WO2023277561A1 - 전지셀의 벤트 발생시점 예측 시스템 및 예측방법 - Google Patents

전지셀의 벤트 발생시점 예측 시스템 및 예측방법 Download PDF

Info

Publication number
WO2023277561A1
WO2023277561A1 PCT/KR2022/009293 KR2022009293W WO2023277561A1 WO 2023277561 A1 WO2023277561 A1 WO 2023277561A1 KR 2022009293 W KR2022009293 W KR 2022009293W WO 2023277561 A1 WO2023277561 A1 WO 2023277561A1
Authority
WO
WIPO (PCT)
Prior art keywords
vent
battery cell
occurrence time
width
remaining sealing
Prior art date
Application number
PCT/KR2022/009293
Other languages
English (en)
French (fr)
Inventor
고동완
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22833616.0A priority Critical patent/EP4175009A1/en
Priority to CN202280006100.8A priority patent/CN116261648A/zh
Priority to JP2023506058A priority patent/JP7456694B2/ja
Priority to US18/018,756 priority patent/US20230299366A1/en
Publication of WO2023277561A1 publication Critical patent/WO2023277561A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4228Leak testing of cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/022Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a system and method for predicting a vent generation time of a battery cell.
  • secondary batteries capable of charging and discharging have been widely used as energy sources for wireless mobile devices.
  • secondary batteries are attracting attention as an energy source for electric vehicles, hybrid electric vehicles, etc., which are proposed as a solution to air pollution such as existing gasoline vehicles and diesel vehicles using fossil fuels. Therefore, the types of applications using secondary batteries are diversifying due to the advantages of secondary batteries, and it is expected that secondary batteries will be applied to more fields and products than now.
  • secondary batteries are sometimes classified into lithium ion batteries, lithium ion polymer batteries, lithium polymer batteries, etc. according to the composition of electrodes and electrolytes. It is increasing.
  • secondary batteries include a cylindrical battery and a prismatic battery in which an electrode assembly is embedded in a cylindrical or prismatic metal can, and a pouch-type battery in which the electrode assembly is embedded in a pouch-type case of an aluminum laminate sheet, depending on the shape of the battery case.
  • the electrode assembly embedded in the battery case is a power generating device capable of charging and discharging, consisting of a positive electrode, a negative electrode, and a separator structure interposed between the positive electrode and the negative electrode. It is classified into a jelly-roll type wound with a separator interposed therebetween, and a stack type in which a plurality of positive and negative electrodes of a predetermined size are sequentially stacked in a state in which a separator is interposed.
  • FIG. 1 is a schematic diagram showing the form of a general pouch-type battery cell.
  • the electrode assembly 20 is accommodated in a pouch-type battery case 10, the electrode leads 30 are drawn out from both ends of the battery case 10, and the outside of the battery case It has a structure in which a sealing portion 11a is formed around it.
  • a sealing portion 11a and a gas pocket portion 11b in the form of an empty space between the sealing portion and the storage space are formed in the terrace portion 11, which is a space between the space where the electrode assembly is accommodated and the end of the battery case.
  • the gas pocket portion 11b is a space where gas is collected when gas is generated inside the battery for various reasons.
  • the battery cell as described above is subjected to various high-temperature storage experiments according to the customer's request. This is to determine the safety and durability of the battery cell under harsh conditions. At this time, if the vent time in the high-temperature storage experiment is predicted, the durability and performance of the cell can be predicted.
  • the width of the sealing portion 11a gradually decreases, and eventually the sealing portion 11a bursts, causing a vent phenomenon in which gas is discharged.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a system for predicting the vent occurrence time of a battery cell that can automatically predict the vent occurrence time and improve the accuracy of the vent occurrence time prediction. .
  • the present invention relates to a system for predicting a vent occurrence time of a battery cell in which a terrace portion including a sealing portion is formed on at least one side of a pouch-type battery case and an electrode lead is drawn out at an end of the terrace portion, and the vent occurrence time point according to the width of the remaining sealing portion
  • the measurement unit may include a camera for capturing an image or video of the terrace unit; And a calculation unit for calculating the width of the remaining sealing portion in the captured image or video; can include
  • the measurement unit may measure the width of the remaining sealing unit by shortening the period as the vent generation time approaches.
  • the data collection and measurement of the width of the remaining sealing portion may be performed at a high temperature of 60° C. or higher.
  • the determination unit may predict a vent occurrence time of a battery cell to be measured through machine learning or deep learning.
  • the determination unit may derive a correlation between the width of the remaining sealing portion and the vent occurrence time according to the width of the remaining sealing portion from the data.
  • the determination unit may predict a vent generation time of the battery cell according to the measured width of the remaining sealing portion for each measurement period of the width of the remaining sealing portion.
  • the battery cell vent generation timing prediction system according to the present invention may further include a learning unit for learning the prediction result.
  • the learning unit configures learning data for predicting the vent occurrence time, and the determination unit newly derives a correlation between the width of the remaining sealing portion and the vent occurrence time according to the width of the remaining sealing part from the learning data, and then the measured The vent occurrence time of the battery cell may be predicted according to the width of the remaining sealing portion.
  • the learning unit may configure learning data by verifying validity of data by comparing a predicted event occurrence time and an actual event occurrence time, and updating the verification result to the data collected in the storage unit.
  • the present invention provides a method for predicting a vent generation time of a battery cell using a system for predicting a vent generation time of a battery cell.
  • a method for predicting a vent occurrence time of a battery cell includes collecting data on a vent occurrence time according to a width of a remaining sealing portion; Periodically measuring the width of the remaining sealing portion of the battery cell to be measured; And comparing the measured width of the remaining sealing portion with the collected data to predict a vent generation time of the battery cell to be measured; includes
  • the periodically measuring the width of the remaining sealing portion may include capturing an image or video of the terrace portion with a camera and calculating the width of the remaining sealing portion from the captured image or video.
  • the step of predicting the vent occurrence time of the battery cell to be measured may include deriving a correlation between the width of the remaining sealing portion and the corresponding vent occurrence time point, and determining the width of the residual sealing portion measured based on the correlation.
  • a process of periodically predicting a vent generation time of a battery cell to be measured may be included.
  • the present invention may further include learning the prediction result.
  • the step of learning the prediction result may include verifying the validity of data by comparing the predicted event occurrence time and the actual event occurrence time, and configuring the learning data by updating the verification result to the data.
  • a correlation between the width of the remaining sealing portion and the resulting vent occurrence time is newly derived from the learning data, and then the battery according to the width of the remaining sealing portion measured therefrom. It may be to predict a cell vent generation time point.
  • the present invention predicts the vent occurrence time based on machine learning, thereby automatically predicting the vent occurrence time and improving the accuracy of the vent occurrence time prediction.
  • FIG. 1 is a schematic diagram showing the form of a general pouch-type battery cell.
  • FIG. 2 is a block diagram showing the configuration of a system for predicting a vent generation time of a battery cell according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram showing a process of measuring the width of the remaining sealing portion.
  • FIG. 4 is a photograph showing an image taken by a camera.
  • FIG. 5 is a block diagram showing the configuration of a system for predicting a vent generation time of a battery cell according to another embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a process of learning prediction results.
  • FIG. 7 is a schematic diagram showing a learning method by deep learning.
  • the terms “include” or “have” are intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that it does not preclude the possibility of the presence or addition of numbers, steps, operations, components, parts, or combinations thereof.
  • a part such as a layer, film, region, plate, etc. is said to be “on” another part, this includes not only the case where it is “directly on” the other part, but also the case where another part is present in the middle.
  • a part such as a layer, film, region, plate, etc.
  • being disposed “on” may include the case of being disposed not only on the top but also on the bottom.
  • FIG. 2 is a block diagram showing the configuration of a system for predicting a vent generation time of a battery cell according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram showing a process of measuring the width of the remaining sealing portion.
  • the present invention relates to a vent generation time prediction system 100 of a battery cell in which a terrace portion including a sealing portion is formed on at least one side of a pouch-type battery case and an electrode lead is drawn out at an end of the terrace portion.
  • a storage unit 110 that collects data about a vent occurrence time according to the width of the remaining sealing unit;
  • the present invention predicts the vent occurrence time based on machine learning, thereby automatically predicting the vent occurrence time and improving the accuracy of the vent occurrence time prediction.
  • the present invention is to predict the vent generation time of the pouch-type battery cell.
  • the electrode assembly 20 is accommodated in the pouch-type battery case 10, the electrode leads 30 are drawn out from both ends of the battery case 10, and the outer periphery of the battery case It has a structure in which the sealing portion 11a is formed.
  • a sealing portion 11a and a gas pocket portion 11b in the form of an empty space between the sealing portion and the storage space are formed in the terrace portion 11, which is a space between the space where the electrode assembly is accommodated and the end of the battery case.
  • the electrode lead 30 includes a positive lead and a negative lead.
  • the positive lead and the negative lead may be drawn out in opposite directions from the battery case as shown in FIGS. 1 and 3, but the structure is limited thereto. It is not. Since the electrode assembly and elements constituting the electrode assembly are known to those skilled in the art, a detailed description thereof will be omitted.
  • the battery case 10 is not particularly limited as long as it is used as an exterior material for packaging the battery, and a cylindrical, prismatic or pouch type may be used, but in detail, a pouch type battery case may be used.
  • a pouch-type battery case is usually made of an aluminum laminate sheet, and may be composed of an inner sealant layer for sealing, a metal layer to prevent penetration of materials, and an outer resin layer forming the outermost part of the case.
  • the width of the remaining sealing part means the width (w) of the remaining sealed part as the sealed (heat-sealed) part between the sealing parts is gradually torn away as the pressure inside the battery cell increases. According to the present invention, it is possible to predict the vent occurrence time of the battery cell according to the measured width of the remaining sealing part without waiting for the actual vent phenomenon to occur from a plurality of data.
  • the plurality of data is data about a vent occurrence time according to the width of the remaining sealing part, and is stored in the storage unit 110 .
  • the storage unit 110 may be composed of big data by accumulating an image captured in the process of predicting and measuring a vent occurrence time point for a plurality of battery cells, a width value of the remaining sealing portion, and a vent occurrence time point.
  • the vent occurrence point may be defined as a time required from the measurement of the remaining sealing portion to the occurrence of the vent.
  • the storage unit 110 may include a DB for storing and managing the data, which may be used as basic data for constructing learning data in a learning unit described later. At this time, the data may be classified and stored according to the specifications and experimental conditions of the battery cell.
  • the measurement unit 120 measures the width of the remaining sealing portion of the battery cell 1 to be measured.
  • the measurement unit 120 includes a camera 121 for capturing an image or video of the terrace unit; and a calculation unit 122 for calculating the width of the remaining sealing portion in the captured image or video; can include
  • capturing an image or video of the terrace part 11 may be performed while the battery cell 1 is mounted on the jig 123 .
  • the jig 123 can mount at least one battery cell 1, and serves to fix the battery cell 1 so that it is easy to take an image or video of the terrace part.
  • one battery cell 1 is shown as being mounted on the jig 123, but as shown in FIG. 4, two or more battery cells 1 may be photographed in a state in which they are mounted at the same time.
  • the image of the terrace part 11 can be easily photographed on the jig 123, and the battery cell 1 can be mounted in a direction perpendicular to the ground so that gas can be easily collected in the gas pocket part 11b.
  • the jig 123 is not particularly limited in its shape, but it is preferable that the contact area between the battery cell and the jig 123 is minimized so as not to affect the vent of the battery cell. As shown in FIG. 4 , it is preferable to cover the electrode lead 30 with a cap to prevent a short circuit.
  • the camera 121 can take images or videos, there is no particular limitation on its type, and for example, a CCD camera or the like can be used.
  • the measuring unit 120 may further include a display device (not shown) displaying the photographed image as image data.
  • FIG. 4 is a photograph showing an image taken by a camera.
  • an image photographed by the camera 121 is displayed as an image by the display device.
  • the width w of the remaining sealing portion is measured by the calculation unit 122 .
  • the calculation unit 122 may be a general computing device.
  • the display device displays a scale formed in the form of a grid of a certain size on the image, and the calculator 122 calculates the width of the portion corresponding to the remaining sealing part in the image as shown in FIG. can be calculated by comparison.
  • the width of the remaining sealing portion is calculated to be 8.7 mm.
  • the collection of the data and the measurement of the width of the remaining sealing portion may be performed at a high temperature, specifically It can be carried out at a high temperature of 60 °C or more.
  • the result measured by the measurement unit 120 may be transmitted to the storage unit 110 and then stored therein to constitute a part of data.
  • the determining unit 130 may be performed in a computing device, and automatically predicts a vent generation time of a battery cell to be measured through machine learning or deep learning, so that the accuracy of the prediction can be improved.
  • the determination unit 130 may derive a correlation between the width of the remaining sealing portion and the corresponding vent occurrence time from the data, that is, the data on the vent occurrence time according to the width of the remaining sealing portion.
  • the correlation between the width of the remaining sealing portion and the vent occurrence time point means a tendency of the vent occurrence point (time required to vent) for the measured value of the remaining sealing portion width.
  • a correlation between the width of the remaining sealing portion and the vent occurrence time may be represented by an equation, and this may be performed by regression analysis.
  • the relational expression may represent various forms such as a linear function, a quadratic function, a polynomial function, an exponential function, and a logarithmic function.
  • a linear function a quadratic function
  • a polynomial function a polynomial function
  • an exponential function a logarithmic function.
  • Equation (1) x is the width (mm) of the remaining sealing portion, y is the time (h) required until the vent occurs after measuring the width of the remaining sealing portion, a and b are constants)
  • the vent occurrence time may be automatically predicted according to the measurement of only the width of the remaining sealing portion.
  • the determination unit 130 determines the vent occurrence time of the battery cell according to the measured width of the remaining sealing portion based on the correlation. width can be predicted.
  • the vent time can be predicted by substituting the measured width of the remaining sealing part into the formula. Since the measurement unit 120 predicts the width of the remaining sealing portion at regular intervals, the determination unit 130 may also predict the vent occurrence time of the battery cell for each measurement period of the remaining sealing portion width.
  • the system for predicting the vent occurrence time of the battery cell measures the width of the remaining sealing portion, compares it with pre-stored data to predict the vent occurrence time point, and if the vent does not occur, again at regular intervals, the remaining sealing portion
  • the process of measuring the width can be repeated.
  • FIG. 5 is a block diagram showing the configuration of a system for predicting a vent generation time of a battery cell according to another embodiment of the present invention
  • FIG. 6 is a flowchart showing a process of learning a prediction result
  • 7 is a schematic diagram showing a learning method by deep learning.
  • the battery cell vent generation timing prediction system 200 may further include a learning unit 140 for learning the prediction result.
  • the learning unit is divided into roles for convenience when compared to the calculation unit and the determination unit, and is composed of a computing device like the calculation unit and the determination unit, and can be performed in the same device as the calculation unit and the determination unit. there is.
  • the present invention can further improve prediction accuracy by reflecting accurate or incorrect prediction results through machine learning or deep learning.
  • the learning unit 140 may configure learning data for predicting a vent occurrence time.
  • the learning data may be configured by updating a newly measured result in data previously stored in the storage unit.
  • the learning unit 140 compares the predicted event occurrence time and the actual event occurrence time to verify the validity of the data. When the predicted vent occurrence time coincides with the actual vent occurrence time, the data is determined to be valid and is recorded in the storage unit 110 . If the predicted event occurrence time and the actual event occurrence time do not match, the data stored in the storage unit 110 is corrected and updated. At this time, it is possible to analyze the reason why the data is inconsistent by considering the stored data and the input experimental conditions (temperature of the battery cell, etc.) together.
  • the learning unit configures learning data by updating the verification result in the storage unit 110 . In this way, the learning unit 140 may derive more accurate data through machine learning.
  • the learning unit 140 may be configured as a deep neural network.
  • a deep neural network is one of the deep learning (Machine Learning) models that classify input data based on learned data.
  • DNN deep neural network
  • a system or network that makes decisions based on data
  • a deep neural network may include an input layer 141, one or more hidden layers 142, and an output layer 143.
  • the training data is input to the input layer 141, and a resultant value calculated through the hidden layer and the output layer is compared with an actual value to inversely update the value of the weight. After all learning is completed, the result value can be obtained by inputting the information required for prediction.
  • the hidden layer 142 may include a convolution layer, a pooling layer, and a fully connected layer.
  • the convolution layer may extract a feature map from an image input to the input layer and perform a convolution operation.
  • the pooling layer may be connected to the convolution layer to perform subsampling on the output of the convolution layer.
  • the fully connected layer may be connected to the pooling layer to learn the subsampled output of the pooling layer and learn according to a category to be output to the output layer 323 .
  • connection structure of each layer constituting the deep neural network may be formed by properly selecting a known algorithm, for example, a convolutional neural network (CNN) structure or a recurrent neural network (RNN) structure.
  • CNN convolutional neural network
  • RNN recurrent neural network
  • Such a deep neural network may be implemented in one computer, or may be implemented through a network by connecting a plurality of computers.
  • the learning unit 140 inputs the updated training data to the input layer 141 on the deep neural network.
  • the input training data is output as a final output from the output layer 143 through the hidden layer 142 .
  • the learning unit may learn newly updated training data by updating a weight according to a validation result of a prediction result.
  • the determination unit 130 When the learning of the data is completed, the determination unit 130 newly derives a correlation between the width of the remaining sealing portion and the vent occurrence time according to the width of the remaining sealing portion from the learned data, and then the battery according to the width of the remaining sealing portion measured therefrom. The cell vent generation time is predicted. Thereafter, the validity of the prediction result is verified and the process of reflecting it is repeatedly performed, so that the accuracy of the prediction result can be further improved.
  • the present invention provides a method for predicting the vent generation time of the battery cell using the vent generation time of the battery cell as described above.
  • the method for predicting the vent occurrence time of the battery cell includes collecting data on the vent occurrence time according to the width of the remaining sealing part; Periodically measuring the width of the remaining sealing portion of the battery cell to be measured; And comparing the measured width of the remaining sealing portion with the collected data to predict a vent generation time of the battery cell to be measured; can include
  • an image taken in the process of predicting and measuring a vent occurrence time for a plurality of battery cells in the storage unit, a width value of the remaining sealing part, and a vent occurrence time may be accumulated.
  • the periodically measuring the width of the remaining sealing portion may include capturing an image or video of the terrace portion with a camera and calculating the width of the remaining sealing portion from the captured image or video.
  • the photographing process may be performed in a state in which the battery cells are mounted on a jig.
  • the width of the remaining sealing portion may be measured while the photographed image is displayed on the display device.
  • the width of the remaining sealing portion While the measurement of the width of the remaining sealing portion is periodically performed until the vent occurs in the battery cell, data recorded at the time of occurrence of the vent according to the width of the remaining sealing portion may be stored in the storage unit. In this case, the width of the remaining sealing portion may be measured by shortening the period as the vent generation time approaches. In addition, the process may be carried out at a high temperature of 60 °C or more.
  • the step of predicting the vent occurrence time of the battery cell to be measured may be performed by machine learning or deep learning, and derives a correlation between the width of the remaining sealing portion and the vent occurrence time accordingly, and It may include a process of periodically estimating the vent occurrence time of the battery cell to be measured according to the width of the remaining sealing portion measured based on the measured basis.
  • the derivation of the correlation may be performed by regression analysis, and a specific method is as described above.
  • the method for predicting a vent generation time of a battery cell according to the present invention may further include learning a prediction result.
  • the step of learning the prediction result may include a process of configuring learning data by verifying validity of data by comparing a predicted event occurrence time and an actual event occurrence time, and updating the verification result to the data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)

Abstract

본 발명은 파우치형 전지 케이스의 적어도 일측에 실링부를 포함하는 테라스부가 형성되고, 테라스부의 끝단에 전극 리드가 인출된 전지셀의 벤트 발생시점 예측 시스템에 관한 것으로, 잔여 실링부의 폭에 따른 벤트 발생시점에 대한 데이터를 수집하는 저장부; 측정 대상 전지셀의 잔여 실링부의 폭을 주기적으로 측정하는 측정부; 및 측정된 잔여 실링부의 폭과 상기 수집된 데이터를 비교하여 측정 대상 전지셀의 벤트 발생시점을 예측하는 판정부; 를 포함한다.

Description

전지셀의 벤트 발생시점 예측 시스템 및 예측방법
본 발명은 전지셀의 벤트 발생시점을 예측하기 위한 시스템 및 방법에 관한 것이다.
본 출원은 2021.7.1 자 한국 특허 출원 제10-2021-0086372호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
최근, 충방전이 가능한 이차전지는 와이어리스 모바일 기기의 에너지원으로 광범위하게 사용되고 있다. 또한, 이차전지는, 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차, 하이브리드 전기자동차 등의 에너지원으로서도 주목받고 있다. 따라서, 이차전지를 사용하는 애플리케이션의 종류는 이차전지의 장점으로 인해 매우 다양화되고 있으며, 향후에는 지금보다는 많은 분야와 제품들에 이차전지가 적용될 것으로 예상된다.
이러한 이차전지는 전극과 전해액의 구성에 따라 리튬이온 전지, 리튬이온 폴리머 전지, 리튬 폴리머 전지 등으로 분류되기도 하며, 그 중 전해액의 누액 가능성이 적으며, 제조가 용이한 리튬이온 폴리머 전지의 사용량이 늘어나고 있다. 일반적으로, 이차전지는 전지케이스의 형상에 따라, 전극조립체가 원통형 또는 각형의 금속 캔에 내장되어 있는 원통형 전지 및 각형 전지와, 전극조립체가 알루미늄 라미네이트 시트의 파우치형 케이스에 내장되어 있는 파우치형 전지로 분류되며, 전지케이스에 내장되는 전극조립체는 양극, 음극, 및 상기 양극과 상기 음극 사이에 개재된 분리막 구조로 이루어져 충방전이 가능한 발전소자로서, 활물질이 도포된 긴 시트형의 양극과 음극 사이에 분리막을 개재하여 권취한 젤리-롤형과, 소정 크기의 다수의 양극과 음극을 분리막에 개재된 상태에서 순차적으로 적층한 스택형으로 분류된다.
도 1은 일반적인 파우치형 전지셀의 형태를 나타낸 모식도이다.
도 1을 참조하면, 파우치형 전지셀은 파우치형 전지 케이스(10) 내에 전극 조립체(20)가 수납되고, 전지 케이스(10)의 양측 단부에 전극 리드(30)가 인출되며, 전지 케이스의 외주변에는 실링부(11a)가 형성된 구조이다. 이 때, 전극 조립체가 수납된 공간과 전지 케이스 단부 사이의 공간인 테라스부(11)에는 실링부(11a) 및 실링부와 수납 공간 사이에 빈 공간 형태의 가스 포켓부(11b)가 형성된다. 상기 가스 포켓부(11b)는 다양한 이유로 전지 내부에서 가스가 발생할 시 가스가 모이는 공간이다.
상기와 같은 전지셀은 고객사의 요구에 따라 다양한 고온 저장 실험을 수행하게 된다. 이는 가혹 조건에서 전지셀의 안전성 및 내구성을 판단하기 위함이다. 이 때, 고온 저장 실험에서의 벤트 시점을 예측하면, 해당 셀의 내구성 및 성능을 예측할 수 있다.
구체적으로, 고온 환경 실험 등 다양한 이유로 전지셀 내부의 가스 발생량이 증가할 경우 실링부(11a)의 폭이 점차 감소하다가 종국에는 실링부(11a)가 터져 가스가 배출되는 벤트 현상이 발생하게 된다.
종래에는 이와 같은 실링부(11a)의 벤트 시점을 사람이 직접 육안으로 실링부(11a)의 폭을 측정하고, 이로부터 벤트 시점을 예측하고 벤트 여부를 확인하였다. 이로 인해 공정에 많은 시간이 소요되었으며, 측정을 수행하지 않은 시점에 벤트가 발생할 경우 실험을 다시 수행해야 하는 문제가 있었다.
[선행기술문헌]
[특허문헌]
대한민국 등록특허공보 제10-2125238호
본 발명은 상기와 같은 과제를 해결하기 위해 안출된 것으로, 자동으로 벤트 발생시점을 예측하고, 벤트 발생시점 예측의 정확성을 향상시킬 수 있는 전지셀의 벤트 발생시점 예측 시스템을 제공하는 것을 목적으로 한다.
본 발명은 파우치형 전지 케이스의 적어도 일측에 실링부를 포함하는 테라스부가 형성되고, 테라스부의 끝단에 전극 리드가 인출된 전지셀의 벤트 발생시점 예측 시스템에 관한 것으로, 잔여 실링부의 폭에 따른 벤트 발생시점에 대한 데이터를 수집하는 저장부; 측정 대상 전지셀의 잔여 실링부의 폭을 주기적으로 측정하는 측정부; 및 측정된 잔여 실링부의 폭과 상기 수집된 데이터를 비교하여 측정 대상 전지셀의 벤트 발생시점을 예측하는 판정부; 를 포함한다.
상기 측정부는 상기 테라스부의 이미지 또는 영상을 촬영하는 카메라; 및 촬영된 이미지 또는 영상에서 잔여 실링부의 폭을 산출하는 산출부; 를 포함할 수 있다.
상기 측정부는 벤트 발생시점이 임박할수록 주기를 짧게 하여 잔여 실링부의 폭을 측정할 수 있다.
구체적인 예에서, 상기 데이터의 수집 및 잔여 실링부의 폭 측정은, 60℃이상의 고온에서 수행될 수 있다.
구체적인 예에서, 상기 판정부는 머신 러닝 또는 딥러닝을 통해 측정 대상 전지셀의 벤트 발생시점을 예측할 수 있다.
구체적으로, 상기 판정부는 상기 데이터로부터 잔여 실링부의 폭과 이에 따른 벤트 발생시점에 대한 상관 관계를 도출할 수 있다.
또한, 상기 판정부는 상기 상관 관계에 근거하여, 측정된 잔여 실링부의 폭에 따른 전지셀의 벤트 발생시점을 잔여 실링부 폭의 측정 주기마다 예측할 수 있다.
다른 하나의 예에서, 본 발명에 따른 전지셀의 벤트 발생시점 예측 시스템은, 상기 예측 결과를 학습하기 위한 학습부를 더 포함할 수 있다.
구체적인 예에서, 상기 학습부는 벤트 발생시점 예측을 위한 학습 데이터를 구성하고, 상기 판정부는 상기 학습 데이터로부터 잔여 실링부의 폭과 이에 따른 벤트 발생시점에 대한 상관 관계를 새롭게 도출한 후, 이로부터 측정된 잔여 실링부의 폭에 따른 전지셀의 벤트 발생시점을 예측할 수 있다.
구체적으로, 상기 학습부는 예측된 벤트 발생시점과 실제 벤트 발생시점을 대비하여 데이터의 유효성을 검증하고, 상기 저장부에 수집된 데이터에 검증 결과를 업데이트하여 학습 데이터를 구성할 수 있다.
또한, 본 발명은 전지셀의 벤트 발생시점 예측 시스템을 사용하여 전지셀의 벤트 발생시점 예측하는 방법을 제공한다.
본 발명에 따른 전지셀의 벤트 발생시점 예측 방법은, 잔여 실링부의 폭에 따른 벤트 발생시점에 대한 데이터를 수집하는 단계; 측정 대상 전지셀의 잔여 실링부의 폭을 주기적으로 측정하는 단계; 및 측정된 잔여 실링부의 폭과 상기 수집된 데이터를 비교하여 측정 대상 전지셀의 벤트 발생시점을 예측하는 단계; 를 포함한다.
구체적인 예에서, 상기 잔여 실링부의 폭을 주기적으로 측정하는 단계는, 카메라로 테라스부의 이미지 또는 영상을 촬영하고, 촬영된 이미지 또는 영상에서 잔여 실링부의 폭을 산출하는 과정을 포함할 수 있다.
구체적인 예에서, 상기 측정 대상 전지셀의 벤트 발생시점을 예측하는 단계는, 잔여 실링부의 폭과 이에 따른 벤트 발생시점에 대한 상관 관계를 도출하고, 상관 관계에 근거하여 측정된 잔여 실링부의 폭에 따른 측정 대상 전지셀의 벤트 발생시점을 주기적으로 예측하는 과정을 포함할 수 있다.
구체적인 예에서, 본 발명은 예측 결과를 학습하는 단계를 더 포함할 수 있다.
구체적인 예에서, 상기 예측 결과를 학습하는 단계는, 예측된 벤트 발생시점과 실제 벤트 발생시점을 대비하여 데이터의 유효성을 검증하고, 상기 데이터에 검증 결과를 업데이트하여 학습 데이터를 구성하는 것일 수 있다.
상기 측정 대상 전지셀의 벤트 발생시점을 예측하는 단계는, 상기 학습 데이터로부터 잔여 실링부의 폭과 이에 따른 벤트 발생시점에 대한 상관 관계를 새롭게 도출한 후, 이로부터 측정된 잔여 실링부의 폭에 따른 전지셀의 벤트 발생시점을 예측하는 것일 수 있다.
본 발명은 머신 러닝 등에 기반하여 벤트 발생시점을 예측함으로써, 자동으로 벤트 발생시점을 예측하고, 벤트 발생시점 예측의 정확성을 향상시킬 수 있다.
도 1은 일반적인 파우치형 전지셀의 형태를 나타낸 모식도이다.
도 2는 본 발명의 일 실시예에 따른 전지셀의 벤트 발생시점 예측 시스템의 구성을 나타낸 블록도이다.
도 3은 잔여 실링부의 폭을 측정하는 과정을 나타낸 모식도이다.
도 4는 카메라에 의해 촬영된 이미지를 나타낸 사진이다.
도 5는 본 발명의 다른 실시예에 따른 전지셀의 벤트 발생시점 예측 시스템의 구성을 나타낸 블록도이다.
도 6은 예측 결과를 학습하는 과정을 나타낸 흐름도이다.
도 7은 딥러닝에 의한 학습 방법을 나타낸 모식도이다.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하에" 있다고 할 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 출원에서 "상에" 배치된다고 하는 것은 상부뿐 아니라 하부에 배치되는 경우도 포함하는 것일 수 있다.
이하 본 발명에 대해 자세히 설명한다.
(제1 실시형태)
도 2는 본 발명의 일 실시예에 따른 전지셀의 벤트 발생시점 예측 시스템의 구성을 나타낸 블록도이다. 도 3은 잔여 실링부의 폭을 측정하는 과정을 나타낸 모식도이다.
도 2를 참조하면, 본 발명은 파우치형 전지 케이스의 적어도 일측에 실링부를 포함하는 테라스부가 형성되고, 테라스부의 끝단에 전극 리드가 인출된 전지셀의 벤트 발생시점 예측 시스템(100)에 관한 것으로, 잔여 실링부의 폭에 따른 벤트 발생시점에 대한 데이터를 수집하는 저장부(110); 측정 대상 전지셀의 잔여 실링부의 폭(w)을 주기적으로 측정하는 측정부(120); 및 측정된 잔여 실링부의 폭과 상기 수집된 데이터를 비교하여 측정 대상 전지셀의 벤트 발생시점을 예측하는 판정부(130); 를 포함한다.
본 발명은 머신 러닝 등에 기반하여 벤트 발생시점을 예측함으로써, 자동으로 벤트 발생시점을 예측하고, 벤트 발생시점 예측의 정확성을 향상시킬 수 있다.
도 1 내지 도 3을 참조하면, 본 발명은 파우치형 전지셀의 벤트 발생시점을 예측하기 위한 것이다. 앞서 설명한 바와 같이, 파우치형 전지셀은 파우치형 전지 케이스(10) 내에 전극 조립체(20)가 수납되고, 전지 케이스(10)의 양측 단부에 전극 리드(30)가 인출되며, 전지 케이스의 외주변에는 실링부(11a)가 형성된 구조이다. 이 때, 전극 조립체가 수납된 공간과 전지 케이스 단부 사이의 공간인 테라스부(11)에는 실링부(11a) 및 실링부와 수납 공간 사이에 빈 공간 형태의 가스 포켓부(11b)가 형성된다.
상기 전극 리드(30)는 양극 리드 및 음극 리드를 포함하는데, 양극 리드및 음극 리드는 도 1 및 도 3에 도시된 바와 같이 전지 케이스에서 서로 반대 방향으로 인출될 수 있으나, 그 구조가 이에 제한되는 것은 아니다. 상기 전극 조립체 및 이를 구성하는 요소들에 관한 내용은 통상의 기술자에게 공지되어 있는 사항이므로 자세한 설명을 생략한다.
한편, 상기 전지 케이스(10)는 전지의 포장을 위한 외장재로 사용되는 것이라면 특별히 제한되지 않으며, 원통형, 각형 또는 파우치형이 사용될 수 있으나, 상세하게는 파우치형 전지 케이스가 사용될 수 있다. 파우치형 전지 케이스는 통상적으로 알루미늄 라미네이트 시트로 이루어져 있으며, 밀봉을 위한 내부 실란트층, 물질의 침투를 방지하는 금속층, 및 케이스의 최외곽을 이루는 외부 수지층으로 구성될 수 있다. 이하 전지 케이스에 대한 구체적인 내용은 통상의 기술자에게 공지된 사항이므로 자세한 설명을 생략한다.
이 때, 고온 저장 실험 등 고온 환경에서 전지셀이 동작하게 되는 경우 전지셀 내부에서 많은 양의 가스가 발생하게 되며, 이러한 가스는 가스 포켓부(11b)에 포집된다. 그러나 가스의 양이 지나치게 증가할 경우 실링부(11a)의 실링이 파괴되면서 내부의 가스가 밖으로 배출되는 벤트 현상이 발생하게 된다. 이 때, 벤트 현상이 일시에 발생하는 것이 아니라, 내부의 압력이 증가함에 따라 잔여 실링부의 폭(w)이 점차 감소하게 되고, 내부 압력이 임계치를 벗어나게 될 경우 실링이 파괴되면서 벤트 현상이 발생하게 된다. 여기서 잔여 실링부의 폭이란 전지셀 내부의 압력이 증가함에 따라 실링부 사이 실링(열융착)된 부분이 서서히 뜯어져 나가면서 남은 실링된 부분의 폭(w)을 의미한다. 본 발명은 다수의 데이터로부터 실제 벤트 현상이 발생할 때까지 기다릴 필요 없이 측정된 잔여 실링부의 폭에 따른 전지셀의 벤트 발생시점을 예측할 수 있다.
상기 다수의 데이터는 잔여 실링부의 폭에 따른 벤트 발생시점에 대한 데이터로, 저장부(110)에 저장된다. 저장부(110)는 다수의 전지셀에 대해 벤트 발생시점을 예측 및 측정하는 과정에서 촬영된 이미지, 잔여 실링부의 폭 수치 및 벤트 발생시점이 축적되어 빅데이터로 구성될 수 있다. 여기서, 벤트 발생시점은 잔여 실링부의 측정 이후 벤트 발생까지 소요되는 시간으로 정의될 수 있다. 이 때, 상기 저장부(110)는 상기 데이터들을 저장 및 관리하는 DB를 포함할 수 있으며, 이는 후술하는 학습부에서 학습 데이터 구성을 위한 기초 자료로 활용될 수 있다. 이 때, 상기 데이터는 전지셀의 규격 및 실험 조건에 따라 분류되어 저장될 수 있다.
측정부(120)는 측정 대상 전지셀(1)의 잔여 실링부의 폭을 측정한다. 구체적으로, 상기 측정부(120)는 상기 테라스부의 이미지 또는 영상을 촬영하는 카메라(121); 및 촬영된 이미지 또는 영상에서 잔여 실링부의 폭을 산출하는 산출부(122); 를 포함할 수 있다.
도 3을 도 1과 함께 참조하면, 상기 테라스부(11)의 이미지 또는 영상의 촬영은 전지셀(1)을 지그(123)에 마운팅한 상태에서 수행될 수 있다. 상기 지그(123)는 적어도 한 개의 전지셀(1)이 마운팅될 수 있으며, 테라스부의 이미지 또는 영상을 촬영하기 용이하도록 전지셀(1)을 고정하는 역할을 한다. 도 3에는 한 개의 전지셀(1)이 지그(123)에 마운팅되는 것으로 도시하였으나 도 4와 같이 2개 이상의 전지셀(1)이 동시에 장착된 상태에서 촬영될 수 있다. 또한, 상기 지그(123)에는 테라스부(11)의 이미지가 용이하게 촬영되고, 가스 포켓부(11b)에 가스의 포집이 용이하도록 전지셀(1)이 지면에 수직인 방향으로 장착될 수 있다. 아울러, 상기 지그(123)는 그 형상에 특별한 제한은 없으나, 전지셀의 벤트에 영향을 주지 않도록 전지셀과 지그(123)와의 접촉 면적은 최소로 되는 것이 바람직하다. 전극 리드(30)에는 도 4와 같이 단락 방지를 위해 캡을 씌우는 것이 바람직하다.
한편, 상기 카메라(121)는 이미지 또는 영상을 촬영할 수 있으면 그 종류에 특별한 제한은 없으며, 예를 들어 CCD 카메라 등을 사용할 수 있다.
그 외에, 상기 측정부(120)는 촬영된 이미지를 화상 데이터로 표시하는 디스플레이 장치(미도시)를 더 포함할 수 있다.
도 4는 카메라에 의해 촬영된 이미지를 나타낸 사진이다.
도 4에 나타난 바와 같이, 카메라(121)에 의해 촬영된 이미지는 상기 디스플레이 장치에 의해 화상으로 표시된다. 표시된 이미지는 산출부(122)에 의해 잔여 실링부의 폭(w)이 측정된다. 상기 산출부(122)는 통상의 컴퓨팅 장치일 수 있다.
이 때, 디스플레이 장치는 상기 이미지 상에 일정한 크기의 격자 형태로 형성된 눈금을 표시하며, 산출부(122)는 상기 이미지에서 도 4에 도시된 바와 같이 잔여 실링부에 해당하는 부분의 폭을 눈금과 대조하여 계산할 수 있다. 도 4의 경우 잔여 실링부의 폭은 8.7mm로 계산됨을 알 수 있다.
이와 같은 과정은 전지셀의 벤트 발생 시까지 주기적으로 수행되면서, 잔여 실링부의 폭에 따른 벤트 발생시점을 기록한 데이터가 저장부(110)에 저장될 수 있다. 이 때, 전지셀 내부의 가스 발생에 따라 잔여 실링부의 폭이 점차 감소하게 되는데, 상기 측정부(120)는 벤트 발생시점이 임박할수록, 즉 잔여 실링부의 폭이 감소할수록 그 주기를 짧게 하여 잔여 실링부의 폭을 측정하게 된다. 이는 잔여 실링부의 폭이 감소할수록 파우치 사이의 접착력이 감소하여 분리가 가속되기 때문이다. 이 때문에 측정 주기를 짧게 하여 벤트 시점을 정확히 포착할 수 있는 것이다.
한편, 이와 같은 전지셀의 벤팅 현상은 고온 저장 실험과 같이 전지셀이 고온 환경에 놓였을 때 발생할 확률이 높으므로, 상기 데이터의 수집 및 잔여 실링부의 폭 측정은 고온에서 수행될 수 있으며, 구체적으로 60℃이상의 고온에서 수행될 수 있다.
측정부(120)에서 측정된 결과는 저장부(110)에 전송된 후 저장되어 데이터의 일부로 구성될 수 있다.
잔여 실링부의 폭이 측정되면, 이로부터 전지셀의 벤트 시점이 예측된다. 상기 판정부(130)는 컴퓨팅 장치에서 수행될 수 있으며, 머신 러닝 또는 딥러닝을 통해 측정 대상 전지셀의 벤트 발생시점을 자동으로 예측하는바, 예측의 정확성이 향상될 수 있다.
구체적으로, 상기 판정부(130)는 상기 데이터, 다시 말해 잔여 실링부의 폭에 따른 벤트 발생시점에 대한 데이터로부터 잔여 실링부의 폭과 이에 따른 벤트 발생시점에 대한 상관 관계를 도출할 수 있다. 잔여 실링부의 폭과 이에 따른 벤트 발생시점에 대한 상관 관계란 잔여 실링부 폭 측정값에 대한 벤트 발생시점(벤트까지 소요되는 시간)이 나타내는 경향성을 의미한다. 예를 들어, 상기 잔여 실링부의 폭과 이에 따른 벤트 발생시점에 대한 상관 관계를 하나의 식으로 나타낼 수 있으며, 이는 회귀 분석에 의해 수행될 수 있다. 이를 통해, 잔여 실링부의 폭을 독립변수로 설정하고, 벤트 발생시점을 종속변수로 설정한 후 데이터를 적절히 반영하는 관계식이 도출될 수 있다. 상기 관계식은 일차 함수, 이차 함수, 그 밖의 다항함수, 지수함수, 로그함수 등 다양한 형태를 나타낼 수 있다. 예를 들어, 벤트 발생시점이 잔여 실링부의 폭에 대하여 일차 함수의 관계가 있을 경우, 관계식은 하기와 같이 표현될 수 있다.
y = ax + b …(1)
(상기 식 (1)에서, x는 잔여 실링부의 폭(mm)이고, y는 잔여 실링부의 폭 측정 이후 벤트 발생 때까지 소요된 시간(h), a 및 b는 상수)
이와 같이 잔여 실링부의 폭과 벤트 발생시점 사이의 관계를 수식으로 도식화함으로써, 잔여 실링부의 폭만 측정되면 이에 따른 벤트 발생시점이 자동으로 예측될 수 있다.
잔여 실링부의 폭과 이에 따른 벤트 발생시점에 대한 상관 관계가 도출되면, 상기 판정부(130)는 상기 상기 상관 관계에 근거하여, 측정된 잔여 실링부의 폭에 따른 전지셀의 벤트 발생시점을 잔여 실링부 폭을 예측할 수 있다. 상관 관계가 상기와 같은 수식으로 도출된 경우, 측정된 잔여 실링부의 폭을 수식에 대입하여 벤트 시점을 예측할 수 있다. 측정부(120)가 잔여 실링부의 폭을 일정 주기로 예측하므로, 판정부(130) 또한 전지셀의 벤트 발생시점을 잔여 실링부 폭의 측정 주기마다 예측할 수 있다.
상술한 과정들은 전지셀의 벤트가 발생하는 시점까지 자동으로 반복 수행된다. 즉, 본 발명에 따른 전지셀의 벤트 발셍시점 예측 시스템은, 잔여 실링부의 폭을 측정하고, 이를 기 저장된 데이터와 비교하여 벤트 발생시점을 예측하며, 벤트가 발생하지 않은 경우 다시 일정 주기로 잔여 실링부의 폭을 측정하는 과정을 반복할 수 있다. 이러한 방법을 통해 사람이 육안으로 확인하여 실험한 경우에 비해 정확성을 향상시킬 수 있고, 벤트 발생 순간을 정확히 포착할 수 있는 것이다.
(제2 실시형태)
도 5는 본 발명의 다른 실시예에 따른 전지셀의 벤트 발생시점 예측 시스템의 구성을 나타낸 블록도이며, 도 6은 예측 결과를 학습하는 과정을 나타낸 흐름도이다. 도 7은 딥러닝에 의한 학습 방법을 나타낸 모식도이다.
도 5를 참조하면, 전지셀의 벤트 발생시점 예측 시스템(200)은 상기 예측 결과를 학습하기 위한 학습부(140)를 더 포함할 수 있다. 본 발명에서, 상기 학습부는 산출부 및 판정부와 비교했을 때 편의상 그 역할을 구분해 놓은 것이며, 산출부 및 판정부와 마찬가지로 컴퓨팅 장치로 구성되고, 산출부 및 판정부 등과 동일한 장치에서 수행될 수 있다. 본 발명은 머신 러닝 또는 딥 러닝을 통해 예측 결과가 정확하거나 부정확한 경우에 이를 반영함으로써 예측의 정확성을 더욱 향상시킬 수 있다.
도 5를 도 6과 함께 참조하면, 상기 학습부(140)는 벤트 발생시점 예측을 위한 학습 데이터를 구성할 수 있다. 상기 학습 데이터는 저장부에 기 저장된 데이터에 새롭게 측정된 결과를 업데이트하여 구성될 수 있다. 먼저, 상기 학습부(140)는 예측된 벤트 발생시점과 실제 벤트 발생시점을 대비하여 데이터의 유효성을 검증한다. 예측된 벤트 발생시점과 실제 벤트 발생시점이 일치할 경우, 데이터가 유효한 것으로 판단하여 이를 저장부(110)에 기록하게 된다. 만약 예측된 벤트 발생시점과 실제 벤트 발생시점이 불일치하는 경우, 저장부(110)에 저장된 데이터를 수정 및 업데이트한다. 이 때, 저장된 데이터와 함께 입력되는 실험 조건(전지셀의 온도 등)을 함께 고려하여, 데이터가 불일치하게 된 이유를 분석할 수 있다. 학습부는 상기 저장부(110)에 검증 결과를 업데이트하여 학습 데이터를 구성하게 된다. 이와 같이 학습부(140)는 머신 러닝을 통해 보다 정확한 데이터를 도출할 수 있다.
나아가, 상기 학습부(140)의 학습 데이터 구성 및 데이터의 학습을 딥러닝에 의해 수행하는 경우, 상기 학습부(140)는 심층신경망으로 구성될 수 있다.
심층신경망(Deep Neural Network, DNN)은, 학습된 데이터를 기반으로 입력받은 데이터를 분류하는 딥러닝(Machine Learning)의 모델 중 하나로서, 하나 이상의 컴퓨터 내에 하나 이상의 레이어(Layer)를 구축하여 복수의 데이터를 바탕으로 판단을 수행하는 시스템 또는 네트워크를 의미한다
도 7을 참조하면, 심층신경망은 입력 레이어(input layer, 141), 하나 이상의 히든 레이어(hidden layer,142) 및 출력 레이어(output layer, 143)로 구성될 수 있다.
입력 레이어(141)에는 상기 학습 데이터가 입력되고, 히든 레이어와 출력 레이어를 통해 계산된 결과 값을 실제 값과 비교하여, 가중치의 값을 역으로 업데이트한다. 모든 학습이 끝난 뒤에, 예측이 필요한 정보를 입력하여 결과 값을 얻을 수 있다.
히든 레이어(142)는 컨볼루션 레이어(convolution layer), 풀링 레이어(pooling layer) 및 완전 연결 레이어(fully connected layer)를 포함할 수 있다. 여기서, 컨볼루션 레이어는, 입력 레이어에 입력된 이미지에 대해 특징맵을 추출하고 컨볼루션 연산을 수행할 수 있다. 풀링 레이어는 컨볼루션 레이어와 연결되어 컨볼루션 레이어의 출력에 대한 서브 샘플링을 수행할 수 있다. 완전 연결 레이어는 풀링 레이어와 연결되어 서브 샘플링 된 풀링 레이어의 출력을 학습하여 출력 레이어(323)에 출력될 카테고리에 따라 학습할 수 있다.
한편, 심층신경망을 이루는 각 층의 연결 구조는 공지의 알고리즘을 적절히 선택하여 형성될 수 있으며, 예를 들어, 나선형 신경망(Convolutional Neural Network; CNN) 구조 또는 순환형 신경망(Recurrent Neural Network; RNN) 구조로 형성될 수 있다.
이러한 심층신경망은 하나의 컴퓨터 내에서 구현될 수도 있고, 복수의 컴퓨터가 연결되어 네트워크망을 통해 구현될 수도 있다.
상기 학습부(140)는 업데이트된 학습 데이터를 심층신경망 상의 입력 레이어(141)에 입력한다. 입력된 학습 데이터는 히든 레이어(142)를 거쳐 출력 레이어(143)에서 최종적인 아웃풋으로 출력된다. 상기 학습부는 예측 결과의 유효성 검증 결과에 따른 가중치를 업데이트함으로써 새롭게 업데이트된 학습 데이터를 학습할 수 있다.
데이터의 학습이 완료되면, 상기 판정부(130)는 상기 학습된 데이터로부터 잔여 실링부의 폭과 이에 따른 벤트 발생시점에 대한 상관 관계를 새롭게 도출한 후, 이로부터 측정된 잔여 실링부의 폭에 따른 전지셀의 벤트 발생시점을 예측하게 된다. 이후 예측 결과에 대한 유효성을 검증하고, 이를 반영하는 과정이 반복 수행되어, 예측 결과의 정확성을 더욱 향상시킬 수 있다.
또한, 본 발명은 앞서 설명한 바와 같은 전지셀의 벤트 발생시점을 사용하여 전지셀의 벤트 발생시점을 예측하는 방법을 제공한다.
구체적으로, 상기 전지셀의 벤트 발생시점 예측 방법은 잔여 실링부의 폭에 따른 벤트 발생시점에 대한 데이터를 수집하는 단계; 측정 대상 전지셀의 잔여 실링부의 폭을 주기적으로 측정하는 단계; 및 측정된 잔여 실링부의 폭과 상기 수집된 데이터를 비교하여 측정 대상 전지셀의 벤트 발생시점을 예측하는 단계; 를 포함할 수 있다.
상기 데이터를 수집하는 단계에서는 저장부에 다수의 전지셀에 대해 벤트 발생시점을 예측 및 측정하는 과정에서 촬영된 이미지, 잔여 실링부의 폭 수치 및 벤트 발생시점이 축적될 수 있다.
상기 잔여 실링부의 폭을 주기적으로 측정하는 단계는, 카메라로 테라스부의 이미지 또는 영상을 촬영하고, 촬영된 이미지 또는 영상에서 잔여 실링부의 폭을 산출하는 과정을 포함할 수 있다. 상기 촬영 과정은 전지셀을 지그에 마운팅한 상태에서 수행될 수 있다. 촬영된 이미지가 디스플레이 장치 상에 표시된 상태에서 잔여 실링부의 폭이 측정될 수 있다.
잔여 실링부의 폭 측정은 전지셀의 벤트 발생 시까지 주기적으로 수행되면서, 잔여 실링부의 폭에 따른 벤트 발생시점을 기록한 데이터가 저장부에 저장될 수 있다. 이 때 벤트 발생시점이 임박할수록 그 주기를 짧게 하여 잔여 실링부의 폭을 측정할 수 있다. 또한, 상기 과정은 60℃이상의 고온에서 수행될 수 있다.
한편, 상기 측정 대상 전지셀의 벤트 발생시점을 예측하는 단계는, 머신 러닝 또는 딥러닝에 의해 수행될 수 있으며, 잔여 실링부의 폭과 이에 따른 벤트 발생시점에 대한 상관 관계를 도출하고, 상관 관계에 근거하여 측정된 잔여 실링부의 폭에 따른 측정 대상 전지셀의 벤트 발생시점을 주기적으로 예측하는 과정을 포함할 수 있다. 상기 상관 관계 도출은 회귀 분석에 의해 수행될 수 있으며, 구체적인 방법은 전술한 바와 같다.
또한, 본 발명에 따른 전지셀의 벤트 발생시점 예측 방법은 예측 결과를 학습하는 단계를 더 포함할 수 있다.
상기 예측 결과를 학습하는 단계는, 예측된 벤트 발생시점과 실제 벤트 발생시점을 대비하여 데이터의 유효성을 검증하고, 상기 데이터에 검증 결과를 업데이트하여 학습 데이터를 구성하는 과정을 포함할 수 있다.
이후, 상기 학습 데이터로부터 잔여 실링부의 폭과 이에 따른 벤트 발생시점에 대한 상관 관계를 새롭게 도출한 후, 이로부터 측정된 잔여 실링부의 폭에 따른 전지셀의 벤트 발생시점이 예측될 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
한편, 본 명세서에서 상, 하, 좌, 우, 전, 후와 같은 방향을 나타내는 용어가 사용되었으나, 이러한 용어들은 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있음은 자명하다.
(부호의 설명)
1: 전지셀
10: 전지 케이스
11: 테라스부
11a: 실링부
11b: 가스 포켓부
20: 전극 조립체
30: 전극 리드
100: 벤트 발생시점 예측 시스템
110: 저장부
120: 측정부
121: 카메라
122: 산출부
123: 지그
130: 판정부
140: 학습부
141: 입력 레이어
142: 히든 레이어
143: 출력 레이어

Claims (16)

  1. 파우치형 전지 케이스의 적어도 일측에 실링부를 포함하는 테라스부가 형성되고, 테라스부의 끝단에 전극 리드가 인출된 전지셀의 벤트 발생시점 예측 시스템에 있어서,
    잔여 실링부의 폭에 따른 벤트 발생시점에 대한 데이터를 수집하는 저장부;
    측정 대상 전지셀의 잔여 실링부의 폭을 주기적으로 측정하는 측정부; 및
    측정된 잔여 실링부의 폭과 상기 수집된 데이터를 비교하여 측정 대상 전지셀의 벤트 발생시점을 예측하는 판정부; 를 포함하는 전지셀의 벤트 발생시점 예측 시스템.
  2. 제1항에 있어서,
    상기 측정부는 상기 테라스부의 이미지 또는 영상을 촬영하는 카메라; 및
    촬영된 이미지 또는 영상에서 잔여 실링부의 폭을 산출하는 산출부; 를 포함하는 전지셀의 벤트 발생시점 예측 시스템.
  3. 제1항에 있어서,
    상기 측정부는 벤트 발생시점이 임박할수록 주기를 짧게 하여 잔여 실링부의 폭을 측정하는 전지셀의 벤트 발생시점 예측 시스템.
  4. 제1항에 있어서,
    상기 데이터의 수집 및 잔여 실링부의 폭 측정은,
    60℃ 이상의 고온에서 수행되는 전지셀의 벤트 발생시점 예측 방법.
  5. 제1항에 있어서,
    상기 판정부는 머신 러닝 또는 딥러닝을 통해 측정 대상 전지셀의 벤트 발생시점을 예측하는 전지셀의 벤트 발생시점 예측 시스템.
  6. 제5항에 있어서,
    상기 판정부는 상기 데이터로부터 잔여 실링부의 폭과 이에 따른 벤트 발생시점에 대한 상관 관계를 도출하는 전지셀의 벤트 발생시점 예측 시스템.
  7. 제6항에 있어서,
    상기 판정부는 상기 상관 관계에 근거하여, 측정된 잔여 실링부의 폭에 따른 전지셀의 벤트 발생시점을 잔여 실링부 폭의 측정 주기마다 예측하는 전지셀의 벤트 발생시점 예측 시스템.
  8. 제1항에 있어서,
    상기 예측 결과를 학습하기 위한 학습부를 더 포함하는 전지셀의 벤트 발생시점 예측 시스템.
  9. 제8항에 있어서,
    상기 학습부는 벤트 발생시점 예측을 위한 학습 데이터를 구성하고,
    상기 판정부는 상기 학습 데이터로부터 잔여 실링부의 폭과 이에 따른 벤트 발생시점에 대한 상관 관계를 새롭게 도출한 후, 이로부터 측정된 잔여 실링부의 폭에 따른 전지셀의 벤트 발생시점을 예측하는 전지셀의 벤트 발생시점 예측 시스템.
  10. 제8항에 있어서,
    상기 학습부는 예측된 벤트 발생시점과 실제 벤트 발생시점을 대비하여 데이터의 유효성을 검증하고,
    상기 저장부에 수집된 데이터에 검증 결과를 업데이트하여 학습 데이터를 구성하는 전지셀의 벤트 발생시점 예측 시스템.
  11. 제1항에 따른 전지셀의 벤트 발생시점 예측 시스템을 사용하여 전지셀의 벤트 발생시점을 예측하는 방법에 있어서,
    잔여 실링부의 폭에 따른 벤트 발생시점에 대한 데이터를 수집하는 단계;
    측정 대상 전지셀의 잔여 실링부의 폭을 주기적으로 측정하는 단계; 및
    측정된 잔여 실링부의 폭과 상기 수집된 데이터를 비교하여 측정 대상 전지셀의 벤트 발생시점을 예측하는 단계; 를 포함하는 전지셀의 벤트 발생시점 예측 방법.
  12. 제11항에 있어서,
    상기 잔여 실링부의 폭을 주기적으로 측정하는 단계는,
    카메라로 테라스부의 이미지 또는 영상을 촬영하고, 촬영된 이미지 또는 영상에서 잔여 실링부의 폭을 산출하는 과정을 포함하는 전지셀의 벤트 발생시점 예측 방법.
  13. 제11항에 있어서,
    상기 측정 대상 전지셀의 벤트 발생시점을 예측하는 단계는,
    잔여 실링부의 폭과 이에 따른 벤트 발생시점에 대한 상관 관계를 도출하고, 상관 관계에 근거하여 측정된 잔여 실링부의 폭에 따른 측정 대상 전지셀의 벤트 발생시점을 주기적으로 예측하는 과정을 포함하는 전지셀의 벤트 발생시점 예측 방법.
  14. 제11항에 있어서,
    예측 결과를 학습하는 단계를 더 포함하는 전지셀의 벤트 발생시점 예측 방법.
  15. 제14항에 있어서,
    상기 예측 결과를 학습하는 단계는,
    예측된 벤트 발생시점과 실제 벤트 발생시점을 대비하여 데이터의 유효성을 검증하고, 상기 데이터에 검증 결과를 업데이트하여 학습 데이터를 구성하는 전지셀의 벤트 발생시점 예측 방법.
  16. 제15항에 있어서,
    상기 측정 대상 전지셀의 벤트 발생시점을 예측하는 단계는,
    상기 학습 데이터로부터 잔여 실링부의 폭과 이에 따른 벤트 발생시점에 대한 상관 관계를 새롭게 도출한 후, 이로부터 측정된 잔여 실링부의 폭에 따른 전지셀의 벤트 발생시점을 예측하는 전지셀의 벤트 발생시점 예측 방법.
PCT/KR2022/009293 2021-07-01 2022-06-29 전지셀의 벤트 발생시점 예측 시스템 및 예측방법 WO2023277561A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22833616.0A EP4175009A1 (en) 2021-07-01 2022-06-29 Prediction system and prediction method for time of occurrence of vent in battery cell
CN202280006100.8A CN116261648A (zh) 2021-07-01 2022-06-29 用于预测电池单体的排气发生时间的系统及方法
JP2023506058A JP7456694B2 (ja) 2021-07-01 2022-06-29 電池セルのベント発生時点予測システムおよび予測方法
US18/018,756 US20230299366A1 (en) 2021-07-01 2022-06-29 System and method for predicting vent occurence time of battery cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210086372A KR20230005534A (ko) 2021-07-01 2021-07-01 전지셀의 벤트 발생시점 예측 시스템 및 예측방법
KR10-2021-0086372 2021-07-01

Publications (1)

Publication Number Publication Date
WO2023277561A1 true WO2023277561A1 (ko) 2023-01-05

Family

ID=84690490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009293 WO2023277561A1 (ko) 2021-07-01 2022-06-29 전지셀의 벤트 발생시점 예측 시스템 및 예측방법

Country Status (6)

Country Link
US (1) US20230299366A1 (ko)
EP (1) EP4175009A1 (ko)
JP (1) JP7456694B2 (ko)
KR (1) KR20230005534A (ko)
CN (1) CN116261648A (ko)
WO (1) WO2023277561A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167096B1 (ko) * 2011-12-20 2012-07-20 주식회사 스마트하이텍 팩 외관 검사 장치 및 방법
KR20180000416A (ko) * 2016-06-23 2018-01-03 주식회사 엘지화학 이차전지용 파우치 외장재 실링부 폭 측정 지그
JP6370902B2 (ja) * 2014-06-24 2018-08-15 株式会社東芝 蓄電池システムの劣化制御装置及びその方法
KR102125238B1 (ko) 2016-01-06 2020-06-22 주식회사 엘지화학 전지셀의 두께 팽창량 추정 장치 및 그것을 이용한 추정 방법
KR20210016828A (ko) * 2019-08-05 2021-02-17 주식회사 엘지화학 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
KR20210086372A (ko) 2019-12-30 2021-07-08 삼성전자주식회사 디스플레이 장치 및 그 조립 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102192676B1 (ko) 2017-01-24 2020-12-17 주식회사 엘지화학 배터리 모듈 변형 예측 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167096B1 (ko) * 2011-12-20 2012-07-20 주식회사 스마트하이텍 팩 외관 검사 장치 및 방법
JP6370902B2 (ja) * 2014-06-24 2018-08-15 株式会社東芝 蓄電池システムの劣化制御装置及びその方法
KR102125238B1 (ko) 2016-01-06 2020-06-22 주식회사 엘지화학 전지셀의 두께 팽창량 추정 장치 및 그것을 이용한 추정 방법
KR20180000416A (ko) * 2016-06-23 2018-01-03 주식회사 엘지화학 이차전지용 파우치 외장재 실링부 폭 측정 지그
KR20210016828A (ko) * 2019-08-05 2021-02-17 주식회사 엘지화학 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
KR20210086372A (ko) 2019-12-30 2021-07-08 삼성전자주식회사 디스플레이 장치 및 그 조립 방법

Also Published As

Publication number Publication date
EP4175009A1 (en) 2023-05-03
JP2023537694A (ja) 2023-09-05
CN116261648A (zh) 2023-06-13
KR20230005534A (ko) 2023-01-10
JP7456694B2 (ja) 2024-03-27
US20230299366A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
WO2018190508A1 (ko) 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법
WO2017061728A1 (ko) 전지셀의 팽창을 감지하기 위한 프로브를 포함하고 있는 전지모듈
WO2020085722A1 (ko) 중대형 셀 모듈의 폭발 압력 예측 시스템 및 이를 이용한 중대형 셀 모듈의 폭발 압력 예측 방법
WO2021015436A1 (ko) 차량 배터리 화재 감지 장치 및 감지 방법
WO2022055080A1 (ko) 배터리의 충전상태를 추정하는 방법
WO2020262787A1 (ko) 내부 단락 셀 검출 방법
WO2020262789A1 (ko) 이상 배터리 셀 검출 방법
WO2014084677A1 (ko) 배터리 사용 환경과 사용 이력을 관리하는 장치 및 방법
WO2020085667A1 (ko) 이차 전지의 내부 가스 발생 가속 구간 판단 방법
WO2021230536A1 (ko) 이차전지
WO2020017907A1 (ko) 전극의 오정렬 검출 시스템 및 방법
WO2022075618A1 (ko) 배터리 장치 및 배터리 출력 예측 방법
WO2022154354A1 (ko) 배터리 시스템 진단 장치 및 방법
WO2021020817A1 (ko) 배터리 상태 예측 장치 및 배터리 상태 예측 방법
WO2020166840A1 (ko) 배터리 셀 이상 판단 장치 및 방법
WO2023277561A1 (ko) 전지셀의 벤트 발생시점 예측 시스템 및 예측방법
WO2022030751A1 (ko) 배터리 팩의 시뮬레이션 방법
WO2021025295A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2023014056A1 (ko) 전지 셀의 전극 탭 단선 검사장치 및 단선 검사방법
WO2023068580A1 (ko) 열 폭주 감지용 압력 센서를 구비한 배터리 모듈
WO2022085950A1 (ko) 배터리 장치 및 저항 상태 추정 방법
WO2022019703A1 (ko) 배터리를 진단하기 위한 장치 및 그 방법
WO2023128472A1 (ko) 가스 벤팅의 조기 검출이 가능한 전지 모듈, 전지 팩 및 가스 벤팅의 조기 검출 방법
WO2023136584A1 (ko) 모니터링 장치 및 그것의 동작 방법
WO2024085396A1 (ko) 모니터링 시스템 및 그것의 동작 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023506058

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317006096

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2022833616

Country of ref document: EP

Effective date: 20230125

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE