WO2020017907A1 - 전극의 오정렬 검출 시스템 및 방법 - Google Patents

전극의 오정렬 검출 시스템 및 방법 Download PDF

Info

Publication number
WO2020017907A1
WO2020017907A1 PCT/KR2019/008902 KR2019008902W WO2020017907A1 WO 2020017907 A1 WO2020017907 A1 WO 2020017907A1 KR 2019008902 W KR2019008902 W KR 2019008902W WO 2020017907 A1 WO2020017907 A1 WO 2020017907A1
Authority
WO
WIPO (PCT)
Prior art keywords
corner
angle
reference jig
vertex
electrode assembly
Prior art date
Application number
PCT/KR2019/008902
Other languages
English (en)
French (fr)
Inventor
이효성
박진섭
이영준
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to PL19837103.1T priority Critical patent/PL3826090T3/pl
Priority to CN201980039423.5A priority patent/CN112262490A/zh
Priority to EP19837103.1A priority patent/EP3826090B1/en
Publication of WO2020017907A1 publication Critical patent/WO2020017907A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for inspecting a secondary battery, and in particular, to provide a system and method capable of easily detecting an electrode alignment state of a secondary battery having a stacked electrode assembly.
  • a rechargeable battery is a battery that repeatedly performs charging and discharging, unlike a primary battery.
  • Small-capacity secondary batteries are used in portable electronic devices such as mobile phones, notebook computers, and camcorders, and large-capacity secondary batteries can be used as power sources for driving motors of hybrid vehicles.
  • Such a secondary battery includes an electrode assembly having a structure in which a positive electrode, a separator, and a negative electrode are alternately stacked, a case containing an electrode assembly, a cap plate for sealing an opening of the case, and an electrode disposed on the cap plate and electrically connected to the electrode assembly. It includes a terminal.
  • the electrode assembly may have a jellyroll structure formed by winding a state in which a cathode, a separator, and a cathode are stacked, and a stacked structure in which an anode, a separator, and a cathode, which are individually stacked, are repeatedly stacked.
  • the structure of the stacked electrode assembly is formed by repeatedly stacking the positive electrode, the separator, and the negative electrode, which are formed separately, and affect the safety of the secondary battery according to the alignment state of each other.
  • the alignment of these should be inspected, but it is not easy to visually grasp the lamination state of the positive electrode and the negative electrode in the form of a plate, and there is a problem that the accuracy is poor.
  • One aspect of the present invention is to provide a system and method for detecting misalignment of electrodes that can easily determine the alignment of the electrodes of the stacked electrode assembly.
  • the misalignment detection system includes a reference jig on which an electrode assembly is placed, a beam generator for irradiating X-rays at a first angle and a second angle with respect to one corner of the electrode assembly and the reference jig, And a calculation unit configured to calculate a position coordinate of the corner of the electrode assembly at the corner.
  • the reference jig may include a stepped portion protruding upward from the corner of the reference jig by a predetermined distance.
  • the calculation unit may correct the calculated coordinate value by comparing the position coordinate of the corner of the stepped portion with the actual measurement position value at the corner of the reference jig.
  • the electrode assembly may be a stacked electrode assembly.
  • the method for detecting the misalignment of the electrodes of the electrode assembly comprising the steps of: disposing the electrode assembly on the reference jig, each of the positive electrode located in the reference jig and the first corner of the electrode assembly; Obtaining first coordinates of the cathode vertices, calculating a first distance between a vertex of each cathode and a vertex of the anode in the electrode assembly located at the first coordinate, comparing the first distance with a reference distance to the anode And determining misalignment of the cathode.
  • the obtaining of the first coordinates may include performing primary X-ray imaging at a first angle with respect to a first corner, and performing secondary X-ray imaging at a second angle with respect to the first corner, wherein the first coordinate is the first coordinate.
  • the image may be obtained from the second x-ray image and the second x-ray image.
  • Compensating the measured coordinates and distance values by obtaining the actual angle irradiated during actual shooting from the measured distance and the measured distance between the vertex of the reference jig located at the first coordinate and the vertex of the stepped part of the reference jig. It may further comprise a step.
  • the method may further include obtaining second coordinates of the vertices located at the second corner of the reference jig and the electrode assembly, and obtaining the second coordinates may include performing third-ray X-ray imaging at the first angle with respect to the second corner.
  • the method may include performing fourth-ray X-ray imaging at the second angle with respect to the second corner.
  • Compensating the measured coordinates and the distance value by obtaining the actual angle irradiated during actual shooting from the measured distance and the measured distance between the vertex of the reference jig located at the second coordinate and the vertex of the stepped part of the reference jig. It may further comprise a step.
  • misalignment detection system it is possible to easily obtain the coordinates for the corner vertices of the anode and the cathode. Therefore, the relative distance between the anode and the cathode can be obtained from the coordinates to easily detect misalignment therebetween.
  • FIG. 1 is a schematic diagram of an x-ray photographing apparatus according to an exemplary embodiment.
  • FIG. 2 is a schematic plan view illustrating x-ray imaging.
  • FIG 3 is a schematic exploded perspective view of an electrode assembly according to an embodiment of the present invention.
  • FIG. 4 is a view for explaining a method of confirming the alignment of the electrode according to an embodiment of the present invention.
  • 5 to 7 are views for explaining a method of obtaining coordinates according to an embodiment of the present invention.
  • FIG. 8 is a plan view illustrating a reference jig and an electrode assembly according to an exemplary embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view of the reference jig and the electrode assembly of FIG. 8 taken at a first angle and a second angle.
  • FIGS. 10 and 11 are diagrams for describing a method of obtaining a distance between vertices according to an embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of an x-ray imaging apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic plan view for explaining x-ray imaging.
  • the x-ray imaging apparatus 1000 may have a pedestal 10 on which an object is placed, a photographing unit 200 for photographing an object, and a reference located on the pedestal 10.
  • Jig 300 is included.
  • the photographing unit 200 includes a beam generation unit 21 for radiating X-rays, a calculation unit 22 for storing and analyzing photographed images, and a display unit 23 for displaying photographed images or data.
  • the calculator 22 may calculate an angle, a distance, a coordinate, and the like from a photographing object such as a reference jig or an electrode assembly from the photographed image.
  • the reference jig 300 is a reference jig for confirming the irradiation angle of the X-rays so that the X-rays are incident on the photographing object at a set angle.
  • the reference jig 300 has a thickness, and a stepped portion 32 may be formed on an upper portion of the base 31 of the reference jig 300. Reference).
  • a vertex a point where two sides of the reference jig 300 meet or a point where two sides of the step part 32 meet is called a vertex.
  • the X-rays may be irradiated at a predetermined angle ⁇ , for example, a first angle and a second angle, at the first corner C1 and the second corner C2 of the reference jig.
  • the angle may be 30 degrees and the second angle may be 45 degrees.
  • FIG 3 is a schematic exploded perspective view of an electrode assembly according to an embodiment of the present invention
  • Figure 4 is a view for explaining a method of confirming the alignment of the electrode according to an embodiment of the present invention.
  • the electrode assembly 400 to be aligned is disposed on the X-ray imaging apparatus 1000.
  • the electrode assembly 400 may be disposed to be within a boundary of the step portion 32.
  • an electrode assembly according to an embodiment of the present invention is stacked by repeatedly stacking a cathode 41 and an anode 42 with a separator 43 interposed therebetween.
  • the separator 43 may be a polymer film through which lithium ions pass.
  • the negative electrode 41 includes an active layer 41a on which an active material is applied to a current collector of a thin metal plate, and a non-coating portion 41b on which a thin metal plate is not exposed by applying an active material.
  • the metal thin plate of the cathode 41 may be a copper (Cu) thin plate.
  • the positive electrode 42 includes an active layer 42a on which an active material is applied to a current collector of a thin metal plate, and a non-coating portion 42b on which a thin metal plate is not exposed by applying an active material.
  • the metal thin plate of the positive electrode 42 may be an aluminum (Al) thin plate.
  • the plurality of plain portions 41b and 42b may be electrically connected to the same polarity to be electrically connected to an external terminal.
  • the uncoated portions 41b and 42 may protrude in the same direction (see FIGS. 1 and 4), but are not limited thereto and may protrude in opposite directions.
  • the electrode assembly 400 is sealed in a pouch (not shown) type case and protrudes out of the pouch through a connection member (not shown) connected to the plain portions 41b and 42b or the plain portions 41b and 42b to external terminals. It can be connected with.
  • the electrode assembly has shown one cathode 41 and the anode 42 included in the electrode assembly.
  • a first X-ray photographing is performed at a first angle ⁇ 1 with respect to the first corner C1 of the reference jig 300, and the first corner C1 is positioned at a second angle ⁇ 2.
  • Second x-rays are taken.
  • the first angle ⁇ 1 may be 45 degrees
  • the second angle ⁇ 2 may be 30 degrees.
  • the third X-ray photographing is performed at the first angle ⁇ 1 with respect to the second corner C2 of the reference jig, and the fourth X-ray imaging is performed at the second corner C2 at the second angle ⁇ 2.
  • the misalignment of the electrode assembly is determined from the captured image.
  • 5 to 7 are views for explaining a method of obtaining coordinates according to an embodiment of the present invention.
  • the misalignment may be determined based on the X and Y coordinates obtained from the following equations, and the calculation may be performed through the calculation unit of the photographing unit, and the photographed image and the calculated result may be confirmed through the display unit.
  • first corner and a second corner a method of obtaining X and Y coordinates for two corners (hereinafter, referred to as a first corner and a second corner) of the anode and the cathode will be described.
  • vertices of the first corner C1 and the second corner C2 may be located on the same side.
  • the distance d between two parallel straight lines may be obtained by Equation 1.
  • the minimum distance between two parallel straight lines passing through two vertices seen by X-ray imaging may be represented by the distance d as shown in [Equation 1] and FIG. 5.
  • the positions of the first vertices located at the first corners which are X-rayed at the first angle ⁇ 1 and the second angle ⁇ 2 according to the present invention, have a slope of m 1 and m 2 , respectively, as shown in FIG. 6. It can be represented by a straight line.
  • the straight lines with respect to the first angle ⁇ 1 and the second angle ⁇ 2 of the second corner are opposite inclined slopes as shown in FIG. 7. It can have
  • the coordinates of the 1st vertex P1 of the reference jig 300 and the 2nd vertex P2 of the step part 32 in the 1st corner can be calculated
  • FIG. 8 is a plan view illustrating a reference jig and an electrode assembly according to an exemplary embodiment of the present invention
  • FIG. 9 is a schematic cross-sectional view of the reference jig and the electrode assembly of FIG. 8 taken at a first angle and a second angle.
  • 10 and 11 are diagrams for describing a method of obtaining a distance between vertices according to an embodiment of the present invention.
  • the vertex of the reference jig 300 at the first corner is the first vertex P1
  • the vertex of the step portion 32 is the second vertex P2
  • the vertex of the cathode 41 The vertex of the 3rd vertex P3 and the positive electrode 42 is called 4th vertex P4.
  • the vertex of the reference jig 300 is referred to as the fifth vertex P5
  • the vertex of the step portion 32 is referred to as the sixth vertex P6
  • the vertex of the cathode 41 is referred to as the seventh vertex (
  • the vertex of the anode 42 is referred to as an eighth vertex P8.
  • the coordinate P2 of the second vertex of the step portion 32 from the first vertex P1 of the reference jig 300 located at the first corner has a slope m 1 at the first angle ⁇ 1.
  • the parallel can be obtained by the first straight line (YY1) and a second straight line (YY2), and a slope (m 2) is parallel to the second angle third straight line (YO1) and a fourth straight line (YO2).
  • Y1, Y2, ... the straight lines passing through the vertices of the cathode and the anode are referred to as Y1, Y2, ... (the cathode and the anode are alternately 1, 2, 3, 4, ...
  • the straight lines passing through the vertices of the cathode and the anode at the second angle ⁇ 2 are referred to as W1, W2, ...
  • the straight lines passing through the vertices of the cathode and the anode at the first angle ⁇ 1 are referred to as Y1 ', Y2', .. and the straight lines passing through the vertices of the cathode and the anode at the second angle ⁇ 2.
  • the distance between the first vertex P1 and the fourth vertex P4 is e i at the first angle ⁇ 1 and f i at the second angle ⁇ 2.
  • the distance between the first vertex P1 and the second vertex P2 as a reference is r1 and r2 at the first angle ⁇ 1 and the second angle ⁇ 2, respectively.
  • the distance between two parallel straight lines shown in FIG. 8 may be obtained from Equation 1 above.
  • the distance between the first vertex P1 and the third vertex P3 is obtained.
  • a i of the first straight line YY1 and the second straight line Y1 is obtained, and b i of the third straight line YO1 and the fourth straight line W1 is obtained.
  • n 1 and m 2 can be obtained as tan ( ⁇ 1) and tan ( ⁇ 2), respectively.
  • the coordinates from vertices P1 to P2, P3 and P4 of the reference jig corners and the coordinates from vertices P5 to P6, P7 and P8 at the first angle ⁇ 1 and the second angle ⁇ 2 are calculated.
  • the calculated coordinates may be used to calculate distances (h1, h2, h3 ..) of the vertices (P2, P3, P4, P6, P7, and P8) from the corners of the reference jig (P1, P5). Can be.
  • the distances of the vertices calculated from the actual X-ray image may be different from the distances actually measured.
  • the main factor is that the images are taken at an angle other than the angle set during the actual X-ray imaging (hereinafter referred to as the actual angle).
  • the reference coordinates obtained according to the reference distance of the reference jig 300 may have a coordinate of the first vertex (0, 0) and a coordinate of the second vertex (10, 10).
  • the coordinates of the first vertex according to the first distance r1 obtained from the measured distance may be (0, 0), and the coordinates of the second vertex may be (11, 12).
  • the first vertex P1 and the second vertex P2 measured by the actual distance and the X-ray of the first vertex P1 and the second vertex P2 spaced by a predetermined distance
  • the actual angle is calculated using the trigonometric function as shown in FIG.
  • the photographing may be set to 30 degrees, and the actual photographed angle obtained from the first distance measured from the actually photographed image may be 32 degrees.
  • the distance G1 between the third vertex P3 and the fourth vertex P4 is obtained from the coordinates of the third vertex P3 and the fourth vertex P4 obtained from the coordinates calculated by the above method, and Through the coordinates of the seventh vertex P7 and the eighth vertex P8, the distance G2 between the seventh and eighth vertices can be obtained.
  • the distances G1 and G2 between the vertices are relative distances between the vertices.
  • the cathode 41 and the anode 42 have a substantially rectangular shape, the XY coordinates are obtained for the two corners C1 and C2 and the predetermined horizontal length or vertical length of the cathode 41 and the anode 42 is added. You can see the location of the other two corners (C3, C4).
  • misalignment is determined according to a relative stacking position of the anode and the cathode. Due to the characteristics of the battery, the positive electrode should be formed smaller than the negative electrode, and should be laminated so that the boundary line of the positive electrode does not protrude outside the boundary line of the negative electrode. If the boundary line (or vertex) of the positive electrode is located outside the boundary line of the negative electrode, the positive electrode and the negative electrode are misaligned and are determined to be defective.
  • the present invention by obtaining coordinates of two corners with respect to the positive electrode and the negative electrode, it is possible to easily determine the form in which the positive electrode and the negative electrode are stacked, that is, the relative position between the adjacent positive electrode and the negative electrode.
  • the electrode assembly including the positive electrode and the negative electrode in which the misalignment is not generated may be manufactured by modifying only the stacking process of the electrode in which the misalignment occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

본 발명의 일 실시예에 따른 오정렬 검출 시스템은, 전극 조립체가 놓여지는 기준 지그, 전극 조립체와 기준 지그의 어느 한 모퉁이에 대해서 제1각도와 제2각도로 엑스선을 조사하는 빔 발생부, 기준 지그의 상기 모퉁이에서 상기 전극 조립체 모퉁이의 위치 좌표를 계산하는 계산부를 포함한다.

Description

전극의 오정렬 검출 시스템 및 방법
본 발명은 이차 전지의 검사 방법에 관한 것으로, 특히 적층형 전극 조립체를 가지는 이차 전지의 전극 정렬 상태를 용이하게 검출할 수 있는 시스템 및 방법을 제공하는 것이다.
이차 전지(rechargeable battery)는 일차전지와 달리 충전 및 방전을 반복적으로 수행하는 전지이다. 소용량의 이차 전지는 휴대폰이나 노트북 컴퓨터 및 캠코더와 같이 휴대가 가능한 소형 전자기기에 사용되고, 대용량 이차 전지는 하이브리드 자동차 등의 모터 구동용 전원으로 사용될 수 있다.
이러한 이차 전지는 양극, 세퍼레이터 및 음극이 교대로 적층된 구조의 전극 조립체, 전극 조립체를 내장하는 케이스, 케이스의 개구를 밀폐하는 캡 플레이트, 및 캡 플레이트 상에 위치하여 전극 조립체에 전기적으로 연결되는 전극단자를 포함한다.
전극 조립체는 양극, 세퍼레이터 및 음극이 적층된 상태로 권취하여 형성한 젤리롤 구조, 개별로 이루어진 양극, 세퍼레이터 및 음극을 반복 적층한 적층형 구조를 가질 수 있다.
이 중, 적층형 전극 조립체의 구조는 개별로 이루어지는 양극, 세퍼레이터 및 음극을 반복 적층하여 형성하며, 서로의 정렬 상태에 따라서 이차 전지의 안전성에 영향을 미치게 된다.
따라서, 제조 공정시 이들의 정렬 상태를 검사해야 하나, 박판 형태의 양극, 음극의 적층 상태를 육안으로 파악하는 것은 용이하지 않으며 정확성이 떨어지는 문제점이 있다.
본 발명의 일 측면은 적층형 전극 조립체의 전극들의 정렬 상태를 용이하게 파악할 수 있는 전극의 오정렬 검출 시스템 및 방법을 제공하고자 한다.
본 발명의 일 실시예에 따른 오정렬 검출 시스템은 전극 조립체가 놓여지는 기준 지그, 전극 조립체와 기준 지그의 어느 한 모퉁이에 대해서 제1각도와 제2각도로 엑스선을 조사하는 빔 발생부, 기준 지그의 상기 모퉁이에서 상기 전극 조립체 모퉁이의 위치 좌표를 계산하는 계산부를 포함한다.
상기 기준 지그는 기준 지그의 모퉁이에서 일정거리 이격되어 상기 기준 지그의 상부로 돌출된 단차부를 포함할 수 있다.
상기 계산부는 상기 기준 지그의 모퉁이에서 상기 단차부 모퉁이의 위치 좌표를 실제 측정 위치값과 비교하여 계산된 좌표값을 보정할 수 있다.
상기 전극 조립체는 적층형 전극 조립체일 수 있다.
본 발명의 다른 실시예에 따른 전극 조립체의 전극의 오정렬을 검출하는 방법에 있어서, 상기 기준 지그 위에 상기 전극 조립체를 배치하는 단계, 기준 지그 및 상기 전극 조립체의 제1 모퉁이에 위치하는 각각의 양극과 음극 꼭지점들의 제1 좌표를 구하는 단계, 제1 좌표에 위치하는 상기 전극 조립체에서 각각의 음극의 꼭지점과 양극의 꼭지점 사이의 제1 거리를 계산하는 단계, 제1 거리와 기준 거리를 비교하여 상기 양극 및 음극의 오정렬을 판단하는 단계를 포함한다.
상기 제1 좌표를 구하는 단계는, 제1 모퉁이에 대해서 제1 각도로 1차 엑스레이 촬영하는 단계, 제1 모퉁이에 대해서 제2 각도로 2차 엑스레이 촬영하는 단계를 포함하고, 제1 좌표는 상기 1차 엑스레이 촬영한 영상 및 상기 2차 엑스레이 촬영한 영상으로부터 구할 수 있다.
상기 제1 좌표에 위치하는 상기 기준 지그의 꼭지점과 상기 기준 지그의 단차부 꼭지점 사이의 거리의 측정된 거리와 실측된 거리로부터 실제 촬영시 조사된 실제 각도를 구하여 측정된 좌표와 거리값을 보정하는 단계를 더 포함할 수 있다.
상기 기준 지그 및 상기 전극 조립체의 제2 모퉁이에 위치하는 꼭지점들의 제2 좌표를 구하는 단계를 더 포함하고, 제2 좌표를 구하는 단계는, 제2 모퉁이에 대해서 상기 제1 각도로 3차 엑스레이 촬영하는 단계, 제2 모퉁이에 대해서 상기 제2 각도로 4차 엑스레이 촬영하는 단계를 포함할 수 있다.
상기 제2 좌표에 위치하는 상기 기준 지그의 꼭지점과 상기 기준 지그의 단차부 꼭지점 사이의 거리의 측정된 거리와 실측된 거리로부터 실제 촬영시 조사된 실제 각도를 구하여 측정된 좌표와 거리값을 보정하는 단계를 더 포함할 수 있다.
본 발명의 실시예에 따른 오정렬 검출 시스템을 사용하면, 양극 및 음극의 모퉁이 꼭지점에 대한 좌표를 용이하게 구할 수 있다. 따라서, 좌표로부터 양극 및 음극 사이의 상대적인 거리를 구하여 이들 사이의 오정렬을 용이하게 검출할 수 있다.
도 1은 본 발명의 일 실시예에 따른 엑스레이 촬영 장치의 개략적인 구성도이다.
도 2는 엑스레이 촬영을 설명하기 위한 개략적인 평면도이다.
도 3은 본 발명의 일 실시예에 따른 전극 조립체의 개략적인 분해 사시도이다.
도 4는 본 발명의 일 실시예에 따라서 전극의 정렬을 확인하는 방법을 설명하기 위한 도면이다.
도 5 내지 도 7은 본 발명의 일 실시예에 따른 좌표 구하는 방법을 설명하기 위한 도면이다.
도 8은 본 발명의 일 실시예에 따른 기준 지그와 전극 조립체를 도시한 평면도이다.
도 9는 도 8의 기준 지그와 전극 조립체를 제1 각도 및 제2 각도로 촬영한 개략적인 단면도이다.
도 10 및 도 11은 본 발명의 일 실시예에 따라서 꼭지점 사이의 거리를 구하는 방법을 설명하기 위한 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 만 아니라, 다른 부재를 사이에 두고 "간접적으로 연결"된 것도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 "상에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, "~상에"라 함은 대상 부분의 위 또는 아래에 위치함을 의미하는 것이며, 반드시 중력 방향을 기준으로 상 측에 위치하는 것을 의미하는 것은 아니다.
이하에서는 첨부한 도면을 참조하여 본 발명의 한 실시예에 따른 이차 전지에 대해서 구체적으로 설명한다.
도 1은 본 발명의 일 실시예에 따른 엑스레이 촬영 장치의 개략적인 구성도이고, 도 2는 엑스레이 촬영을 설명하기 위한 개략적인 평면도이다.
도 1에 도시된 바와 같이, 본 발명의 한 실시예에 따른 엑스레이 촬영 장치(1000)는 대상물이 놓여지는 받침대(10), 대상물을 촬영하는 촬영부(200), 받침대(10)에 위치하는 기준 지그(300)를 포함한다.
촬영부(200)는 엑스선을 조사하는 빔생성부(21), 촬영된 영상을 저장하고 분석하는 계산부(22) 및 촬영된 영상 또는 데이터를 표시하는 표시부(23)를 포함한다.
계산부(22)는 촬영된 영상으로부터 기준 지그 또는 전극 조립체와 같은 촬영 대상물로부터 각도, 거리 및 좌표 등을 계산할 수 있다.
기준 지그(300)는 촬영 대상물에 X-선이 설정된 각도로 입사될 수 있도록 X-선의 조사 각도를 확인하기 위한 기준 지그이다.
기준 지그(300)는 두께를 가지며, 상기 기준 지그(300)의 베이스부(31)의 상부에는 단차부(32)가 형성될 수 있다(다만, 이하에서는 베이스부는 별도로 구분하지 않고, 기준 지그로 지칭함). 이하에서는 기준 지그(300)의 두 변이 만나는 점 또는 단차부(32)의 두 변이 만나는 점을 꼭지점이라 한다.
도 2에서와 같이, 엑스선은 기준 지그의 제1 모퉁이(C1) 및 제2 모퉁이(C2)에 일정한 각도(θ), 예를 들어 제1 각도 및 제2 각도로 조사될 수 있으며, 이때 제1 각도는 30도이고, 제2 각도는 45도 일 수 있다.
이하에서는 도 1 및 도 2의 정렬 확인 장치를 이용하여 이차 전지용 극판의 정렬을 확인하는 방법에 대해서 도면을 참조하여 설명한다.
도 3은 본 발명의 일 실시예에 따른 전극 조립체의 개략적인 분해 사시도이고, 도 4는 본 발명의 일 실시예에 따라서 전극의 정렬을 확인하는 방법을 설명하기 위한 도면이다.
먼저, 도 1에서와 같이, 엑스레이 촬영 장치(1000)에 정렬을 확인하고자 하는 전극 조립체(400)를 배치한다. 이때, 전극 조립체(400)는 단차부(32)의 경계선 내에 위치하도록 배치될 수 있다.
도 3을 참조하면, 본 발명의 일 실시예에 따른 전극 조립체는 세퍼레이터(43)를 사이에 두고 음극(41)과 양극(42)을 반복 적층하여 적층형으로 이루어진다. 세퍼레이터(43)는 리튬 이온을 통과시키는 폴리머 필름일 수 있다.
음극(41)은 금속 박판의 집전체에 활물질을 도포한 활성층(41a)과 활물질을 도포하지 않아 금속 박판이 노출된 무지부(41b)를 포함한다. 음극(41)의 금속 박판은 구리(Cu) 박판일 수 있다.
양극(42)은 금속 박판의 집전체에 활물질을 도포한 활성층(42a)과 활물질을 도포하지 않아 금속 박판이 노출된 무지부(42b)를 포함한다. 양극(42)의 금속 박판은 알루미늄(Al) 박판일 수 있다.
복수의 무지부(41b, 42b)는 동일한 극성끼리 전기적으로 연결되어 외부 단자와 전기적으로 연결될 수 있다. 무지부(41b, 42)는 동일한 방향으로 돌출(도 1 및 도 4 참조)될 수 있으나 이에 한정되는 것은 아니며, 반대 방향으로 돌출될 수 있다.
전극 조립체(400)는 파우치(도시하지 않음)형 케이스에 밀봉되며, 무지부(41b, 42b) 또는 무지부(41b, 42b) 와 연결된 연결 부재(도시하지 않음)를 통해서 파우치 밖으로 돌출되어 외부 단자와 연결될 수 있다.
이하에서는, 설명의 편의상 전극 조립체는 전극 조립체에 포함된 하나의 음극(41) 및 양극(42)을 도시하였다.
도 4를 참조하면, 기준 지그(300)의 제1 모퉁이(C1)에 대해서, 제1 각도(θ1)로 1차 엑스레이 촬영을 진행하고, 제2 각도(θ2)로 제1 모퉁이(C1)를 2차 엑스레이 촬영을 진행한다. 이때, 제1 각도(θ1)는 45도이고, 제2 각도(θ2)는 30도일 수 있다.
다음, 기준 지그의 제2 모퉁이(C2)에 대해서, 제1 각도(θ1)로 3차 엑스레이 촬영을 진행하고, 제2 각도(θ2)로 제2 모퉁이(C2)를 4차 엑스레이 촬영을 진행한다.
그런 다음, 촬영된 영상으로부터 전극 조립체의 오정렬을 판단한다.
도 5 내지 도 7은 본 발명의 일 실시예에 따른 좌표 구하는 방법을 설명하기 위한 도면이다.
오정렬은 하기 수학식들로부터 구한 X, Y 좌표를 통해서 판단할 수 있으며, 이러한 계산은 촬영부의 계산부를 통해서 진행될 수 있으며, 촬영된 영상 및 계산된 결과는 표시부를 통해서 확인할 수 있다.
이하에서는 양극 및 음극의 두 개의 모퉁이(이하, 제1 모퉁이 및 제2 모퉁이라 함)에 대해서 X, Y좌표를 구하는 방법에 대해서 설명한다. 이때, 제1 모퉁이(C1)와 제2 모퉁이(C2)의 꼭지점은 동일한 일변 상에 위치할 수 있다.
먼저, 도 5에서와 같이, 평행한 두 직선 사이의 거리(d)는 [수학식 1]로 구할 수 있다.
[수학식 1]
Figure PCTKR2019008902-appb-I000001
따라서, 엑스선 촬영에 의하여 보이는 두 꼭지점을 지나는 평행한 두 직선 사이의 최소 거리는 [수학식 1] 및 도 5에서와 같이 d의 거리로 나타낼 수 있다.
이때, 본 발명에 따른 제1 각도(θ1) 및 제2 각도(θ2)로 엑스선 촬영한, 제1 모퉁이에 위치하는 제1 꼭지점의 위치는 도 6에서와 같이 각각 m1, m2 기울기를 가지는 직선으로 나타낼 수 있다. 그리고, 제1 모퉁이 및 제2 모퉁이 꼭지점은 전극의 일변을 중심으로 반대편에 위치하므로, 제2 모퉁이의 제1 각도(θ1) 및 제2 각도(θ2)에 대한 직선은 도 7에서와 같이 반대 기울기를 가질 수 있다.
따라서, 제1 모퉁이에서 기준 지그(300)의 제1 꼭지점(P1)과 단차부(32)의 제2 꼭지점(P2)의 좌표는 도 8에 도시한 직선으로부터 구할 수 있다.
이하에서 좀 더 구체적으로 설명한다.
도 8은 본 발명의 일 실시예에 따른 기준 지그와 전극 조립체를 도시한 평면도이고, 도 9는 도 8의 기준 지그와 전극 조립체를 제1 각도 및 제2 각도로 촬영한 개략적인 단면도이고, 도 10 및 도 11은 본 발명의 일 실시예에 따라서 꼭지점 사이의 거리를 구하는 방법을 설명하기 위한 도면이다.
도 8 및 도 9에서와 같이, 제1 모퉁이에서 기준 지그(300)의 꼭지점을 제1 꼭지점(P1), 단차부(32)의 꼭지점을 제2 꼭지점(P2), 음극(41)의 꼭지점을 제3 꼭지점(P3), 양극(42)의 꼭지점을 제4 꼭지점(P4)이라고 한다. 그리고, 제2 모퉁이에서, 기준 지그(300)의 꼭지점을 제5 꼭지점(P5), 단차부(32)의 꼭지점을 제6 꼭지점(P6)이라고 하고, 음극(41)의 꼭지점을 제7 꼭지점(P7)이라 하고, 양극(42)의 꼭지점을 제8 꼭지점(P8)이라 한다.
먼저, 제1 모퉁이에 위치하는 기준 지그(300)의 제1 꼭지점(P1)에서부터 단차부(32)의 제2 꼭지점의 좌표(P2)는, 제1 각도(θ1)에서 기울기(m1)가 평행한 제1 직선(YY1) 및 제2 직선(YY2)과, 제2 각도에서 기울기(m2)가 평행한 제3 직선(YO1) 및 제4 직선(YO2)으로 구할 수 있다. 이하, 제1 각도(θ1)에서, 음극 및 양극의 꼭지점을 지나는 직선을 Y1, Y2, ...이라 하고(음극 및 양극이 교번하여 1, 2, 3, 4, ... 이며, 이하에서도 동일), 제2 각도(θ2)에서 음극 및 양극의 꼭지점을 지나는 직선을 W1, W2, ...이라 한다. 그리고, 제2 모퉁이에서, 제1 각도(θ1)에서 음극 및 양극의 꼭지점을 지나는 직선을 Y1', Y2', ..이라 하고, 제2 각도(θ2)에서 음극 및 양극의 꼭지점을 지나는 직선을 W1', W2', ..이라 한다
이때, 도 8 및 도 9에 도시한 제1 꼭지점(P1)과 제3 꼭지점(P3) 사이의 거리는 제1 각도(θ1)에서 hi라 하고, 제2 각도(θ2)에서는 ℓi이라 한다(i = 1, 2, 3, ...., 이하에서도 동일). 제1 꼭지점(P1)과 제4 꼭지점(P4) 사이의 거리는 제1 각도(θ1)에서 ei라 하고, 제2 각도(θ2)에서는 fi라 한다. 기준이 되는 제1 꼭지점(P1)과 제2 꼭지점(P2) 사이의 거리는 제1 각도(θ1) 및 제2 각도(θ2)에서 각각 r1, r2 라 한다.
도 8에 도시된 평행한 두 직선 사이의 거리는 상기 [수학식 1]로부터 구해질 수 있다. 예를 들어, 제1 꼭지점(P1)과 제3 꼭지점(P3) 사이의 거리를 구해 본다. 위 [수학식 1]에서의 |b-a|값은 각각 기울기 m1, m2에서의 a, b임을 알 수 있으므로, 도 8 및 도 10을 참조하면, 제1 직선(YY1), 제2 직선(Y1), 제3 직선(YO1) 및 제4 직선(W1)는 각각 y=m1x, y=m1x+ai, y=m2x, y=m1x+bi 가 된다. 이를 통해서 하기와 같이 제1 직선(YY1) 및 제2 직선(Y1)의 ai를 구하고, 제3 직선(YO1) 및 제4 직선(W1)의 bi를 구한다.
m1, m2는 각각 tan(θ1), tan(θ2)로 구할 수 있다.
Figure PCTKR2019008902-appb-I000002
Figure PCTKR2019008902-appb-I000003
Figure PCTKR2019008902-appb-I000004
이후, 이들 수학식을 x 및 y에 대해서 정리하면, 하기 두 직선의 교점이 꼭지점의 좌표가 된다.
Figure PCTKR2019008902-appb-I000005
Figure PCTKR2019008902-appb-I000006
동일한 방법으로 제1 각도(θ1) 및 제2 각도(θ2)에서 기준 지그 모퉁이의 꼭지점(P1)에서부터 P2, P3, P4까지의 좌표, 꼭지점(P5)에서부터 P6, P7, P8까지의 좌표를 계산할 수 있으며, 계산된 좌표값을 이용하여 기준 지그의 모퉁이의 꼭지점(P1, P5)에서부터 각 꼭지점(P2, P3, P4, P6, P7, P8)들의 거리(h1, h2, h3..)를 계산할 수 있다.
한편 실제 엑스선 촬영된 영상으로부터 계산된 상기 꼭지점들의 거리는 실제로 측정되는 거리와 다를 수 있다. 이처럼, 계산된 꼭지점들의 거리와 실제로 측정되는 거리가 다른 원인은 여러가지 요인이 있을 수 있으나, 실제 엑스레이 촬영시 설정된 각도가 아닌 다른 각도(이하에서는, 실제 각도라 함)에서 촬영된 것이 주 요인이다.
엑스레이 촬영 장비에 특정 각도, 예를 들어 30도를 설정하고, 촬영을 진행하더라도 실제 촬영된 각도가 설정된 각도와 다를 수 있다. 따라서, 기준 지그(300)를 통해서 엑스레이 촬영 장비의 촬영 각도를 검증하는 것이 필요하다.
따라서, 위와 같이 실제 촬영된 각도가 설정된 각도와 다른 경우 설정된 각도를 바탕으로 구한 각 꼭지점의 좌표 또한 다르다. 즉, 기준 지그(300)의 기준 거리에 따라서 구해지는 기준 좌표는 제1 꼭지점의 좌표가 (0, 0)이고, 제2 꼭지점의 좌표가 (10, 10)일 수 있으나, 실제 촬영된 영상으로부터 측정된 거리로부터 구한 제1 거리(r1)에 따른 제1 꼭지점의 좌표가 (0, 0)이고, 제2 꼭지점의 좌표가 (11, 12)일 수 있다.
이처럼, 설정된 각도와 촬영된 각도가 다를 경우, 일정거리 이격된 제1 꼭지점(P1)과 제2 꼭지점(P2)의 실제거리와 엑스선에 의하여 측정된 제1 꼭지점(P1)과 제2 꼭지점(P2)의 거리를 도 11과 같이 삼각 함수를 이용하여 실제 각도를 구한다. 예를 들어, 30도로 설정하여 촬영하고, 실제 촬영된 영상으로부터 측정된 제1 거리로부터 구한 실제 촬영된 각도는 32도 일 수 있다.
위의 방법으로 계산된 좌표로부터 구한 제3 꼭지점(P3)과 제4 꼭지점(P4)의 좌표를 통해서, 제3 꼭지점(P3)과 제4 꼭지점(P4) 사이의 거리(G1)를 구하고, 제7 꼭지점(P7)과 제8 꼭지점(P8)의 좌표를 통해서, 제7 꼭지점과 제8 꼭지점 사이의 거리(G2)를 구할 수 있다. 이때, 꼭지점 사이의 거리(G1, G2)는 꼭지점들 사이의 상대적 거리이다.
제3 꼭지점(P3)과 제7 꼭지점(P7)은 음극(41)의 꼭지점 위치이고, 제4 꼭지점(P4)과 제8 꼭지점(P8)은 양극(42)의 꼭지점의 위치이므로, 이들 좌표를 통해서 양극과 음극 사이의 상대적 위치 및 이들 사이의 간격을 알 수 있다.
음극(41) 및 양극(42)은 대략 사각형 모양이므로, 두 개의 모퉁이(C1, C2)에 대해서 XY 좌표를 구하고 미리 정해지는 음극(41) 및 양극(42)의 가로 길이 또는 세로 길이를 더해, 나머지 두 개의 모퉁이(C3, C4)의 위치를 파악할 수 있다.
한편, 적층형 전극 조립체(400)에서는 양극과 음극의 상대적인 적층 위치에 따라서 오정렬을 판단한다. 전지의 특성상 양극이 음극보다 작게 형성되고, 양극의 경계선이 음극의 경계선 밖으로 돌출되지 않도록 적층 되어야 한다. 만약, 양극의 경계선(또는 꼭지점)이 음극의 경계선 밖에 위치할 경우 양극과 음극이 오정렬된 것으로, 불량으로 판정한다.
본 발명의 일 실시예에서는 양극과 음극에 대해서 두 개의 모퉁이의 좌표를 구함으로써, 양극과 음극이 적층되는 형태, 즉 이웃하는 양극과 음극 사이의 상대적인 위치를 용이하게 파악할 수 있다.
따라서, 음극의 경계선 밖으로 양극이 돌출되어 오정렬되는 것뿐 아니라, 양극과 음극 사이의 상대적 거리로부터 오정렬 된 정도 또한 용이하게 파악할 수 있다.
설명의 편의상 하나의 양극 및 음극에 대해서 설명하였으나, 본 발명의 일 실시예에 따른 엑스레이 촬영 장치를 이용하면 각 모퉁이에 대해서 서로 다른 각도로 촬영된 영상만으로, 전극 조립체 내에 포함된 모든 양극 및 음극에 대해서 각 꼭지점의 좌표를 구하여, 각각에 대해서 오정렬을 판단할 수 있다.
이처럼, 모든 양극 및 음극의 위치를 파악하면 오정렬된 양극 또는 음극이 적층되는 층의 위치를 알 수 있다. 따라서, 오정렬이 발생한 전극의 적층 공정만을 수정하여 오정렬이 발생되지 않는 양극 및 음극을 포함하는 전극 조립체를 제조할 수 있다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.

Claims (9)

  1. 전극 조립체가 놓여지는 기준 지그,
    상기 전극 조립체와 기준 지그의 어느 한 모퉁이에 대해서 제1각도와 제2각도로 엑스선을 조사하는 빔 발생부,
    상기 기준 지그의 상기 모퉁이에서 상기 전극 조립체 모퉁이의 위치 좌표를 계산하는 계산부
    를 포함하는 오정렬 검출 시스템.
  2. 제1항에서,
    상기 기준 지그는
    상기 기준 지그의 모퉁이에서 일정거리 이격되어 상기 기준 지그의 상부로 돌출된 단차부를 포함하는 오정렬 검출 시스템.
  3. 제2항에서,
    상기 계산부는 상기 기준 지그의 모퉁이에서 상기 단차부 모퉁이의 위치 좌표를 실제 측정 위치값과 비교하여 계산된 좌표값을 보정하는 오정렬 검출 시스템.
  4. 제1항에서,
    상기 전극 조립체는 적층형 전극 조립체인 오정렬 검출 시스템.
  5. 제1항 내지 제4항 중 어느 한 항의 오정렬 검출 시스템을 통해서 전극 조립체의 전극의 오정렬을 검출하는 방법에 있어서,
    상기 기준 지그 위에 상기 전극 조립체를 배치하는 단계,
    상기 기준 지그 및 상기 전극 조립체의 제1 모퉁이에 위치하는 각각의 양극과 음극의 꼭지점들의 제1 좌표를 구하는 단계,
    상기 제1 좌표에 위치하는 상기 전극 조립체에서 각각의 음극의 꼭지점과 양극의 꼭지점 사이의 제1 거리를 계산하는 단계,
    상기 제1 거리와 기준 거리를 비교하여 상기 양극 및 음극의 오정렬을 판단하는 단계
    를 포함하는 전극의 오정렬을 검출하는 방법.
  6. 제5항에서,
    상기 제1 좌표를 구하는 단계는,
    상기 제1 모퉁이에 대해서 제1 각도로 1차 엑스레이 촬영하는 단계,
    상기 제1 모퉁이에 대해서 제2 각도로 2차 엑스레이 촬영하는 단계
    를 포함하고,
    상기 제1 좌표는 상기 1차 엑스레이 촬영한 영상 및 상기 2차 엑스레이 촬영한 영상으로부터 구하는 오정렬을 검출하는 방법.
  7. 제6항에서,
    상기 제1 좌표에 위치하는 상기 기준 지그의 꼭지점과 상기 기준 지그의 단차부 꼭지점 사이의 거리의 측정된 거리와 실측된 거리로부터 실제 촬영시 조사된 실제 각도를 구하여 측정된 좌표와 거리값을 보정하는 단계
    를 더 포함하는 오정렬을 검출하는 방법.
  8. 제7항에서,
    상기 기준 지그 및 상기 전극 조립체의 제2 모퉁이에 위치하는 꼭지점들의 제2 좌표를 구하는 단계
    를 더 포함하고,
    상기 제2 좌표를 구하는 단계는,
    상기 제2 모퉁이에 대해서 상기 제1 각도로 3차 엑스레이 촬영하는 단계,
    상기 제2 모퉁이에 대해서 상기 제2 각도로 4차 엑스레이 촬영하는 단계
    를 포함하는 오정렬을 검출하는 방법.
  9. 제8항에서,
    상기 제2 좌표에 위치하는 상기 기준 지그의 꼭지점과 상기 기준 지그의 단차부 꼭지점 사이의 거리의 측정된 거리와 실측된 거리로부터 실제 촬영시 조사된 실제 각도를 구하여 측정된 좌표와 거리값을 보정하는 단계
    를 더 포함하는 오정렬을 검출하는 방법.
PCT/KR2019/008902 2018-07-18 2019-07-18 전극의 오정렬 검출 시스템 및 방법 WO2020017907A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PL19837103.1T PL3826090T3 (pl) 2018-07-18 2019-07-18 System i metoda wykrywania niewyrównania elektrod
CN201980039423.5A CN112262490A (zh) 2018-07-18 2019-07-18 用于检测电极的错位的系统和方法
EP19837103.1A EP3826090B1 (en) 2018-07-18 2019-07-18 System and method for detecting misalignment of electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0083635 2018-07-18
KR1020180083635A KR102130027B1 (ko) 2018-07-18 2018-07-18 전극의 오정렬 검출 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2020017907A1 true WO2020017907A1 (ko) 2020-01-23

Family

ID=69164611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008902 WO2020017907A1 (ko) 2018-07-18 2019-07-18 전극의 오정렬 검출 시스템 및 방법

Country Status (6)

Country Link
EP (1) EP3826090B1 (ko)
KR (1) KR102130027B1 (ko)
CN (1) CN112262490A (ko)
HU (1) HUE066539T2 (ko)
PL (1) PL3826090T3 (ko)
WO (1) WO2020017907A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113654493A (zh) * 2021-08-13 2021-11-16 苏州市比特优影像科技有限公司 一种叠片软包锂电池质量检测方法及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021117152A1 (de) * 2021-07-02 2023-01-05 Volkswagen Aktiengesellschaft Verfahren zur Bestimmung einer Ablagegenauigkeit einer Mehrzahl von Elektrodenblättern in einem Stapel
KR20230059584A (ko) * 2021-10-26 2023-05-03 주식회사 엘지에너지솔루션 전극 조립체의 제조방법
SE2251276A1 (en) * 2022-11-02 2024-05-03 Northvolt Ab Determining alignment within electrode stacks
DE102023202492B3 (de) * 2023-03-21 2024-03-28 Volkswagen Aktiengesellschaft Verfahren zur Prüfung eines Batterieelementestapels bezüglich der Lage von Batterieelementschichten

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101121259B1 (ko) * 2009-08-06 2012-03-22 도시바 아이티 앤 콘트롤 시스템 가부시키가이샤 전지 검사 장치
KR101334121B1 (ko) * 2009-10-26 2013-11-29 에스케이이노베이션 주식회사 전지의 전극 검사장치 및 방법
JP2016109654A (ja) * 2014-12-03 2016-06-20 東芝Itコントロールシステム株式会社 電池検査装置
KR101705330B1 (ko) * 2015-09-30 2017-02-10 인하대학교 산학협력단 스테레오 카메라 이미지에서 물체의 기울어진 각도를 찾기 위한 특징점 선택 방법
KR20180075181A (ko) * 2016-12-26 2018-07-04 주식회사 엘지화학 전극 조립체의 얼라인 체크 장치 및 얼라인 체크 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4128397B2 (ja) * 2002-06-12 2008-07-30 東芝Itコントロールシステム株式会社 電池検査装置
JP6673165B2 (ja) * 2016-11-29 2020-03-25 株式会社島津製作所 電池のx線検査装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101121259B1 (ko) * 2009-08-06 2012-03-22 도시바 아이티 앤 콘트롤 시스템 가부시키가이샤 전지 검사 장치
KR101334121B1 (ko) * 2009-10-26 2013-11-29 에스케이이노베이션 주식회사 전지의 전극 검사장치 및 방법
JP2016109654A (ja) * 2014-12-03 2016-06-20 東芝Itコントロールシステム株式会社 電池検査装置
KR101705330B1 (ko) * 2015-09-30 2017-02-10 인하대학교 산학협력단 스테레오 카메라 이미지에서 물체의 기울어진 각도를 찾기 위한 특징점 선택 방법
KR20180075181A (ko) * 2016-12-26 2018-07-04 주식회사 엘지화학 전극 조립체의 얼라인 체크 장치 및 얼라인 체크 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3826090A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113654493A (zh) * 2021-08-13 2021-11-16 苏州市比特优影像科技有限公司 一种叠片软包锂电池质量检测方法及系统

Also Published As

Publication number Publication date
HUE066539T2 (hu) 2024-08-28
EP3826090A1 (en) 2021-05-26
EP3826090B1 (en) 2024-02-21
KR102130027B1 (ko) 2020-07-03
CN112262490A (zh) 2021-01-22
KR20200009369A (ko) 2020-01-30
EP3826090A4 (en) 2022-04-06
PL3826090T3 (pl) 2024-05-06

Similar Documents

Publication Publication Date Title
WO2020017907A1 (ko) 전극의 오정렬 검출 시스템 및 방법
WO2019190129A1 (ko) 전극조립체의 얼라인 검사 장치 및 그를 이용한 전극조립체의 얼라인 검사 방법
WO2014137112A1 (ko) 단차 구조를 포함하는 전지셀
WO2020009337A1 (ko) 파우치형 2차전지의 전극 손상 검사방법 및 파우치형 2차전지의 전극 손상 검사장치
CN112670546B (zh) 具有多机型视觉检查功能的二次电池制造装置
KR20160067024A (ko) 전지 검사 장치
WO2020231054A1 (ko) 전극 조립체 및 이의 검사 방법
WO2014126358A1 (ko) 엇갈린 배열 구조의 전극조립체를 포함하는 전지셀
WO2014126382A1 (ko) 계단 구조의 전극군 적층체
WO2021101058A1 (ko) 전극조립체 제조장치 및 방법
WO2023121299A1 (ko) 배터리 셀 검사 시스템 및 방법
WO2018164362A1 (ko) 배터리 모듈
WO2018030835A1 (ko) 이차 전지
WO2022260245A1 (ko) 전극판 또는 단위셀 적층 검사 장치
WO2018038448A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
WO2023167558A1 (ko) X선 검사 장치 및 x선 검사 방법
WO2022177123A1 (ko) 전극 탭의 불량 검출 시스템 및 이를 이용한 전극 탭의 불량 검출 방법
WO2022197075A1 (ko) 배터리 셀 외관 손상 방지를 위한 셀 안착 지그, 셀 정렬 장치 및 셀 안착 방법
CN115824037A (zh) 一种叠片型电极组件的检测方法及检测装置
WO2018056557A1 (ko) 이차 전지, 전극 조립체 및 전극 조립체 제조 방법
WO2020246716A1 (ko) 이차전지
WO2024136444A1 (ko) 전극 조립체 검사 장치 및 이를 사용하여 생산된 전극 조립체를 포함하는 배터리 셀 및, 배터리 셀을 포함하는 배터리 팩 및 자동차
WO2024172398A1 (ko) 검사 장치, 이를 포함하는 시스템 및 배터리 모듈을 제조하는 방법
WO2024136400A1 (ko) 분리막 접힘 확인이 용이한 스택셀, 분리막 검사 장치 및 검사 방법
WO2023080543A1 (ko) 전극 조립체를 수용하는 파우치 컵부의 높이 측정 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019837103

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019837103

Country of ref document: EP

Effective date: 20210218