WO2023279649A1 - 电池箱和用于电池箱的复合材料 - Google Patents

电池箱和用于电池箱的复合材料 Download PDF

Info

Publication number
WO2023279649A1
WO2023279649A1 PCT/CN2021/135729 CN2021135729W WO2023279649A1 WO 2023279649 A1 WO2023279649 A1 WO 2023279649A1 CN 2021135729 W CN2021135729 W CN 2021135729W WO 2023279649 A1 WO2023279649 A1 WO 2023279649A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
heat
resistant
layer
temperature
Prior art date
Application number
PCT/CN2021/135729
Other languages
English (en)
French (fr)
Inventor
黄锦腾
肖炜
杨冰
石国柱
Original Assignee
广东汇天航空航天科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东汇天航空航天科技有限公司 filed Critical 广东汇天航空航天科技有限公司
Publication of WO2023279649A1 publication Critical patent/WO2023279649A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/098Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of new energy vehicles, in particular to battery boxes and composite materials for battery boxes.
  • the power battery pack (battery pack) is the source of power for new energy vehicles, and it occupies an extremely important position.
  • the power battery pack includes battery packs, battery pack management modules, battery boxes and corresponding accessories, and has the function of obtaining electric energy from the outside and outputting electric energy externally.
  • the battery box as the carrier of the battery pack plays an irreplaceable role in the safety and protection of the battery pack.
  • the existing battery boxes mainly use metal boxes (including aluminum and steel boxes), but this has a large weight cost, which is not conducive to the lightweight design of the vehicle.
  • Existing battery boxes also use traditional fire prevention and heat insulation technologies, such as mica sheets and other technologies, but they can only achieve thermal management at lower temperatures (within 700°C), and it is difficult to withstand more severe high-temperature environments. Cause flames to overflow, and the ambient temperature around the battery pack is too high, affecting the normal operation of the surrounding equipment.
  • the present application provides a battery box and a composite material for the battery box.
  • the composite material layer coordinates with each other to achieve a higher heat-resistant temperature.
  • the temperature around the battery pack can be controlled, and the structure of the battery box remains intact.
  • the battery box also has a lighter weight the weight of.
  • the first aspect of the present application provides a composite material for a battery box, which sequentially includes from the inside to the outside: an inner heat insulation layer, a heat-resistant resin layer and a supporting resin layer; wherein,
  • the heat resistance of the heat-resistant resin layer is not lower than that of the supporting resin layer
  • the mechanical properties of the supporting resin layer are not lower than those of the heat-resistant resin layer.
  • the inner thermal insulation layer is a nano-aerogel layer or a silicone ablation-resistant coating.
  • the inner thermal insulation layer is a nano-airgel layer with a thermal conductivity of 0.005W/m ⁇ K ⁇ 0.05W/m ⁇ K or a thermal conductivity of 0.02W/m ⁇ K ⁇ 0.3W/ m ⁇ K silicone ablation resistant coating.
  • the inner thermal insulation layer is a nano-airgel layer with a thermal conductivity of 0.01W/m ⁇ K ⁇ 0.03W/m ⁇ K or a thermal conductivity of 0.07W/m ⁇ K ⁇ 0.12W/ m ⁇ K silicone ablation resistant coating.
  • the inner heat insulation layer is the nano-airgel layer, the nano-airgel layer is compounded with the heat-resistant resin layer through a first heat-resistant adhesive, and the first heat-resistant
  • the thickness of the adhesive film formed by the thermal adhesive is 0.02-0.1 mm; or the inner heat insulation layer is the silicone ablation-resistant coating, and the thickness of the silicone ablation-resistant coating is 2-7 mm.
  • the short-term heat-resistant temperature of the heat-resistant resin layer is greater than 300°C, and the long-term heat-resistant temperature is greater than 260°C.
  • the heat-resistant resin layer is a high-temperature-resistant resin layer or a fiber-reinforced high-temperature-resistant resin layer; the supporting resin layer is a fiber-reinforced high-temperature-resistant resin layer.
  • the composite material is used as the top cover of the battery box, the heat-resistant resin layer is a high-temperature-resistant resin layer, and the supporting resin layer is a fiber-reinforced high-temperature-resistant resin layer; and/or, the composite material is used as a battery box
  • the heat-resistant resin layer is the first fiber-reinforced high-temperature-resistant resin layer
  • the supporting resin layer is the second fiber-reinforced high-temperature-resistant resin layer.
  • the heat resistance of the first fiber-reinforced high-temperature-resistant resin layer is better than that of the second fiber-reinforced high-temperature-resistant resin layer, and the mechanical properties of the second fiber-reinforced high-temperature-resistant resin layer are better than those of the second fiber-reinforced high-temperature-resistant resin layer.
  • the first fiber reinforced high temperature resistant resin layer is better than that of the second fiber-reinforced high-temperature-resistant resin layer.
  • the high temperature resistant resin is phenolic resin, epoxy resin, bismaleimide resin, cyanate ester or polyimide resin; and/or, the fiber reinforced high temperature resistant resin
  • the fiber is one or more of carbon fiber, glass fiber and basalt fiber, and the resin is epoxy resin, bismaleimide resin, cyanate ester or polyimide resin.
  • the fiber in the fiber-reinforced high-temperature-resistant resin used in the supporting resin layer is one or more of carbon fiber, glass fiber, and basalt fiber;
  • the resin in the fiber-reinforced high-temperature-resistant resin is made of Epoxy, bismaleimide, cyanate or polyimide resins.
  • the long-term heat resistance temperature of the supporting resin layer is greater than 200°C.
  • the heat-resistant resin layer and the support resin layer are compounded by a second heat-resistant adhesive, and the second heat-resistant adhesive is a modified epoxy resin adhesive.
  • it further includes an outer heat insulation layer disposed outside the supporting resin layer.
  • it further includes: a honeycomb core material layer disposed between the heat-resistant resin layer and the supporting resin layer.
  • the honeycomb core layer is aluminum honeycomb, aluminum foam or aramid honeycomb.
  • the heat-resistant resin layer, the honeycomb core material layer and the supporting resin layer are laminated by hot pressing, and the molding pressure of the hot pressing lamination is 0.2MPa ⁇ 0.4MPa.
  • the second aspect of the present application provides a battery box, which includes: a top cover, a box body and a bottom plate; the top cover and the box body are made of the composite material described in any one of the above.
  • the box body and the bottom plate are of an integral structure, and the top cover is detachably connected to the box body; or, the box body and the top cover are of an integrated structure, and the box body and the bottom plate are detachably connected ;
  • the gap between the two parts of the detachable connection is coated with a silicone flame retardant sealant.
  • it also includes connecting tabs, the head end of which connects the tabs extends into the inside of the battery box, and the tail end is connected with the box body; the connecting tabs include: metal core layer and ceramic heat insulation.
  • the inner heat insulation layer first reduces the heat radiation rate and reduces the heat transferred to the heat-resistant resin layer, thereby reducing the heat-resistant resin layer.
  • the resistance temperature and weight of the layer can be controlled, and at the same time, the temperature around the battery box can be controlled; the heat-resistant resin layer absorbs part of the heat energy to further reduce the heat transferred to the supporting resin layer, thereby reducing the impact on the battery box while ensuring the overall heat resistance of the battery box.
  • the temperature resistance requirements of the supporting resin layer are beneficial to reduce material cost and weight; after the heat is attenuated through the layers of the inner heat insulation layer and the heat-resistant resin layer, the heat transferred to the supporting resin layer is relatively low, and the supporting resin layer utilizes its Excellent mechanical properties to maintain the integrity of the battery box structure, no collapse and deformation, and avoid flame spillage caused by cracking of the battery box. Therefore, the composite material provided by the present invention, through the mutual cooperation between layers, realizes that the overall material has both excellent high temperature resistance and mechanical properties, can cope with relatively severe high temperature environments, and the battery box is not easy to collapse and deform. Avoid dangerous situations such as flame overflow, and at the same time, control the temperature around the battery pack within a certain period of time to avoid adverse effects on surrounding equipment.
  • Fig. 1 is a schematic structural view of the composite material of the battery box provided by the embodiment of the present application
  • Fig. 2 is a schematic structural view of the composite material of the battery box provided by another embodiment of the present application.
  • Fig. 3 is a schematic perspective view of the three-dimensional structure of the box body in the battery box provided by the embodiment of the present application.
  • Fig. 4 is the schematic diagram of the temperature measuring point of the flame injection test that embodiment 1-9 of the present application carries out;
  • Fig. 5 is a schematic diagram of the temperature measurement points of the flame injection test carried out in Examples 9-14 of the present application.
  • first, second, third and so on may be used in this application to describe various information, such information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another.
  • first information may also be called second information, and similarly, second information may also be called first information.
  • second information may also be called first information.
  • a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plural means two or more, unless otherwise specifically defined. In the fire resistance rating of this application, short-term refers to resistance of more than 10 minutes, long-term refers to resistance of more than 24 hours, and permanent refers to more than 30 days.
  • the embodiment of the present application provides a composite material for a battery box, please refer to Figure 1, which includes from the inside to the outside: an inner heat insulation layer 1, a heat-resistant resin layer 2 and a supporting resin layer 3; wherein, the heat-resistant The heat resistance of the thermal resin layer 2 is not lower than that of the supporting resin layer 3 ; the mechanical properties of the supporting resin layer 3 are not lower than that of the heat resistant resin layer 2 .
  • the composite material layer coordinates with each other to achieve a higher heat-resistant temperature. Within a certain period of time after the out-of-control occurs, the temperature around the battery pack can be controlled, and the structure of the battery box remains intact. At the same time, the battery box also has a lighter weight the weight of. in particular:
  • the inner heat-insulating layer 1 reduces the heat energy conducted to the heat-resistant resin layer 2 through its heat-insulating performance, so as to reduce the heat-resistant temperature requirement of the heat-resistant resin layer 2, thereby saving raw material costs and helping to control weight.
  • the inner heat insulation layer 1 is also used to adjust the rate of heat radiation. By adjusting the thickness of the inner heat insulation layer 1, the temperature around the battery pack can be controlled within a certain period of time after thermal runaway, so as to avoid indirect failure of surrounding components. or burn.
  • the heat-resistant resin layer 2 is located between the inner heat-insulating layer 1 and the supporting resin layer 3, and has relatively excellent high-temperature resistance.
  • the heat-resistant resin layer 2 can absorb a part of heat energy, thereby reducing the heat conduction to the supporting resin layer 3 , thereby lowering the requirement for the heat-resistant performance of the supporting resin layer 3 .
  • the heat-resistant requirements for the supporting resin layer 3 can be reduced, so that the supporting resin layer 3 can adopt heat-resistant properties. Relatively low material with relatively high mechanical properties, thus reducing material cost and weight while ensuring the heat resistance of the overall battery box.
  • the supporting resin layer 3 is located on the outside, which is used to improve the mechanical properties of the battery box, and mainly plays a role in maintaining structural integrity under thermal runaway conditions.
  • the heat transferred to the support resin layer 3 gradually decreases, which has a certain heat-resistant function and excellent mechanical properties, and can be maintained for a period of time after thermal runaway.
  • the inner heat insulation layer 1 preferably adopts a nano-airgel layer or a silicone ablation-resistant coating.
  • the nano-airgel layer is an inorganic porous insulation material with extremely low thermal conductivity. It has good chemical stability and mechanical properties. Compared with traditional insulation materials (such as glass fiber felt, aluminum silicate wool, etc.), it can Under the premise of achieving the same heat insulation effect, the thickness and weight are reduced by 3 to 8 times. Silicone ablation-resistant materials will produce a large amount of silicon dioxide in a high-temperature oxygen-rich environment, and silicon dioxide has a high melting point and good chemical stability.
  • the inner insulation layer 1 is preferably a nano-airgel layer with a thermal conductivity of 0.005W/m ⁇ K ⁇ 0.05W/m ⁇ K, or a nano-airgel layer with a thermal conductivity of 0.02W/m ⁇ K ⁇ 0.3W/m ⁇ K Silicone ablative resistant coating.
  • the inventors of the present application have found through research that: although the lower the thermal conductivity, the slower the heat conduction, it will reduce the composite strength with the resin material or adhesive film. The above range can ensure that the nano-airgel layer or the organic silicon ablation-resistant coating The layers are bonded at the interface to form a better bond while maintaining low thermal conductivity.
  • the inner insulation layer 1 adopts a nano-airgel layer with a thermal conductivity of 0.01W/m ⁇ K ⁇ 0.03W/m ⁇ K, or a thermal conductivity of 0.07W/m ⁇ K ⁇ 0.12W/m ⁇ K's silicone ablation-resistant coating.
  • the nano-airgel layer is used as the inner insulation layer 1, the nano-airgel layer is preferably compounded with the heat-resistant resin layer 2 by the first heat-resistant adhesive, thereby avoiding the nano-airgel layer and the heat-resistant resin layer 2. There are gaps between them, which affect the heat insulation effect.
  • the first heat-resistant adhesive is preferably a heat-resistant silicone adhesive or a modified heat-resistant epoxy resin adhesive.
  • the thickness of the adhesive film formed by the first heat-resistant adhesive is preferably 0.02-0.1 mm.
  • the thickness of the silicone ablation-resistant coating is preferably 2-7 mm.
  • the silicone ablation-resistant coating is preferably compounded on the heat-resistant resin layer 2 in the following manner:
  • Step a) preparing a rough surface layer on the surface of the heat-resistant resin layer 2;
  • Step b) using a spray gun to spray a silicone ablation-resistant material on the surface of the rough composite layer to form a silicone ablation-resistant coating.
  • the above step a) can be specifically as follows: spread a peelable cloth on the surface of the heat-resistant resin part to be sprayed with an ablative coating, and uncover it after molding to form a rough surface layer.
  • the above-mentioned step b) can be specifically as follows: coating the silicone ablation-resistant material on the surface of the rough composite layer several times, each coating thickness is 0.02mm- 0.1mm, until the silicone ablation-resistant coating reaches the predetermined thickness.
  • the above-mentioned heat-resistant resin layer 2 preferably has a short-term heat-resistant temperature greater than 300°C and a long-term heat-resistant temperature greater than 260°C.
  • the heat-resistant resin layer 2 can use high-temperature-resistant resin or fiber-reinforced high-temperature-resistant resin.
  • the heat-resistant performance of high-temperature-resistant resin is relatively high, and it is suitable as the heat-resistant resin layer 2 of the composite material for the top cover of the battery box (in the case of thermal runaway, due to the rising effect of hot air, the top cover of the battery box is heated more intensively).
  • Fiber-reinforced high-temperature-resistant resin has relatively good mechanical properties and is suitable as a composite material for the battery box body.
  • the high temperature resistant resin is preferably phenolic resin, epoxy resin, bismaleimide resin, cyanate ester or polyimide resin. More preferably, phenolic resins are used. Phenolic resin has a high residual carbon rate at a temperature of about 1000°C, forms a dense layer, prevents flames from overflowing, and has a certain heat insulation effect. After partial accidental failure, it can play the role of the second layer of insurance.
  • the fibers in the fiber-reinforced high-temperature-resistant resin can be one or more of carbon fibers, glass fibers, and basalt fibers. It is preferable to use carbon fiber, specifically T300 or T700. Carbon fiber has better specific strength, specific modulus and economy, and has better interface properties with the resin matrix.
  • the resin can be epoxy resin, bismaleimide resin, cyanate ester or polyimide resin. Epoxy resin or bismaleimide resin is preferably used, which has better toughness, economy and workability. Epoxy resin has low cost and good processability.
  • the maleimide resin has excellent mechanical properties, good toughness, an elongation of about 2%, a tensile modulus of 40GPa, high strength, and a long-term service temperature greater than 260°C.
  • the long-term heat resistance temperature of the supporting resin layer 3 is preferably higher than 200°C.
  • the supporting resin layer 3 is preferably made of fiber-reinforced high-temperature-resistant resin.
  • Fiber-reinforced high-temperature-resistant resin has relatively excellent mechanical properties, high strength, toughness and impact resistance, and is conducive to maintaining the structure of the battery box in the case of thermal runaway. integrity while avoiding cracking of the heat-resistant resin layer 2 .
  • the fibers in the fiber-reinforced high-temperature-resistant resin can be one or more of carbon fibers, glass fibers, and basalt fibers, preferably carbon fibers, such as T300 or T700.
  • the resin can be epoxy resin, bismaleimide resin, cyanate ester or polyimide resin, preferably epoxy resin or bismaleimide resin. More preferably, the above-mentioned fiber-reinforced high-temperature-resistant resin adopts carbon fiber-reinforced epoxy resin or carbon fiber-reinforced bismaleimide resin.
  • the above-mentioned heat-resistant resin layer 2 and the supporting resin layer 3 are preferably combined by a second heat-resistant adhesive.
  • the second heat-resistant adhesive is preferably a modified epoxy resin adhesive.
  • the thickness of the film formed by the modified epoxy resin adhesive is preferably 0.2 mm.
  • the above-mentioned heat-resistant resin layer 2 and the support resin layer 3 can both use fiber-reinforced high-temperature-resistant resin, which are respectively the first fiber-reinforced high-temperature-resistant resin layer and the second fiber-reinforced high-temperature-resistant resin.
  • the composite material of the battery box body That is, when the above-mentioned composite material is used as the box body of the battery box, the heat-resistant resin layer 2 is preferably the first fiber-reinforced high-temperature-resistant resin layer, and the supporting resin layer 3 is the second fiber-reinforced high-temperature-resistant resin layer.
  • the heat resistance of the first fiber-reinforced high-temperature-resistant resin layer is better than that of the second fiber-reinforced high-temperature-resistant resin layer, and the mechanical properties of the second fiber-reinforced high-temperature-resistant resin layer are better than the first fiber-reinforced high-temperature-resistant resin layer.
  • the first fiber-reinforced high-temperature-resistant resin layer is made of carbon fiber-reinforced bismaleimide resin
  • the second fiber-reinforced high-temperature-resistant resin layer is made of carbon fiber-reinforced epoxy resin.
  • the above-mentioned heat-resistant resin layer 2 and supporting resin layer 3 can also be made of high-temperature-resistant resin layer and fiber-reinforced high-temperature-resistant resin respectively, and this structure is preferably used as a composite material for a battery box body that requires high heat resistance. That is to say, when the composite material is used as the top cover of the battery box, the heat-resistant resin layer 2 is preferably a high-temperature-resistant resin layer, and the supporting resin layer 3 is a fiber-reinforced high-temperature-resistant resin layer.
  • the above-mentioned composite material preferably further includes: a honeycomb core material layer 4 disposed between the heat-resistant resin layer 2 and the supporting resin layer 3 .
  • the setting of the honeycomb core material layer 4 can separate the heat-resistant resin layer 2 and the support resin layer 3, and the air in the middle forms a secondary heat insulation layer, which has a better heat insulation effect, and because the honeycomb core material is a hollow structure, its It is light in weight and contributes to weight reduction.
  • the above-mentioned honeycomb core material layer 4 may be a metal honeycomb core material layer or a non-metallic honeycomb core material layer.
  • the non-metallic honeycomb core layer can use aramid honeycomb.
  • the honeycomb core material layer 4 is preferably a metal honeycomb core material layer, specifically aluminum honeycomb or aluminum foam.
  • the metal honeycomb core material layer has good mechanical properties, so that after the structural layer close to the inner side of the battery is burnt under extreme conditions, it can still ensure that the battery box has certain mechanical properties and rigidity with the supporting resin layer 3 .
  • the heat-resistant resin layer 2, the honeycomb core material layer 4 and the support resin layer 3 are preferably composited by hot pressing.
  • the forming pressure of thermocompression compounding is preferably 0.2MPa ⁇ 0.4MPa, and the forming pressure is beneficial to the heat-resistant resin layer 2 and the honeycomb core material layer 4, and the honeycomb core material layer 4 and the support resin layer 3 have suitable adhesive force, At the same time, it is ensured that the honeycomb core material layer 4 does not deform during the thermocompression molding process, and the resins in the heat-resistant resin layer 2 and the supporting resin layer 3 have proper fluidity during the thermocompression molding process.
  • the molding temperature is preferably 160°C-180°C, and the curing time is 8h-12h.
  • the composite material of the battery box body it is preferably provided with the above-mentioned honeycomb core material layer 4, which preferably sequentially includes from the inside to the outside:
  • Nano-airgel layer/organic silicon ablation-resistant coating the first fiber-reinforced high-temperature-resistant resin layer, aluminum honeycomb layer/foamed aluminum layer, and the second fiber-reinforced high-temperature-resistant resin layer.
  • the mechanical properties meet the load of 150kg battery, and at the same time, there is no damage under the pressure of 10KPa; temperature environment: 1000°C, 10min, 800°C, 30min; within 24h, the peak value of the external radiation air temperature does not exceed 200°C.
  • the thickness of the airgel in the nano-airgel layer is 0.5 mm to 3 mm
  • the thickness of the silicone ablation-resistant coating is 2 mm to 4 mm
  • the thickness of the first fiber-reinforced high temperature resistant resin layer is 0.5 mm to 2 mm
  • the second The thickness of the fiber-reinforced high-temperature resistant resin layer is 0.8 mm to 3 mm
  • the thickness of the honeycomb core layer 4 is 3 mm to 20 mm, preferably 6 mm to 10 mm.
  • the composite material of the battery box preferably sequentially includes from the inside to the outside:
  • Nano airgel layer/silicone ablation resistant coating carbon fiber reinforced bismaleimide resin layer, aluminum honeycomb/foamed aluminum, carbon fiber reinforced epoxy resin.
  • the above-mentioned honeycomb core material layer 4 may not be provided for use scenarios with small space requirements; but for use scenarios with high pressure and high rigidity requirements, the above-mentioned honeycomb core material layer 4 is preferably provided.
  • the composite materials of the top cover of the battery box include:
  • Nano-airgel layer/organic silicon ablation-resistant coating phenolic resin layer, honeycomb core material layer, fiber-reinforced high-temperature-resistant resin layer.
  • the nano-airgel layer/organic silicon ablation-resistant coating can realize the resistance of the inner cavity of the battery box to 1500°C for 10 minutes, and the resistance to 1000°C for 30 minutes. Carbonization occurs at high temperature, which can effectively form a dense layer and have a certain heat insulation effect. At the same time, because of its fireproof effect at 1100 ° C for 15 minutes, it can be used after the nano-airgel layer or silicone ablation-resistant coating partially fails.
  • the fiber-reinforced high-temperature-resistant resin layer can have good mechanical properties at 300°C after heat insulation, ensuring the rigidity of the overall upper cover without major deformation, and protecting the phenolic resin layer from cracking.
  • the mechanical properties meet the requirement of no damage under 10KPa pressure; temperature environment: 1500°C for 10 minutes, 1000°C for 30 minutes, no flames appear outside.
  • the thickness of the nano-airgel layer is 2 mm to 5 mm
  • the thickness of the silicone ablation-resistant coating is 3 mm to 7 mm
  • the thickness of the phenolic resin layer is 0.2 mm to 2 mm
  • the thickness of the fiber reinforced high temperature resistant resin layer is 0.8 mm.
  • the thickness of the honeycomb core material is 0.2mm ⁇ 2mm.
  • the composite material of the battery box top cover preferably sequentially includes from the inside to the outside:
  • Nano-airgel layer/silicone ablation-resistant coating phenolic resin layer, aluminum honeycomb/foamed aluminum, carbon fiber reinforced epoxy resin layer/carbon fiber reinforced bismaleimide resin layer.
  • the above-mentioned composite material preferably further includes: an outer heat insulation layer arranged outside the support layer.
  • the outer heat insulation layer can further reduce the heat energy radiated from the battery box to the outside, thereby further reducing the temperature around the battery box.
  • the preferred scheme of the outer heat insulation layer can be the same as that of the inner heat insulation layer 1, and will not be repeated here.
  • the inner heat insulation layer first reduces the heat radiation rate and reduces the heat transferred to the heat-resistant resin layer, thereby reducing
  • the temperature and weight of the heat-resistant resin layer can also control the temperature around the battery box; the heat-resistant resin layer absorbs part of the heat energy to further reduce the heat transferred to the supporting resin layer, thereby ensuring the overall heat resistance of the battery box
  • lowering the requirements on the temperature resistance of the supporting resin layer is beneficial to reduce the material cost and weight; after the heat is attenuated through the layers of the inner heat insulating layer and the heat-resistant resin layer, the heat conducted to the supporting resin layer is relatively low, and the supporting resin
  • the layer uses its excellent mechanical properties to maintain the integrity of the battery box structure without collapse and deformation, and to avoid flame spillage caused by cracking of the battery box.
  • the composite material provided by the present invention through the mutual cooperation between layers, realizes that the overall material has both excellent high temperature resistance and mechanical properties, can cope with relatively severe high temperature environments, and the battery box is not easy to collapse and deform. Avoid dangerous situations such as flame overflow, and at the same time, control the temperature around the battery pack within a certain period of time to avoid adverse effects on surrounding equipment.
  • FIG. 1 Another embodiment of the present invention also provides a battery box, which includes: a top cover, a box body and a bottom plate; the top cover and the box body are made of the aforementioned composite material.
  • the top cover is the most heated part of the battery box, and the box body is the mechanical support body of the battery box.
  • the use of the above composite materials for the top cover and the box body can make the battery box have excellent high temperature resistance and mechanical properties, so as to deal with more severe In the harsh high-temperature environment, the battery box is not easy to collapse and deform, avoiding dangerous situations such as flame spillage. At the same time, the temperature around the battery pack can be controlled within a certain period of time to avoid adverse effects on surrounding equipment.
  • the preferred scheme of the composite material of the top cover is the same as above, and will not be repeated here.
  • the preferred scheme of the composite material of the box body is the same as above, and will not be repeated here.
  • the bottom plate can also use the above composite materials, but because the bottom plate is relatively low in heat and is usually equipped with a water-cooled plate, and combined with lightweight considerations, the bottom plate is preferably made of fiber-reinforced high-temperature resistant resin, such as carbon fiber-reinforced epoxy resin.
  • the above-mentioned battery box is preferably a split structure, specifically: the box body and the bottom plate are integrally structured, and the top cover is detachably connected to the box body; or, the box body and the top cover are integrated structure, The box body and the bottom plate are detachably connected; the gap between the two detachably connected parts is coated with a silicone flame retardant sealant.
  • the function of coating the silicone flame retardant sealant is to block the inflow of oxygen when the battery is thermally out of control, thereby achieving sealing and heat resistance.
  • the top of the box body 5 is preferably provided with a connecting boss 6, and the connecting boss 6 is provided with screw holes.
  • the top cover is screwed to the top of the connecting boss; the gap between the box body and the top cover is coated with a silicone flame retardant sealant.
  • the above-mentioned battery box also preferably includes connecting lugs, the head end of the connecting lug extends into the battery box, and the tail end is connected with the box body; the connecting lugs include in turn from the inside to the outside: a metal core layer and a ceramic heat insulation layer. layer.
  • the connecting lug is used to connect the fixed frame of the internal battery pack, and has good mechanical properties and heat insulation effect.
  • the battery boxes in the following embodiments all adopt the following structure: the box body and the bottom plate are integrally constructed, and the top cover is detachably connected to the box body; the gap between the box body and the top cover is coated with a silicone flame-retardant sealant.
  • the bottom plates are all made of carbon fiber reinforced epoxy resin.
  • nano-aerogels and silicone ablation-resistant materials in the following examples were all purchased from China Aerospace Science and Technology Corporation.
  • composition of the top cover is listed in Table 1; the composition of the box is listed in Table 2.
  • composition of the top cover is listed in Table 3; the composition of the box is listed in Table 4.
  • the roof test conditions are as follows:
  • Test condition 1 1500°C, flame diameter 30mm, injection time 10min, the schematic diagram of the temperature measurement point is shown in Figure 4;
  • Test condition 2 1000°C, flame diameter 30mm, injection time 30min, temperature measurement point is the same as test condition 1;
  • the temperature collection method uses a thermal imager to collect the temperature of the backplane.
  • the top cover prepared in the embodiment of the present application has a relatively high strength retention rate (70%) under the two test conditions.
  • the box test conditions are as follows:
  • Test condition 1 1000°C, flame diameter 30mm, injection time 10min, the schematic diagram of the temperature measurement point is shown in Figure 5;
  • Test condition 2 800°C, flame diameter 30mm, injection time 30min, temperature measurement point is the same as test condition 1;
  • a temperature sensor is pre-embedded in the supporting resin layer.
  • the temperature is within the long-term service temperature range of fiber reinforced resin, and the mechanical properties of the box can be guaranteed under the condition of thermal runaway.
  • the battery box structure provided by the present invention has excellent heat resistance and mechanical properties, and can meet the temperature requirements of GB 30381 released in 2020 when thermal runaway (top cover: up to 1500°C, 10min+1000°C, 30min; Cabinet: up to 1000°C, 10min+800°C, 30min) requirements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种电池箱和用于电池箱的复合材料。用于电池箱的复合材料由内至外依次包括:内隔热层(1),耐热树脂层(2)和支撑树脂层(3);其中,耐热树脂层(2)的耐热性能不低于支撑树脂层(3);支撑树脂层(3)的力学性能不低于耐热树脂层(2)。该复合材料通过层与层之间的相互配合,共同实现整体材料兼具优异的耐高温性能和力学性能,可以应对较为严苛的高温环境,电池箱不易发生坍塌变形,避免造成火苗外溢等危险情况,同时还可以在一定时间内实现电池包周围温度可控,避免对周围设备带来不利影响。

Description

电池箱和用于电池箱的复合材料
本申请要求于2021年07月09日提交国家知识产权局、申请号为202110781723.X、申请名称为“电池箱和用于电池箱的复合材料”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及新能源汽车领域,尤其涉及电池箱和用于电池箱的复合材料。
背景技术
近年来,随着社会各界对环保问题的重视,新能源汽车快速发展,在人们中的应用愈加普遍,在方便人们出行的同时降低对环境的污染。但也随之伴随出现一些新问题,其中比较突出的就是电池安全性问题。无论是磷酸铁锂还是三元锂电池,在使用过程中都存在热失控现象,而产生热失控的原因存在多种,例如电芯本身问题、电池包管理问题、热管理问题等等,存在诸多不可控的发生因素。如何在锂离子电池发生热失控及热扩散时,延缓电池的起火、爆炸,预留足够的时间让使用者离开至安全的区域是本领域技术人员比较关注的问题。
动力电池包(battery pack)是新能源汽车的动力之源来,其占据了极其重要的位置。动力电池包包含蓄电池组、蓄电池组管理模块、电池箱以及相应附件,具有从外部获得电能并可对外输出电能的功能。在动力电池包中,作为蓄电池组载体的电池箱,对蓄电池组的安全和防护有着不可替代的重要作用。
为了应对电池热失控状况,现有的电池箱主要采用金属箱体(包括铝制和钢制箱体),但是其存在较大的重量代价,不利于整车的轻量化设计。现有的电池箱还有采用传统的防火、隔热技术,如云母片等技术,但是其只能实现较低温度下(700℃以内)的热管理,难以抵御更为严苛的高温环境,造成火苗外溢,以及电池包周围环境温度过高,影响周围设备的正常运行。
技术问题
为解决或部分解决相关技术中存在的问题,本申请提供一种电池箱和用于电池箱的复合材料。该复合材料层与层之间协调作用,共同实现较高的耐热温度,在发生失控后的一定时间内,电池包周围温度可控,电池箱结构维持完整,同时该电池箱还具有较轻的重量。
技术解决方案
本申请第一方面提供一种用于电池箱的复合材料,其由内至外依次包括:内隔热层,耐热树脂层和支撑树脂层;其中,
所述耐热树脂层的耐热性能不低于支撑树脂层;
所述支撑树脂层的力学性能不低于耐热树脂层。
在一实施方式中,所述内隔热层为纳米气凝胶层或有机硅耐烧蚀涂层。
在一实施方式中,所述内隔热层为热导率为0.005W/m·K~0.05W/m·K纳米气凝胶层或热导率为0.02W/m·K~0.3W/m·K的有机硅耐烧蚀涂层。
在一实施方式中,所述内隔热层为热导率为0.01W/m·K~0.03W/m·K纳米气凝胶层或热导率为0.07W/m·K~0.12W/m·K的有机硅耐烧蚀涂层。
在一实施方式中,所述内隔热层为所述纳米气凝胶层,所述纳米气凝胶层通过第一耐热粘结剂与所述耐热树脂层复合,所述第一耐热粘结剂形成的胶膜厚度为0.02~0.1mm;或者所述内隔热层为所述有机硅耐烧蚀涂层,所述有机硅耐烧蚀涂层的厚度为2~7mm。
在一实施方式中,所述耐热树脂层的短期耐热温度大于300℃,长期耐热温度大于260℃。
在一实施方式中,所述耐热树脂层为耐高温树脂层或纤维增强耐高温树脂层;所述支撑树脂层为纤维增强耐高温树脂层。
在一实施方式中,所述复合材料作为电池箱的顶盖,其耐热树脂层为耐高温树脂层,支撑树脂层为纤维增强耐高温树脂层;和/或,所述复合材料作为电池箱的箱体,其耐热树脂层为第一纤维增强耐高温树脂层,支撑树脂层为第二纤维增强耐高温树脂层。
在一实施方式中,所述第一纤维增强耐高温树脂层的耐热性优于所述 第二纤维增强耐高温树脂层,所述第二纤维增强耐高温树脂层的力学性能优于所述第一纤维增强耐高温树脂层。
在一实施方式中,所述耐高温树脂为酚醛树脂、环氧树脂、双马来酰亚胺树脂、氰酸酯或聚酰亚胺树脂;和/或,所述纤维增强耐高温树脂中的纤维为碳纤维、玻璃纤维、玄武岩纤维中的一种或多种,树脂为环氧树脂、双马来酰亚胺树脂、氰酸酯或聚酰亚胺树脂。
在一实施方式中,所述支撑树脂层采用的所述纤维增强耐高温树脂中的纤维为碳纤维、玻璃纤维、玄武岩纤维中的一种或多种;所述纤维增强耐高温树脂中的树脂采用环氧树脂、双马来酰亚胺树脂、氰酸酯或聚酰亚胺树脂。
在一实施方式中,所述支撑树脂层的长期耐热温度大于200℃。
在一实施方式中,所述耐热树脂层和所述支撑树脂层通过第二耐热粘结剂复合,所述第二耐热粘结剂采用改性环氧树脂粘合剂。
在一实施方式中,还包括设置于所述支撑树脂层外的外隔热层。
在一实施方式中,还包括:设置于所述耐热树脂层和支撑树脂层之间的蜂窝芯材层。
在一实施方式中,所述蜂窝芯材层为铝蜂窝、泡沫铝或芳纶蜂窝。
在一实施方式中,所述耐热树脂层、蜂窝芯材层和支撑树脂层通过热压复合,所述热压复合的成型压力为0.2MPa~0.4MPa。
本申请第二方面提供一种电池箱,其包括:顶盖,箱体和底板;所述顶盖和箱体采用上述任意一项所述的复合材料。
在一实施方式中,所述箱体和底板为一体结构,所述顶盖与箱体可拆卸连接;或者,所述箱体和顶盖为一体结构,所述箱体与底板为可拆卸连接;可拆卸连接的两个部件之间的缝隙涂覆有机硅阻燃密封剂。
在一实施方式中,还包括连接耳片,所述连接耳片的头端延伸入电池箱内部,尾端与箱体相连;所述连接耳片由内至外依次包括:金属芯层和陶瓷隔热层。
有益效果
依据本申请实施例提供的用于电池箱的复合材料,在发生热失控的一 段时间内,内隔热层首先降低热辐射速率,降低传递至耐热树脂层的热量,由此降低耐热树脂层的耐受温度和重量,同时还可实现电池箱周围温度可控;耐热树脂层吸收一部分热能进一步降低传递至支撑树脂层的热量,由此在保证电池箱整体耐热性的同时降低对支撑树脂层的耐受温度的要求,有利于降低材料成本和重量;热量通过内隔热层和耐热树脂层的层层衰减之后,传导至支撑树脂层的热量较低,支撑树脂层利用其优异的力学性能来维持电池箱结构的完整,不出现坍塌变形,避免因电池箱开裂导致的火苗外溢。因此,本发明提供的复合材料,通过层与层之间的相互配合,共同实现整体材料兼具优异的耐高温性能和力学性能,可以应对较为严苛的高温环境,电池箱不易发生坍塌变形,避免造成火苗外溢等危险情况,同时还可以在一定时间内实现电池包周围温度可控,避免对周围设备带来不利影响。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
通过结合附图对本申请示例性实施方式进行更详细的描述,本申请的上述以及其它目的、特征和优势将变得更加明显,其中,在本申请示例性实施方式中,相同的参考标号通常代表相同部件。
图1是本申请实施例提供的电池箱的复合材料的结构示意图;
图2是本申请另一实施例提供的电池箱的复合材料的结构示意图;
图3是本申请实施例提供的电池箱中箱体的立体结构示意图。
图4是本申请实施例1-9进行的火焰喷射测试的测温点示意图;
图5是本申请实施例9-14进行的火焰喷射测试的测温点示意图。
附图标记说明
1-内隔热层
2-耐热树脂层
3-支撑树脂层
4-蜂窝芯材层
5-箱体
6-连接凸台
本发明的实施方式
下面将参照附图更详细地描述本申请的实施方式。虽然附图中显示了本申请的实施方式,然而应该理解,可以以各种形式实现本申请而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了使本申请更加透彻和完整,并且能够将本申请的范围完整地传达给本领域的技术人员。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语“第一”、“第二”、“第三”等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。本申请耐火等级中,短期是指耐10min以上,长期是指耐24h以上,永久是指大于30天。
本申请实施例提供一种用于电池箱的复合材料,请参见图1,其由内至外依次包括:内隔热层1,耐热树脂层2和支撑树脂层3;其中,所述耐热树脂层2的耐热性能不低于支撑树脂层3;所述支撑树脂层3的力学性能不低于耐热树脂层2。该复合材料层与层之间协调作用,共同实现较高的耐热温度,在发生失控后的一定时间内,电池包周围温度可控,电池箱结构维持完整,同时该电池箱还具有较轻的重量。具体而言:
内隔热层1通过其隔热性能来降低传导到耐热树脂层2的热能,以此降低对耐热树脂层2的耐热温度的要求,进而节约原料成本,同时有利于控制重量。另外,内隔热层1还用于调整热辐射的速率,通过调整内隔热 层1的厚度可以调整热失控后的一定时间内,电池包周围的温度可控,避免间接导致周围部件发生失效或燃烧。
耐热树脂层2位于内隔热层1和支撑树脂层3之间,其具有相对优异的耐高温性能。耐热树脂层2可以吸收一部分热能,由此降低传导到支撑树脂层3的热量,进而降低对支撑树脂层3的耐热性能的要求。通常,普通材料难以兼具极为优异的耐热性能和力学性能,通过设置耐热树脂层2,可以降低对支撑树脂层3的耐热性的要求,进而使得支撑树脂层3可以采用耐热性能相对较低,力学性能相对较高的材料,由此在保证整体电池箱耐热性能的同时,降低材料成本和重量。
支撑树脂层3位于外侧,其用于提升电池箱的力学性能,在热失控条件下主要起到维持结构完整性的作用。通过内隔热层1和耐热树脂层2的作用,传递至支撑树脂层3的热量逐渐降低,其具有一定的耐热功能,以及优异的力学性能,可以在热失控后的一段时间内维持电池箱结构的完整,不出现坍塌变形,避免因电池箱开裂导致的火苗外溢。
上述复合材料中各层的优选方案如下:
内隔热层1优选采用纳米气凝胶层或有机硅耐烧蚀涂层。纳米气凝胶层是一种导热系数极低的无机多孔隔热材料,其具有良好的化学稳定性和力学性能,相比传统隔热材料(如玻璃纤维毡,硅酸铝棉等)可以在达到同样隔热效果的前提下降低3至8倍的厚度及重量。有机硅耐烧蚀材料在高温富氧环境下会产生大量的二氧化硅,而二氧化硅熔点高且具有很好的化学稳定性。内隔热层1优选采用热导率为0.005W/m·K~0.05W/m·K的纳米气凝胶层,或热导率为0.02W/m·K~0.3W/m·K的有机硅耐烧蚀涂层。本申请发明人经研究发现:虽然热导率越低导热越慢,但会造成其与树脂材料或胶膜的复合强度降低,上述范围能够保证纳米气凝胶层或与有机硅耐烧蚀涂层被粘接界面形成更好的粘接效果,同时维持较低的热导率。更优选的,内隔热层1采用热导率为0.01W/m·K~0.03W/m·K的纳米气凝胶层,或热导率为0.07W/m·K~0.12W/m·K的有机硅耐烧蚀涂层。
若采用纳米气凝胶层作为内隔热层1,纳米气凝胶层优选通过第一耐热粘结剂与耐热树脂层2复合,由此避免纳米气凝胶层与耐热树脂层2之间存在缝隙,影响隔热效果。第一耐热粘结剂优选采用耐热有机硅粘结剂 或改性耐热环氧树脂粘结剂。第一耐热粘结剂形成的胶膜厚度优选为0.02~0.1mm。
若采用有机硅耐烧蚀涂层作为内隔热层1,有机硅耐烧蚀涂层的厚度优选为2~7mm。有机硅耐烧蚀涂层优选按照如下方式复合于耐热树脂层2:
步骤a),在耐热树脂层2表面制备粗糙表面层;
步骤b),在所述粗糙复合层表面采用喷枪喷涂有机硅耐烧蚀材料,形成有机硅耐烧蚀涂层。
上述步骤a)具体可以如下:在待喷涂烧蚀涂层的耐热树脂零件表面铺贴可剥离布,成型后揭开,形成粗糙的表面层。
为了提高有机硅耐烧蚀涂层厚度的均一性,上述步骤b)具体可以如下:分多次在所述粗糙复合层表面涂覆有机硅耐烧蚀材料,每次涂覆厚度为0.02mm~0.1mm,直至有机硅耐烧蚀涂层达到预定厚度。
上述耐热树脂层2优选短期耐热温度大于300℃,长期耐热温度大于260℃。耐热树脂层2可以采用耐高温树脂或纤维增强耐高温树脂。耐高温树脂的耐热性能相对较高,适合作为电池箱顶盖的复合材料的耐热树脂层2(在热失控情况下,由于热空气的上升作用,电池箱顶盖部位受热较为集中)。纤维增强耐高温树脂的力学性能相对较好,适合作为电池箱箱体的复合材料。
对于耐热树脂层2采用耐高温树脂的方案:耐高温树脂优选采用酚醛树脂、环氧树脂、双马来酰亚胺树脂、氰酸酯或聚酰亚胺树脂。更优选采用酚醛树脂。酚醛树脂在温度大约为1000℃下具有较高的残碳率,形成致密层,防止火苗外溢,并起一定隔热效果,同时因其具备在1100℃15min防火效果,在内隔热层1等局部意外失效后,能起第二层保险作用。
对于耐热树脂层2采用纤维增强耐高温树脂的方案:纤维增强耐高温树脂中的纤维可以为碳纤维、玻璃纤维、玄武岩纤维中的一种或多种。优选采用碳纤维,具体如T300或T700,碳纤维具有较好的比强度和比模量以及经济性,与树脂基体具有更好的界面性能。树脂可以采用环氧树脂、双马来酰亚胺树脂、氰酸酯或聚酰亚胺树脂。优选采用环氧树脂或双马来酰亚胺树脂,具有较好的韧性、经济性以及施工性。环氧树脂成本较低,加工性能好。马来酰亚胺树脂力学性能优异,韧性好,伸长率在2%左右, 拉伸模量达到40GPa,强度高,长期使用温度大于260℃。
支撑树脂层3的长期耐热温度优选大于200℃。支撑树脂层3优选采用纤维增强耐高温树脂,纤维增强耐高温树脂具有较为优异的力学性能,具有较高的强度、韧性和耐冲击性性能,在热失控情况下,有利于维持电池箱结构的完整性,同时避免耐热树脂层2开裂。纤维增强耐高温树脂中的纤维可以碳纤维、玻璃纤维、玄武岩纤维中的一种或多种,优选采用碳纤维,具体如T300或T700。树脂可以采用环氧树脂、双马来酰亚胺树脂、氰酸酯或聚酰亚胺树脂,优选采用环氧树脂或双马来酰亚胺树脂。更优选的,上述纤维增强耐高温树脂采用碳纤维增强环氧树脂或碳纤维增强双马来酰亚胺树脂。为了提高耐热树脂层2和支撑树脂层3之间的连接强度,上述耐热树脂层2和支撑树脂层3优选通过第二耐热粘结剂复合。第二耐热粘结剂优选采用改性环氧树脂粘合剂。改性环氧树脂粘合剂形成的胶膜厚度优选为0.2mm。
上述耐热树脂层2和支撑树脂层3可以均采用纤维增强耐高温树脂,分别为第一纤维增强耐高温树脂层和第二纤维增强耐高温树脂,此种结构优选作为对力学性能要求较高的电池箱箱体的复合材料。即上述复合材料作为电池箱的箱体,优选其耐热树脂层2为第一纤维增强耐高温树脂层,支撑树脂层3为第二纤维增强耐高温树脂层。优选的,第一纤维增强耐高温树脂层的耐热性优于第二纤维增强耐高温树脂层,第二纤维增强耐高温树脂层的力学性能优于第一纤维增强耐高温树脂层。具体的,第一纤维增强耐高温树脂层采用碳纤维增强双马来酰亚胺树脂,第二纤维增强耐高温树脂层采用碳纤维增强环氧树脂。
上述耐热树脂层2和支撑树脂层3也可以分别采用耐高温树脂层和纤维增强耐高温树脂,此种结构优选作为对耐热要求较高的电池箱箱体的复合材料。即上述复合材料作为电池箱的顶盖,优选其耐热树脂层2为耐高温树脂层,支撑树脂层3为纤维增强耐高温树脂层。
作为本发明优选方案,请参见图2,上述复合材料还优选包括:设置于所述耐热树脂层2和支撑树脂层3之间的蜂窝芯材层4。蜂窝芯材层4的设置可以将耐热树脂层2和支撑树脂层3分开,中间的空气形成二次隔热层,具有更优的隔热效果,并且蜂窝芯材由于为中空的结构,其重量较 轻,有利于实现轻量化。上述蜂窝芯材层4可以为金属蜂窝芯材层或非金属蜂窝芯材层。非金属蜂窝芯材层可以采用芳纶蜂窝。蜂窝芯材层4优选采用金属蜂窝芯材层,具体为铝蜂窝或泡沫铝。金属蜂窝芯材层具有较好的力学性能,使得在极端条件下靠近电池内侧的结构层烧损后,其配合支撑树脂层3仍能保证电池箱具有一定的力学特性和刚度。
对于设置有蜂窝芯材层4的复合材料,耐热树脂层2、蜂窝芯材层4和支撑树脂层3优选通过热压复合。热压复合的成型压力优选为0.2MPa~0.4MPa,该成型压力有利于耐热树脂层2与蜂窝芯材层4之间,以及蜂窝芯材层4与支撑树脂层3具有适宜的胶接力,同时保证热压成型过程中蜂窝芯材层4不发生变形,还可以兼具在热压成型过程耐热树脂层2和支撑树脂层3中的树脂具有合适的流动性。成型温度优选为160℃~180℃,固化时间为8h~12h。
作为电池箱箱体的复合材料,其优选设置有上述蜂窝芯材层4,其由内至外优选依次包括:
纳米气凝胶层/有机硅耐烧蚀涂层,第一纤维增强耐高温树脂层,铝蜂窝层/泡沫铝层,第二纤维增强耐高温树脂层。
此种复合材料可以达到以下技术效果:
力学性能满足150kg电池承载,同时在10KPa压力下无破坏;温度环境:1000℃,10min,800℃,30min;24h内,对外辐射空气温度峰值不超过200℃。
优选的,纳米气凝胶层气凝胶厚度为0.5mm~3mm,有机硅耐烧蚀涂层的厚度为2mm~4mm,第一纤维增强耐高温树脂层的厚度为0.5mm~2mm,第二纤维增强耐高温树脂层的厚度为0.8mm~3mm,蜂窝芯材层4的厚度为3mm~20mm,优选为6mm~10mm。此种结构设计,施工工艺较为简单,通过多层复合后粘接强度较高,避免在相应工况下内隔热层开裂形成缝隙,进入热空气而失去隔热效果,同时结构紧凑,轻量化。
进一步优选的,电池箱箱体的复合材料由内至外优选依次包括:
纳米气凝胶层/有机硅耐烧蚀涂层,碳纤维增强双马来酰亚胺树脂层,铝蜂窝/泡沫铝,碳纤维增强环氧树脂。
作为电池箱顶盖的复合材料,对于空间要求小的使用场景,其可以不 设置上述蜂窝芯材层4;但对于压力大,要求刚性高的使用场景,其优选设置上述蜂窝芯材层4。电池箱顶盖的复合材料由内至外依次包括:
纳米气凝胶层/有机硅耐烧蚀涂层,酚醛树脂层,纤维增强耐高温树脂层;或,
纳米气凝胶层/有机硅耐烧蚀涂层,酚醛树脂层,蜂窝芯材层,纤维增强耐高温树脂层。
该复合结构中,纳米气凝胶层/有机硅耐烧蚀涂层可以实现电池箱内腔耐1500℃10min,耐1000℃30min,热能经该内隔热层后达到300℃以内,酚醛树脂层在高温下发生碳化,能够有效形成致密层,并起一定隔热效果,同时因其具备在1100℃15min防火效果,在纳米气凝胶层或有机硅耐烧蚀涂层局部意外失效后,能起第二层保险作用,纤维增强耐高温树脂层,能够在隔热后的300℃下具有较好的力学性能,保证整体上盖的刚度,不发生较大变形,保护酚醛树脂层不开裂。
此种复合材料可以达到以下技术效果:
力学性能满足10KPa压力下无破坏;温度环境:1500℃,10min,1000℃30min,外部不出现火苗。
优选的,纳米气凝胶层的厚度为2mm~5mm,有机硅耐烧蚀涂层的厚度为3mm~7mm,酚醛树脂层的厚度为0.2mm~2mm,纤维增强耐高温树脂层的厚度为0.8mm~3mm,蜂窝芯材的厚度为0.2mm~2mm。
进一步优选的,电池箱顶盖的复合材料由内至外优选依次包括:
纳米气凝胶层/有机硅耐烧蚀涂层,酚醛树脂层,碳纤维增强环氧树脂层/碳纤维增强双马来酰亚胺树脂层;或,
纳米气凝胶层/有机硅耐烧蚀涂层,酚醛树脂层,铝蜂窝/泡沫铝,碳纤维增强环氧树脂层/碳纤维增强双马来酰亚胺树脂层。
另外,上述复合材料还优选包括:设置于所述支撑层外的外隔热层。外隔热层可以进一步降低电池箱对外辐射的热能,由此进一步降低电池箱周围的温度。外隔热层的优选方案可以与内隔热层1相同,在此兹不赘述。
由上述内容可知,本发明提供的用于电池箱的复合材料中,在发生热失控的一段时间内,内隔热层首先降低热辐射速率,降低传递至耐热树脂层的热量,由此降低耐热树脂层的耐受温度和重量,同时还可实现电池箱 周围温度可控;耐热树脂层吸收一部分热能进一步降低传递至支撑树脂层的热量,由此在保证电池箱整体耐热性的同时降低对支撑树脂层的耐受温度的要求,有利于降低材料成本和重量;热量通过内隔热层和耐热树脂层的层层衰减之后,传导至支撑树脂层的热量较低,支撑树脂层利用其优异的力学性能来维持电池箱结构的完整,不出现坍塌变形,避免因电池箱开裂导致的火苗外溢。因此,本发明提供的复合材料,通过层与层之间的相互配合,共同实现整体材料兼具优异的耐高温性能和力学性能,可以应对较为严苛的高温环境,电池箱不易发生坍塌变形,避免造成火苗外溢等危险情况,同时还可以在一定时间内实现电池包周围温度可控,避免对周围设备带来不利影响。
本发明另一实施例还提供一种电池箱,其包括:顶盖,箱体和底板;所述顶盖和箱体采用前述的复合材料。顶盖是电池箱受热最为集中的部位,箱体是电池箱的力学支撑主体,顶盖和箱体采用上述复合材料可以使得该电池箱兼具优异的耐高温性能和力学性能,以应对较为严苛的高温环境,电池箱不易发生坍塌变形,避免造成火苗外溢等危险情况,同时还可以在一定时间内实现电池包周围温度可控,避免对周围设备带来不利影响。
顶盖的复合材料的优选方案与上文相同,在此兹不赘述。箱体的复合材料的优选方案与上文相同,在此兹不赘述。底板也可以采用上述复合材料,但由于底板受热相对较低,并且通常配有水冷板,同时结合轻量化的考虑,底板优选采用纤维增强耐高温树脂,具体如碳纤维增强环氧树脂。
为了方便电池的拆装以及后期维护,上述电池箱优选为分体结构,具体的:箱体和底板为一体结构,顶盖与箱体可拆卸连接;或者,箱体和顶盖为一体结构,箱体与底板为可拆卸连接;可拆卸连接的两个部件之间的缝隙涂覆有机硅阻燃密封剂。涂覆有机硅阻燃密封剂的作用在于:在电池热失控时具备阻挡氧气流入的作用,由此实现密封和阻热。
优选采用箱体和底板为一体结构,顶盖与箱体可拆卸连接的方案,请参见图3,箱体5顶部优选增设连接凸台6,所述连接凸台6开设有螺孔,所述顶盖螺接于所述连接凸台顶部;箱体与顶盖之间的缝隙涂覆有机硅阻燃密封剂。
上述电池箱还优选包括连接耳片,所述连接耳片的头端延伸入电池箱 内部,尾端与箱体相连;所述连接耳片由内至外依次包括:金属芯层和陶瓷隔热层。该连接耳片用于连接内部电池组固定框架,具有良好的力学性能及隔热效果。
下面结合具体实施例对本发明提供的电池箱进一步阐述。
以下实施例的电池箱均采用如下结构:箱体和底板为一体结构,顶盖与箱体可拆卸连接;箱体与顶盖之间的缝隙涂覆有机硅阻燃密封剂。底板均采用碳纤维增强环氧树脂。
以下实施例中的纳米气凝胶和有机硅耐烧蚀材料均购自中国航天科技集团。
实施例1-8
顶盖的组成列于表1;箱体的组成列于表2。
表1实施例1-8中顶盖的组成
Figure PCTCN2021135729-appb-000001
Figure PCTCN2021135729-appb-000002
表2实施例1-8中箱体的组成
Figure PCTCN2021135729-appb-000003
实施例9-14
顶盖的组成列于表3;箱体的组成列于表4。
表3实施例9-14中顶盖的组成
Figure PCTCN2021135729-appb-000004
表4实施例9-14中箱体的组成
Figure PCTCN2021135729-appb-000005
Figure PCTCN2021135729-appb-000006
对实施例1-14制备的电池箱进行火焰喷射测试
顶盖测试条件如下:
测试条件一:1500℃,火焰直径30mm,喷射时间10min,测温点示意图如图4所示;
测试条件二:1000℃,火焰直径30mm,喷射时间30min,测温点同测试条件一;
温度采集方法,采用热成像仪采集背板温度。
测试结果如下:
a)温度采集结果
Figure PCTCN2021135729-appb-000007
Figure PCTCN2021135729-appb-000008
b)剩余强度测试结果:
Figure PCTCN2021135729-appb-000009
Figure PCTCN2021135729-appb-000010
根据上述结果可知,本申请实施例制备的顶盖在两种测试条件下,均具有较高的强度保留率(70%)。
箱体测试条件如下:
测试条件一:1000℃,火焰直径30mm,喷射时间10min,测温点示意图如图5所示;
测试条件二:800℃,火焰直径30mm,喷射时间30min,测温点同测试条件一;
温度采集方法,在支撑树脂层预埋温度传感器。
箱体测试结果如下:
a)温度采集结果
Figure PCTCN2021135729-appb-000011
Figure PCTCN2021135729-appb-000012
根据上表结果可知,温度均在纤维增强树脂的长期使用温度范围内,能够在热失控条件下保证其箱体力学性能。
由上述内容可知,本发明提供的电池箱结构具有优异的耐热性能和力学性能,可以满足2020年发布的GB 30381热失控时温度要求(顶盖:最高1500℃,10min+1000℃,30min;箱体:最高1000℃,10min+800℃,30min)要求。
以上已经描述了本申请的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (20)

  1. 一种用于电池箱的复合材料,其特征在于,其由内至外依次包括:内隔热层,耐热树脂层和支撑树脂层;其中,
    所述耐热树脂层的耐热性能不低于支撑树脂层;
    所述支撑树脂层的力学性能不低于耐热树脂层。
  2. 根据权利要求1所述的复合材料,其特征在于,所述内隔热层为纳米气凝胶层或有机硅耐烧蚀涂层。
  3. 根据权利要求2所述的复合材料,其特征在于:
    所述内隔热层为热导率为0.005W/m·K~0.05W/m·K纳米气凝胶层或热导率为0.02W/m·K~0.3W/m·K的有机硅耐烧蚀涂层。
  4. 根据权利要求2所述的复合材料,其特征在于:
    所述内隔热层为热导率为0.01W/m·K~0.03W/m·K纳米气凝胶层或热导率为0.07W/m·K~0.12W/m·K的有机硅耐烧蚀涂层。
  5. 根据权利要求2所述的复合材料,其特征在于:
    所述内隔热层为所述纳米气凝胶层,所述纳米气凝胶层通过第一耐热粘结剂与所述耐热树脂层复合,所述第一耐热粘结剂形成的胶膜厚度为0.02~0.1mm;或者
    所述内隔热层为所述有机硅耐烧蚀涂层,所述有机硅耐烧蚀涂层的厚度为2~7mm。
  6. 根据权利要求1所述的复合材料,其特征在于:
    所述耐热树脂层的短期耐热温度大于300℃,长期耐热温度大于260℃。
  7. 根据权利要求1所述的复合材料,其特征在于,所述耐热树脂层为耐高温树脂层或纤维增强耐高温树脂层;所述支撑树脂层为纤维增强耐高温树脂层。
  8. 根据权利要求7所述的复合材料,其特征在于,所述复合材料作为电池箱的顶盖,其耐热树脂层为耐高温树脂层,支撑树脂层为纤维增强耐高温树脂层;和/或,所述复合材料作为电池箱的箱体,其耐热树脂层为第一纤维增强耐高温树脂层,支撑树脂层为第二纤维增强耐高温树脂层。
  9. 根据权利要求8所述的复合材料,其特征在于:
    所述第一纤维增强耐高温树脂层的耐热性优于所述第二纤维增强耐 高温树脂层,所述第二纤维增强耐高温树脂层的力学性能优于所述第一纤维增强耐高温树脂层。
  10. 根据权利要求7所述的复合材料,其特征在于,所述耐高温树脂为酚醛树脂、环氧树脂、双马来酰亚胺树脂、氰酸酯或聚酰亚胺树脂;和/或,所述纤维增强耐高温树脂中的纤维为碳纤维、玻璃纤维、玄武岩纤维中的一种或多种,树脂为环氧树脂、双马来酰亚胺树脂、氰酸酯或聚酰亚胺树脂。
  11. 根据权利要求7所述的复合材料,其特征在于:
    所述支撑树脂层采用的所述纤维增强耐高温树脂中的纤维为碳纤维、玻璃纤维、玄武岩纤维中的一种或多种;所述纤维增强耐高温树脂中的树脂采用环氧树脂、双马来酰亚胺树脂、氰酸酯或聚酰亚胺树脂。
  12. 根据权利要求1所述的复合材料,其特征在于:
    所述支撑树脂层的长期耐热温度大于200℃。
  13. 根据权利要求1所述的复合材料,其特征在于:
    所述耐热树脂层和所述支撑树脂层通过第二耐热粘结剂复合,所述第二耐热粘结剂采用改性环氧树脂粘合剂。
  14. 根据权利要求1所述的复合材料,其特征在于,还包括设置于所述支撑树脂层外的外隔热层。
  15. 根据权利要求1至14任意一项所述的复合材料,其特征在于,还包括:设置于所述耐热树脂层和支撑树脂层之间的蜂窝芯材层。
  16. 根据权利要求15所述的复合材料,其特征在于:
    所述蜂窝芯材层为铝蜂窝、泡沫铝或芳纶蜂窝。
  17. 根据权利要求15所述的复合材料,其特征在于:
    所述耐热树脂层、蜂窝芯材层和支撑树脂层通过热压复合,所述热压复合的成型压力为0.2MPa~0.4MPa。
  18. 一种电池箱,其特征在于,包括:顶盖,箱体和底板;所述顶盖和箱体采用权利要求1至17任意一项所述的复合材料。
  19. 根据权利要求18所述的电池箱,其特征在于,所述箱体和底板为一体结构,所述顶盖与箱体可拆卸连接;或者,所述箱体和顶盖为一体结构,所述箱体与底板为可拆卸连接;可拆卸连接的两个部件之间的缝隙 涂覆有机硅阻燃密封剂。
  20. 根据权利要求18所述的电池箱,其特征在于,还包括连接耳片,所述连接耳片的头端延伸入电池箱内部,尾端与箱体相连;所述连接耳片由内至外依次包括:金属芯层和陶瓷隔热层。
PCT/CN2021/135729 2021-07-09 2021-12-06 电池箱和用于电池箱的复合材料 WO2023279649A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110781723.X 2021-07-09
CN202110781723.XA CN113500830B (zh) 2021-07-09 2021-07-09 电池箱和用于电池箱的复合材料

Publications (1)

Publication Number Publication Date
WO2023279649A1 true WO2023279649A1 (zh) 2023-01-12

Family

ID=78012689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135729 WO2023279649A1 (zh) 2021-07-09 2021-12-06 电池箱和用于电池箱的复合材料

Country Status (2)

Country Link
CN (1) CN113500830B (zh)
WO (1) WO2023279649A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113500830B (zh) * 2021-07-09 2022-12-20 广东汇天航空航天科技有限公司 电池箱和用于电池箱的复合材料
CN114536801A (zh) * 2022-01-20 2022-05-27 江苏澳盛复合材料科技有限公司 一种碳纤维电池箱的成型方法及碳纤维电池箱
CN114709536A (zh) * 2022-04-08 2022-07-05 深圳市易新能科技有限公司 一种储能电池箱
CN116979210A (zh) * 2022-04-21 2023-10-31 宁德时代新能源科技股份有限公司 电池和用电设备
CN115207550A (zh) * 2022-09-13 2022-10-18 江苏时代新能源科技有限公司 电池箱体及电池和用电设备
WO2024098254A1 (zh) * 2022-11-08 2024-05-16 宁德时代新能源科技股份有限公司 耐热防护件和电池
WO2024098256A1 (zh) * 2022-11-08 2024-05-16 宁德时代新能源科技股份有限公司 耐热防护件和电池
WO2024098255A1 (zh) * 2022-11-08 2024-05-16 宁德时代新能源科技股份有限公司 耐热防护件和电池
CN117644696A (zh) * 2023-11-23 2024-03-05 无锡新奥龙金属制品有限公司 锂电池极片烘干箱用隔热板及其成型工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205488282U (zh) * 2016-01-28 2016-08-17 宁德时代新能源科技股份有限公司 一种复合材料电池箱体
CN107146866A (zh) * 2017-05-23 2017-09-08 安徽中科中涣防务装备技术有限公司 一种多功能非金属锂电池箱
CN110890488A (zh) * 2019-11-29 2020-03-17 肇庆市海特复合材料技术研究院 一种新能源汽车用复合材料电池箱
CN111516318A (zh) * 2019-02-01 2020-08-11 上海机动车检测认证技术研究中心有限公司 一种外壳结构
US20210175570A1 (en) * 2017-11-17 2021-06-10 Nitto Denko Corporation Battery cover
CN113500830A (zh) * 2021-07-09 2021-10-15 广东汇天航空航天科技有限公司 电池箱和用于电池箱的复合材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101417516B (zh) * 2008-02-29 2010-12-29 中国人民解放军国防科学技术大学 承载/隔热/烧蚀一体化夹芯结构复合材料及其制备方法
CN107791636A (zh) * 2017-10-25 2018-03-13 哈尔滨工业大学 一种多层耐热抗烧蚀复合材料及其制备方法
CN108911760B (zh) * 2018-08-08 2021-07-09 航天材料及工艺研究所 碳纤维增强树脂梯度碳化非烧蚀型热防护材料及制备方法
CN213425097U (zh) * 2020-09-23 2021-06-11 江苏全锂智能科技有限公司 一种安全性高的锂电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205488282U (zh) * 2016-01-28 2016-08-17 宁德时代新能源科技股份有限公司 一种复合材料电池箱体
CN107146866A (zh) * 2017-05-23 2017-09-08 安徽中科中涣防务装备技术有限公司 一种多功能非金属锂电池箱
US20210175570A1 (en) * 2017-11-17 2021-06-10 Nitto Denko Corporation Battery cover
CN111516318A (zh) * 2019-02-01 2020-08-11 上海机动车检测认证技术研究中心有限公司 一种外壳结构
CN110890488A (zh) * 2019-11-29 2020-03-17 肇庆市海特复合材料技术研究院 一种新能源汽车用复合材料电池箱
CN113500830A (zh) * 2021-07-09 2021-10-15 广东汇天航空航天科技有限公司 电池箱和用于电池箱的复合材料

Also Published As

Publication number Publication date
CN113500830B (zh) 2022-12-20
CN113500830A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2023279649A1 (zh) 电池箱和用于电池箱的复合材料
CN202293502U (zh) 一种用于层压机的保温板和保温装置
CN110690375A (zh) 一种复合结构的防火层及使用此防火层的电池系统
CN106848133A (zh) 一种用于电动汽车的复合材料耐火电池包及其制备方法
CN112266795B (zh) 一种防火隔热材料及电池模组、电池包
CN212548044U (zh) 一种汽车复合材料电池箱防火结构
CN114683653A (zh) 一种耐烧蚀气凝胶复合材料及其制备方法
CN114590008A (zh) 一种用于电芯模组的隔热多层复合材料及其制备方法和应用
CN219007266U (zh) 二氧化硅气凝胶玻纤毡平板防火隔热组件
WO2023050970A1 (zh) 箱体组件的加工方法及箱体组件
CN207879468U (zh) 一种汽车发动机隔热罩
CN212657448U (zh) 超高温耐火复合保温板
CN220219983U (zh) 一种储能用复合耐火隔热板
CN115189083B (zh) 一种散热、防火的复合材料电池盒及其制备方法
CN217863147U (zh) 一种复合防火结构
CN218215584U (zh) 一种电芯之间的硬质热防护复合云母件
CN220129688U (zh) 一种热屏蔽结构
CN216954050U (zh) 一种用于粉末冶金高温烧结炉保温结构
CN218005117U (zh) 一种重量轻隔热阻燃性能好的新能源汽车板材
CN116442609A (zh) 一种隔热材料及其制备方法和应用
CN221055530U (zh) 一种镁还原炉及轻型炉顶衬里
CN216268008U (zh) 一种汽车电瓶用的防火保温棉
CN212401041U (zh) 一种安全性高的房车厢板
CN115107330B (zh) 一种铝合金发动机燃烧室复合内绝热层及其制备方法
CN220432708U (zh) 一种更耐高温的碳化炉内胆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE