WO2022260245A1 - 전극판 또는 단위셀 적층 검사 장치 - Google Patents

전극판 또는 단위셀 적층 검사 장치 Download PDF

Info

Publication number
WO2022260245A1
WO2022260245A1 PCT/KR2022/003218 KR2022003218W WO2022260245A1 WO 2022260245 A1 WO2022260245 A1 WO 2022260245A1 KR 2022003218 W KR2022003218 W KR 2022003218W WO 2022260245 A1 WO2022260245 A1 WO 2022260245A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
unit cells
light source
stacking
sensor
Prior art date
Application number
PCT/KR2022/003218
Other languages
English (en)
French (fr)
Inventor
최민준
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22758110.5A priority Critical patent/EP4123778A4/en
Priority to CN202280003003.3A priority patent/CN115943510A/zh
Publication of WO2022260245A1 publication Critical patent/WO2022260245A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode plate or unit cell stacking inspection device.
  • a secondary battery is a representative example of an electrochemical device using such electrochemical energy, and its use area is gradually expanding.
  • Nickel metal hydride secondary batteries are mainly used as a power source for electric vehicles and hybrid electric vehicles, but studies using lithium secondary batteries with high energy density and discharge voltage are being actively conducted, and some commercialization is in progress.
  • Such a lithium secondary battery is manufactured by forming an electrode assembly through a stacking process of a positive electrode and a negative electrode, and embedding the electrode assembly in a secondary battery case together with an electrolyte solution.
  • the lamination process of the anode and cathode is performed in various ways.
  • Lamination is simply performed in the form of a separator interposed between an anode and a cathode, or a monocell including an anode and a separator or a cathode and a separator, including an anode, a cathode, and a separator, but electrodes of the same polarity are placed on the outermost sides of both sides It is performed by manufacturing a full cell including a bi-cell, an anode, a cathode, and a separator, but having electrodes of different polarities disposed on the outermost sides of both sides, and then folding or stacking them and then laminating them.
  • such a lamination process is one of the processes that may affect the performance of a secondary battery in the future, and at this time, the positive electrode and the negative electrode should be aligned and stacked in a symmetrical state without vertical and horizontal twisting.
  • the positive electrode and the negative electrode are stacked, vertical and horizontal twisting of the positive electrode and the negative electrode may occur, so that the positive electrode and the negative electrode themselves need to be stacked and aligned, and also monocells and bicells including electrodes and separators.
  • Stack alignment is also required during folding of unit cells such as , , and full cells, and stacking between these unit cells in the stacking process.
  • the folding process of the unit cells may be excellent in terms of process speed because the unit cells placed on the separator are wound, but problems such as tab spacing and vertical and horizontal twisting of each electrode often occur. This can be a major factor affecting future life and safety tests because the gap between the anode and cathode may be reversed.
  • ACOH was intended to be improved by performing a process of stacking and compressing unit cells, but when the number of stacked unit cells increases, there is a limit to aligning the unit cells inside and outside of the electrode assembly, so when adjusting production conditions , there is a problem that causes a large number of unit cells to be expressed as loss and to lower the yield.
  • An object of the present invention is to solve the problems of the prior art and the technical problems that have been requested from the past.
  • an object of the present invention is to provide a stacking inspection device capable of improving product quality and yield by determining stacking misalignment in real time without major equipment change in an existing process.
  • the present invention measures the upper and lower thickness difference based on the tab forming direction of the electrodes or unit cells through the stack inspection device, thereby minimizing the error in manually measuring the thickness difference by the operator, thereby further improving product quality.
  • a test device is provided.
  • a stack inspection device for achieving this object
  • camera units generating alignment images by capturing four outer circumferential points of the first electrode plate or the second electrode plate from an upper portion of the first electrode plate and the second electrode plate in the stacking direction;
  • the first electrode plate and the second electrode plate are stacked, the first electrode plate and the second electrode plate are inspected at four corner points from the top of the first electrode plate or the second electrode plate.
  • the camera units are characterized in that they include a sensor for recognizing light sources irradiated from the light irradiation units and determining whether the first electrode plate and the second electrode plate are misaligned.
  • the light irradiation units may irradiate the light source so that the light source passes when the first electrode plate or the second electrode plate partially deviate from the position where the first electrode plate or the second electrode plate is to be stacked in any direction.
  • the senor recognizes the light sources irradiated from the light irradiation units, and when at least one light source passes through the four corner points, it may be determined that the alignment is misaligned.
  • the senor may measure the round-trip time of the light source irradiated from the light irradiation units.
  • the stack inspection apparatus may further include a measuring unit that measures a thickness according to a position of each of the first electrode plate or the second electrode plate from the traveling time of each light source measured by the sensor.
  • the stacking inspection device corrects an alignment value according to information received from the sensor and commands the stacking position of the first electrode plate or the second electrode plate to be corrected. Determined as defective when the difference in round-trip time of each light source measured from the sensor is more than a certain value, or the thickness deviation according to the position of each of the first electrode plate or the second electrode plate measured from the measurement unit is more than a certain value
  • a control unit may be further included.
  • Camera units generating alignment images by photographing four outer circumferential corner points of the unit cells in the stacking direction of the unit cells;
  • the camera units are characterized in that they include a sensor for recognizing light sources irradiated from the light irradiation units and determining whether unit cells are misaligned.
  • the alignment of unit cells as well as the electrode plate can be inspected.
  • the light irradiation units may also irradiate the light source so that the light source passes when the unit cells partially deviate from the position where the unit cells are to be stacked in any direction, left, right, top, bottom, and the sensor is the light source irradiated from the light irradiation units.
  • misalignment may be determined.
  • the senor may measure the round-trip time of the light source irradiated from the light irradiation units, and the stack inspection device may measure the thickness according to the position of each of the unit cells from the round-trip time of each light source measured by the sensor.
  • a measurement unit for measuring may be further included.
  • a control unit may further include a control unit that determines that the cell is defective when the difference in round-trip time is greater than or equal to a predetermined value or when the thickness deviation according to each position of the unit cells measured by the measurement unit is greater than or equal to a predetermined value.
  • the unit cells to which this stacking inspection device is applied are stacked in such a way that the separation film rolls the unit cells in one direction, or the separation film is stacked in a manner in which the unit cells are folded in a zigzag pattern, or the separation film is stacked in the form of folding the unit cells in a zigzag pattern. It may be laminated in the form of being interposed between unit cells and being laminated.
  • FIG. 1 is a perspective view schematically illustrating a stack inspection device according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view of the stack inspection device of FIG. 1 from the side.
  • FIG 3 is a schematic side view of a stack inspection device according to another embodiment of the present invention.
  • FIG. 4 is a schematic side view of a stack inspection device according to another embodiment of the present invention.
  • camera units generating alignment images by capturing four outer circumferential points of the first electrode plate or the second electrode plate from an upper portion of the first electrode plate and the second electrode plate in the stacking direction;
  • the first electrode plate and the second electrode plate are stacked, the first electrode plate and the second electrode plate are inspected at four corner points from the top of the first electrode plate or the second electrode plate.
  • the camera units are provided with a stack inspection device including a sensor for recognizing light sources emitted from the light irradiation units and determining whether the first electrode plate and the second electrode plate are misaligned.
  • FIG. 1 schematically shows a perspective view of a stacking inspection device 100 according to an embodiment of the present invention
  • FIG. 2 schematically shows a side view of the stacking inspection device 100 .
  • the stack inspection apparatus 100 according to an embodiment of the present invention is manufactured so that the separator 130 is interposed between the first electrode plate 110 and the second electrode plate 120.
  • the stacking inspection device 100 inspects the alignment of the electrode plates 110 and 120 when the first electrode plate 110 and the second electrode plate 120 are stacked.
  • the stacking inspection device 100 is located at the top of the first electrode plate 110 and the second electrode plate 120 in the stacking direction at four outer circumferential corner points (a, When the camera units 141, 142, 143, and 144 for generating aligned images by capturing images b, c, and d) and the first electrode plate 110 and the second electrode plate 120 are stacked, the first The electrode plate 110 and the second electrode plate 120 are inspected at the four corner points (a, b, c, d) from the top of the first electrode plate 110 or the second electrode plate 120.
  • It includes light irradiation units 151 , 152 , 153 , and 154 radiating a light source, and the camera units 141 , 142 , 143 , and 144 are irradiated from the light irradiation units 151 , 152 , 153 , and 154 .
  • Sensors 161 , 162 , 163 , and 164 respectively recognize a light source and determine whether the first electrode plate 110 and the second electrode plate 120 are out of alignment.
  • the light irradiation units 151, 152, 153, and 154 allow the light source to pass when the first electrode plate 110 or the second electrode plate 120 is partially out of position in any direction from the position where the first electrode plate 110 or the second electrode plate 120 is to be stacked. Examine the light source.
  • the light source is irradiated without departing from the edges of the electrode plates 110 and 120, and therefore, when the electrode plates 110 and 120 are properly stacked, the light source is covered by the outermost electrode plate. will lose However, when they are stacked so as to deviate even from the upper, lower, left and right sides, the light source passes through without being covered by the outermost electrode plate, and the light source appears on the lower electrode plate.
  • the sensors 161, 162, 163, and 164 When the light source irradiated from the light irradiation units 151, 152, 153, and 154 is recognized and the passage of the light source is recognized at least one of the four corner points a, b, c, and d, it is judged as misalignment. do.
  • the sensors 161, 162, 163, and 164 may notify the operator visually or audibly.
  • the control unit 180 may further include a control unit 180 for instructing the stacking position of the first electrode plate 110 or the second electrode plate 120 to be corrected by correcting the alignment value.
  • correction of alignment can be automated by the control unit 180, and correction of alignment is possible in real time.
  • the present invention since alignment can be determined in real time whenever the electrode plates 110 and 120 are stacked, it is possible to produce a more aligned product than before, and to inspect the anode and cathode gaps previously performed during product production. It is also possible to reduce the time required for the process, so product quality and yield can be improved.
  • the sensors 161 , 162 , 163 , and 164 may further measure round-trip times of light sources irradiated from the light irradiation units 151 , 152 , 153 , and 154 .
  • Measuring the time (S1+S2, S3+S3) that starts from the light irradiation units 151, 152, 153, and 154, reaches the electrode plate 110, and is recognized by the sensors 161, 162, 163, and 164 again. can do.
  • a difference from the four corner points a, b, c, and d to the time at which the light source is recognized again may occur, and from this, the thickness at each position of the electrode plates may be estimated.
  • the stacking inspection apparatus 100 determines the first electrode plate 110 or the second electrode plate from the round trip time (S1+S2, S3+S4) of each light source measured from the sensors 161, 162, 163, and 164.
  • a measuring unit 170 for measuring the thickness according to each position of 120 may be further included.
  • the measuring unit 170 stores information on the distance between the light irradiation units 151, 152, 153, and 154 and the outermost electrode plate at each stacking, and a new electrode plate is The thickness of the newly laminated electrode plate is calculated by calculating the distance after the lamination from the round trip time of the light source [interval between the outermost electrode plate and the light irradiation units 151, 152, 153, and 154 before lamination - new electrode plate] After stacking, it can be measured from the distance between the outermost electrode plate and the light irradiation units 151, 152, 153, and 154].
  • control unit 180 determines that the difference between the round-trip times of each light source measured from the sensors 161, 162, 163, and 164 (
  • Camera units generating alignment images by photographing four outer circumferential corner points of the unit cells in the stacking direction of the unit cells;
  • the camera units are provided with a stack inspection device including a sensor for recognizing light sources irradiated from the light irradiation units and determining whether unit cells are out of alignment.
  • 3 and 4 schematically show side views of the stacking inspection devices 200 and 300 targeting these unit cells.
  • the unit cells 210, 220, and 230 are stacked in a form of winding in one direction so that the separation film 240 is interposed between one or more unit cells 210, 220, and 230, and the electrode is stacked. manufacture the assembly.
  • the stacking inspection apparatus 200 includes camera units 251 for generating alignment images by capturing four outer corner points as shown in FIG. 252), and when the unit cells 210, 220, and 230 are stacked, the four corner points at the top of the unit cells 210, 220, and 230 with the unit cells 210, 220, and 230 as inspection targets and light irradiation units 261 and 262 for radiating light to the unit cells 210 and 220 by recognizing the light source emitted from the light irradiation units 261 and 262. and sensors 271 and 272 that determine whether or not 230 is misaligned.
  • the sensors 271 and 272 may recognize light sources irradiated from the light irradiation units 261 and 262 and determine misalignment when at least one light source passes through at four corner points.
  • the roles of the camera units 251 and 252, the light irradiation units 261 and 262, and the respective sensors 271 and 272 are the same as described in FIGS. 1 and 2, and the inspection target is an electrode plate. It is different in that the unit cells 210, 220, and 230 are not.
  • the sensors 271 and 272 may further include a measuring unit 280 for measuring the thickness according to the position of each of the unit cells 210, 220, and 230 from.
  • the alignment values are corrected according to the information received from the sensors 271 and 272, and the unit cells 210, 220 and 230 are ordered to correct the stacking positions.
  • the difference in the round-trip time of each light source measured from the sensors 271 and 272 is equal to or greater than a certain value, or the thickness deviation according to each position of the unit cells 210, 220 and 230 measured from the measurement unit 280
  • It may further include a control unit 290 that determines that it is defective when is greater than a predetermined value.
  • the thickness is different from the stack inspection apparatus 100 of FIG. 1 in that the thickness of the unit cells 210, 220, and 230 is measured.
  • FIG. 2 shows only the type of winding the unit cells 210, 220, and 230 in one direction, even when the separation film is stacked in the form of folding the unit cells in a zigzag pattern, the stacking inspection device 200 according to the present invention ) can of course be applied.
  • an electrode assembly is manufactured by laminating a separator 340 between one or more unit cells 310 , 320 , and 330 in a lamination manner.
  • the stacking inspection apparatus 300 includes camera units 351 for generating alignment images by capturing four outer corner points as shown in FIG. 1 above the unit cells 310, 320 and 330 in the stacking direction 352), and when the unit cells 310, 320, and 330 are stacked, the four corner points at the top of the unit cells 310, 320, and 330 with the unit cells 310, 320, and 330 as inspection targets. and light irradiation units 361 and 362 for radiating light to the unit cells 310 and 320 by recognizing the light source irradiated from the light irradiation units 361 and 362. and sensors 371 and 372 that determine whether the alignment of the , 330 is out of alignment.
  • the sensors 371 and 372 may measure the round trip times of the light sources irradiated from the light irradiation units 361 and 362, and the stack inspection apparatus 300 may measure the round trip times of the respective light sources measured by the sensors 371 and 372. It may further include a measuring unit 380 that measures the thickness according to the position of each of the unit cells 310, 320, and 330 from time.
  • the alignment values are corrected according to the information received from the sensors 371 and 372, and the stacking positions of the unit cells 310, 320 and 330 are corrected.
  • the difference in the round-trip time of each light source measured from the sensors 271 and 272 is equal to or greater than a certain value, or the thickness deviation according to each position of the unit cells 310, 320 and 330 measured from the measurement unit 380
  • measuring unit 170, 280, 380: measuring unit
  • the stack inspection device adds a light irradiation unit for irradiating a light source to a device used in an existing process, and adds a sensor to a camera to stack alignment of electrode plates or unit cells. Defects can be inspected in real time.
  • the time required for alignment inspection or gap inspection between anode and cathode during production can be reduced, and misalignment can be dramatically reduced, improving product performance and improving product quality. There is an effect that can improve and improve the yield.
  • the thickness difference at each position of the electrode plate or unit cell can be measured through the light irradiation unit used in the stack inspection device, it is possible to detect a loading defect with a large thickness deviation at each position. , It is possible to minimize errors that appear when the operator directly measures them, and to detect and remove electrode plates or unit cells with poor loading or poor thickness in advance, which has the effect of further improving product quality. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은, 전극판들 또는 단위셀들의 적층방향 상부에서 네 모서리 포인트를 촬영하여 정렬 이미지를 생성하는 카메라 유닛들, 검사 대상의 네 개의 모서리 포인트에 광원을 조사하는 광조사 유닛들, 및 상기 광조사 유닛들로부터 조사된 광원을 인식하여 상기 제1전극판과 상기 제2전극판의 정렬 불량 여부를 판정하는 센서를 포함하는 적층 검사 장치를 제공한다.

Description

전극판 또는 단위셀 적층 검사 장치
관련 출원(들)과의 상호 인용
본 출원은 2021년 06월 09일자 한국 특허 출원 제10-2021-0074998호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전극판 또는 단위셀 적층 검사 장치에 관한 것이다.
화석 연료 사용의 급격한 증가로 인하여 대체 에너지, 청정 에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학을 이용한 발전, 축전 분야이다.
현재 이러한 전기 화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다.
최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 중 높은 에너지 밀도와 작동 전위를 나타내고 사이클 수명이 길며 자기 방전율이 낮은 리튬 이차전지에 대해 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다.
또한, 환경 문제에 대한 관심이 커짐에 따라, 대기 오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석 연료를 사용하는 차량을 대체할 수 있는 전기 자동차, 하이브리드 전기 자동차 등에 대한 연구가 많이 진행되고 있다. 이러한 전기 자동차, 하이브리드 전기 자동차 등의 동력원으로는 주로 니켈 수소금속 이차전지가 사용되고 있지만, 높은 에너지 밀도와 방전 전압의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다.
이러한 리튬 이차전지는 양극과 음극의 적층 공정을 통해 전극조립체를 형성하고, 이러한 전극조립체를 이차전지 케이스에 전해액과 함께 내장함으로써 제조된다.
이때, 상기 양극과 음극의 적층 공정은 다양한 방식으로 수행된다. 단순히 양극과 음극 사이에 분리막을 개재하는 형태로 적층을 수행하거나, 양극과 분리막 또는 음극과 분리막을 포함하는 모노셀, 양극, 음극, 및 분리막을 포함하되 양측 최외곽에 동일한 극성의 전극이 배치되는 바이셀, 양극, 음극, 및 분리막을 포함하되 양측 최외곽에 상이한 극성의 전극이 배치되는 풀셀을 제조하고, 이들을 폴딩 또는 적층 후 라미네이션하는 방식으로 수행된다.
이때, 이러한 적층 공정은 향후 이차전지 성능에 영향을 줄 수 있는 공정 중 하나이며, 이때, 양극과 음극이 상하좌우 비틀림 없이 대칭인 상태로 정렬되며 적층되어야 한다.
먼저, 어떠한 경우에서도 양극과 음극을 적층하는 경우, 양극과 음극의 상하좌우 비틀림이 발생할 수 있는 바, 양극과 음극 자체의 적층 정렬이 필요하며, 또한, 전극과 분리막을 포함하는 모노셀, 바이셀, 및 풀셀과 같은 단위셀의 폴딩, 적층 과정에서의 이들 단위셀 간의 적층시에도 적층 정렬이 필요하다.
특히 상기 단위셀들의 폴딩 공정은 분리막 위에 놓여진 단위셀들을 와인딩하기 때문에 공정속도 측면에서는 우수할 수 있으나, 각 전극의 탭 간격, 상하좌우 비틀림이 발생할 수 있는 문제가 자주 발생한다. 이는 양극과 음극의 간격이 역전될 수도 있으므로 추후 수명 및 안전성 테스트에 영향을 주는 주요 인자가 될 수 있다.
이 점을 개선하고자 단위셀들을 적층하여 압착하는 공정을 진행함으로써 ACOH의 개선을 의도하였으나, 단위셀들의 적층수가 증가하는 경우, 전극조립체의 내부와 외부의 단위셀 정렬에 한계가 있어 생산 조건 조정시, 많은 수의 단위셀이 로스로 발현되고 수율을 낮추는 원인이 되는 문제가 있다.
따라서, 이러한 문제를 해결하여 전극이나 단위셀들을 적층할 때 상하좌우 비틀림에 따른 적층 정렬 불량을 해결하여 품질 및 수율 향상이 가능한 기술의 개발이 절실한 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
구체적으로, 본 발명의 목적은, 기존의 공정에서 큰 설비 변경 없이 적층 정렬 불량을 실시간으로 판정하게 함으로써 제품 품질 향상 및 수율 향상이 가능하도록 한 적층 검사 장치를 제공하는 것이다.
또한, 본 발명은 상기 적층 검사 장치를 통해 전극 또는 단위셀들의 탭 형성 방향을 기준으로 한 상하 두께 차를 측정하여, 작업자가 수작업으로 두께차를 측정하는 오차를 최소화하여 더욱 제품 품질 향상이 가능한 적층 검사 장치를 제공한다.
이러한 목적을 달성하기 위한 본 발명의 일 실시예에 따른 적층 검사 장치는,
제1전극판과 제2전극판 사이에 분리막이 개재되도록 상기 제1 전극판과 상기 제2 전극판이 적층될 때 전극판들의 적층 검사 장치에 있어서,
상기 제1전극판과 상기 제2전극판의 적층방향 상부에서 상기 제1전극판 또는 상기 제2전극판의 외주 네 모서리 포인트를 촬영하여 정렬 이미지를 생성하는 카메라 유닛들; 및
상기 제1전극판과 상기 제2전극판이 적층될 때, 상기 제1전극판과 상기 제2전극판을 검사 대상으로 하여 상기 제1전극판 또는 상기 제2전극판의 상부에서 네 개의 모서리 포인트에 광원을 조사하는 광조사 유닛들을 포함하고,
상기 카메라 유닛들은 상기 광조사 유닛들로부터 조사된 광원을 인식하여 상기 제1전극판과 상기 제2전극판의 정렬 불량 여부를 판정하는 센서를 포함하는 것을 특징으로 한다.
이때, 상기 광조사 유닛들은 상기 제1전극판 또는 상기 제2전극판이 적층되어야 하는 위치에서 좌우상하 어느 방향으로라도 일부 벗어났을 때 광원이 통과되도록 광원을 조사할 수 있다.
그리고, 상기 센서는 상기 광조사 유닛들으로부터 조사된 광원을 인식하여 네 개의 모서리 포인트에서 적어도 하나의 광원이 통과될 경우, 정렬 불량으로 판정할 수 있다.
또한, 상기 센서는 상기 광조사 유닛들로부터 조사된 광원의 왕복시간을 측정할 수 있다.
더욱이, 상기 적층 검사 장치는 센서로부터 측정된 각각의 광원의 왕복시간으로부터 상기 제1전극판 또는 상기 제2전극판 각각의 위치에 따른 두께를 측정하는 측정 유닛을 더 포함할 수 있다.
더 나아가, 상기 적층 검사 장치는 상기 센서가 정렬 불량으로 판정했을 때, 상기 센서에서 전달받은 정보에 따라 정렬 값을 수정하여 상기 제1전극판 또는 제2전극판의 적층 위치 수정을 명령하고, 상기 센서로부터 측정된 각각의 광원의 왕복시간의 차가 일정한 값 이상, 또는 상기 측정 유닛으로부터 측정된 상기 제1전극판 또는 상기 제2전극판 각각의 위치에 따른 두께 편차가 일정한 값 이상일 때 불량으로 판정하는 제어 유닛을 더 포함할 수 있다.
한편, 본 발명의 또 다른 일 실시예에 따른 적층 검사 장치는,
하나 이상의 단위셀들 사이에 분리필름 또는 분리막이 개재되도록 상기 단위셀들이 적층될 때 단위셀들의 적층 검사 장치에 있어서,
상기 단위셀들의 적층방향 상부에서 상기 단위셀들의 외주 네 모서리 포인트를 촬영하여 정렬 이미지를 생성하는 카메라 유닛들; 및
상기 단위셀들이 적층될 때, 상기 단위셀들을 검사 대상으로 하여 단위셀들의 상부에서 네 모서리 포인트에 광원을 조사하는 광조사 유닛들을 포함하고,
상기 카메라 유닛들은 상기 광조사 유닛들으로부터 조사된 광원을 인식하여 단위셀들의 정렬 불량 여부를 판정하는 센서를 포함하는 것을 특징으로 한다.
즉, 상기 전극판 뿐 아니라 단위셀 들의 정렬도 검사할 수 있다.
이 경우, 역시 상기 광조사 유닛들은 상기 단위셀들이 적층되어야 하는 위치에서 좌우상하 어느 방향으로라도 일부 벗어났을 때 광원이 통과되도록 광원을 조사할 수 있고, 상기 센서는 상기 광조사 유닛들로부터 조사된 광원을 인식하여 네 개의 모서리 포인트에서 적어도 하나의 광원이 통과될 경우, 정렬 불량으로 판정할 수 있다.
또한, 상기 센서는 상기 광조사 유닛들로부터 조사된 광원의 왕복시간을 측정할 수 있고, 상기 적층 검사 장치는 상기 센서로부터 측정된 각각의 광원의 왕복시간으로부터 상기 단위셀들 각각의 위치에 따른 두께를 측정하는 측정 유닛을 더 포함할 수 있다.
더욱이, 상기 적층 검사 장치는 상기 센서가 정렬 불량으로 판정했을 때, 상기 센서에서 전달받은 정보에 따라 정렬 값을 수정하여 상기 단위셀들의 적층 위치 수정을 명령하고, 상기 센서로부터 측정된 각각의 광원의 왕복시간의 차가 일정한 값 이상, 또는 상기 측정 유닛으로부터 측정된 상기 단위셀들의 각각의 위치에 따른 두께 편차가 일정한 값 이상일 때 불량으로 판정하는 제어 유닛을 더 포함할 수 있다.
이러한 적층 검사 장치가 적용되는 단위셀들은 상기 분리필름이 상기 단위셀들을 일 방향으로 권회하는 형식으로 적층되거나, 상기 분리필름이 상기 단위셀들을 지그재그로 폴딩하는 형식으로 적층하거나, 또는 상기 분리막이 상기 단위셀들 사이에 개재되어 라미네이션 되는 형식으로 적층되는 것일 수 있다.
도 1은 본 발명의 일 실시예에 따른 적층 검사 장치를 모식적으로 도시한 사시도이다.
도 2는 도 1의 적층 검사 장치의 측면에서 도시한 측면 모식도이다.
도 3은 본 발명의 또 다른 일 실시예에 따른 적층 검사 장치의 측면에서 도시한 측면 모식도이다.
도 4은 본 발명의 또 다른 일 실시예에 따른 적층 검사 장치의 측면에서 도시한 측면 모식도이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 발명의 일 실시예에 따르면,
제1전극판과 제2전극판 사이에 분리막이 개재되도록 상기 제1 전극판과 상기 제2 전극판이 적층될 때 전극판들의 적층 검사 장치에 있어서,
상기 제1전극판과 상기 제2전극판의 적층방향 상부에서 상기 제1전극판 또는 상기 제2전극판의 외주 네 모서리 포인트를 촬영하여 정렬 이미지를 생성하는 카메라 유닛들; 및
상기 제1전극판과 상기 제2전극판이 적층될 때, 상기 제1전극판과 상기 제2전극판을 검사 대상으로 하여 상기 제1전극판 또는 상기 제2전극판의 상부에서 네 개의 모서리 포인트에 광원을 조사하는 광조사 유닛들을 포함하고,
상기 카메라 유닛들은 상기 광조사 유닛들로부터 조사된 광원을 인식하여 상기 제1전극판과 상기 제2전극판의 정렬 불량 여부를 판정하는 센서를 포함하는 적층 검사 장치가 제공된다.
이하에서는 도 1 및 도 2를 참조하여, 본 발명을 구체적으로 설명한다.
도 1에는 본 발명의 일 실시예에 따른 적층 검사 장치(100)의 사시도가 모식적으로 도시되어 있고, 도 2에는 상기 적층 검사 장치(100)의 측면도가 모식적으로 도시되어 있다.
도 1 및 도 2를 함께 참조하면, 본 발명의 일 실시예에 따른 적층 검사 장치(100)는 제1전극판(110)과 제2전극판(120) 사이에 분리막(130)이 개재되도록 제1 전극판(110)과 제2 전극판(120)이 적층될 때 전극판들(110, 120)의 정렬 상태를 검사하는 적층 검사 장치(100)이다.
적층 검사 장치(100)은 제1전극판(110)과 제2전극판(120)의 적층방향 상부에서 제1전극판(110) 또는 제2전극판(120)의 외주 네 모서리 포인트(a, b, c, d)를 촬영하여 정렬 이미지를 생성하는 카메라 유닛들(141, 142, 143, 144) 및 제1전극판(110)과 상기 제2전극판(120)이 적층될 때, 제1전극판(110)과 제2전극판(120)을 검사 대상으로 하여 제1전극판(110) 또는 제2전극판(120)의 상부에서 네 개의 모서리 포인트(a, b, c, d)에 광원을 조사하는 광조사 유닛들(151, 152, 153, 154)을 포함하고, 카메라 유닛들(141, 142, 143, 144)은 광조사 유닛들(151, 152, 153, 154)로부터 조사된 광원을 인식하여 제1전극판(110)과 제2전극판(120)의 정렬 불량 여부를 판정하는 센서(161, 162, 163, 164)를 각각 포함한다.
이때, 광조사 유닛들(151, 152, 153, 154)은 제1전극판(110) 또는 제2전극판(120)이 적층되어야 하는 위치에서 좌우상하 어느 방향으로라도 일부 벗어났을 때 광원이 통과되도록 광원을 조사한다.
도 1 및 도 2에서 광원은 전극판들(110, 120)의 모서리를 벗어나지 않게 조사되며, 따라서, 전극판들(110, 120)이 제대로 적층된 경우, 광원은 최외각의 전극판에 의해 가려지게 된다. 그러나, 상하좌우 일부라도 벗어나도록 적층된 경우에는 광원이 최외각의 전극판에 의해 가려지지 못하고 통과되어 하부의 전극판에 광원이 나타나게 되며, 이 경우, 센서(161, 162, 163, 164)는 광조사 유닛들(151, 152, 153, 154)로부터 조사된 광원을 인식하여 네 개의 모서리 포인트(a, b, c, d)에서 적어도 하나에서라도 광원의 통과를 인지하면, 이를 정렬 불량으로 판정하게 된다.
이때, 센서(161, 162, 163, 164)는 시각적, 또는 청각적으로 이를 작업자에게 알릴 수도 있다.
본 발명의 적층 검사 장치(100)은 또한, 센서(161, 162, 163, 164)가 상기와 같이, 정렬 불량으로 판정했을 때, 센서(161, 162, 163, 164)에서 전달받은 정보에 따라 정렬 값을 수정하여 제1전극판(110) 또는 제2전극판(120)의 적층 위치 수정을 명령하는 제어 유닛(180)을 더 포함할 수 있다.
즉, 제어 유닛(180)에 의해 정렬의 수정을 자동화할 수 있는 바, 실시간으로 정렬 수정이 가능하다.
따라서, 본 발명에 따르면, 전극판들(110, 120) 적층시 마다 정렬 여부를 실시간으로 판정할 수 있으므로, 기존보다 더욱 정렬된 제품을 생산할 수 있고, 기존에 제품 생산시 수행한 양극 음극 간격 검사에 사용되는 소요시간도 감소시킬 수 있어, 제품 품질 및 수율 향상이 가능하다.
한편, 센서(161, 162, 163, 164)는 더 나아가, 광조사 유닛(151, 152, 153, 154)들로부터 조사된 광원의 왕복시간을 측정할 수 있다.
즉, 센서(161, 162, 163, 164)가 광조사 유닛들(151, 152, 153, 154)과 연계되어 광원이 조사된 시간에서 광원이 다시 인식되는 시간, 도 2에서 보는 바와 같이 광원이 광조사 유닛들(151, 152, 153, 154)에서 출발해서 전극판(110)에 도달하고 다시 센서(161, 162, 163, 164)에 인식되는 시간(S1+S2, S3+S3)을 측정할 수 있다.
이 경우, 네 개의 모서리 포인트(a, b, c, d)에서 광원이 다시 인식되는 시간까지의 차이가 발생할 수 있고, 이로부터 전극판들의 각 위치에서의 두께를 가늠할 수 있다.
또는, 적층 검사 장치(100)가 센서(161, 162, 163, 164)로부터 측정된 각각의 광원의 왕복시간(S1+S2, S3+S4)로부터 제1전극판(110) 또는 제2전극판(120)의 각각의 위치에 따른 두께를 측정하는 측정 유닛(170)을 더 포함할 수 있다.
구체적으로, 측정 유닛(170)은 적층시마다 광조사 유닛들(151, 152, 153, 154)과 각 적층시에 최외각에 위치하는 전극판 사이의 간격에 대한 정보를 저장하고 있으며, 새로운 전극판이 적층된 후의 간격을 상기 광원의 왕복시간으로부터 계산하여, 새로 적층되는 전극판의 두께를 [적층 전 최외각 전극판과 광조사 유닛들(151, 152, 153, 154) 사이의 간격 - 새로운 전극판 적층 후 최외각 전극판과 광조사 유닛들(151, 152, 153, 154) 사이의 간격]으로부터 측정할 수 있다.
한편 상기에서 설명한 제어 유닛(180)은 센서(161, 162, 163, 164)로부터 측정된 각각의 광원의 왕복시간의 차(|S1+S2 -(S3+S4)|)가 일정한 값 이상, 또는 상기 측정 유닛(170)으로부터 측정된 제1전극판(110) 또는 제2전극판(120) 각각의 위치에 따른 두께 편차가 일정한 값 이상일 때 불량으로 판정할 수 있다.
따라서, 상기와 같이, 전극판들의 각 위치에서의 두께를 측정하는 경우, 정렬 불량 뿐 아니라, 실질적인 코팅 공정 특성상 나타나는 하나의 전극판 내에서의 로딩 편차를 실시간으로 측정할 수 있고, 위치에 따른 로딩 편차가 심한 전극판들을 불량으로 판정하여 실시간으로 제거 가능하므로, 제품 품질을 향상시킬 수 있다. 뿐만 아니라, 기존에 전극판의 두께를 작업자가 측정함에 따라, 작업자간의 오차가 발생하는 등의 문제가 있었으나, 이를 자동화, 기계화 시킴으로써 균일한 기준으로 판정된 제품을 수득할 수 있는 바, 신뢰성이 높아질 수 있다.
본 발명의 또 다른 일 실시예에 따르면,
하나 이상의 단위셀들 사이에 분리필름 또는 분리막이 개재되도록 상기 단위셀들이 적층될 때 단위셀들의 적층 검사 장치에 있어서,
상기 단위셀들의 적층방향 상부에서 상기 단위셀들의 외주 네 모서리 포인트를 촬영하여 정렬 이미지를 생성하는 카메라 유닛들; 및
상기 단위셀들이 적층될 때, 상기 단위셀들을 검사 대상으로 하여 단위셀들의 상부에서 네 모서리 포인트에 광원을 조사하는 광조사 유닛들을 포함하고,
상기 카메라 유닛들은 상기 광조사 유닛들으로부터 조사된 광원을 인식하여 단위셀들의 정렬 불량 여부를 판정하는 센서를 포함하는 적층 검사 장치가 제공된다.
도 3 및 도 4에는 이러한 단위셀들을 대상으로 한 적층 검사 장치들(200, 300)의 측면도가 모식적으로 도시되어 있다.
먼저 도 3을 참조하면, 하나 이상의 단위셀들(210, 220, 230) 사이에 분리필름(240)이 개재되도록 단위셀들(210, 220, 230)을 일 방향으로 권회하는 형식으로 적층하여 전극조립체를 제조한다.
이때, 본 발명에 따른 적층 검사 장치(200)은 단위셀들(210, 220, 230)의 적층방향 상부에서 도 1과 같이 외주 네 모서리 포인트를 촬영하여 정렬 이미지를 생성하는 카메라 유닛들(251, 252), 및 단위셀들(210, 220, 230)이 적층될 때, 단위셀들(210, 220, 230)을 검사 대상으로 하여 단위셀들(210, 220, 230)의 상부에서 네 모서리 포인트에 광원을 조사하는 광조사 유닛들(261, 262)을 포함하고, 카메라 유닛들(251, 252)은 광조사 유닛들(261, 262)로부터 조사된 광원을 인식하여 단위셀들(210, 220, 230)의 정렬 불량 여부를 판정하는 센서(271, 272)를 각각 포함한다.
센서(271, 272)는 광조사 유닛들(261, 262)로부터 조사된 광원을 인식하여 네 개의 모서리 포인트에서 적어도 하나의 광원이 통과될 경우, 정렬 불량으로 판정할 수 있다.
이때, 카메라 유닛들(251, 252), 광조사 유닛들(261, 262), 및 각각의 센서(271, 272)의 역할을 상기 도 1 및 도 2에서 설명한 바와 같으며, 검사 대상이 전극판이 아닌 단위셀들(210, 220, 230)인 점에서 상이하다.
또한, 센서(271, 272)가 광조사 유닛들(261, 262)로부터 조사된 광원의 왕복시간을 측정하는 것도 동일하며, 이 경우 역시 센서(271, 272)로부터 측정된 각각의 광원의 왕복시간으로부터 단위셀들(210, 220, 230) 각각의 위치에 따른 두께를 측정하는 측정 유닛(280)을 더 포함할 수 있다.
또한, 센서(271, 272)가 정렬 불량으로 판정했을 때, 센서(271, 272)에서 전달받은 정보에 따라 정렬 값을 수정하여 단위셀들(210, 220, 230)의 적층 위치 수정을 명령하고, 센서(271, 272)로부터 측정된 각각의 광원의 왕복시간의 차가 일정한 값 이상, 또는 상기 측정 유닛(280)으로부터 측정된 단위셀들(210, 220, 230)의 각각의 위치에 따른 두께 편차가 일정한 값 이상일 때 불량으로 판정하는 제어 유닛(290)을 더 포함할 수 있다.
이때, 상기 두께는 단위셀들(210, 220, 230)의 두께를 측정하는 점에서 도 1의 적층 검사 장치(100)와 상이하다.
현재 전극립체의 제조장치에서는 단위셀을 제조한 후, 단위셀들의 적층 또는 라미네이션 공정 이후에 두께 부분의 불량을 거를 수 있는 장비가 없기 때문에 두께가 높게 형성된 제품의 혼입의 우려가 있으나, 본 발명에 따르면, 단위셀들(210, 220, 230)의 두께 또한 측정할 수 있으므로, 이러한 문제를 방지할 수 있다.
도 2에는 단위셀들(210, 220, 230)을 일 방향으로 권회하는 형식만을 도시하였으나, 분리필름이 단위셀들을 지그재그로 폴딩하는 형식으로 적층하는 경우에도, 본 발명에 따른 적층 검사 장치(200)는 적용될 수 있음을 물론이다.
또한, 도 4을 참조하면, 분리막(340)을 하나 이상의 단위셀들(310, 320, 330) 사이에 개재하여 라미네이션 하는 형식으로 적층하여 전극조립체를 제조한다.
이때, 본 발명에 따른 적층 검사 장치(300)은 단위셀들(310, 320, 330)의 적층방향 상부에서 도 1과 같이 외주 네 모서리 포인트를 촬영하여 정렬 이미지를 생성하는 카메라 유닛들(351, 352), 및 단위셀들(310, 320, 330)이 적층될 때, 단위셀들(310, 320, 330)을 검사 대상으로 하여 단위셀들(310, 320, 330)의 상부에서 네 모서리 포인트에 광원을 조사하는 광조사 유닛들(361, 362)을 포함하고, 카메라 유닛들(351, 352)은 광조사 유닛들(361, 362)로부터 조사된 광원을 인식하여 단위셀들(310, 320, 330)의 정렬 불량 여부를 판정하는 센서(371, 372)를 각각 포함한다.
센서(371, 372)가 광조사 유닛들(361, 362)로부터 조사된 광원의 왕복시간을 측정할 수 있으며, 적층 검사 장치(300)은 센서(371, 372)로부터 측정된 각각의 광원의 왕복시간으로부터 단위셀들(310, 320, 330) 각각의 위치에 따른 두께를 측정하는 측정 유닛(380)을 더 포함할 수 있다.
또한, 센서(371, 372)가 정렬 불량으로 판정했을 때, 센서(371, 372)에서 전달받은 정보에 따라 정렬 값을 수정하여 단위셀들(310, 320, 330)의 적층 위치 수정을 명령하고, 센서(271, 272)로부터 측정된 각각의 광원의 왕복시간의 차가 일정한 값 이상, 또는 상기 측정 유닛(380)으로부터 측정된 단위셀들(310, 320, 330)의 각각의 위치에 따른 두께 편차가 일정한 값 이상일 때 불량으로 판정하는 제어 유닛(390)을 더 포함할 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
[부호의 설명]
100, 200, 300: 적층 검사 장치,
110: 제1전극판, 120: 제2전극판,
130, 340: 분리막,
210, 220, 230, 310, 320, 330: 단위셀,
240: 분리필름,
141, 142, 143, 144, 251, 252, 351, 352: 카메라 유닛,
151, 152, 153, 154, 261, 262, 361, 362: 광조사 유닛,
161, 162, 163, 164, 271, 272, 371, 372: 센서,
170, 280, 380: 측정 유닛,
180, 290, 390: 제어 유닛.
이상에서 설명한 바와 같이, 본 발명의 일 실시예에 따른 적층 검사 장치는 기존 공정에서 사용되던 장치에 광원을 조사하는 광조사 유닛을 추가하고, 카메라에 센서를 추가함으로써 전극판 또는 단위셀의 적층 정렬 불량을 실시간으로 검사할 수 있다.
따라서, 기존 공정 흐름에 영향을 주지 않으면서, 생산시 정렬 검사 또는 양극 및 음극의 간격 검사 등에 사용되는 소요시간도 줄이고, 정렬 불량도 획기적으로 감소시킬 수 있는 바, 제품 성능을 높여 제품의 품질을 향상시키고, 수율도 향향상시킬 수 있는 효과가 있다.
뿐만 아니라, 상기 적층 검사 장치에 사용되는 광조사 유닛을 통해 전극판 또는 단위셀의 각 위치에서의 두께차를 측정할 수도 있으므로, 각 위치에서의 두께 편차가 심한 로딩 불량 등을 검출할 수 있는 바, 작업자가 직접 이를 측정할 때 나나타는 에러 등을 최소화할 수 있고, 로딩 불량 또는 두께 불량인 전극판 또는 유닛셀들을 미리 검출하여 제거할 수 있는 바, 제품 품질을 더욱 향상시킬 수 있는 효과가 있다.

Claims (13)

  1. 제1전극판과 제2전극판 사이에 분리막이 개재되도록 상기 제1 전극판과 상기 제2 전극판이 적층될 때 전극판들의 적층 검사 장치에 있어서,
    상기 제1전극판과 상기 제2전극판의 적층방향 상부에서 상기 제1전극판 또는 상기 제2전극판의 외주 네 모서리 포인트를 촬영하여 정렬 이미지를 생성하는 카메라 유닛들; 및
    상기 제1전극판과 상기 제2전극판이 적층될 때, 상기 제1전극판과 상기 제2전극판을 검사 대상으로 하여 상기 제1전극판 또는 상기 제2전극판의 상부에서 네 개의 모서리 포인트에 광원을 조사하는 광조사 유닛들을 포함하고,
    상기 카메라 유닛들은 상기 광조사 유닛들로부터 조사된 광원을 인식하여 상기 제1전극판과 상기 제2전극판의 정렬 불량 여부를 판정하는 센서를 포함하는 적층 검사 장치.
  2. 제1항에 있어서,
    상기 광조사 유닛들은 상기 제1전극판 또는 상기 제2전극판이 적층되어야 하는 위치에서 좌우상하 어느 방향으로라도 일부 벗어났을 때 광원이 통과되도록 광원을 조사하는 적층 검사 장치.
  3. 제1항 또는 제2항에 있어서,
    상기 센서는 상기 광조사 유닛들으로부터 조사된 광원을 인식하여 네 개의 모서리 포인트에서 적어도 하나의 광원이 통과될 경우, 정렬 불량으로 판정하는 적층 검사 장치.
  4. 제1항에 있어서,
    상기 센서는 상기 광조사 유닛들로부터 조사된 광원의 왕복시간을 측정하는 적층 검사 장치.
  5. 제4항에 있어서,
    상기 센서로부터 측정된 각각의 광원의 왕복시간으로부터 상기 제1전극판 또는 상기 제2전극판 각각의 위치에 따른 두께를 측정하는 측정 유닛을 더 포함하는 적층 검사 장치.
  6. 제1항, 제4항, 및 제5항 중 어느 한항에 있어서,
    상기 적층 검사 장치는 상기 센서가 정렬 불량으로 판정했을 때, 상기 센서에서 전달받은 정보에 따라 정렬 값을 수정하여 상기 제1전극판 또는 제2전극판의 적층 위치 수정을 명령하고, 상기 센서로부터 측정된 각각의 광원의 왕복시간의 차가 일정한 값 이상, 또는 상기 측정 유닛으로부터 측정된 상기 제1전극판 또는 상기 제2전극판 각각의 위치에 따른 두께 편차가 일정한 값 이상일 때 불량으로 판정하는 제어 유닛을 더 포함하는 적층 검사 장치.
  7. 하나 이상의 단위셀들 사이에 분리필름 또는 분리막이 개재되도록 상기 단위셀들이 적층될 때 단위셀들의 적층 검사 장치에 있어서,
    상기 단위셀들의 적층방향 상부에서 상기 단위셀들의 외주 네 모서리 포인트를 촬영하여 정렬 이미지를 생성하는 카메라 유닛들; 및
    상기 단위셀들이 적층될 때, 상기 단위셀들을 검사 대상으로 하여 단위셀들의 상부에서 네 모서리 포인트에 광원을 조사하는 광조사 유닛들을 포함하고,
    상기 카메라 유닛들은 상기 광조사 유닛들으로부터 조사된 광원을 인식하여 단위셀들의 정렬 불량 여부를 판정하는 센서를 포함하는 적층 검사 장치.
  8. 제7항에 있어서,
    상기 광조사 유닛들은 상기 단위셀들이 적층되어야 하는 위치에서 좌우상하 어느 방향으로라도 일부 벗어났을 때 광원이 통과되도록 광원을 조사하는 적층 검사 장치.
  9. 제7항 또는 제8항에 있어서,
    상기 센서는 상기 광조사 유닛들로부터 조사된 광원을 인식하여 네 개의 모서리 포인트에서 적어도 하나의 광원이 통과될 경우, 정렬 불량으로 판정하는 적층 검사 장치.
  10. 제7항에 있어서,
    상기 센서는 상기 광조사 유닛들로부터 조사된 광원의 왕복시간을 측정하는 적층 검사 장치.
  11. 제10항에 있어서,
    상기 센서로부터 측정된 각각의 광원의 왕복시간으로부터 상기 단위셀들 각각의 위치에 따른 두께를 측정하는 측정 유닛을 더 포함하는 적층 검사 장치.
  12. 제7항, 제10항 및 제11항 중 어느 한항에 있어서,
    상기 적층 검사 장치는 상기 센서가 정렬 불량으로 판정했을 때, 상기 센서에서 전달받은 정보에 따라 정렬 값을 수정하여 상기 단위셀들의 적층 위치 수정을 명령하고, 상기 센서로부터 측정된 각각의 광원의 왕복시간의 차가 일정한 값 이상, 또는 상기 측정 유닛으로부터 측정된 상기 단위셀들의 각각의 위치에 따른 두께 편차가 일정한 값 이상일 때 불량으로 판정하는 제어 유닛을 더 포함하는 적층 검사 장치.
  13. 제7항에 있어서,
    상기 단위셀들은 상기 분리필름이 상기 단위셀들을 일 방향으로 권회하는 형식으로 적층되거나, 상기 분리필름이 상기 단위셀들을 지그재그로 폴딩하는 형식으로 적층하거나, 또는 상기 분리막이 상기 단위셀들 사이에 개재되어 라미네이션 되는 형식으로 적층되는 적층 검사 장치.
PCT/KR2022/003218 2021-06-09 2022-03-07 전극판 또는 단위셀 적층 검사 장치 WO2022260245A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22758110.5A EP4123778A4 (en) 2021-06-09 2022-03-07 ELECTRODE PLATE OR UNIT CELL STACK TESTING APPARATUS
CN202280003003.3A CN115943510A (zh) 2021-06-09 2022-03-07 用于电极板或单元电池的堆叠检查设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210074998A KR20220166098A (ko) 2021-06-09 2021-06-09 전극판 또는 단위셀 적층 검사 장치
KR10-2021-0074998 2021-06-09

Publications (1)

Publication Number Publication Date
WO2022260245A1 true WO2022260245A1 (ko) 2022-12-15

Family

ID=84047773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/003218 WO2022260245A1 (ko) 2021-06-09 2022-03-07 전극판 또는 단위셀 적층 검사 장치

Country Status (4)

Country Link
EP (1) EP4123778A4 (ko)
KR (1) KR20220166098A (ko)
CN (1) CN115943510A (ko)
WO (1) WO2022260245A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117053730A (zh) * 2023-10-11 2023-11-14 杭州睿影科技有限公司 一种叠片式电池的检测方法、装置、图像处理设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170103341A (ko) * 2016-03-04 2017-09-13 주식회사 엘지화학 레이저 센서를 포함하는 전지셀 두께 측정장치 및 이를 사용하여 전지셀의 두께를 측정하는 방법
KR20190020147A (ko) * 2016-07-26 2019-02-27 엘지전자 주식회사 셀적층 및 열압착 장치, 및 셀적층 및 열압착 방법
KR102107226B1 (ko) * 2018-12-20 2020-05-07 김태완 적층 전지 정렬 검사 장치
KR20200059838A (ko) * 2018-11-22 2020-05-29 주식회사 강한이노시스 조명을 이용한 2차전지 전극 적층 감시 장치
KR20200088222A (ko) * 2019-01-11 2020-07-22 한국전자통신연구원 이차전지용 엑스선 검사 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102629119B1 (ko) * 2018-05-02 2024-01-26 에스케이온 주식회사 전극판 정렬 상태 검사 시스템 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170103341A (ko) * 2016-03-04 2017-09-13 주식회사 엘지화학 레이저 센서를 포함하는 전지셀 두께 측정장치 및 이를 사용하여 전지셀의 두께를 측정하는 방법
KR20190020147A (ko) * 2016-07-26 2019-02-27 엘지전자 주식회사 셀적층 및 열압착 장치, 및 셀적층 및 열압착 방법
KR20200059838A (ko) * 2018-11-22 2020-05-29 주식회사 강한이노시스 조명을 이용한 2차전지 전극 적층 감시 장치
KR102107226B1 (ko) * 2018-12-20 2020-05-07 김태완 적층 전지 정렬 검사 장치
KR20200088222A (ko) * 2019-01-11 2020-07-22 한국전자통신연구원 이차전지용 엑스선 검사 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117053730A (zh) * 2023-10-11 2023-11-14 杭州睿影科技有限公司 一种叠片式电池的检测方法、装置、图像处理设备及介质
CN117053730B (zh) * 2023-10-11 2024-02-02 杭州睿影科技有限公司 一种叠片式电池的检测方法、装置、图像处理设备及介质

Also Published As

Publication number Publication date
KR20220166098A (ko) 2022-12-16
CN115943510A (zh) 2023-04-07
EP4123778A4 (en) 2023-09-06
EP4123778A1 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
WO2020130184A1 (ko) 이차전지의 셀 스택 제조장치
WO2016195451A1 (ko) 전지팩 기능 검사장치
WO2019190129A1 (ko) 전극조립체의 얼라인 검사 장치 및 그를 이용한 전극조립체의 얼라인 검사 방법
WO2020231054A1 (ko) 전극 조립체 및 이의 검사 방법
WO2015046793A1 (ko) 전극조립체의 제조방법
WO2019190054A1 (ko) 이차전지 제조장치 및 제조방법
WO2021040277A1 (ko) 단위셀의 두께측정장치 및 두께측정방법
WO2021194284A1 (ko) 단위 셀 제조 장치 및 방법
WO2022019599A1 (ko) 단위 셀 제조 장치 및 방법
WO2022260245A1 (ko) 전극판 또는 단위셀 적층 검사 장치
WO2018182387A1 (ko) 이차전지의 리크검사시스템
WO2022154360A1 (ko) 전지셀의 외관 검사 시스템
WO2021101058A1 (ko) 전극조립체 제조장치 및 방법
WO2021034178A1 (ko) 크랙 검출력이 향상된 와전류 센서 및 이를 포함하는 와전류 검사 장치
WO2020017907A1 (ko) 전극의 오정렬 검출 시스템 및 방법
WO2022145905A1 (ko) 전극시트의 불량 검출 시스템
WO2015030333A1 (ko) 폴리머 2차전지 셀용 전극조립체
WO2022145747A1 (ko) 재작업 자동화 장비를 포함하는 전지셀 제조장치 및 이를 이용한 재작업 수량 계수 방법
WO2022177123A1 (ko) 전극 탭의 불량 검출 시스템 및 이를 이용한 전극 탭의 불량 검출 방법
WO2021080212A1 (ko) 가압식 분리막 저항 측정 장치 및 측정 방법
WO2020111695A1 (ko) 셀 성능 측정방법
WO2023075420A1 (ko) 전극 조립체의 제조방법
WO2023101287A1 (ko) 본딩상태 검사장치 및 이를 이용한 본딩상태 검사방법
WO2023121069A1 (ko) 저전압 전지 셀의 이물 위치 검출 장치 및 이를 이용한 분석 방법
WO2023043265A1 (ko) 전극 조립체의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022758110

Country of ref document: EP

Effective date: 20220901

WWE Wipo information: entry into national phase

Ref document number: 17915403

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE