WO2023279490A1 - 菌落涂布工艺及菌落培养工艺 - Google Patents

菌落涂布工艺及菌落培养工艺 Download PDF

Info

Publication number
WO2023279490A1
WO2023279490A1 PCT/CN2021/113681 CN2021113681W WO2023279490A1 WO 2023279490 A1 WO2023279490 A1 WO 2023279490A1 CN 2021113681 W CN2021113681 W CN 2021113681W WO 2023279490 A1 WO2023279490 A1 WO 2023279490A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
coating
colony
channel
coating process
Prior art date
Application number
PCT/CN2021/113681
Other languages
English (en)
French (fr)
Inventor
张智彧
司同
蓝云泉
敬丹婷
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2023279490A1 publication Critical patent/WO2023279490A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/48Holding appliances; Racks; Supports
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/10Petri dish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/22Settling tanks; Sedimentation by gravity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates to the technical field of biological experiments, in particular to a colony coating process and a colony cultivation process.
  • the traditional coating process is: the experimental technician uses a hand-held coating stick to coat back and forth.
  • the traditional coating process is time-consuming and has low throughput. It often becomes the bottleneck of the experimental throughput in the related molecular biology experiment process, which limits the improvement of the experimental throughput.
  • the purpose of the present invention is to provide a colony coating process and a colony culture process to alleviate the technical problem of relatively low coating efficiency in molecular biology experiments.
  • the present invention provides a kind of colony coating process, the petri dish used in the colony coating process is provided with a culture channel; the colony coating process comprises:
  • the bacteria solution is allowed to flow along the culture channel by gravity to achieve coating
  • the present invention provides a kind of colony cultivation process
  • the petri dish used in the colony cultivation process is provided with a plurality of cultivation passages, and the cultivation passage has a coating beginning and a coating termination
  • the colony cultivation process comprises:
  • Step S10 setting the petri dish obliquely relative to the horizontal plane, and the coating start end is located above the coating end point;
  • Step S20 pipetting the bacterial liquid from the coating start to the culture channel, and the bacterial liquid flows along the culture channel to the coating terminal;
  • Step S30 adjusting the culture dish to a horizontal state
  • Step S40 placing the culture dish in a constant temperature environment for cultivation
  • Step S50 performing monoclonal picking.
  • Each culture channel 11 is set independently to avoid cross-infection
  • the throughput is relatively high, and the coating efficiency is relatively high, which is conducive to improving the experimental throughput of biological experiments and can realize automatic operation;
  • the inclination angle can be adjusted for different bacterial liquids to achieve ideal coating effects.
  • Fig. 1A is the schematic diagram of the colony coating process provided by the present invention.
  • Figure 1B is a schematic diagram of the colony culture process provided by the present invention.
  • Fig. 2-Fig. 3 is the structural representation of supporting device
  • Fig. 4-Fig. 5 is the structural representation of petri dish
  • Fig. 6 is a schematic diagram of the connection between the support device and the culture dish.
  • the present invention provides a kind of bacterial colony coating process
  • the petri dish 10 used in this bacterial colony coating process is provided with a plurality of culture passages 11, and culture passage 11 has coating beginning 111 and coating end 112, as shown in Figure 1A
  • the colony coating process includes: step S10, setting the petri dish 10 obliquely relative to the horizontal plane, and the coating starting end 111 is located above the coating terminal 112; step S20, transferring the bacterial liquid from the coating starting end 111 to the culture channel 11, The bacterial solution flows along the culture channel 11 to the coating terminal 112; step S30, adjusting the culture dish 10 to a horizontal state.
  • the culture channel 11 in the culture dish 10 is adjusted to an inclined state, and the bacterial liquid is added to the coating start 111 of the culture channel 11, and gravity is used to make the bacterial liquid flow to the coating terminal 112, which can make the bacteria
  • the solution can be quickly separated to achieve the effect of coating, and it is ensured that cross-contamination does not occur between the various culture channels 11.
  • the colony coating process has the following advantages: (1) the operation is relatively simple, and the operation of coating back and forth with a hand-held coating rod is omitted, and the bacterial solution flows under the action of gravity, thereby being distributed on the cultivation channel 11, thereby eliminating external force; (2) The coating process can realize the separation of single clones, which is convenient for picking single clones in subsequent experiments; (3) Each culture channel 11 is set independently to avoid cross-infection; (4) The throughput is relatively high, and the coating efficiency is relatively high High, which is conducive to improving the experimental throughput of biological experiments and can realize automatic operation; (5) By controlling the tilt angle, the tilt angle can be adjusted for different bacterial liquids to achieve the ideal coating effect.
  • each culture channel 11 Considering that if each culture channel 11 is connected, the risk of cross-contamination of the bacterial solution in each culture channel 11 will be increased. Therefore, in general, the coating start 111 of each culture channel 11 can be separated from each other, and each culture channel The coating terminals 112 of 11 are also isolated from each other to ensure that no cross-contamination occurs between the various culture channels 11 .
  • the inventor has made further improvement to the culture channel 11: the coating terminals 112 of each culture channel 11 are connected; the colony coating process also includes: step S01, from the coating terminal 112 to Each culture passage 11 adds culture medium; Step S01 implements before step S10, adds culture medium in a region of culture dish 10, culture medium can flow between each culture passage 11, makes culture medium evenly distributed in culture dish 10, The operation of adding culture medium one by one to each culture channel 11 can be omitted, which simplifies the operation of adding culture medium; and, in the colony coating process, by adjusting the inclination angle of the culture dish 10 relative to the horizontal plane, the liquid addition amount of the bacterial solution, And the time during which the culture dish 10 is kept in an inclined state, so that the bacterial liquid stops flowing when it is close to the coating terminal 112, thereby avoiding contamination of the bacterial liquid. Therefore, on the one hand, the colony coating process can conveniently add
  • the culture dish 10 is provided with a transverse channel 12, and the coating terminal 112 of each culture channel 11 is connected with the transverse channel 12; in step S01, a culture medium is added to the transverse channel 12, and the culture medium flows through the transverse channel 12 to each culture medium.
  • Channel 11 During implementation, the medium can be poured into the transverse channel 12 first, and the medium in the transverse channel 12 flows from the coating end 112 of each culture channel 11 to the coating start 111 .
  • the transverse channel 12 provides space for the operator to pour the culture medium, and an automatic liquid dispenser can also be used for the culture medium distribution.
  • step S01 the culture dish 10 is arranged obliquely relative to the horizontal plane, the coating end 112 is located above the coating start 111, and the culture medium added to the transverse channel 12 flows to each culture channel under its own gravity 11.
  • the coating end points 112 of the respective culture channels 11 of the culture dish 10 are connected, and the coating start ends 111 are separated from each other. If the bacterial solution is added from the end of the coating, the bacterial solution will reach the beginning of the coating due to gravity. In the case of a large amount of bacterial solution, it is easy to wait for a long time before the bacterial solution is still not dry, which is not conducive to the next step of colony cultivation. In this colony coating process, liquid is added from the coating start end 111, and the connecting area outside the coating terminal 112 can play a buffer role, which is beneficial to ensure the bacterial liquid at the coating terminal 112 when the amount of bacterial liquid is large. It dries faster, which is conducive to the next step of colony cultivation.
  • step S20 the same bacterial liquid is dripped into each culture channel 11 at the same time, and the bacterial liquid flows in each culture channel 11 to ensure that when the culture dish 10 is adjusted to a horizontal state, the bacterial liquid in each culture channel 11 has been evenly distributed. .
  • each culture channel 11 extends along a straight line, and the bacterial liquid flows along the culture channel 11 under the action of its own weight, ensuring uniform distribution of the bacterial liquid, which is more conducive to the separation of the bacterial liquid.
  • Each culture channel 11 is distributed in parallel, preferably, the distribution direction of each culture channel 11 is perpendicular to the extension direction of the culture channel 11 .
  • the culture dish 10 is provided with 8 culture channels 11 arranged in parallel in horizontal rows, which can cooperate with the 8-channel liquid-adding mechanical arm arranged vertically in the automatic workstation.
  • each culture channel 11 is equal from the coating start 111 to the coating end 112 , so as to make the bacteria solution in each culture channel 11 evenly distributed.
  • the culture channels 11 of the same culture dish 10 can separate different samples.
  • the bacterial solutions added to the culture channels 11 of the same culture dish 10 are different.
  • the widths of the culture channels 11 of the same culture dish 10 can be set to be unequal.
  • the petri dish 10 is installed on the supporting device 20 , and in step S10 and step S30 , the angle of the petri dish 10 relative to the horizontal plane is adjusted through the supporting device 20 .
  • the culture dish 10 can be detachably connected with the supporting device 20 .
  • the supporting device 20 includes a plate frame 21 and a rotating mechanism 30 , the plate frame 21 is used to carry the culture dish 10 , and the rotating mechanism 30 is used to drive the plate frame 21 to rotate.
  • the support device 20 it is convenient to flexibly adjust the angle of the culture dish 10 relative to the horizontal plane. Due to the different liquid fluid properties of the experimental strains, the inclination angle can be dynamically adjusted, which is convenient for the operator to optimize the inclination angle for different strains and better adapt to the experimental needs.
  • the supporting device 20 can use the driving software to adjust the inclination angle quickly and conveniently.
  • the rotating mechanism 30 includes a rotating main shaft 31 and a motor 32, the plate frame 21 is installed on the rotating main shaft 31, and the motor 32 is connected to the rotating main shaft 31; the extension direction of each culture channel 11 is perpendicular to the longitudinal direction of the rotating main shaft 31.
  • the rotating main shaft 31 is parallel to the main shaft of the motor 32 , and the rotating main shaft 31 and the main shaft of the motor 32 are connected through a pulley mechanism 33 .
  • the pulley mechanism 33 includes a small pulley 331 connected to the motor 32 and a large pulley 332 connected to the rotating main shaft 31 , the small pulley 331 and the large pulley 332 are connected through a timing belt 333 .
  • the pulley mechanism 33 also includes a tension pulley 334 .
  • the supporting device 20 also includes a base plate 41 and bearings 42 installed at both ends of the rotating main shaft 31, the bearings 42 are fixed on the base plate 41; Rotary main shaft 31; Supporting device 20 comprises the sensor 44 that is used to detect the rotational angle of rotary main shaft 31, and the sensor contact piece 441 of sensor 44 is installed on the main shaft 31 of rotation; Motor 32 is installed on base plate 41 by motor seat 321; Small pulley 331 A reducer 322 is arranged between the main shaft of the motor 32 ; a supporting column 45 is arranged on the bottom plate 41 , and the supporting column 45 can support the bottom plate 41 when the bottom plate 41 rotates to the horizontal.
  • the plate frame 21 is provided with a plurality of positioning grooves 211 for accommodating the culture dish 10, through the positioning grooves 211, the culture dish 10 is positioned, and it is convenient to install the culture dish 10 with the supporting device 20 and remove the culture dish 10; a plurality of positioning slots 211 can be distributed along the axial direction of the rotating shaft 31.
  • the rotating mechanism 30 can be disposed in the shield 46 , and the shield 46 is connected with a handle 461 .
  • This colony culture process is tilt followed by pipetting.
  • the supporting device 20 and the petri dish 10 shown in Figure 6 after adding the bacteria liquid on the fourth petri dish 10 on the supporting device 20, the first three petri dishes 10 have been coated and can be taken down for the next step Cultivate, the vacated positioning groove can then put down a batch of petri dishes 10, more time-saving.
  • the present invention provides a kind of bacterial colony cultivation process, the petri dish 10 used in this bacterial colony cultivation process is provided with a plurality of cultivation passages 11, and cultivation passage 11 has coating starting end 111 and coating termination 112, as shown in Figure 1B, the bacterial colony
  • the cultivation process includes: step S10, setting the petri dish 10 obliquely relative to the horizontal plane, and the coating starting end 111 is located above the coating terminal 112;
  • the culture channel 11 flows to the coating terminal 112; step S30, adjust the culture dish 10 to a horizontal state; step S40, place the culture dish 10 in a constant temperature environment for cultivation; step S50, perform single clone picking.
  • the colony culture process adopts the above-mentioned colony coating process. After the coating is completed, a certain number of single clones are produced after a period of cultivation.
  • the colony culture process can meet the needs of automatic microbial coating and colony picking, and can be used in practice; it can replace traditional manual coating and colony picking, and solve the problem of low number of single clones and the consumption of microbial coating process in the prior art. Time problems; the overall process is simple, the actual operation is convenient, and the applicability is wide; the overall cost is relatively low.
  • the colony culture process promotes the construction of a high-throughput automation platform, which is of great significance to the research of synthetic biology.
  • the petri dish 10 and the supporting device 20 can cooperate with the automatic pipetting workstation, and the bacterial liquid coating can be completed by pipetting after automatic tilting, which improves the coating efficiency.
  • the partition picking function of the automated clone picking instrument can be used to pick single clones from each culture channel 11 of the culture dish 10 .
  • This bacterium colony cultivation process can be implemented according to the following flow: first edit the software script by the technician, the action of support device 20 is controlled; Petri dish 10 is put into support device 20, and the initial state of culture dish 10 is set as horizontal state; Use The automatic pipetting workstation absorbs a certain volume of bacterial liquid, and after the support device 20 is tilted to set the angle, the bacterial liquid is transferred to the culture channel 11 of the petri dish 10; the bacterial liquid flows along the culture channel 11 due to gravity, achieving coating separation The effect of monoclonal; Then, the support device 20 drives the culture dish 10 to return to the initial state position; Constant temperature environment culture; Use the regional picking (regional picking) function of the automatic picking cloning instrument of Meigu Molecular Instruments to the culture channel of the culture dish 10 The clones within 11 can be picked accurately, realizing the automatic process of transferring from solid medium to liquid medium, and fully realizing automatic colony coating and picking. It can achieve 2000 monoclonal picking in 1 hour and 700 monoclonal coating

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明提供了一种菌落涂布工艺及菌落培养工艺,涉及生物学实验的技术领域,该菌落涂布工艺所使用的培养皿设有培养通道;该菌落涂布工艺:通过所述培养皿相对于水平面倾斜设置,使菌液利用重力沿所述培养通道流淌以实现涂布;通过将所述培养皿调整至水平状态,使菌液在所述培养通道中保持静止。通过本发明,缓解了分子生物学实验中涂布效率比较低的技术问题。

Description

菌落涂布工艺及菌落培养工艺
相关申请
本申请要求专利申请号为202110769210.7、申请日为2021.07.07、发明名称为“菌落涂布工艺及菌落培养工艺”的中国发明专利的优先权。
技术领域
本发明涉及生物学实验的技术领域,尤其是一种菌落涂布工艺及菌落培养工艺。
背景技术
菌落的克隆铺板及单克隆挑取中,需要先将菌液涂布到培养基上,传统的涂布工艺为:由实验技术人员借助手持涂布棒来回涂布的方式实现。传统的涂布工艺费时且通量低,在相关分子生物学实验流程中往往成为实验通量的瓶颈所在,限制了实验通量的提高。
发明内容
本发明的目的是提供一种菌落涂布工艺及菌落培养工艺,以缓解分子生物学实验中涂布效率比较低的技术问题。
本发明的上述目的可采用下列技术方案来实现:
本发明提供一种菌落涂布工艺,所述菌落涂布工艺所使用的培养皿设有培养通道;所述菌落涂布工艺包括:
通过所述培养皿相对于水平面倾斜设置,使菌液利用重力沿所述培养通道流淌以实现涂布;
通过将所述培养皿调整至水平状态,使菌液在所述培养通道中保持静止。
本发明提供一种菌落培养工艺,所述菌落培养工艺所使用的培养皿设有多个培养通道,所述培养通道具有涂布始端和涂布终端,该菌落培养工艺包括:
步骤S10,将所述培养皿相对于水平面倾斜设置,所述涂布始端位于所述涂布终端的上方;
步骤S20,自所述涂布始端将菌液移液至所述培养通道,所述菌液沿所述培养 通道流向所述涂布终端;
步骤S30,调整所述培养皿至水平状态;
步骤S40,将所述培养皿置于恒温环境培养;
步骤S50,进行单克隆挑取。
本发明的特点及优点是:
(1)操作比较简便,省去了手持涂布棒来回涂布的操作,菌液在重力作用下流淌,从而分布在培养通道上,省去了外力;
(2)涂布工艺能实现单克隆的分离,便于后续实验进行挑取单克隆;
(3)各个培养通道11独立设置,可以避免发生交叉感染;
(4)通量比较高,涂布效率比较高,有利于提高生物学实验的实验通量,能实现自动化操作;
(5)通过对倾斜角度进行控制,可以对不同的菌液调整倾斜角度来实现理想的涂布效果。
附图说明
以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中:
图1A为本发明提供的菌落涂布工艺的示意图;
图1B为本发明提供的菌落培养工艺的示意图;
图2-图3为支撑装置的结构示意图;
图4-图5为培养皿的结构示意图;
图6为支撑装置与培养皿的连接示意图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
实施例一
本发明提供了一种菌落涂布工艺,该菌落涂布工艺所使用的培养皿10设有多个培养通道11,培养通道11具有涂布始端111和涂布终端112,如图1A所示,该菌落涂布工艺包括:步骤S10,将培养皿10相对于水平面倾斜设置,涂布始端111位于涂布终端 112的上方;步骤S20,自涂布始端111将菌液移液至培养通道11,菌液沿培养通道11流向涂布终端112;步骤S30,调整培养皿10至水平状态。
该菌落涂布工艺中,培养皿10中的培养通道11被调整为倾斜状态,将菌液加入至培养通道11的涂布始端111,利用重力使得菌液向涂布终端112流淌,可以使菌液快速分离,达到涂布的效果,并且保障各个培养通道11之间不会发生交叉污染。该菌落涂布工艺具有以下优点:(1)操作比较简便,省去了手持涂布棒来回涂布的操作,菌液在重力作用下流淌,从而分布在培养通道11上,省去了外力;(2)涂布工艺能实现单克隆的分离,便于后续实验进行挑取单克隆;(3)各个培养通道11独立设置,可以避免发生交叉感染;(4)通量比较高,涂布效率比较高,有利于提高生物学实验的实验通量,能实现自动化操作;(5)通过对倾斜角度进行控制,可以对不同的菌液调整倾斜角度来实现理想的涂布效果。
考虑到如果各个培养通道11相连通,会增大各个培养通道11中的菌液发生交叉污染的风险,因此,通常情况下,可以使各个培养通道11的涂布始端111相互隔断,各个培养通道11的涂布终端112也相互隔断,以保障各个培养通道11之间不会发生交叉污染。
如图4和图5所示,相邻两个培养通道11通过隔板13被分隔开。在本发明的一实施方式中,发明人对培养通道11作了进一步的改进:各个培养通道11的涂布终端112相连通;该菌落涂布工艺还包括:步骤S01,自涂布终端112向各个培养通道11加入培养基;步骤S01在步骤S10之前实施,在培养皿10的一个区域加入培养基,培养基可以在各个培养通道11之间流动,使培养基在培养皿10内分布均匀,可以省去向各个培养通道11逐个添加培养基的操作,简化了添加培养基的操作;并且,该菌落涂布工艺中,通过调整培养皿10相对于水平面的倾斜角度、菌液的加液量、以及培养皿10保持倾斜状态的时间,使菌液流淌至接近涂布终端112时停止流淌,从而避免了菌液发生污染。因此,该菌落涂布工艺一方面能够比较方便地添加培养基和涂布菌液,进而达到理想的菌液涂布效果;另一方面可以保障各个培养通道11不会发生交叉污染。
进一步地,培养皿10设有横向通道12,各个培养通道11的涂布终端112均与横向通道12连通;步骤S01中,向横向通道12中加入培养基,培养基经横向通道12流向各个培养通道11。实施时,可以先将培养基倾倒至横向通道12中,横向通道12中的培养基自各个培养通道11的涂布终端112流向涂布始端111。横向通道12给操作人员提供了倾倒培养基的空间,也可以采用自动分液器进行培养基分装。
在一实施方式中,步骤S01中,将培养皿10相对于水平面倾斜设置,涂布终端112位于涂布始端111的上方,加入至横向通道12的培养基,在自身重力作用下流向各个培养通道11。
培养皿10的各个培养通道11的涂布终端112相连通,涂布始端111相隔断。如果从涂布终端加菌液,菌液因为重力到达涂布始端,在菌液量较多的情况下,容易出现等待较长时间后菌液仍没有干,不利于下一步菌落培养。该菌落涂布工艺,从涂布始端111进行加液,涂布终端112外的连通区域可以起到缓冲的作用,有利于在菌液量较多的情况下,保障涂布终端112的菌液干得更快,有利于下一步的菌落培养。
步骤S20中,向各个培养通道11同时滴入同一菌液,菌液在各个培养通道11中流动,以保障培养皿10调整至水平状态时,各个培养通道11中的菌液均已均匀分布开。
如图4和图5所示,各个培养通道11均沿直线延伸,菌液在自重作用下沿培养通道11流淌,保障菌液分布均匀,会更有利于菌液分离。各个培养通道11平行分布,优选地,各个培养通道11的分布方向垂直于培养通道11的延伸方向。在一实施方式中,该培养皿10设有横排平行设置的8个培养通道11,可以与自动化工作站竖向排布的8通道加液机械臂相配合。
在一实施方式中,各个培养通道11的宽度自涂布始端111至涂布终端112处处相等,便于使各个培养通道11中的菌液分布均匀。
同一培养皿10的培养通道11可以分离不同的样品。在一实施方式中,同一培养皿10的培养通道11中加入的菌液不相同。同一培养皿10的培养通道11的宽度可以设置为不相等。
在一实施方式中,如图2、图3和图6所示,培养皿10安装于支撑装置20,步骤S10和步骤S30中,通过支撑装置20调整培养皿10相对于水平面的角度。培养皿10可以与支撑装置20可拆卸连接。
进一步地,支撑装置20包括板架21和旋转机构30,板架21用于承载培养皿10,旋转机构30用于带动板架21旋转。通过支撑装置20,方便对培养皿10相对于水平面的角度进行灵活调整。由于实验菌株的菌液流体性质不同,对倾斜角度实现动态调节,便于操作人员对不同的菌株菌液优化倾斜角度,更好地适配实验需求。该支撑装置20可以使用驱动软件快捷方便的调节倾斜角度。
如图2所示,旋转机构30包括旋转主轴31和电机32,板架21安装于旋转主轴31,电机32与旋转主轴31传动连接;各个培养通道11的延伸方向垂直于旋转主轴31的纵 向。
在一实施方式中,旋转主轴31平行于电机32的主轴,旋转主轴31与电机32的主轴通过带轮机构33连接。带轮机构33包括与电机32连接的小带轮331、与旋转主轴31连接的大带轮332,小带轮331与大带轮332通过同步带333连接。带轮机构33还包括张紧轮334。如图2所示,支撑装置20还包括底板41和安装于旋转主轴31的两端的轴承42,轴承42固定于底板41;板架21安装于台板22,台板22通过链接座43安装于旋转主轴31;支撑装置20包括用于检测旋转主轴31的旋转角度的传感器44,传感器44的传感器触片441安装于旋转主轴31上;电机32通过电机座321安装于底板41;小带轮331与电机32的主轴之间设置有减速机322;底板41上设置有支撑柱45,支撑柱45可以在底板41旋转至水平时,对底板41进行支撑。如图3所示,板架21上设有多个用于容置培养皿10的定位槽211,通过定位槽211,对培养皿10起到定位作用,并且方便将培养皿10安装支撑装置20上、以及将培养皿10取下来;多个定位槽211可以沿旋转主轴31的轴向分布。如图3所示,可以将旋转机构30设置于护罩46中,护罩46连接有提手461。
该菌落培养工艺先倾斜后移液。图6所示的支撑装置20和培养皿10,当加完支撑装置20上的第四个培养皿10上的菌液后,前面三个培养皿10已经涂布完成,可以拿下来进行下一步培养,空出来的定位槽可以接着放下一批培养皿10,更加节省时间。
实施例二
本发明提供了一种菌落培养工艺,该菌落培养工艺所使用的培养皿10设有多个培养通道11,培养通道11具有涂布始端111和涂布终端112,如图1B所示,该菌落培养工艺包括:步骤S10,将培养皿10相对于水平面倾斜设置,涂布始端111位于涂布终端112的上方;步骤S20,自涂布始端111将菌液移液至培养通道11,菌液沿培养通道11流向涂布终端112;步骤S30,调整培养皿10至水平状态;步骤S40,将培养皿10置于恒温环境培养;步骤S50,进行单克隆挑取。
该菌落培养工艺采用上述的菌落涂布工艺,在完成涂布后,经过一段时间的培养,产生一定数量的单克隆。该菌落培养工艺能够满足自动化的微生物涂布和菌落挑取,可以满足实际使用;能够替代传统的手动涂布和菌落挑取,解决了现有技术存在的单克隆数量少和微生物涂布过程耗时的问题;整体工艺流程简单,实际操作方便,适用性广;整体成本比较低。该菌落培养工艺促进了高通量自动化平台的建设,对合成生物学研究有着重大意义。
培养皿10和支撑装置20可以与自动化移液工作站相配合,在自动倾斜后移液即可完成菌液涂布,提高了涂布效率。步骤S50中,可以使用自动化挑克隆仪的分区挑取功能来对培养皿10的各个培养通道11进行单克隆挑取。
该菌落培养工艺可以按以下流程实施:首先由技术人员编辑软件脚本,对支撑装置20的动作进行控制;将培养皿10放入支撑装置20中,培养皿10的初始状态设为水平状态;使用自动化移液工作站吸取一定体积的菌液,待支撑装置20倾斜设定角度后,将菌液转移到培养皿10的培养通道11中;菌液因为重力沿着培养通道11流淌,达到涂布分离单克隆的效果;然后,支撑装置20带动培养皿10回到初始状态位置;恒温环境培养;使用美谷分子仪器的自动化挑克隆仪的regional picking(区域挑取)功能对培养皿10的培养通道11内的克隆实现精确挑取,实现了从固体培养基转移到液体培养基中的自动化过程,完全实现了自动化的菌落涂布和挑取。可以实现单克隆挑取1小时完成2000个,单克隆涂布1小时完成700个,相较于原有工艺,将速度提高了10倍以上。
以上所述仅为本发明示意性的具体实施方式,并非用以限定本发明的范围。任何本领域的技术人员,在不脱离本发明的构思和原则的前提下所作的等同变化与修改,均应属于本发明保护的范围。

Claims (11)

  1. 一种菌落涂布工艺,其中,所述菌落涂布工艺所使用的培养皿设有培养通道;所述菌落涂布工艺包括:
    通过所述培养皿相对于水平面倾斜设置,使菌液利用重力沿所述培养通道流淌以实现涂布;
    通过将所述培养皿调整至水平状态,使菌液在所述培养通道中保持静止。
  2. 如权利要求1所述的菌落涂布工艺,其中,所述培养通道具有涂布始端和涂布终端,所述菌落涂布工艺包括:
    步骤S10,将所述培养皿相对于水平面倾斜设置,所述涂布始端位于所述涂布终端的上方;
    步骤S20,自所述涂布始端将菌液移液至所述培养通道,所述菌液沿所述培养通道流向所述涂布终端;
    步骤S30,调整所述培养皿至水平状态。
  3. 如权利要求2所述的菌落涂布工艺,其中,所述培养皿设有多个所述培养通道,各个所述培养通道的所述涂布终端相连通;所述菌落涂布工艺包括:
    步骤S01,自所述涂布终端向各个所述培养通道加入培养基;所述步骤S01在所述步骤S10之前实施。
  4. 如权利要求3所述的菌落涂布工艺,其中,所述培养皿设有横向通道,各个所述培养通道的所述涂布终端均与所述横向通道连通;
    所述步骤S01中,向所述横向通道中加入培养基,培养基经所述横向通道流向各个所述培养通道。
  5. 如权利要求3所述的菌落涂布工艺,其中,所述步骤S20中,向各个培养通道同时滴入同一菌液。
  6. 如权利要求3所述的菌落涂布工艺,其中,各个所述培养通道均沿直线延伸。
  7. 如权利要求3所述的菌落涂布工艺,其中,各个所述培养通道的宽度自所述涂布始端至所述涂布终端处处相等。
  8. 如权利要求1所述的菌落涂布工艺,其中,所述培养皿安装于支撑装置,通过所述支撑装置调整所述培养皿相对于水平面的角度。
  9. 如权利要求8所述的菌落涂布工艺,其中,所述支撑装置包括板架和旋转机构,所述板架用于承载所述培养皿,所述旋转机构用于带动所述板架旋转。
  10. 如权利要求9所述的菌落涂布工艺,其中,所述旋转机构包括旋转主轴和电机,所述板架安装于所述旋转主轴,所述电机与所述旋转主轴传动连接;各个所述培养通道的延伸方向垂直于所述旋转主轴的纵向。
  11. 一种菌落培养工艺,其中,所述菌落培养工艺所使用的培养皿设有多个培养通道,所述培养通道具有涂布始端和涂布终端,该菌落培养工艺包括:
    步骤S10,将所述培养皿相对于水平面倾斜设置,所述涂布始端位于所述涂布终端的上方;
    步骤S20,自所述涂布始端将菌液移液至所述培养通道,所述菌液沿所述培养通道流向所述涂布终端;
    步骤S30,调整所述培养皿至水平状态;
    步骤S40,将所述培养皿置于恒温环境培养;
    步骤S50,进行单克隆挑取。
PCT/CN2021/113681 2021-07-07 2021-08-20 菌落涂布工艺及菌落培养工艺 WO2023279490A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110769210.7 2021-07-07
CN202110769210.7A CN113322165B (zh) 2021-07-07 2021-07-07 菌落涂布工艺及菌落培养工艺

Publications (1)

Publication Number Publication Date
WO2023279490A1 true WO2023279490A1 (zh) 2023-01-12

Family

ID=77425835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113681 WO2023279490A1 (zh) 2021-07-07 2021-08-20 菌落涂布工艺及菌落培养工艺

Country Status (2)

Country Link
CN (1) CN113322165B (zh)
WO (1) WO2023279490A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115895852B (zh) * 2023-03-14 2023-11-24 广东工业大学 高压环境多通道自动划线分离单菌落的装置与方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993822A (zh) * 2010-09-08 2011-03-30 广西大学 一种接种诱导植物离体器官发病的装置及其应用方法
CN102703567A (zh) * 2012-06-15 2012-10-03 江苏嘉语生物医药技术有限公司 一种多相联合培养与检测方法及其装置
CN106011029A (zh) * 2016-07-27 2016-10-12 郑州点石生物技术有限公司 微生物平板培养方法
CN110713899A (zh) * 2019-10-30 2020-01-21 南通大学 一种脱硫弧菌培养的培养方法
CN111235014A (zh) * 2020-03-16 2020-06-05 西南民族大学 一种培养皿及利用其快速检验抑菌物质抑菌能力的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU762747B2 (en) * 1996-03-13 2003-07-03 University Technologies International Inc. Biofilm incubation
GB0914195D0 (en) * 2009-08-13 2009-09-16 Plasticell Ltd Vessel for culturing cells
JP2012090584A (ja) * 2010-10-27 2012-05-17 Inoac Gijutsu Kenkyusho:Kk 反重力培養方法及び反重力培養装置
CN203513681U (zh) * 2013-11-08 2014-04-02 赛业(广州)生物科技有限公司 一种微生物大型培养皿
CN205275611U (zh) * 2015-11-12 2016-06-01 中国农业科学院农业质量标准与检测技术研究所 一种细胞培养板加样辅助装置
CN213085947U (zh) * 2020-06-30 2021-04-30 山东天川精准医疗科技有限公司 一种细胞培养瓶支架

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993822A (zh) * 2010-09-08 2011-03-30 广西大学 一种接种诱导植物离体器官发病的装置及其应用方法
CN102703567A (zh) * 2012-06-15 2012-10-03 江苏嘉语生物医药技术有限公司 一种多相联合培养与检测方法及其装置
CN106011029A (zh) * 2016-07-27 2016-10-12 郑州点石生物技术有限公司 微生物平板培养方法
CN110713899A (zh) * 2019-10-30 2020-01-21 南通大学 一种脱硫弧菌培养的培养方法
CN111235014A (zh) * 2020-03-16 2020-06-05 西南民族大学 一种培养皿及利用其快速检验抑菌物质抑菌能力的方法

Also Published As

Publication number Publication date
CN113322165B (zh) 2023-07-14
CN113322165A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2023279490A1 (zh) 菌落涂布工艺及菌落培养工艺
JP5923145B2 (ja) 調整可能な体積を収容する薄膜処理装置
CN215050280U (zh) 菌落涂布系统
EP2350673B1 (en) Modular system for performing laboratory protocols and associated methods
JP4141608B2 (ja) 容器搬送処理システム
CN111575157A (zh) 菌落划线涂布机器人平台及划线涂布方法
US20240254982A1 (en) 3d cell washer
CN112048434A (zh) 传送装置和自动菌落挑选仪
CN212051401U (zh) 一种培养皿自动接种仪
CN218910374U (zh) 一种小型高通量质粒抽提自动化工作站
CN214612430U (zh) 一种用于分子克隆实验的简易涂板辅助装置
CN113801772A (zh) 一种十字形快速微生物涂布接种棒
CN212504828U (zh) 菌落划线涂布机器人平台
CN115926970A (zh) 一种涂布的方法、设备及存储介质
US20090053810A1 (en) System and Method for Cultivating Cells
CN217709476U (zh) 一种微生物平板计数用装置
JPH0728720B2 (ja) 細胞培養装置
CN211311436U (zh) 一种应用于生物外源基因注射的装置
CN218345428U (zh) 一种磁力搅拌器发酵罐
CN211070150U (zh) 一种化工生产用的化学实验反应装置
WO2024108395A1 (zh) 微生物菌液涂布设备及其涂布方法
CN217202789U (zh) 一种可用于连续灌注培养干细胞的培养装置
CN221350818U (zh) 一种食品水样自动铺板机
CN220745751U (zh) 一种鸡粪发酵用驱动装置
CN102115712B (zh) 核酸分子杂交实验的移液方法及其反应装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21948979

Country of ref document: EP

Kind code of ref document: A1