WO2023279525A1 - 基于钕铁硼磁钢的转子结构及制造方法 - Google Patents

基于钕铁硼磁钢的转子结构及制造方法 Download PDF

Info

Publication number
WO2023279525A1
WO2023279525A1 PCT/CN2021/117973 CN2021117973W WO2023279525A1 WO 2023279525 A1 WO2023279525 A1 WO 2023279525A1 CN 2021117973 W CN2021117973 W CN 2021117973W WO 2023279525 A1 WO2023279525 A1 WO 2023279525A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic steel
rotor
back iron
rotor back
iron
Prior art date
Application number
PCT/CN2021/117973
Other languages
English (en)
French (fr)
Inventor
严建新
Original Assignee
浙江盘毂动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江盘毂动力科技有限公司 filed Critical 浙江盘毂动力科技有限公司
Publication of WO2023279525A1 publication Critical patent/WO2023279525A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors

Definitions

  • the invention relates to the technical field of rotors, in particular to a rotor structure and manufacturing method based on NdFeB magnets.
  • Radial field motors and axial field motors are two branches of the motor field. Disk motors are widely used in the automotive industry, wind power generation and other fields. Size, small axial size, large moment of inertia, and stable operation. Compared with radial magnetic field motors, disc motors have the characteristics of short axial size, small size, light weight, and high power density.
  • the magnetic steel is a single-piece design, and each piece of magnetic steel is matched with the rotor back iron through a concave-convex structure, and is positioned by glue bonding or mechanical mechanism, so that the single-piece magnetic steel Arranged according to the NS pole.
  • the glue is prone to failure after long-term operation, and the rotor is rotating at a high speed during the working process of the motor, so the magnetic steel will loosen and fall off, which will affect the performance of the disc motor.
  • the bolts are affected by the installation process, and they are also prone to fall off during the high-speed rotation of the rotor.
  • the above-mentioned process is complicated, and the consistency of the rotor cannot be guaranteed, and the utilization rate of the magnetic steel is low, and it is easy to cause problems such as high production cost.
  • the present invention provides a rotor structure and manufacturing method based on NdFeB magnets that can effectively improve the utilization rate of the magnets and ensure the uniformity of the rotor size.
  • the present invention provides a manufacturing method, comprising:
  • the mold has a limiting portion, so that the step (a) further includes: (a1) the rotor back iron is positioned at the limiting portion.
  • step (c) further includes:
  • an ejector is connected inside the limiting portion, so that the step (c1) further includes: (c11) driving the rotor back iron to be ejected by the ejector.
  • step (c) further include:
  • step (d) after the step (d), it further includes: (e) cleaning, electrophoresis and magnetizing the rotor structure.
  • the present invention also provides a rotor structure based on NdFeB magnets, including a rotor back iron, the rotor back iron has a magnetic steel groove, and the magnetic steel groove is annular, The bonded neodymium-iron-boron mixture poured into the magnetic steel slot is solidified to form a magnetic steel.
  • the rotor back iron includes a bottom wall, an inner ring side wall and an outer ring outer wall, the bottom wall is ring-shaped, and the inner and outer peripheral edges of the bottom wall respectively extend in the same direction to form the inner
  • the ring side wall and the outer ring side wall define the magnetic steel groove between the bottom wall, the inner ring side wall and the outer ring side wall.
  • the extension dimensions of the inner ring side wall and the outer ring side wall are consistent.
  • the exposed surfaces of the magnetic steel are respectively flush with the side walls of the inner ring and the side walls of the outer ring.
  • the dimension of the magnetic steel along the axial direction of the rotor is greater than or equal to the dimension of the bottom wall along the axial direction of the rotor.
  • the ratio of the dimensions of the outer ring sidewall and the inner ring sidewall along the radial direction of the rotor is not less than 1/3.
  • a plurality of said fixing holes are arranged at equal intervals along the circumference of the rotor.
  • the distance from the center of the rotor back iron to the center of the fixing hole is greater than or equal to the radius of the rotor back iron.
  • a shaft hole is defined on the side wall of the inner ring, and a keyway communicating with the shaft hole is provided on the side wall of the inner ring.
  • the bonded NdFeB mixture is formed by mixing quick-quenched NdFeB magnetic powder and a binder, wherein the binder can be glue, etc. It can be seen that the bonded NdFeB filled in the magnetic steel groove The mixture undergoes a liquid-to-solid conversion process under temperature control and solidifies to form a magnet, and the viscosity of the bonded NdFeB mixture is used to simultaneously bond and fix the formed magnet to the rotor back iron
  • the molding process is simple, ensuring the consistency of the required size of the rotor, and also reducing the air gap between the magnet and the rotor back iron, improving the magnetic utilization of the magnet, avoiding waste of the magnet, and reducing costs.
  • Fig. 1 is the flowchart of manufacturing method described in the present invention
  • Fig. 2 is the structural representation of the rotor structure based on NdFeB magnets according to the present invention
  • Fig. 3 is a cross-sectional view of the rotor structure based on NdFeB magnets according to the present invention.
  • the manufacturing method includes:
  • the bonded NdFeB mixture is formed by mixing quick-quenched NdFeB magnetic powder and a binder, wherein the binder can be glue, etc. It can be seen that the bonded NdFeB filled in the magnetic steel groove The mixture undergoes a liquid-to-solid conversion process under temperature control and solidifies to form a magnet, and the strong bonding performance of the bonded NdFeB mixture is used to make the formed magnet simultaneously bonded and fixed on the On the rotor back iron, not only the forming process is simple and the consistency of the size required by the rotor is ensured, but also the air gap between the magnet steel and the rotor back iron is reduced, the magnetic utilization rate of the magnet steel is improved, and the waste of magnet steel is avoided, thereby Reduce the cost.
  • the mold can be fixed on a workbench, and a limiter can be provided on the end surface of the mold away from the workbench, so that the step (a) further includes: (a1) the rotor back iron is positioned on the limiter bit department.
  • the limiting part may be a groove, and the groove is adapted to the shape of the rotor back iron, and may be circular. That is, the side of the rotor back iron away from the magnetic steel groove is embedded in the groove, so that the magnetic steel groove is exposed to the outside of the mold.
  • the depth of the groove is relatively shallow, and can be less than or equal to 1/5 of the axial dimension of the rotor back iron, so as to prevent the deep depth of the groove from affecting subsequent ejection.
  • the bonded neodymium-iron-boron mixture can be stored in the pressing device, and when the pressing device moves to the magnetic steel groove, it will move into the magnetic steel groove Inject the bonded NdFeB mixture and reset.
  • the pressing device can be kept above the mould, and when the rotor back iron is fixed on the mould, the pressing device directly injects the bonded NdFeB mixture into the magnetic steel groove .
  • a plurality of spaced apart bonded NdFeB regions can be injected into the magnetic steel groove to form a plurality of spaced apart fan-shaped magnetic steels.
  • Described step (c) further comprises:
  • the rotor back iron is injected into the bonded NdFeB mixture, it is separated from the mold, and then transferred to the temperature control device, and the bonded NdFeB mixture is cured by the temperature control device , to obtain the shaped magnetic steel.
  • the detachment of the rotor back iron from the mold can be done manually or automatically, wherein it can be done automatically by means of an ejector, specifically, an ejector is connected to the limiting part, so that the step (c1) It further includes: (c11) driving the rotor back iron to be ejected by the ejector.
  • the ejector can be embedded in the limit portion, and when the ejection operation is performed, the ejector protrudes into the limit portion, so that the rotor back iron The limit part is pushed out.
  • the ejector can be driven by a cylinder or a motor, and the ejector can be made of soft material such as rubber to prevent hard contact with the rotor back iron and cause damage to the rotor back iron.
  • the process of the rotor back iron can be completed manually or automatically, and the automatic can be conveyed by a conveyor belt.
  • the temperature control device may be an oven. The temperature and time for the oven to cure the bonded NdFeB mixture can be determined according to the volume of the bonded NdFeB mixture.
  • step (c) further include:
  • step (d) after the step (d), it further includes: (e) cleaning the rotor structure, electrophoresis to complete the surface coating, and finally performing overall magnetization.
  • the bonded NdFeB mixture is formed by mixing quick-quenched NdFeB magnetic powder and a binder, wherein the binder can be glue, etc. It can be seen that the magnet filled in the magnetic steel groove
  • the bonded NdFeB mixture undergoes a liquid-to-solid conversion process under temperature control and is solidified to form a magnet, and the viscosity of the bonded NdFeB mixture is used to simultaneously bond and fix the formed magnet on the On the rotor back iron, not only the forming process is simple and the consistency of the size required by the rotor is ensured, but also the air gap between the magnet steel and the rotor back iron is reduced, the magnetic utilization rate of the magnet steel is improved, and the waste of magnet steel is avoided, thereby Reduce the cost.
  • the rotor structure based on NdFeB magnets includes a rotor back iron 100, the rotor back iron 100 has a magnetic steel groove 1000, and the magnetic steel groove 1000 is annular, The bonded NdFeB mixture injected into the magnetic steel groove 1000 is solidified to form the magnetic steel 200 , and the magnetic steel 200 is integrally formed on the rotor back iron 100 .
  • the magnet steel 200 is formed by solidifying the bonded NdFeB mixture, so that the magnet steel 200 is bonded to the rotor back iron 100 at the same time, the molding process is simple, and the consistency of the required size of the rotor is ensured.
  • the air gap between the magnetic steel and the rotor back iron is reduced, the magnetic utilization rate of the magnetic steel is improved, the waste of the magnetic steel is avoided, and the cost is reduced.
  • the rotor back iron 100 includes a bottom wall 110, an inner ring side wall 120 and an outer ring outer wall 130, the bottom wall 110 is ring-shaped, and the inside and outside of the bottom wall 110 The peripheral edges extend in the same direction to form the inner ring side wall 120 and the outer ring side wall 130 respectively, so as to define the Magnetic steel slot 1000.
  • the defined magnetic steel slot 1000 is also ring-shaped.
  • the extension dimensions of the inner ring side 120 and the outer ring side wall 130 are consistent, that is, the inner ring side wall 120 and the outer ring side wall 130 have the same dimension along the rotor axial direction, and the The sides of the inner ring side wall 120 and the outer ring side wall 130 away from the bottom wall 110 are respectively flush to ensure the parallelism and flatness of the rotor, and avoid rotational vibration and noise caused by poor rotor flatness.
  • the exposed surfaces of the magnetic steel 200 are respectively flush with the inner ring side wall 120 and the outer ring side wall 130 .
  • the exposed surface of the magnetic steel 200 refers to the magnetic steel 200 held in the steel tank 1000, which is away from the side of the bottom wall 110. It can be seen that the magnetic steel 200, the inner The sides of the ring side wall 120 and the outer ring side wall 130 away from the bottom wall 110 are flush to further ensure the flatness of the rotor.
  • the size of the magnetic steel 200 along the axial direction of the rotor is greater than or equal to the size of the bottom wall 110 along the axial direction of the rotor, preventing the magnetic steel 200 from moving along the axial direction of the rotor.
  • the size on the bottom wall 110 is too small, which will affect the performance of the magnetic steel 200 after magnetization, and at the same time prevent the size of the bottom wall 110 along the axial direction of the rotor from being too small, which will affect the structural strength of the rotor back iron 100 .
  • the ratio of the dimensions of the outer ring sidewall 130 and the inner ring sidewall 120 along the radial direction of the rotor is not less than 1/3.
  • the inner ring side wall 120 has a relatively large area, and a fixing hole 121 and a shaft hole 122 connecting a rotating shaft can be formed therein.
  • the inner ring side wall 120 is provided with a plurality of fixing holes 121, and the fixing The holes 121 can be fixed in one by a fastener, and the rotor back iron 100 can be fixed.
  • the inner ring side wall 120 defines a shaft hole 122, and the inner ring side wall 122 is provided with a keyway 123 communicating with the shaft hole 122, and the keyway 123 is used to engage with the key of the rotating shaft to prevent The rotating shaft and the rotor rotate in a circumferential direction.
  • the number of the fixing holes 121 may be six, and they are arranged at equidistant intervals along the circumferential direction of the rotor, so as to make the connection stress of the rotor uniform and prevent the rotor from appearing locally during rotation. axial vibration.
  • the distance from the center of the rotor back iron 100 to the center of the fixing hole 121 is greater than or equal to the radius of the rotor back iron 100 , it can be seen that the fixing hole 121 is close to the magnetic steel 200 . Since the magnet steel 200 is close to the outer periphery of the rotor back iron 100, and the outer periphery of the rotor back iron 100 is heavier than the center of the rotor back iron 100, by placing the fixing hole 121 close to the magnet Steel 200 in order to give a boost to the fixing effect of the rotor.
  • the magnetic steel 200 is formed by solidifying the bonded NdFeB mixture, so that the magnetic steel 200 is bonded to the rotor back iron 100 at the same time, and the forming process is simple, ensuring the required size of the rotor
  • the consistency of the magnetic steel also reduces the air gap between the magnetic steel and the rotor back iron, improves the magnetic utilization rate of the magnetic steel, avoids the waste of the magnetic steel, and reduces the cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

本发明提供了一种基于钕铁硼磁钢的转子结构及制造方法,其中所述转子结构包括一转子背铁,所述转子背铁具有一磁钢槽,所述磁钢槽呈环形,注入所述磁钢槽内的粘结钕铁硼混合物固化形成磁钢,所述磁钢采用所述粘结钕铁硼混合物固化形成,以使所述磁钢同时粘结于所述转子背铁,仅成型工艺简便,保证转子所需尺寸的一致性,还减小了所述磁钢与转子背铁的气隙,提高磁钢磁性利用率,避免磁钢浪费,从而减少成本。

Description

基于钕铁硼磁钢的转子结构及制造方法 技术领域
本发明涉及转子技术领域,尤其涉及一种基于钕铁硼磁钢的转子结构及制造方法。
背景技术
径向磁场电机和轴向磁场电机(也叫盘式电机)是电机领域的两大分支,盘式电机在汽车行业,风力发电等领域有广泛的应用,其中盘式电机具有较大的径向尺寸,较小的轴向尺寸,转动惯量大,运行平稳,相较于径向磁场电机,盘式电机具有轴向尺寸短、体积小、重量轻、功率密度高等特点。
从目前盘式电机转子结构来看,磁钢为单片设计,并且每片磁钢通过凹凸结构与所述转子背铁配合,并利用胶水粘结或者机械机构进行定位,以使单片磁钢按照NS极进行排列。其中胶水在长期运行后容易失效,而转子在电机工作过程中处于高速旋转,因此磁钢会出现松动和脱落的现象,从而影响盘式电机的性能。螺栓受安装工艺影响,其在转子高速旋转的过程中也容易发生脱落现象。另外上述工艺复杂,无法保证转子的一致性,并且磁钢利用率较低,还容易造成生产成本高等问题。
发明内容
为了解决上述问题,本发明提供了一种有效提高磁钢利用率,且保证转子尺寸一致性的基于钕铁硼磁钢的转子结构及制造方法。
依本发明的一个方面,本发明提供了一种制造方法,包括:
(a)固定一转子背铁于一模具上,并使所述转子背铁上的磁钢槽暴露于所述模具外部;
(b)形成一粘结钕铁硼混合物,所述粘结钕铁硼混合物藉由一压料装置注入于所述磁钢槽;
(c)对粘结钕铁硼混合物进行固化处理,得到固化后的磁钢并使磁钢一体成型于所述转子背铁,以制得转子结构。
作为优选的技术方案,所述模具具有一限位部,从而所述步骤(a)进一步包括:(a1)所述转子背铁被定位于所述限位部。
作为优选的技术方案,所述步骤(c)进一步包括:
(c1)所述转子背铁相对于所述限位部被顶出于所述模具外;
(c2)所述转子背铁流转至一温控装置,进行所述粘结钕铁硼混合物的固化。
作为优选的技术方案,所述限位部内连接有一顶出件,从而所述步骤(c1)进一步包括:(c11)藉由所述顶出件驱动所述转子背铁被顶出。
作为优选的技术方案,在所述步骤(c)之后进一步包括:
(d)藉由一打磨机打磨所述磁钢的外露表面,并使所述磁钢的外露表面平整地形成。
作为优选的技术方案,在所述步骤(d)之后进一步包括:(e)对所述转子结构进行清洗、电泳和充磁处理。
依本发明的另一个方面,本发明还提供了一种基于钕铁硼磁钢的转子结构,包括一转子背铁,所述转子背铁具有一磁钢槽,所述磁钢槽呈环形,注入所述磁钢槽内的粘结钕铁硼混合物固化形成磁钢。
作为优选的技术方案,所述转子背铁包括一底壁、一内环侧壁和一外环外侧壁,所述底壁呈环形,所述底壁的内外周缘分别同向延伸形成所述内环侧壁和所述外环侧壁,以于所述底壁、所述内环侧壁和所述外环侧壁之间界定所述磁钢槽。
作为优选的技术方案,所述内环侧壁和所述外环侧壁的延伸尺寸一致。
作为优选的技术方案,所述磁钢的外露表面分别与所述内环侧壁和所述外环侧壁齐平。
作为优选的技术方案,所述磁钢沿所述转子轴向上的尺寸大于或等于所述底壁沿所述转子轴向上的尺寸。
作为优选的技术方案,所述外环侧壁与所述内环侧壁分别沿所述转子径向上的尺寸之比不小于1/3。
作为优选的技术方案,所述内环侧壁上开设有若干固定孔。
作为优选的技术方案,多个所述固定孔沿着转子周向等距间隔排列。
作为优选的技术方案,所述转子背铁的中心至所述固定孔中心的距离,其大于或等于所述转子背铁的半径。
作为优选的技术方案,所述内环侧壁界定形成一轴孔,所述内环侧壁上开设有一连通所述轴孔的键槽。
与现有技术相比,本技术方案具有以下优点:
所述粘结钕铁硼混合物是由快淬钕铁硼磁粉和粘结剂混合而成,其中粘结剂可为胶水等,可见填充于所述磁钢槽内的所述粘结钕铁硼混合物在温控作用下经历液态至固态的转化过程而固化,进而形成磁钢,并且利用所述粘结钕铁硼混合物的粘性,以使成型的磁钢同时粘结固定于所述转子背铁上,不仅成型工艺简便,保证转子所需尺寸的一致性,还减小了所述磁 钢与转子背铁的气隙,提高磁钢磁性利用率,避免磁钢浪费,从而减少成本。
以下结合附图及实施例进一步说明本发明。
附图说明
图1为本发明所述制造方法的流程图;
图2为本发明所述基于钕铁硼磁钢的转子结构的结构示意图;
图3为本发明所述基于钕铁硼磁钢的转子结构的剖视图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
如图1所示,所述制造方法,包括:
(a)固定一转子背铁于一模具上,并使所述转子背铁上的磁钢槽暴露于所述模具外部;
(b)形成一粘结钕铁硼混合物,所述粘结钕铁硼混合物藉由一压料装置注入于所述磁钢槽;
(c)对粘结钕铁硼混合物进行固化处理,得到固化后的磁钢并使磁钢一体成型于所述转子背铁,以制得转子结构。
所述粘结钕铁硼混合物是由快淬钕铁硼磁粉和粘结剂混合而成,其中粘结剂可为胶水等,可见填充于所述磁钢槽内的所述粘结钕铁硼混合物在温控作用下经历液态至固态的转化过程而固化,进而形成磁钢,并且利用所述粘结钕铁硼混合物的极强的粘结性能,以使成型的磁钢同时粘结固定于所述转子背铁上,不仅成型工艺简便,保证转子所需尺寸的一致性,还减小了所述磁钢与转子背铁的气隙,提高磁钢磁性利用率,避免磁钢浪费,从而减少成本。
所述模具可固定一工作台上,所述模具远离工作台的端面上可设置一限位部,从而所述步骤(a)进一步包括:(a1)所述转子背铁被定位于所述限位部。
通过设置所述限位部,以防止固定在所述模具上的转子背铁发生位移,而影响后续压料装置对所述磁钢槽进行粘结钕铁硼混合物的注入。其中所述限位部可以为槽,所述槽与所述转子背铁的形状相适配,可均呈圆形。即所述转子背铁远离所述磁钢槽的一侧内嵌于所述槽内,以使所述磁钢槽暴露于所述模具外部。所述槽的深度较浅,可以小于或等于所述转子背 铁沿轴向尺寸的1/5,防止所述槽的深度较深,而影响后续的顶出。
在所述步骤(b)中,所述粘结钕铁硼混合物可存储于所述压料装置内,通过所述压料装置移动至于所述磁钢槽相对时,向所述磁钢槽内注入所述粘结钕铁硼混合物,并复位。当然所述压料装置可保持在所述模具的上方,当所述模具上固定所述转子背铁后,所述压料装置直接向所述磁钢槽内注入所述粘结钕铁硼混合物。
进一步地,利用所述压料装置,可在所述磁钢槽内注入且形成多处且间隔设置的粘结钕铁硼混合物区域,以待形成多个间隔设置的扇形磁钢。当然可在所述磁钢槽内注入且形成一环形的粘结钕铁硼混合物区域,以待形成一个环形磁钢。因此可根据需要,制成相对复杂的磁钢结构,并能实现多样化多级充磁取向。
所述步骤(c)进一步包括:
(c1)所述转子背铁相对于所述限位部被顶出于所述模具外;
(c2)所述转子背铁流转至一温控装置,进行所述粘结钕铁硼混合物的固化。
所述转子背铁在注入所述粘结钕铁硼混合物后,从所述模具上脱离,然后流转至所述温控装置,由所述温控装置对所述粘结钕铁硼混合物进行固化,以获得成型的所述磁钢。
所述转子背铁从所述模具上的脱离可手动或自动完成,其中自动可藉由一顶出件完成,具体地,所述限位部内连接有一顶出件,从而所述步骤(c1)进一步包括:(c11)藉由所述顶出件驱动所述转子背铁被顶出。
更具体地,所述顶出件可内嵌于所述限位部内,当执行顶出作业时,所述顶出件伸出至所述限位部内,以使所述转子背铁从所述限位部内被顶出。所述顶出件可由气缸或电机带动,并且所述顶出件可由橡胶等软性材质制成,以防止与所述转子背铁硬性接触,而造成所述转子背铁的损坏。
在所述步骤(c2)中,所述转子背铁的流程可由手动或自动完成,其中自动可藉由一输送带进行输送。所述温控装置可以为一烘箱。烘箱对所述粘结钕铁硼混合物固化的温度和时间可根据所述粘结钕铁硼混合物的体积决定。
在所述步骤(c)之后进一步包括:
(d)藉由一打磨机打磨所述磁钢的外露表面,并使所述磁钢的外露表面平整地形成。从而保证平面度和平行度,进一步保证转子所需要尺寸一致性。
作为优选的技术方案,在所述步骤(d)之后进一步包括:(e)对所述转子结构进行清洗、电泳以完成表面涂覆,最后进行整体充磁。
综上所述,所述粘结钕铁硼混合物是由快淬钕铁硼磁粉和粘结剂混合而成,其中粘结剂 可为胶水等,可见填充于所述磁钢槽内的所述粘结钕铁硼混合物在温控作用下经历液态至固态的转化过程而固化,进而形成磁钢,并且利用所述粘结钕铁硼混合物的粘性,以使成型的磁钢同时粘结固定于所述转子背铁上,不仅成型工艺简便,保证转子所需尺寸的一致性,还减小了所述磁钢与转子背铁的气隙,提高磁钢磁性利用率,避免磁钢浪费,从而减少成本。
如图2和图3所示,所述基于钕铁硼磁钢的转子结构,包括一转子背铁100,所述转子背铁100具有一磁钢槽1000,所述磁钢槽1000呈环形,注入所述磁钢槽1000内的粘结钕铁硼混合物固化形成磁钢200,并使磁钢200一体成型于所述转子背铁100。
所述磁钢200采用所述粘结钕铁硼混合物固化形成,以使所述磁钢200同时粘结于所述转子背铁100,仅成型工艺简便,保证转子所需尺寸的一致性,还减小了所述磁钢与转子背铁的气隙,提高磁钢磁性利用率,避免磁钢浪费,从而减少成本。
如图2和图3所示,所述转子背铁100包括一底壁110、一内环侧壁120和一外环外侧壁130,所述底壁110呈环形,所述底壁110的内外周缘分别同向延伸形成所述内环侧壁120和所述外环侧壁130,以于所述底壁110、所述内环侧壁120和所述外环侧壁130之间界定所述磁钢槽1000。
由于所述底壁110、所述内环侧壁120和所述外环侧壁130均呈环形,因此界定的所述磁钢槽1000也呈环形。参考图3,所述内环侧120和所述外环侧壁130的延伸尺寸一致,即所述内环侧壁120和所述外环侧壁130沿所述转子轴向尺寸一致,及所述内环侧壁120和所述外环侧壁130分别远离所述底壁110的一侧齐平,以保证转子的平行度和平面度,避免转子平面度较差而产生旋转振动和噪声。
优选地,所述磁钢200的外露表面分别与所述内环侧壁120和所述外环侧壁130齐平。其中所述磁钢200的外露表面指的是,保持在所述钢槽1000内的所述磁钢200,其背离所述底壁110的一侧,可见,所述磁钢200、所述内环侧壁120和所述外环侧壁130分别远离所述底壁110的一侧齐平,进一步保证转子的平面度。
如图3所示,所述磁钢200沿所述转子轴向上的尺寸大于或等于所述底壁110沿所述转子轴向上的尺寸,防止所述磁钢200沿所述转子轴向上的尺寸过小,而影响所述磁钢200充磁后的性能,同时防止所述底壁110沿所述转子轴向上的尺寸过小,而影响所述转子背铁100结构强度。
如图2所示,所述外环侧壁130与所述内环侧壁120分别沿所述转子径向上的尺寸之比不小于1/3。
可见所述内环侧壁120的面积较大,可在其开设固定孔121以及形成连接转轴的轴孔 122,具体地,所述内环侧壁120上开设有若干固定孔121,所述固定孔121可通过紧固件固定于一,可对所述转子背铁100进行固定。所述内环侧壁120界定形成一轴孔122,所述内环侧壁122上开设有一连通所述轴孔122的键槽123,所述键槽123用于与所述转轴的键契合,以防止所述转轴和所述转子发生周向转动。
继续参考图2,所述固定孔121的数量可为六个,且沿着所述转子周向等距间隔排列,以使所述转子的连接应力均匀,防止所述转子在转动过程中出现局部轴向振动。
继续参考图2,所述转子背铁100的中心至所述固定孔121中心的距离,其大于或等于所述转子背铁100的半径,可见所述固定孔121靠近所述磁钢200。由于所述磁钢200靠近所述转子背铁100的外周缘,及所述转子背铁100的外周缘相对于转子背铁100的中心重量较重,通过将所述固定孔121靠近所述磁钢200,以使提升所述转子的固定效果。
综上所述,所述磁钢200采用所述粘结钕铁硼混合物固化形成,以使所述磁钢200同时粘结于所述转子背铁100,仅成型工艺简便,保证转子所需尺寸的一致性,还减小了所述磁钢与转子背铁的气隙,提高磁钢磁性利用率,避免磁钢浪费,从而减少成本。
以上所述的实施例仅用于说明本发明的技术思想及特点,其目的在于使本领域内的技术人员能够了解本发明的内容并据以实施,不能仅以本实施例来限定本发明的专利采用范围,即凡依本发明所揭示的精神所作的同等变化或修饰,仍落在本发明的专利范围内。

Claims (10)

  1. 一种制造方法,其特征在于,包括:
    (a)固定一转子背铁于一模具上,并使所述转子背铁上的磁钢槽暴露于所述模具外部;
    (b)形成一粘结钕铁硼混合物,所述粘结钕铁硼混合物藉由一压料装置注入于所述磁钢槽;
    (c)对粘结钕铁硼混合物进行固化处理,得到固化后的磁钢并使磁钢一体成型于所述转子背铁,以制得转子结构。
  2. 如权利要求1所述的制造方法,其特征在于,所述模具具有一限位部,从而所述步骤
    (a)进一步包括:(a1)所述转子背铁被定位于所述限位部。
  3. 如权利要求2所述的制造方法,其特征在于,所述步骤(c)进一步包括:
    (c1)所述转子背铁相对于所述限位部被顶出于所述模具外;
    (c2)所述转子背铁流转至一温控装置,进行所述粘结钕铁硼混合物的固化。
  4. 如权利要求3所述的制造方法,其特征在于,所述限位部内连接有一顶出件,从而所述步骤(c1)进一步包括:(c11)藉由所述顶出件驱动所述转子背铁被顶出。
  5. 如权利要求1所述的制造方法,其特征在于,在所述步骤(c)之后进一步包括:
    (d)藉由一打磨机打磨所述磁钢的外露表面,并使所述磁钢的外露表面平整地形成。
  6. 如权利要求5所述的制造方法,其特征在于,在所述步骤(d)之后进一步包括:(e)对所述转子结构进行清洗、电泳和充磁处理。
  7. 一种基于钕铁硼磁钢的转子结构,其特征在于,包括一转子背铁,所述转子背铁具有一磁钢槽,所述磁钢槽呈环形,注入所述磁钢槽内的粘结钕铁硼混合物固化形成磁钢。
  8. 如权利要求7所述的基于钕铁硼磁钢的转子结构,其特征在于,所述转子背铁包括一底壁、一内环侧壁和一外环外侧壁,所述底壁呈环形,所述底壁的内外周缘分别同向延伸形成所述内环侧壁和所述外环侧壁,以于所述底壁、所述内环侧壁和所述外环侧壁之间界定所述磁钢槽。
  9. 如权利要求8所述的基于钕铁硼磁钢的转子结构,其特征在于,所述磁钢的外露表面分别与所述内环侧壁和所述外环侧壁齐平。
  10. 如权利要求8所述的基于钕铁硼磁钢的转子结构,其特征在于,所述外环侧壁与所述内环侧壁分别沿转子径向上的尺寸之比不小于1/3。
PCT/CN2021/117973 2021-07-09 2021-09-13 基于钕铁硼磁钢的转子结构及制造方法 WO2023279525A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110779000.6 2021-07-09
CN202110779000.6A CN113437843A (zh) 2021-07-09 2021-07-09 基于钕铁硼磁钢的转子结构及制造方法

Publications (1)

Publication Number Publication Date
WO2023279525A1 true WO2023279525A1 (zh) 2023-01-12

Family

ID=77760001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117973 WO2023279525A1 (zh) 2021-07-09 2021-09-13 基于钕铁硼磁钢的转子结构及制造方法

Country Status (2)

Country Link
CN (1) CN113437843A (zh)
WO (1) WO2023279525A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134311A (ja) * 2000-10-30 2002-05-10 Matsushita Electric Ind Co Ltd 希土類樹脂ボンド磁石用組成物および希土類樹脂ボンド磁石埋設型回転子
US6387294B1 (en) * 1999-10-15 2002-05-14 Matsushita Electric Industrial Co., Ltd. Rare earth resin magnet, magnet rotor, magnet motor using the same, and its manufacturing method
CN202019248U (zh) * 2010-09-21 2011-10-26 中山市港联华凯电器制品有限公司 一种用于装饰吊扇的直流电机的转子
CN104835607A (zh) * 2015-05-11 2015-08-12 杭州奥普卫厨科技有限公司 钕铁硼永磁材料及直流电机转子的制造方法
CN107733113A (zh) * 2017-11-14 2018-02-23 利欧集团浙江泵业有限公司 新型电机转子冲片及其制备工艺
CN212969210U (zh) * 2020-07-16 2021-04-13 江门市邦特电子电器有限公司 一种永磁环及其应用的电机和制造的模具
CN215071857U (zh) * 2021-07-09 2021-12-07 浙江盘毂动力科技有限公司 一种基于钕铁硼磁钢的转子结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901322A (zh) * 2006-07-24 2007-01-24 广州金南磁塑有限公司 模压复合粘结磁瓦及其制备方法
JP5900528B2 (ja) * 2014-04-02 2016-04-06 愛知製鋼株式会社 内包磁石型インナーロータの製造装置
CN105405570B (zh) * 2014-09-12 2017-07-25 上海日立电器有限公司 压缩机用粘结钕铁硼环形磁铁的充磁方法
JP6939042B2 (ja) * 2017-04-20 2021-09-22 株式会社ジェイテクト ボンド磁石の射出成形装置及びボンド磁石の射出成形方法
CN209001700U (zh) * 2018-11-23 2019-06-18 擎声自动化科技(上海)有限公司 转子磁钢与转盘的固定结构
CN111509883A (zh) * 2019-01-31 2020-08-07 上海盘毂动力科技股份有限公司 一种转子组件以及轴向磁场电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387294B1 (en) * 1999-10-15 2002-05-14 Matsushita Electric Industrial Co., Ltd. Rare earth resin magnet, magnet rotor, magnet motor using the same, and its manufacturing method
JP2002134311A (ja) * 2000-10-30 2002-05-10 Matsushita Electric Ind Co Ltd 希土類樹脂ボンド磁石用組成物および希土類樹脂ボンド磁石埋設型回転子
CN202019248U (zh) * 2010-09-21 2011-10-26 中山市港联华凯电器制品有限公司 一种用于装饰吊扇的直流电机的转子
CN104835607A (zh) * 2015-05-11 2015-08-12 杭州奥普卫厨科技有限公司 钕铁硼永磁材料及直流电机转子的制造方法
CN107733113A (zh) * 2017-11-14 2018-02-23 利欧集团浙江泵业有限公司 新型电机转子冲片及其制备工艺
CN212969210U (zh) * 2020-07-16 2021-04-13 江门市邦特电子电器有限公司 一种永磁环及其应用的电机和制造的模具
CN215071857U (zh) * 2021-07-09 2021-12-07 浙江盘毂动力科技有限公司 一种基于钕铁硼磁钢的转子结构

Also Published As

Publication number Publication date
CN113437843A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
CN102280975B (zh) 电机定子铁芯灌封工艺
US20040195924A1 (en) Electric motor and method for producing a rotor for such an electric motor
CA2485765A1 (en) Spoke permanent magnet rotors for electrical machines and methods of manufacturing same
WO2023279525A1 (zh) 基于钕铁硼磁钢的转子结构及制造方法
CN206048451U (zh) 一种旋转离心式注浆设备
KR101728543B1 (ko) 모터의 회전자
CN206054323U (zh) 一种具有简单高效转子的微型泵
WO2012119284A1 (zh) 一种无刷电机外转子及其制造方法
CN110211796A (zh) 径向各向异性多极实心磁体及其生产方法和设备
CN201341045Y (zh) 一种无刷直流电机转子
CN215071857U (zh) 一种基于钕铁硼磁钢的转子结构
CN202231512U (zh) 一种转子组件结构
CN204597662U (zh) 一种整体式的永磁无刷直流电机转子
CN207972100U (zh) 一种陶瓷工艺品灌浆架
CN216054094U (zh) 一种粘结钕铁硼磁体及应用该磁体的转子组件
CN204156632U (zh) 一种动子结构及直线电机
CN206506425U (zh) 一种内定子电机定子绕组树脂浇注装置
CN211515985U (zh) 一种拼接式减重模芯
CN105914971A (zh) 一种盘式无铁芯永磁电机的绕组加工方法
CN2720702Y (zh) 采用复合结构的永磁电机转子
CN106849430A (zh) 电机用转子、电动机、发电机及电机用转子的制造方法
CN210110512U (zh) 一种各向异性烧结永磁铁氧体径向取向多极磁环成型模具
JPS6142249A (ja) 永久磁石付回転子の製造方法
CN207344803U (zh) 一种带定位销的陶瓷生产模具
CN206575239U (zh) 一种电动汽车电机防退磁的定子磁钢结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE