WO2023279644A1 - 单纤双向光组件 - Google Patents

单纤双向光组件 Download PDF

Info

Publication number
WO2023279644A1
WO2023279644A1 PCT/CN2021/135605 CN2021135605W WO2023279644A1 WO 2023279644 A1 WO2023279644 A1 WO 2023279644A1 CN 2021135605 W CN2021135605 W CN 2021135605W WO 2023279644 A1 WO2023279644 A1 WO 2023279644A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
fiber
wavelength
filter
power attenuator
Prior art date
Application number
PCT/CN2021/135605
Other languages
English (en)
French (fr)
Inventor
孙雨舟
林华中
Original Assignee
苏州旭创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州旭创科技有限公司 filed Critical 苏州旭创科技有限公司
Publication of WO2023279644A1 publication Critical patent/WO2023279644A1/zh
Priority to US18/404,381 priority Critical patent/US20240154701A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • H04B10/25891Transmission components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant

Definitions

  • the invention relates to the technical field of optical communication, in particular to a single-fiber bidirectional optical component.
  • Optical modules are usually composed of light emitting components (including semiconductor lasers), light receiving components, drive circuits, and optical and electrical interfaces.
  • the optical module is used to realize the conversion of electrical-optical and optical-electrical signals.
  • the electrical signal is processed by the driver chip to drive the laser to emit a modulated optical signal at a corresponding rate.
  • the optical power automatic control circuit Through the optical power automatic control circuit, the optical signal with stable power is output.
  • an optical signal of a certain rate is input into the module and converted into an electrical signal by a photodetector, and an electrical signal of a corresponding rate is output after passing through a preamplifier.
  • the semiconductor laser Since the semiconductor laser will generate heat during the working process, its temperature will rise, and the internal electro-optical conversion efficiency will decrease with the increase of temperature.
  • the emitted optical power will vary greatly.
  • the output optical power at different temperatures is adjusted by adjusting the driving current of the semiconductor laser, but the driving current will affect performance such as bandwidth. Due to the influence of bandwidth, the adjustment range of traditional single-fiber bidirectional optical components is limited.
  • the purpose of the present invention is to provide a single-fiber bidirectional optical component.
  • the present invention provides a single-fiber bidirectional optical assembly, which includes: an optical transmitter, an optical receiver, a lens assembly, a first filter, a second filter, and an optical fiber interface end, the optical fiber interface end is used to connect an optical fiber, and After the downlink optical signal sent by the optical transmitter is focused by the lens assembly, it is sequentially injected into the optical fiber through the first filter and the optical fiber interface end, and is transmitted by the optical fiber; the uplink optical signal transmitted through the optical fiber The optical signal is received by the optical receiver after passing through the second filter;
  • the single-fiber bidirectional optical component also includes at least one optical power attenuator, the optical power attenuator is arranged between the optical transmitter and the optical fiber interface end, and the transmittance of the optical power attenuator varies with light The wavelength of the signal varies.
  • the transmittance of the optical power attenuator increases linearly as the wavelength of the optical signal increases.
  • the optical transmitter is a semiconductor laser, and within the wavelength range from the first wavelength WL1 to the second wavelength WL2, the transmittance of the optical power attenuator increases linearly with the increase of the wavelength of the optical signal , wherein the first wavelength WL1 is smaller than the lower limit of the wavelength of the downlink optical signal emitted by the semiconductor laser within the operating temperature range, and the second wavelength WL2 is greater than the downlink optical signal emitted by the semiconductor laser within the operating temperature range The upper wavelength limit of the signal.
  • the optical transmitter is a distributed feedback laser or an electro-absorption modulation laser.
  • the optical power attenuator includes a base material and a filter film plated on the light-transmitting surface of the base material.
  • the single-fiber bidirectional optical component further includes a lens component and an optical isolator disposed between the optical transmitter and the first filter, and the optical power attenuator is disposed between the optical
  • the isolator is arranged between the first filter, or between the optical isolator and the lens assembly, or between the light emitter and the lens assembly.
  • the single-fiber bidirectional optical component further includes an optical isolator attached to the fiber interface end, and the optical power attenuator is disposed between the first optical filter and the lens component between, or between the light emitter and the lens assembly.
  • the optical power attenuator includes a filter film coated on the first filter.
  • the filter film is an alternately stacked Ta2O5 and/or SiO2 film system.
  • the filter film is a wavelength division multiplexing film, and the transmittance of the wavelength division multiplexing film within its passband wavelength range increases linearly with increasing wavelength.
  • the beneficial effects of the present invention are: by setting an optical power attenuator whose transmittance linearly increases with the increase of the wavelength of the optical signal in the single-fiber bidirectional optical component, it can produce a synergistic effect with the semiconductor laser, reducing the The difference in optical output power of single-fiber bidirectional optical components under high temperature and low temperature working environments, through passive external modulation, maximizes the optical power adjustment range while ensuring that the performance of the high frequency bandwidth of the optical transmitter is not affected .
  • FIG. 1 is a schematic diagram of a single-fiber bidirectional optical component in Embodiment 1 of the present invention.
  • Fig. 2 is a transmittance curve of an optical power attenuator in an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a single-fiber bidirectional optical component in Embodiment 2 of the present invention.
  • Fig. 4 is a schematic diagram of a single-fiber bidirectional optical component in Embodiment 3 of the present invention.
  • Fig. 5 is a schematic diagram of a single-fiber bidirectional optical component in Embodiment 4 of the present invention.
  • Fig. 6 is a schematic diagram of a single-fiber bidirectional optical component in Embodiment 5 of the present invention.
  • Embodiment 1 of the present invention is a single-fiber bidirectional optical component 11 provided by Embodiment 1 of the present invention, which includes: an optical transmitter 11, an optical receiver 12, a lens assembly 13, an optical isolator 14, and a first filter 151 and the second filter 152 and the optical fiber interface end 16, the optical fiber interface end 16 is used to connect the optical fiber 2 to realize the transmission of the uplink optical signal and the downlink optical signal, and the downlink optical signal sent by the optical transmitter is focused by the lens assembly 13 , sequentially pass through the first filter 151 and the optical fiber interface end 16 into the optical fiber 2, and be transmitted by the optical fiber 2; the uplink optical signal transmitted through the optical fiber 2 is reflected by the first filter, passed through the second filter 152, and then The light receiver 12 receives it.
  • the light transmitter 11 is a semiconductor laser 11a, specifically, the light transmitter is a distributed feedback laser (Distributed-feedback laser, DFB) or electro-absorption modulated laser (Electro-absorption Modulated Laser, EML), in other embodiments, the light emitter 11 may also include other components besides the semiconductor laser, such as a lens, a beam splitter, and the like.
  • DFB distributed-feedback laser
  • EML Electro-absorption Modulated Laser
  • the light emitter 11 may also include other components besides the semiconductor laser, such as a lens, a beam splitter, and the like.
  • a certain amount of heat will be generated, which will cause the temperature rise of the active area.
  • the central wavelength of the downlink optical signal sent by the semiconductor laser 11a will increase, that is, the wavelength of the downlink optical signal sent by the semiconductor laser 11a will increase.
  • the wavelength center of the downlink optical signal moves to the direction of longer wavelength, and the increase in temperature causes the electro-optic conversion efficiency inside the semiconductor laser 11a to decrease with the increase in temperature, so that the light output power decreases, which can be regarded as the light output of the semiconductor laser 11a
  • the power gradually decreases as the central wavelength of the downlink optical signal increases.
  • the single-fiber bidirectional optical assembly 1 also includes at least one optical power attenuator 17, the optical power attenuator 17 is arranged between the optical transmitter 11 and the optical fiber interface end 16, and the transmittance of the optical power attenuator 17 varies with the optical signal change with wavelength.
  • the transmittance is the ratio of the radiant energy projected and transmitted through the object to the total radiant energy projected on the object during the process of the incident luminous flux leaving from the illuminated surface or the incident surface of the medium to the other side, the higher the transmittance of the optical power attenuator 17 The larger the value, the lower the power loss after the downlink optical signal passes through the optical power attenuator 17 .
  • the transmittance of the optical power attenuator 17 increases linearly as the wavelength of the optical signal increases. Since the output power of the semiconductor laser 11a gradually decreases with the increase of the central wavelength of the downlink optical signal, that is, while the output power of the semiconductor laser 11a decreases, the light transmittance of the optical power attenuator 17 increases, so that The synergistic effect among them makes when the optical power of semiconductor laser 11a fluctuates greatly in different wavelength ranges, the downlink optical signal entering the optical fiber 2 is maintained within a small power fluctuation range, reducing the single fiber Differences in output power of bidirectional optical component 1 under high temperature and low temperature working environments.
  • the single-fiber bidirectional optical component 1 of this embodiment maximizes the optical power adjustment range by means of passive external modulation while ensuring that the performance such as the high-frequency bandwidth of the LD is not affected.
  • the minimum operating wavelength of the optical power attenuator 17 is the first wavelength WL1, and the maximum operating wavelength is the second wavelength WL2.
  • its transmittance is basically Linear change, when in use, can make the optical power attenuator 17 always work within the working wavelength range, thereby further making the output optical power of the single-fiber bidirectional optical component 1 more stable.
  • the first wavelength WL1 is smaller than the lower limit of the wavelength of the downlink optical signal sent by the semiconductor laser 11a within the operating temperature range
  • the second wavelength WL2 is greater than the upper limit of the wavelength of the downlink optical signal sent by the semiconductor laser 11a within the operating temperature range, so that It is ensured that the optical power attenuator 17 works in a linear range within the full temperature working range, so that the optical power attenuator 17 and the semiconductor laser 11a can work well together.
  • the optical power attenuator 17 is disposed between the optical isolator 14 and the first filter 151 .
  • the downlink optical signal enters the optical fiber 2 after passing through the lens assembly 13 , the optical isolator 14 , the optical power attenuator 17 and the first filter 151 in sequence.
  • the optical power attenuator 17 includes a base material and a filter film plated on the light-transmitting surface of the base material.
  • the filter film is an alternately stacked Ta2O5 and/or SiO2 film system
  • the substrate is a material with good light transmission such as transparent plastic, glass, etc.
  • the optical power attenuator 17 can be adjusted by adjusting the thickness of each film layer.
  • the transmittance at a specific wavelength and the transmittance-wavelength slope make the filter suitable for different types of single-fiber bidirectional optical components 1 , and the specific structure of the optical power attenuator 17 will not be repeated here.
  • the structure of installing an additional optical power attenuator 17 outside the conventional filter assembly (the first filter 151 here) is used. Since the optical power attenuator 17 can be manufactured by conventional technology, only the traditional The corresponding area of the shell of the single-fiber bidirectional optical component 1 can be provided with a slot for placing the optical power attenuator 17, and the method is simple and easy to implement.
  • Embodiment 2 As shown in Figure 3, it is a single-fiber bidirectional optical component 1 provided by Embodiment 2 of the present invention.
  • the structure of Embodiment 2 is similar to that of Embodiment 1.
  • the difference between the two is that the optical power attenuator 17 is arranged Between the optical isolator 14 and the lens assembly 13 .
  • Embodiment 3 As shown in Figure 4, it is a single-fiber bidirectional optical component 1 provided by Embodiment 3 of the present invention.
  • the structure of Embodiment 3 is similar to that of Embodiment 1. The difference between the two is that the optical power attenuator 17 is located at between the light emitter 11 and the lens assembly 13 .
  • Embodiment 4 As shown in Figure 5, it is a single-fiber bidirectional optical component 1 provided by Embodiment 4 of the present invention.
  • the structure of Embodiment 4 is similar to that of Embodiment 1.
  • the optical fiber interface end 16 is directly connected to the optical fiber 2 , and the optical power attenuator 17 is disposed between the first optical filter 151 and the lens assembly 13 .
  • the optical power attenuator 17 can also be disposed between the light emitter 11 and the lens assembly 13 .
  • Embodiment 2 to Embodiment 4 by arranging the optical isolator 14 and the optical power attenuator 17 at different positions in the single-fiber bidirectional optical component 1, the structure of the optical power attenuator 17 can be adapted to different structures single-fiber bidirectional optical component 1.
  • the optical power attenuator 17 is a filter film coated on the first filter.
  • the optical power attenuator 17 is not additionally provided, but the filter with the function of the optical power attenuator 17 is integrated on the existing filter, so that there is no need to adjust the structure of the single-fiber bidirectional optical component 1, only the one with a different film layer is replaced Just filter.
  • the first filter 151 not only has the filtering and reflection functions of a common filter, but also has the function of adjusting the power of the optical signal of a specific wavelength passing through it, that is, the transmittance of the optical signal of a special wavelength passing through it. It increases linearly as the wavelength of the optical signal increases. In this way, when the temperature of the laser changes due to changes in the ambient temperature or other reasons, resulting in a change in the output power of the laser, the final output power of the single-fiber bidirectional optical component 1 can be kept constant.
  • the anti-reflection (AR, Anti Reflection) film on the existing filter substrate can be changed to a film system whose transmittance increases linearly with the increase of the wavelength of the optical signal, or the wavelength of the existing filter can be adjusted.
  • Multiplexing (Wavelength Division Multiplexing (WDM) film system makes the transmittance increase linearly with the increase of wavelength in the passband wavelength range.
  • the present invention arranges an optical power attenuator whose transmittance increases linearly with the increase of the wavelength of the optical signal in the single-fiber bidirectional optical component, so that it can have a synergistic effect with the semiconductor laser, reducing the The difference in optical output power of single-fiber bidirectional optical components under high temperature and low temperature working environments, through passive external modulation, maximizes the optical power adjustment range while ensuring that the performance of the high frequency bandwidth of the optical transmitter is not affected .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种单纤双向光组件(1)包括:光发射器(11)、光接收器(12)、透镜组件(13)、第一滤波片(151)、第二滤波片(152)、光功率衰减器(17)和光纤接口端(16)。光纤接口端(16)用以连接光纤(2),光发射器(11)发出的下行光信号经由透镜组件(13)聚焦后,依次通过第一滤波片(151)和光纤接口端(16)射入光纤(2),由光纤传输;经由光纤(2)传输而至的上行光信号通过第二滤波片(152)后被光接收器(12)接收。光功率衰减器(17)设置于光发射器(11)和光纤接口端(16)之间,光功率衰减器(17)的透过率随光信号波长变化而变化。通过光功率衰减器(17)与光发射器(11)产生协同作用,减小了单纤双向光组件(1)在高温和低温工作环境下的出光功率差异,通过无源外调制的方式,在保证光发射器(11)高频带宽等性能不受影响的情况下,最大限度地扩大光功率调整范围。

Description

单纤双向光组件 技术领域
本发明涉及光通信技术领域,具体地涉及一种单纤双向光组件。
背景技术
光模块通常由光发射组件(含半导体激光器)、光接收组件、驱动电路和光、电接口等组成。光模块用于实现电-光和光-电信号的转换,在发送端,电信号经驱动芯片处理后驱动激光器发射出相应速率的调制光信号,通过光功率自动控制电路,输出功率稳定的光信号。在接收端,一定速率的光信号输入模块后由光探测器转换为电信号,经前置放大器后输出相应速率的电信号。
由于半导体激光器在工作过程中会产生热量,造成其温度升高,内部电光转换效率随着温度升高而下降,在不同温度下的出光功率存在差异,从而导致光组件高温和低温工作环境下的发射光功率会有较大差异。现有技术中,通过调整半导体激光器驱动电流来调整不同温度下输出光功率,但是驱动电流会影响带宽等性能,受制于带宽的影响,传统单纤双向光组件调整范围有限。
技术问题
本发明的目的在于提供一种单纤双向光组件。
技术解决方案
本发明提供一种单纤双向光组件,其包括:光发射器、光接收器、透镜组件、第一滤波片、第二滤波片和光纤接口端,所述光纤接口端用以连接光纤,所述光发射器发出的下行光信号经由所述透镜组件聚焦后,依次通过所述第一滤波片和光纤接口端射入所述光纤,由所述光纤传输;经由所述光纤传输而至的上行光信号通过所述第二滤波片后被所述光接收器接收;
所述单纤双向光组件还包括至少一个光功率衰减器,所述光功率衰减器设置于所述光发射器和所述光纤接口端之间,所述光功率衰减器的透过率随光信号波长变化而变化。
作为本发明的进一步改进,所述光功率衰减器的透过率随光信号波长增大而线性增大。
作为本发明的进一步改进,所述光发射器为半导体激光器,在第一波长WL1至第二波长WL2的波长范围内,所述光功率衰减器透过率随光信号波长增大而线性增大,其中,所述第一波长WL1小于所述半导体激光器在工作温度范围内所发出的下行光信号的波长下限,所述第二波长WL2大于所述半导体激光器在工作温度范围内所发出的下行光信号的波长上限。
作为本发明的进一步改进,所述光发射器为分布反馈激光器或电吸收调制激光器。
作为本发明的进一步改进,所述光功率衰减器包括基材和镀覆于所述基材通光面上的滤波膜。
作为本发明的进一步改进,所述单纤双向光组件还包括设于所述光发射器和所述第一滤波片之间的透镜组件和光隔离器,所述光功率衰减器设置于所述光隔离器和所述第一滤波片之间、或设置于所述光隔离器和所述透镜组件之间、或设于所述光发射器和所述透镜组件之间。
作为本发明的进一步改进,所述单纤双向光组件还包括贴合设于所述光纤接口端的光隔离器,所述光功率衰减器设置于所述第一滤光片和所述透镜组件之间、或设于所述光发射器和所述透镜组件之间。
作为本发明的进一步改进,所述光功率衰减器包括镀覆于所述第一滤光片上的滤波膜。
作为本发明的进一步改进,所述滤波膜为交替堆叠的Ta2O5和/或SiO2膜系。
作为本发明的进一步改进,所述滤波膜为波分复用膜,所述波分复用膜在其通带波长范围内透过率随波长增大而线性增大。
有益效果
本发明的有益效果是:通过在单纤双向光组件内设置透过率随光信号波长增大而线性增大的光功率衰减器,使得其能够与半导体激光器产生协同作用,减小了所述单纤双向光组件在高温和低温工作环境下的出光功率差异,通过无源外调制的方式,在保证光发射器高频带宽等性能不受影响的情况下,最大限度地扩大光功率调整范围。
附图说明
图1是本发明实施例1中的单纤双向光组件示意图。
图2是本发明一实施方式中光功率衰减器透过率曲线。
图3是本发明实施例2中的单纤双向光组件示意图。
图4是本发明实施例3中的单纤双向光组件示意图。
图5是本发明实施例4中的单纤双向光组件示意图。
图6是本发明实施例5中的单纤双向光组件示意图。
本发明的实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施方式及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施方式仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
下面详细描述本发明的实施方式,实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
为方便说明,本文使用表示空间相对位置的术语来进行描述,例如“上”、“下”、“后”、“前”等,用来描述附图中所示的一个单元或者特征相对于另一个单元或特征的关系。空间相对位置的术语可以包括设备在使用或工作中除了图中所示方位以外的不同方位。例如,如果将图中的装置翻转,则被描述为位于其他单元或特征“下方”或“上方”的单元将位于其他单元或特征“下方”或“上方”。因此,示例性术语“下方”可以囊括下方和上方这两种空间方位。
如图1所示,为本发明实施例1所提供的一种单纤双向光组件11,其包括:光发射器11、光接收器12、透镜组件13、光隔离器14、第一滤波片151和第二滤波片152以及光纤接口端16,光纤接口端16用以连接光纤2,实现上行光信号和下行光信号的传输,光发射器发1出的下行光信号经由透镜组件13聚焦后,依次通过第一滤波片151和光纤接口端16射入光纤2,由光纤2传输;经由光纤2传输而至的上行光信号在被第一滤波片反射后,通过第二滤波片152后被光接收器12接收。
在实施例1中,光发射器11为半导体激光器11a,具体的,光发射器为分布反馈激光器(Distributed-feedback laser,DFB)或电吸收调制激光器(Electro-absorption Modulated Laser,EML),在其它实施例中,光发射器11也可以包括除半导体激光器之外的其它元件,如透镜、分光片等。半导体激光器在工作过程中,会产生一定的热量而造成有源区温升的情况,随着温度升高,半导体激光器11a所发出的下行光信号的中心波长增大,即导体激光器11a所发出的下行光信号的波长中心向波长变长的方向移动,并且,温度升高导致半导体激光器11a内部电光转换效率随温度升高而下降,从而使得出光功率下降,即可以看作是半导体激光器11a的出光功率随着下行光信号的中心波长增大而逐渐减小。
单纤双向光组件1还包括至少一个光功率衰减器17,光功率衰减器17设置于所述光发射器11和所述光纤接口端16之间,光功率衰减器17透过率随光信号波长变化而变化。透过率为入射光通量自被照面或介质入射面至另外一面离开的过程中,投射并透过物体的辐射能与投射到物体上的总辐射能之比,光功率衰减器17透过率越大则下行光信号通过光功率衰减器17后功率损耗越低。
具体的,光功率衰减器17透过率随光信号波长增大而线性增大。由于半导体激光器11a的出光功率随着下行光信号的中心波长增大逐渐减小,即在半导体激光器11a的出光功率减小的同时,光功率衰减器17透光率增大,从而通过两者之间的协同作用,使得当半导体激光器11a出光功率在不同波长范围内波动较大时,进入到光纤2内的下行光信号维持在一个较小的功率波动范围之内,减小了所述单纤双向光组件1在高温和低温工作环境下的出光功率差异。本实施例的单纤双向光组件1通过无源外调制的方式,在保证LD高频带宽等性能不受影响的情况下,最大限度地扩大光功率调整范围。
如图2所示,光功率衰减器17的最小工作波长为第一波长WL1、最大工作波长为第二波长WL2,在第一波长WL1至第二波长WL2范围内,其透过率基本上呈线性变化,在使用时,可以使光功率衰减器17始终工作在工作波长范围内,从而进一步使得所述单纤双向光组件1的出光功率更加稳定。
进一步的,第一波长WL1小于半导体激光器11a在工作温度范围内所发出的下行光信号的波长下限,第二波长WL2大于半导体激光器11a在工作温度范围内所发出的下行光信号的波长上限,以保证全温度工作范围内,光功率衰减器17都工作在线性区间,使光功率衰减器17与半导体激光器11a均能很好的协同工作。
在实施例1中,光功率衰减器17设置于光隔离器14和第一滤波片151之间。下行光信号依次通过透镜组件13、光隔离器14、光功率衰减器17和第一滤波片151后进入光纤2。
光功率衰减器17包括基材和镀覆于基材通光面上的滤波膜。
具体的,滤波膜为交替堆叠的Ta2O5和/或SiO2膜系,基材为诸如透明塑料、玻璃等具有良好透光性的材料,可以通过调整各膜层的厚度来调整光功率衰减器17在特定波长下的透过率以及透过率-波长斜率,从而使滤波片适用于不同型号的单纤双向光组件1,关于光功率衰减器17的具体结构这里不再赘述。
这里,使用在常规滤波片组件(此处为第一滤波片151)外额外加装一片光功率衰减器17的结构,由于光功率衰减器17可以采用常规技术制造的产品,因此只需在传统单纤双向光组件1外壳相应区域设置用于放置光功率衰减器17的槽位即可,方法简单易于实施。
实施例2
如图3所示,为本发明实施例2所提供的一种单纤双向光组件1,实施例2与实施例1的结构类似,两者之间的区别在于,光功率衰减器17设置于光隔离器14和透镜组件13之间。
实施例3
如图4所示,为本发明实施例3所提供的一种单纤双向光组件1,实施例3与实施例1的结构类似,两者之间的区别在于,光功率衰减器17设于光发射器11和透镜组件13之间。
实施例4
如图5所示,为本发明实施例4所提供的一种单纤双向光组件1,实施例4与实施例1的结构类似,两者之间的区别在于,光隔离器14贴合设于光纤接口端16,直接与光纤2相接,光功率衰减器17设于第一滤光片151和透镜组件13之间。相类似的,光功率衰减器17也可设于于光发射器11和透镜组件13之间。
在实施例2至实施例4中,通过将光隔离器14以及光功率衰减器17设置于所述单纤双向光组件1中的不同位置,可以使光功率衰减器17结构适配于不同结构的单纤双向光组件1。
实施例5
如图6所示,为本发明实施例5所提供的一种单纤双向光组件1,在实施例5中,光功率衰减器17为镀覆于第一滤光片上的滤波膜。
这里,不额外设置光功率衰减器17,而是将现有的滤波片上集成具有光功率衰减器17功能的滤波片,从而无需调整单纤双向光组件1的结构,仅更换具有不同膜层的滤波片即可。此时的第一滤波片151不仅具有常用滤波片的滤波和反射功能,还具有对通过其的特定波长的光信号进行功率调整的功能,也就是使通过其的特别波长光信号的透过率随光信号波长增大而线性增大。这样当激光器温度由于环境温度变化或其它原因变化导致自身温度变化,从而使激光器出光功率变化时,能够保证该单纤双向光组件1最终出光功率的恒定。
示例性的,可将现有滤波片基材上的增透(AR,Anti Reflection)膜变更为透过率随光信号波长增大而线性增大的膜系,或者调整现有滤波片上的波分复用(Wavelength Division Multiplexing,WDM)膜系使其在通带波长范围内透过率随波长增大而线性增大。
综上所述,本发明通过在单纤双向光组件内设置透过率随光信号波长增大而线性增大的光功率衰减器,使得其能够与半导体激光器产生协同作用,减小了所述单纤双向光组件在高温和低温工作环境下的出光功率差异,通过无源外调制的方式,在保证光发射器高频带宽等性能不受影响的情况下,最大限度地扩大光功率调整范围。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种单纤双向光组件,其包括:光发射器、光接收器、透镜组件、第一滤波片和光纤接口端,所述光纤接口端用以连接光纤,所述光发射器发出的下行光信号经由所述透镜组件聚焦后,依次通过所述第一滤波片和光纤接口端射入光纤,由光纤传输;经由光纤传输而至的上行光信号通过所述第一滤波片反射后被所述光接收器接收;
    其特征在于,
    所述单纤双向光组件还包括至少一个光功率衰减器,所述光功率衰减器设置于所述光发射器和所述光纤接口端之间,所述光功率衰减器的透过率随光信号波长变化而变化。
  2. 根据权利要求1所述的单纤双向光组件,其特征在于,所述光功率衰减器的透过率随光信号波长增大而增大。
  3. 根据权利要求2所述的单纤双向光组件,其特征在于,所述光发射器为半导体激光器,在第一波长WL1至第二波长WL2的波长范围内,所述光功率衰减器透过率随光信号波长增大而线性增大,其中,所述第一波长WL1小于所述半导体激光器在工作温度范围内所发出的下行光信号的波长下限,所述第二波长WL2大于所述半导体激光器在工作温度范围内所发出的下行光信号的波长上限。
  4. 根据权利要求3所述的单纤双向光组件,其特征在于,所述光发射器为分布反馈激光器或电吸收调制激光器。
  5. 根据权利要求3所述的单纤双向光组件,其特征在于,所述光功率衰减器包括基材和镀覆于所述基材通光面上的滤波膜。
  6. 根据权利要求5所述的单纤双向光组件,其特征在于,所述单纤双向光组件还包括设于所述光发射器和所述第一滤波片之间的透镜组件和光隔离器,所述光功率衰减器设置于所述光隔离器和所述第一滤波片之间、或设置于所述光隔离器和所述透镜组件之间、或设于所述光发射器和所述透镜组件之间。
  7. 根据权利要求5所述的单纤双向光组件,其特征在于,所述单纤双向光组件还包括贴合设于所述光纤接口端的光隔离器,所述光功率衰减器设置于所述第一滤光片和所述透镜组件之间、或设于所述光发射器和所述透镜组件之间。
  8. 根据权利要求3所述的单纤双向光组件,其特征在于,所述光功率衰减器包括镀覆于所述第一滤光片上的滤波膜。
  9. 根据权利要求5或8所述的单纤双向光组件,其特征在于,所述滤波膜为交替堆叠的Ta2O5和/或SiO2膜系。
  10. 根据权利要求8所述的单纤双向光组件,其特征在于,所述滤波膜为波分复用膜,所述波分复用膜在其通带波长范围内透过率随波长增大而线性增大。
PCT/CN2021/135605 2021-07-05 2021-12-06 单纤双向光组件 WO2023279644A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/404,381 US20240154701A1 (en) 2021-07-05 2024-01-04 Single-fiber bidirectional optical assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110756850.4 2021-07-05
CN202110756850.4A CN115586608A (zh) 2021-07-05 2021-07-05 单纤双向光组件

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/404,381 Continuation US20240154701A1 (en) 2021-07-05 2024-01-04 Single-fiber bidirectional optical assembly

Publications (1)

Publication Number Publication Date
WO2023279644A1 true WO2023279644A1 (zh) 2023-01-12

Family

ID=84772349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135605 WO2023279644A1 (zh) 2021-07-05 2021-12-06 单纤双向光组件

Country Status (3)

Country Link
US (1) US20240154701A1 (zh)
CN (1) CN115586608A (zh)
WO (1) WO2023279644A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359429A (ja) * 2001-06-01 2002-12-13 Furukawa Electric Co Ltd:The 光モジュール
JP2005032968A (ja) * 2003-07-11 2005-02-03 Toshiba Corp 光送信モジュール
CN201004103Y (zh) * 2005-08-29 2008-01-09 昂纳信息技术(深圳)有限公司 单纤多向光电模块
CN101915951A (zh) * 2010-07-27 2010-12-15 平湖中天合波通信科技有限公司 一种无基底滤光片的制备方法
CN104459904A (zh) * 2013-09-18 2015-03-25 福州高意通讯有限公司 一种单纤双向bosa结构
CN111385027A (zh) * 2018-12-29 2020-07-07 中兴通讯股份有限公司 光收发组件,信号光的管理方法及装置,pon系统
CN112073124A (zh) * 2020-08-13 2020-12-11 武汉光迅科技股份有限公司 一种用于调节波长的器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359429A (ja) * 2001-06-01 2002-12-13 Furukawa Electric Co Ltd:The 光モジュール
JP2005032968A (ja) * 2003-07-11 2005-02-03 Toshiba Corp 光送信モジュール
CN201004103Y (zh) * 2005-08-29 2008-01-09 昂纳信息技术(深圳)有限公司 单纤多向光电模块
CN101915951A (zh) * 2010-07-27 2010-12-15 平湖中天合波通信科技有限公司 一种无基底滤光片的制备方法
CN104459904A (zh) * 2013-09-18 2015-03-25 福州高意通讯有限公司 一种单纤双向bosa结构
CN111385027A (zh) * 2018-12-29 2020-07-07 中兴通讯股份有限公司 光收发组件,信号光的管理方法及装置,pon系统
CN112073124A (zh) * 2020-08-13 2020-12-11 武汉光迅科技股份有限公司 一种用于调节波长的器件

Also Published As

Publication number Publication date
US20240154701A1 (en) 2024-05-09
CN115586608A (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
US8750714B2 (en) Monolithic power monitor and wavelength detector
US7439533B2 (en) Optical module and optical communication device
CN109884754A (zh) 一种激光器和硅光芯片的耦合结构和封装结构
US11705692B2 (en) Laser side mode suppression ratio control
US20220011528A1 (en) Optical module and method of producing the same
WO2019041686A1 (zh) 一种减小激光器突发模式下波长漂移的方法及激光器
CN206820247U (zh) Dfb激光器
WO2018161686A1 (zh) 内置信号校准电路的双速率dml器件、模块及信号校准方法
CN102820931A (zh) 双模光网络单元光模块
US20060126684A1 (en) Real time constant excitation ratio (ER) laser driving circuit
CN111290089A (zh) 一种多波长耦合光发射装置
JP2017211419A (ja) 光モジュール
US8693510B2 (en) Optical transmitter and optical transmission apparatus
CN109194408A (zh) 一种空间激光通信发射装置
WO2023279644A1 (zh) 单纤双向光组件
WO2005006401A2 (en) Optical sub-assembly laser mount having integrated microlens
JP2000124541A (ja) 半導体レーザおよび半導体レーザモジュール
CN219328922U (zh) 一种光模块
Saeki et al. Compact optical transmitter module with integrated optical multiplexer for 100 Gbit/s
JP2016038558A (ja) 4波長多重光送信器の構成方法
JP2002314187A (ja) レーザダイオードモジュール及び光送信機
CN220064444U (zh) 光发射组件和光模块
JP2018066888A (ja) 光モジュール
CN114353939B (zh) 激光合束系统和离子阱量子计算系统
JP2001313613A (ja) 光送信器および光伝送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE