温度值的参数替代值,并通过参数替代值替换采集到的温度参数值中的冷媒入口温度值。利用更新后的温度参数值对空调器的室内机中的节流阀和风机的运行进行控制,避免由于冷媒入口温度值不准确,导致无法准确地控制空调器在制热模式下运行。
通过如下公式,根据高压饱和温度对冷媒入口温度值进行计算:
T 2=T C+Z 2
其中,T 2为冷媒入口温度值的参数替代值,T C为高压饱和温度,Z 2为第二设定差值。
可以理解的是,在制热模式运行过程中,压缩机会持续以设定工作状态运行,即压缩机输出的冷媒的压力值和温度值变化范围较小。因此,仅在检测到故障参数值是冷媒入口温度值时,根据高压饱和温度和第二设定差值计算到的参数替代值持续对空调器的运行进行控制,无需频繁对该参数替代值进行更新。
如图9所示,在上述任一实施例中,第二温度传感器存在故障,且空调器中包括多台室内机,通过空调器的运行参数对参数替代值进行估算的步骤,具体包括:
步骤902,根据空调器在制冷模式下运行,判定冷媒出口温度值为故障参数值;
步骤904,确定处于运行状态下的室内机的数量;
步骤906,采集目标过热度、冷媒入口温度值、压缩机的排气温度、设定制热输出量和压缩机的目标排气过热度;
步骤908,根据室内机的数量、目标过热度、冷媒入口温度值、压缩机的排气温度、设定制热输出量和压缩机的目标排气过热度,估算冷媒出口温度值的参数替代值。
在该实施例中,空调器为多联机空调器,即空调器包括多台室内机。空调器在制冷模式下运行,冷媒从换热器的第一端流至第二端。由于第二温度传感器位于换热器的第二端,第二温度传感器采集到的温度参数值是冷媒出口温度值,第二温度传感器存在故障,则能够确定冷媒出口温度值为故障参数值。
在空调器处于制冷模式下运行,且冷媒出口温度值为故障参数值的情况下,需要判定空调器中的室内机的开机数量,并获取空调器的冷媒入口温度值、设定制热输出量和目标过热度,以及压缩机的排气温度和压缩机的目标排气过热度。通过获取到的上述运行参数和室内机的开机数量,估算参数替代值,并通过参数替代值替换采集到的温度参数值中的冷媒出口温度值。利用更新后的温度参数值对空调器的室内机中的节流阀和风机的运行进行控制,避免由于冷媒出口温度值不准确,导致无法准确地控制空调器在制热模式下运行。
如图10所示,在上述任一实施例中,估算冷媒出口温度值的参数替代值的步骤,具体包括:
步骤1002,确定空调器在制冷模式下运行;
步骤1004,判断室内机数量是否小于设定数量,判断结果为是则执行步骤1006,判断结果为否则执行步骤1008;
步骤1006,根据目标过热度和冷媒入口温度值,对冷媒出口温度值的参数替代值进行估算;
步骤1008,根据排气温度、排气过热度、目标过热度和冷媒入口温度,对冷媒出口温度值的参数替代值进行估算。
在该实施例中,如果检测到开机的室内机数量相较于设定数量少,在计 算冷媒出口温度值的参数替代值时,通过目标过热度和冷媒入口温度值进行计算,从而得到估算得到的冷媒出口温度值,将估算得到的冷媒出口温度值作为冷媒后出口温度值的参数替代值。
通过以下公式,根据目标过热度和冷媒入口温度值估算冷媒出口温度值:
T 2=T 1+SHS;
其中,T 2为冷媒出口温度值的参数替代值,T 1为冷媒入口温度值,SHS为目标过热度。
在该实施例中,如果检测到开机的室内机的数量不小于设定数量,在计算冷媒后粗口温度值的参数替代值时,通过排气过热度、冷媒入口温度值、排气温度和目标过热度进行计算,从而得到估算得到的冷媒出口温度值,将估算得到的冷媒出口温度值作为冷媒后出口温度值的参数替代值。
通过以下公式,根据排气过热度、冷媒入口温度值、排气温度和目标过热度估算冷媒出口温度值:
T 2=(DSH-DSHS)/4+T 1+SHS;
其中,T 2为冷媒出口温度值的参数替代值,T 1为冷媒入口温度值,SHS为目标过热度,DSHS为目标排气过热度,DSH为排气温度。
通过上述公式,实现了在通过采集室内机的相应参数,并根据这些参数准确计算得到传感器存在故障的室内机的冷媒出口温度值的参数替代值。进一步提高了通过参数替代值对空调器运行进行控制的准确性,避免空调器在运行过程中出现其他故障。
如图11所示,在上述任一实施例中,第三温度传感器存在故障,通过空调器的运行参数对参数替代值进行估算的步骤,具体包括:
步骤1102,确定环境温度值为故障参数值;
步骤1104,每隔第三设定时长,控制节流阀关闭第四设定时长,获取冷媒出口温度值;
步骤1106,根据冷媒出口温度值,对环境温度值的参数替代值进行估算。
在该实施例中,空调器运行过程中,第三温度传感器存在故障,则判定第三温度传感器采集到的环境温度值为故障参数值。能够根据冷媒出口温 度值对环境温度值的替代值进行估算。通过冷媒出口温度值与第三设定差值进行计算,能够得到估算的环境温度值,将估算的环境温度值作为环境温度值的参数替代值,并通过参数替代值替换采集到的温度参数值中的环境温度值。利用更新后的温度参数值对空调器的室内机中的节流阀和风机的运行进行控制,避免由于冷媒入口温度值不准确,导致无法准确地控制空调器在制热模式下运行。
通过如下公式,根据冷媒出口温度值估算环境温度值的参数替代值:
T 3=T 2+Z 3
其中,T 3为环境温度值的参数替代值,T 2为冷媒出口温度值,Z 3为第三设定差值。
值得说明的是,空调器运行制冷模式和运行制热模式时,冷媒出口温度值与环境温度值的差值不同,故在计算环境温度值的参数替代值之前,根据空调器不同的运行模式选择不同的第三设定差值。
可以理解的是,在空调器运行过程中,由于室内机所处的环境的温度值在持续变化,换热器中的冷媒与空气在换热过程中的能量损失也处于变化状态,故设置每间隔第三设定时长,对估算得到环境温度值的替代值进行更新。更新的方式为每经过第三设定时长采集以此冷媒出口温度值,再根据冷媒出口温度值对环境温度值的参数替代值进行重新估算。实现了持续对环境温度值的参数替代进行更新,进一步提高了对传感器存在故障的空调器的控制的稳定性。
在空调器运行状态,且环境温度值为故障参数值的情况下,每间隔第三设定时长,则采集冷媒出口温度值,并根据冷媒出口温度值估算参数替代值。在每次采集冷媒出口温度值之前,均控制节流阀处于关闭状态达到第四设定时长。可以理解的是,节流阀处于导通状态会使低温或高温冷媒继续流入换热器中,导致冷媒出口温度值与环境温度值的差值较大,故在采集冷媒出口温度值之前,控制节流阀关闭第四设定时长,能够减小冷媒出口温度值与环境温度值之间的差距,进一步提高估算得到的冷媒入口温度值的参数替代值的准确性。
在一些实施例中,第四设定时长的取值范围为60秒至120秒。
在这些实施例中,将第四设定时长的取值设置为大于等于60秒,使冷媒出口温度值有足够的时长接近环境温度值。将第四设定时长的取值设置为小于等于120秒,能够避免长时间冷媒无法进入到室内机的换热器中导致的空调器故障
如图12所示,在上述任一实施例中,分别对第一温度传感器的故障状态、第二温度传感器的故障状态和第三温度传感器的故障状态进行检测的步骤,具体包括:
步骤1202,确定冷媒入口温度值、环境温度值中和冷媒出口温度值的数值关系;
步骤1204,根据数值关系确定每个温度传感器的故障状态。
在该实施例中,根据第一温度传感器采集到的温度参数值、第二温度传感器采集到的温度参数值和第三温度传感器采集到的温度参数值之间的数据关系,对三个温度传感器中是否存在故障的温度传感器进行检测,并且能够对三个温度传感器中的存在故障的温度传感器进行定位。
在一些实施例中,采集冷媒入口温度值、环境温度值和冷媒出口温度值,并确定其中两个不是故障参数值,则对另一个判断是否为故障参数值。
在确定三个温度参数值中的任两个温度参数值为非故障参数值,对另一个温度参数值是否故障通过以下方式进行判断。
在空调器的压缩机停止运行达到第五设定时长。在满足以下判断条件时判定另一个温度参数值为故障参数值:
(Abs(T 3-T 1)-dT 2)×(Abs(T 3-T 2)-dT 2)×(Abs(T 2-T 1)-dT 2)小于0,且Abs(T 2-T 1)<dT 2,且Abs(T 3-T 1)≥dT 2
在空调器按照制冷模式运行。在满足以下判断条件时判定另一个温度参数值为故障参数值:
(T 1-T 3-dT 2)×(T 2-T 3-dT 1)×(T 1-T 2-dT 3)小于0达到预设时长,且T 1-T 2<dT 2,且T 1-T 3≥dT 1
在空调器按照制热模式运行。在满足以下判断条件时判定另一个温度参数值为故障参数值:
(T 3-T 1-dT 1)×(T 3-T 2-dT 1)×(T 1-T 2-dT 4)小于0达到预设时长,且 T 1-T 2<dT 4,且T 3-T 1≥dT 1
其中,T 1为第一温度传感器采集的温度参数值,T 2为第二温度传感器采集的温度参数值,T 3为第三温度传感器采集的温度参数值,dT 1为第一设定值,dT 2为第二设定值,dT 3为第三设定值,dT 4为第四设定值。
如图13所示,在上述任一实施例中,空调器的控制方法还包括:
步骤1302,对通过参数替代值对空调器的运行进行控制的持续时长进行计时;
步骤1304,基于持续时长达到第四设定时长,控制空调器停机。
在该实施例中,在根据估算得到的温度参数值控制空调器运行达到第四时长后,则控制空调器停机。由于温度参数值的参数替代值均为估算得到的温度参数值,其与温度参数值的真实值之间存在一定差距。在根据估算得到的温度参数值控制空调器运行达到第四时长后,控制空调器停机能够避免空调器长时间在温度传感器故障状态下运行导致的故障。提高了空调器运行的稳定性。
实施例二:
如图14所示,本申请的第一个实施例中提供了一种空调器的控制装置1400包括:
故障参数获取单元1402,用于确定至少两个温度传感器中的任一温度传感器处于故障状态,并确定至少两个温度参数值中的故障参数值。
参数确定单元1404,用于通过空调器的运行参数对参数替代值进行估算。
运行控制单元1406,用于根据参数替代值对空调器的运行进行控制。
本实施例提供的空调器的控制装置用于对空调器进行控制,空调器中设置有室内机和多个温度传感器,多个温度传感器安装在室内机的不同位置处,多个温度传感器能够分别对不同位置处的温度参数值进行采集。室内机中还设置有节流阀和风机,根据多个温度传感器采集到的对应的多个温度参数值,对室内机的节流阀和风机进行控制,从而实现对室内机运行的控制。
空调器的室内机通过多个温度传感器持续采集温度参数值,以及持续采集空调器的运行参数,根据采集到的温度参数值和运行参数对空调器的 运行进行控制,其中,通过温度传感器采集到的温度参数值对室内机中的节流阀和风机进行控制。
在空调器的运行过程中。对设置于室内机中的温度传感器是否存在故障进行检测。在检测到至少两个温度传感器存在故障,对存在故障的多个温度传感器中的故障传感器进行检测定位,从而能够确定多个温度传感器采集到的温度参数值中的故障参数值,通过空调器的其他运行参数对故障参数值的真实值进行估算,以得到参数替代值。通过参数替代值替代多个温度参数值中的故障参数值,实现对采集到的多个温度参数值进行更新,通过更新后的温度参数值继续对空调器的运行进行控制。实现了在空调器的室内机中的温度传感器存在故障的情况下,空调器的室内机依然能够保持运行,保证了空调器在等待检修的过程中依然能够运转,减少了空调器在等待检修过程中的停机时长,从而提高了用户的使用体验。
在一些实施例中,在检测到空调器中的温度传感器存在故障时,空调器输出相应的提示信息,用于提示温度传感器的故障。
在一些实施例中,在空调器检测到多个温度传感器中存在有一个故障的温度传感器后,空调器接收到用户的操作指令后,再继续执行估算参数替代值,以及通过参数替代值控制空调器运行的步骤。
在这些实施例中,空调器能够根据用户的实际需求判定是否需要继续运行,如果未接收到用户的操作指令,则输出“故障停机”提示信息后,控制空调器停止运行。提高了空调器的可操控性,空调器能够根据用户的需求选择是否在温度传感器故障的情况下继续运行。
如图2所示,在上述实施例中,室内机200中设置有换热器202,温度传感器包括第一温度传感器204、第二温度传感器206和第三温度传感器208。第一温度传感器204设置于换热器202的第一端,第二温度传感器206设置于换热器202的第二端,第三温度传感器208设置于室内机200的进风口。
在该实施例中,空调器的室内机200包括换热器202,空调器在制冷模式下运行时,冷媒通过换热器202的第一端流至第二端,空调器在制热模式下运行时,冷媒通过换热器202的第二端流至第一端。室内机200中 还设置有多个温度传感器。多个温度传感器包括设置在换热器202的第一端的第一温度传感器204,在制冷模式下,第一温度传感器204能够对室内机200的冷媒入口温度值进行采集,在制热模式下,第一温度传感器204能够对室内机200的冷媒出口温度值进行采集。多个温度传感器还包括设置在换热器202的第二端的第二温度传感器206,在制冷模式下,第二温度传感器206能够对室内机200的冷媒出口温度值进行采集,在制热模式下,第二温度传感器206能够对室内机200的冷媒入口温度值进行采集。多个温度传感器还包括设置在室内机200进风口处的第三温度传感器208,第三温度传感器208能够对进入到室内机200的空气温度进行采集,即第三温度传感器208能够采集室内机200的环境温度值。
实施例三:
如图15所示,本申请的第三个实施例中提供了一种空调器1500,包括:室内机1502和空调器的控制装置1400。
空调器的控制装置1400,空调器的控制装置1400设置在室内机中,空调器的控制装置1400选为如上述实施例二中的空调器的控制装置1400。
空调器的控制装置1400用于对空调器进行控制,空调器中设置有室内机和多个温度传感器,多个温度传感器设置在室内机的不同位置处,多个温度传感器能够分别对不同位置处的温度参数值进行采集。室内机中还设置有节流阀和风机,根据多个温度传感器采集到的对应的多个温度参数值,对室内机的节流阀和风机进行控制,从而实现对室内机运行的控制。
空调器的室内机通过多个温度传感器持续采集温度参数值,以及持续采集空调器的运行参数,根据采集到的温度参数值和运行参数对空调器的运行进行控制,其中,通过温度传感器采集到的温度参数值对室内机中的节流阀和风机进行控制。
在空调器的运行过程中。对设置于室内机中的温度传感器是否存在故障进行检测。在检测到至少两个温度传感器存在故障,对存在故障的多个温度传感器中的故障传感器进行检测定位,从而能够确定多个温度传感器采集到的温度参数值中的故障参数值,通过空调器的其他运行参数对故障参数值的真实值进行估算,以得到参数替代值。通过参数替代值替代多个 温度参数值中的故障参数值,实现对采集到的多个温度参数值进行更新,通过更新后的温度参数值继续对空调器的运行进行控制。实现了在空调器的室内机中的温度传感器存在故障的情况下,空调器的室内机依然能够保持运行,保证了空调器在等待检修的过程中依然能够运转,减少了空调器在等待检修过程中的停机时长,从而提高了用户的使用体验。
在一些实施例中,在检测到空调器中的温度传感器存在故障时,空调器输出相应的提示信息,用于提示温度传感器的故障。
在一些实施例中,在空调器检测到多个温度传感器中存在有一个故障的温度传感器后,空调器接收到用户的操作指令后,再继续执行估算参数替代值,以及通过参数替代值控制空调器运行的步骤。
在这些实施例中,空调器能够根据用户的实际需求判定是否需要继续运行,如果未接收到用户的操作指令,则输出“故障停机”提示信息后,控制空调器停止运行。提高了空调器的可操控性,空调器能够根据用户的需求选择是否在温度传感器故障的情况下继续运行。
在上述任一实施例中,空调器还包括室外机和冷媒管路,室外机通过冷媒管路与室内机相连。
实施例四:
如图16所示,本申请的第四个实施例中提供了一种空调器1600,包括:至少两个室内机200、存储器1602和处理器1604。
如图2所示,在上述实施例中,室内机200中设置有换热器,温度传感器包括第一温度传感器、第二温度传感器和第三温度传感器。第一温度传感器设置于换热器的第一端,第二温度传感器设置于换热器的第二端,第三温度传感器设置于室内机200的进风口。
在上述实施例中,室内机200中设置有换热器202,温度传感器包括第一温度传感器204、第二温度传感器206和第三温度传感器208。第一温度传感器204设置于换热器202的第一端,第二温度传感器206设置于换热器202的第二端,第三温度传感器208设置于室内机200的进风口。
在该实施例中,空调器1600的室内机200包括换热器202,空调器1600在制冷模式下运行时,冷媒通过换热器202的第一端流至第二端,空调器 1600在制热模式下运行时,冷媒通过换热器202的第二端流至第一端。室内机200中还设置有多个温度传感器。多个温度传感器包括设置在换热器202的第一端的第一温度传感器204,在制冷模式下,第一温度传感器204能够对室内机200的冷媒入口温度值进行采集,在制热模式下,第一温度传感器204能够对室内机200的冷媒出口温度值进行采集。多个温度传感器还包括设置在换热器202的第二端的第二温度传感器206,在制冷模式下,第二温度传感器206能够对室内机200的冷媒出口温度值进行采集,在制热模式下,第二温度传感器206能够对室内机200的冷媒入口温度值进行采集。多个温度传感器还包括设置在室内机200进风口处的第三温度传感器208,第三温度传感器208能够对进入到室内机200的空气温度进行采集,即第三温度传感器208能够采集室内机200的环境温度值。
存储器1602中存储有程序或指令,处理器1604执行存储在存储器1602中的程序或指令以实现如上述实施例一中的空调器1600的控制方法的步骤。
空调器1600的控制方法用于对空调器1600进行控制,空调器1600中设置有室内机200和多个温度传感器,多个温度传感器设置在室内机200的不同位置处,多个温度传感器能够分别对不同位置处的温度参数值进行采集。室内机200中还设置有节流阀和风机,根据多个温度传感器采集到的对应的多个温度参数值,对室内机200的节流阀和风机进行控制,从而实现对室内机200运行的控制。
空调器1600的室内机200通过多个温度传感器持续采集温度参数值,以及持续采集空调器1600的运行参数,根据采集到的温度参数值和运行参数对空调器1600的运行进行控制,其中,通过温度传感器采集到的温度参数值对室内机200中的节流阀和风机进行控制。
在空调器1600的运行过程中。对设置于室内机200中的温度传感器是否存在故障进行检测。在检测到至少两个温度传感器存在故障,对存在故障的多个温度传感器中的故障传感器进行检测定位,从而能够确定多个温度传感器采集到的温度参数值中的故障参数值,通过空调器1600的其他运行参数对故障参数值的真实值进行估算,以得到参数替代值。通过参数替代值替代多个温度参数值中的故障参数值,实现对采集到的多个温度参数值进行更新,通过更新 后的温度参数值继续对空调器1600的运行进行控制。实现了在空调器1600的室内机200中的温度传感器存在故障的情况下,空调器1600的室内机200依然能够保持运行,保证了空调器1600在等待检修的过程中依然能够运转,减少了空调器1600在等待检修过程中的停机时长,从而提高了用户的使用体验。
在一些实施例中,在检测到空调器1600中的温度传感器存在故障时,空调器1600输出相应的提示信息,用于提示温度传感器的故障。
在一些实施例中,在空调器1600检测到多个温度传感器中存在有一个故障的温度传感器后,空调器1600接收到用户的操作指令后,再继续执行估算参数替代值,以及通过参数替代值控制空调器1600运行的步骤。
在这些实施例中,空调器1600能够根据用户的实际需求判定是否需要继续运行,如果未接收到用户的操作指令,则输出“故障停机”提示信息后,控制空调器1600停止运行。提高了空调器1600的可操控性,空调器1600能够根据用户的需求选择是否在温度传感器故障的情况下继续运行。
实施例五:
本申请的第五个实施例中提供了一种可读存储介质,其上存储有程序,程序被处理器执行时实现如上述任一实施例中的空调器的控制方法,因而具有上述任一实施例中的空调器的控制方法的全部有益技术效果。
其中,可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
在本申请中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上 述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种空调器的控制方法,其中,所述空调器包括室内机和至少两个温度传感器,所述至少两个温度传感器用于获取所述室内机中对应的至少两个温度参数值,所述空调器的控制方法包括:
    基于所述至少两个温度传感器中的任一温度传感器处于故障状态,获取所述至少两个温度参数值中的故障参数值;
    根据所述空调器的运行参数,得到与所述故障参数值对应的参数替代值;
    根据所述参数替代值控制所述空调器运行。
  2. 根据权利要求1所述的空调器的控制方法,其中,所述室内机包括换热器,所述至少两个温度传感器包括第一温度传感器、第二温度传感器和第三温度传感器,所述第一温度传感器和第二温度传感器设置在所述换热器的两端,所述第三温度传感器设置于所述室内机的进风口,所述获取所述至少两个温度参数值中的故障参数值的步骤,具体包括:
    确定所述第一温度传感器、所述第二温度传感器和所述第三温度传感器的故障状态;
    根据所述故障状态确定所述故障参数值;
    其中,所述故障参数值包括冷媒入口温度值、冷媒出口温度值和环境温度值。
  3. 根据权利要求2所述的空调器的控制方法,其中,所述根据所述空调器的运行参数,得到与所述故障参数值对应的参数替代值的步骤之前,还包括:
    控制空调器以设定运行模式运行;
    获取所述空调器在设定运行模式下的所述运行参数;
    其中,所述设定运行模式包括制冷模式和制热模式。
  4. 根据权利要求3所述的空调器的控制方法,其中,所述第一温度传感器处于故障状态,所述室内机的数量为至少两台,所述根据所述空调器的运行参数,得到与所述故障参数值对应的参数替代值的步骤,具体包括:
    基于所述空调器在所述制热模式下运行,确定所述故障参数值为所述冷媒出口温度值,获取所述空调器中处于运行状态下的室内机数量;
    获取至少两台所述室内机的高压饱和温度、目标过冷度、冷媒出口压力值和设定制热输出量;
    根据所述室内机数量、所述高压饱和温度、所述目标过冷度、所述冷媒出口压力值和所述设定制热输出量,确定所述冷媒出口温度值对应的所述参数替代值。
  5. 根据权利要求4所述的空调器的控制方法,其中,所述确定所述冷媒出口温度值对应的所述参数替代值的步骤,具体包括:
    确定所述室内机数量小于设定数量,根据所述高压饱和温度和所述目标过冷度,计算所述冷媒出口温度值对应的所述参数替代值;
    确定所述室内机数量大于等于设定数量,根据所述冷媒出口压力值和所述设定制热输出量,计算所述冷媒出口温度值对应的所述参数替代值。
  6. 根据权利要求3所述的空调器的控制方法,其中,所述第一温度传感器处于故障状态,所述根据所述空调器的运行参数,得到与所述故障参数值对应的参数替代值的步骤,具体包括:
    基于所述空调器在所述制冷模式下运行,确定所述故障参数值为所述冷媒入口温度值;
    每隔第一设定时长,获取所述室内机的所述冷媒出口温度值;
    根据所述冷媒出口温度值,计算所述冷媒入口温度值对应的所述参数替代值。
  7. 根据权利要求6所述的空调器的控制方法,其中,所述室内机包括风机,所述获取所述室内机的所述冷媒出口温度值的步骤之前,还包括:
    控制所述风机停止运行第二设定时长。
  8. 根据权利要求3所述的空调器的控制方法,其中,所述第二温度传感器处于故障状态,所述根据所述空调器的运行参数,得到与所述故障参数值对应的参数替代值的步骤,具体包括:
    基于所述空调器在所述制热模式下运行,确定所述故障参数值为所述冷媒入口温度值,获取所述室内机的高压饱和温度;
    根据所述高压饱和温度,计算所述冷媒入口温度值对应的所述参数替代值。
  9. 根据权利要求3所述的空调器的控制方法,其中,所述第二温度传感器处于故障状态,所述室内机的数量为至少两台,所述根据所述空调器的运行参数,得到与所述故障参数值对应的参数替代值的步骤,具体包括:
    基于所述空调器在所述制冷模式下运行,确定所述故障参数值为所述冷媒出口温度值,获取所述空调器中处于运行状态下的室内机数量;
    获取至少两台所述室内机的所述冷媒入口温度值、目标过热度、设定制热输出量、压缩机的排气温度和压缩机的目标排气过热度;
    根据所述室内机数量、所述冷媒入口温度值、所述目标过热度、所述设定制热输出量、所述排气温度值和所述目标排气过热度,确定所述冷媒出口温度值对应的所述参数替代值。
  10. 根据权利要求9所述的空调器的控制方法,其中,所述确定所述冷媒出口温度值对应的所述参数替代值的步骤,具体包括:
    确定所述室内机数量小于设定数量,根据所述冷媒入口温度值和所述目标过热度,计算所述冷媒出口温度值对应的所述参数替代值;
    确定所述室内机数量大于等于设定数量,根据所述排气过热度、所述排气温度、所述冷媒入口温度和所述目标过热度,计算所述冷媒出口温度值对应的所述参数替代值。
  11. 根据权利要求3所述的空调器的控制方法,其中,所述第三温度传感器处于故障状态,所述根据所述空调器的运行参数,得到与所述故障参数值对应的参数替代值的步骤,具体包括:
    确定所述故障参数值为所述环境温度值;
    每隔第三设定时长,获取所述冷媒出口温度值;
    根据所述冷媒出口温度值,计算所述环境温度值对应的所述参数替代值。
  12. 根据权利要求11所述的空调器的控制方法,其中,所述获取所述冷媒出口温度值的步骤之前,还包括:
    控制节流阀关闭第四设定时长。
  13. 根据权利要求2至11中任一项所述的空调器的控制方法,其中,所述确定所述第一温度传感器、所述第二温度传感器和所述第三温度传感器的故障状态的步骤,具体包括:
    获取所述冷媒入口温度值、所述冷媒出口温度值和所述环境温度值的数值关系;
    根据所述数值关系,分别确定所述第一温度传感器、所述第二温度传感器和所述第三温度传感器的故障状态。
  14. 根据权利要求1至11中任一项所述的空调器的控制方法,其中,还包括:
    计时根据所述参数替代值控制所述空调器运行的持续时长;
    确定所述持续时长达到第四设定时长,控制所述空调器停止运行。
  15. 一种空调器的控制装置,其中,包括:
    故障参数获取单元,用于基于至少两个温度传感器中的任一温度传感器处于故障状态,获取所述至少两个温度参数值中的故障参数值;
    参数确定单元,用于根据所述空调器的运行参数,得到与所述故障参数值对应的参数替代值;
    运行控制单元,用于根据所述参数替代值控制所述空调器运行。
  16. 一种空调器,其中,包括:
    室内机;
    如权利要求15所述的空调器的控制装置,设置于所述室内机。
  17. 一种空调器,其中,包括:
    至少两个室内机;
    存储器,所述存储器中存储有程序或指令;
    处理器,所述处理器执行存储在所述存储器中的程序或指令以实现如权利要求1至14中任一项所述的空调器的控制方法的步骤。
  18. 一种可读存储介质,其中,所述可读存储介质上存储有程序或指令,所述程序或指令被处理器执行时实现如权利要求1至14中任一项所述的空调器的控制方法的步骤。
PCT/CN2022/082777 2021-07-09 2022-03-24 空调器的控制方法、控制装置、空调器和可读存储介质 WO2023279778A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22836537.5A EP4328508A1 (en) 2021-07-09 2022-03-24 Control method and control apparatus for air conditioner, and air conditioner and readable storage medium
US18/515,147 US20240085048A1 (en) 2021-07-09 2023-11-20 Methods and systems for controlling an air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110780857.X 2021-07-09
CN202110780857.XA CN115597185A (zh) 2021-07-09 2021-07-09 空调器的控制方法、控制装置、空调器和可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/515,147 Continuation US20240085048A1 (en) 2021-07-09 2023-11-20 Methods and systems for controlling an air conditioner

Publications (1)

Publication Number Publication Date
WO2023279778A1 true WO2023279778A1 (zh) 2023-01-12

Family

ID=84801179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082777 WO2023279778A1 (zh) 2021-07-09 2022-03-24 空调器的控制方法、控制装置、空调器和可读存储介质

Country Status (4)

Country Link
US (1) US20240085048A1 (zh)
EP (1) EP4328508A1 (zh)
CN (1) CN115597185A (zh)
WO (1) WO2023279778A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108361912A (zh) * 2018-01-22 2018-08-03 青岛海尔空调器有限总公司 空调器的控制方法、控制系统及空调器
CN108759035A (zh) * 2018-08-02 2018-11-06 广东美的暖通设备有限公司 空调的控制方法、装置、空调、电子设备以及存储介质
CN109140688A (zh) * 2018-08-31 2019-01-04 广东美的制冷设备有限公司 空调器的控制方法、空调器和存储介质
CN110260458A (zh) * 2019-05-07 2019-09-20 珠海格力电器股份有限公司 设备故障处理方法、系统、控制器、空调和多联机空调系统
CN110953779A (zh) * 2019-12-20 2020-04-03 潍柴动力股份有限公司 朗肯循环系统的储液罐压力的控制方法和装置
CN111425987A (zh) * 2020-04-07 2020-07-17 广东美的暖通设备有限公司 空调器的室内机、控制方法、空调器和可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108361912A (zh) * 2018-01-22 2018-08-03 青岛海尔空调器有限总公司 空调器的控制方法、控制系统及空调器
CN108759035A (zh) * 2018-08-02 2018-11-06 广东美的暖通设备有限公司 空调的控制方法、装置、空调、电子设备以及存储介质
CN109140688A (zh) * 2018-08-31 2019-01-04 广东美的制冷设备有限公司 空调器的控制方法、空调器和存储介质
CN110260458A (zh) * 2019-05-07 2019-09-20 珠海格力电器股份有限公司 设备故障处理方法、系统、控制器、空调和多联机空调系统
CN110953779A (zh) * 2019-12-20 2020-04-03 潍柴动力股份有限公司 朗肯循环系统的储液罐压力的控制方法和装置
CN111425987A (zh) * 2020-04-07 2020-07-17 广东美的暖通设备有限公司 空调器的室内机、控制方法、空调器和可读存储介质

Also Published As

Publication number Publication date
EP4328508A1 (en) 2024-02-28
CN115597185A (zh) 2023-01-13
US20240085048A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
CN107084494B (zh) 电子膨胀阀的故障检测方法、检测装置和多联式空调系统
CN110849007B (zh) 一种冷媒量自动调节控制方法、装置及空调器
CN204787070U (zh) 制冷空调装置
CN103743063B (zh) 一种空调制冷时电子膨胀阀的控制方法
WO2015090114A1 (zh) 数据中心制冷的控制系统及方法
CN103712309A (zh) 一种空调器冷媒流量控制方法
CN107917510A (zh) 一种空调室外风机转速的控制方法及装置
CN103162385A (zh) 一种调整制冷设备电子膨胀阀的装置及方法
CN107421177A (zh) 三过热度调节电子膨胀阀的空调及其控制方法
JP2007333219A (ja) マルチ式空気調和システム
CN107289599A (zh) 一种检测空调冷媒泄露量的装置和方法
WO2020177284A1 (zh) 防止空调器的压缩机液击的控制方法及控制系统
CN102278804A (zh) 多联式空调机组制热时防止冷媒偏流的控制方法
CN110595004B (zh) 一种空调降噪控制方法、控制系统及空调器
US11585560B2 (en) Method of judging lack-of-freon in air conditioner, and air conditioner control method
CN104677551A (zh) 空调系统的制冷剂泄露检测方法
WO2020233116A1 (zh) 用于空调器的除霜控制方法
CN107917516A (zh) 一种空调室外风机转速的控制方法及装置
Katipamula et al. Rooftop unit embedded diagnostics: Automated fault detection and diagnostics (AFDD) development, field testing and validation
JP2019066164A (ja) 冷媒量推定方法及び空気調和装置
CN108266856B (zh) 一种多联机智能优化运行方法及装置
WO2023279778A1 (zh) 空调器的控制方法、控制装置、空调器和可读存储介质
JP6386922B2 (ja) 蒸気弁診断装置および方法
CN113819570A (zh) 一种多联式空调系统高压压力推算方法及多联机空调系统
JP5390960B2 (ja) 熱源システム又は空調システムの性能評価方法及び性能評価装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836537

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022836537

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022836537

Country of ref document: EP

Effective date: 20231123

NENP Non-entry into the national phase

Ref country code: DE