WO2023277090A1 - 電解コンデンサおよびその製造方法 - Google Patents

電解コンデンサおよびその製造方法 Download PDF

Info

Publication number
WO2023277090A1
WO2023277090A1 PCT/JP2022/026050 JP2022026050W WO2023277090A1 WO 2023277090 A1 WO2023277090 A1 WO 2023277090A1 JP 2022026050 W JP2022026050 W JP 2022026050W WO 2023277090 A1 WO2023277090 A1 WO 2023277090A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic capacitor
electrolyte
dopant
dielectric layer
ions
Prior art date
Application number
PCT/JP2022/026050
Other languages
English (en)
French (fr)
Inventor
和宏 高谷
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023532035A priority Critical patent/JPWO2023277090A1/ja
Priority to CN202280045713.2A priority patent/CN117581319A/zh
Priority to US18/575,226 priority patent/US20240290548A1/en
Publication of WO2023277090A1 publication Critical patent/WO2023277090A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present disclosure relates to electrolytic capacitors and manufacturing methods thereof.
  • an electrolytic capacitor comprising an anode body having a dielectric layer on its surface and a solid electrolyte layer covering at least a portion of the dielectric layer is considered promising.
  • a solid electrolyte layer usually contains a conductive polymer containing a conjugated polymer and a dopant.
  • a solid electrolyte layer is formed using, for example, a liquid dispersion containing a conductive polymer.
  • polymer-type polyanions such as polystyrene sulfonic acid are frequently used as dopants in liquid dispersions.
  • Patent Document 1 discloses a solvent containing water as a main component, and polythiophene fine particles each having a polymerization unit of at least one selected from thiophenes and derivatives thereof, containing a polyanion as a dopant, and dispersed in the solvent.
  • a conductive polymer fine particle dispersion is proposed, which has a pH of 3 or more and a concentration of iron contained in the iron compound insoluble in the solvent of 450 ppm or less.
  • Patent Document 2 describes a dispersion for forming a solid electrolyte layer, which comprises dispersing a thiophene as a monomer and a polyanion as a dopant in a solvent containing water as a main component to prepare a dispersion; preparing a polyanion-doped conductive polythiophene fine particle dispersion by mixing the dispersion and an oxidizing agent to oxidatively polymerize the monomer.
  • the polyanion polystyrene sulfonic acid or the like having a hue of 10 or more and 1000 or less in Hazen color number measured by the APHA method is used as the polyanion. It is proposed to
  • Polymer dopants such as polystyrene sulfonic acid are highly effective in improving the conductivity of conductive polymers, and are advantageous in keeping the ESR of electrolytic capacitors low.
  • the polymer dopant since the polymer dopant has a high molecular weight, it is difficult to impregnate the fine recesses of the dielectric layer. In electrolytic capacitors, if the coverage of the dielectric layer with the conductive polymer can be improved, the capacity can be further increased.
  • an electrolytic capacitor including a capacitor element
  • the capacitor element includes an anode body having a dielectric layer on its surface and an electrolyte covering a portion of the dielectric layer,
  • the electrolyte contains a conjugated polymer, a polymer dopant having an anionic group, and a metal ion
  • An electrolytic capacitor comprising an electrolytic capacitor capacitor element, wherein the amount of the metal ion is less than 1 equivalent with respect to 1 equivalent of the anionic group
  • the capacitor element includes an anode body having a dielectric layer on its surface and an electrolyte covering a portion of the dielectric layer,
  • the electrolyte contains a conjugated polymer, a polymer dopant having an anionic group, and a metal ion,
  • the amount of said metal ion is less than 1 equivalent with respect to 1 equivalent of said anionic group.
  • Another aspect of the present disclosure is a method of manufacturing an electrolytic capacitor including a capacitor element including an anode body having a dielectric layer thereon and an electrolyte covering a portion of the dielectric layer, comprising: preparing a liquid mixture comprising a conjugated polymer, a first polymer dopant having an anionic group, and a metal ion; applying the liquid mixture to the anode body to form the electrolyte;
  • the step of preparing the liquid mixture comprises polymerizing the precursor of the conjugated polymer in the presence of the first polymer dopant and an oxidizing agent to form the conjugated polymer and the first polymer dopant.
  • a substep of obtaining a first mixture comprising a substep of further mixing the metal ions with the first mixture to prepare the liquid mixture as a second mixture.
  • FIG. 1 is a cross-sectional schematic diagram of an electrolytic capacitor according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram for explaining the configuration of a capacitor element in FIG. 1;
  • an electrolytic capacitor according to the present disclosure will be described below with examples, but the present disclosure is not limited to the examples described below.
  • specific numerical values and materials may be exemplified, but other numerical values and materials may be applied as long as the effects of the present disclosure can be obtained.
  • the description "numerical value A to numerical value B" includes numerical value A and numerical value B, and can be read as “numerical value A or more and numerical value B or less”.
  • any of the illustrated lower limits and any of the illustrated upper limits can be arbitrarily combined as long as the lower limit is not greater than or equal to the upper limit. .
  • a plurality of materials are exemplified, one of them may be selected and used alone, or two or more may be used in combination.
  • the present disclosure encompasses a combination of matters described in two or more claims arbitrarily selected from the multiple claims described in the attached claims. In other words, as long as there is no technical contradiction, the matters described in two or more claims arbitrarily selected from the multiple claims described in the attached claims can be combined.
  • Electrolytic capacitor may be read as “solid electrolytic capacitor”
  • capacitor may be read as “capacitor”.
  • liquid mixture containing a conductive polymer containing a conjugated polymer and a polymer dopant When a liquid mixture containing a conductive polymer containing a conjugated polymer and a polymer dopant is used to form the electrolyte of an electrolytic capacitor, the liquid mixture containing metal ions may improve capacitor performance. It became clear.
  • the conductive polymer contained in the liquid mixture used to form the electrolyte is usually formed by polymerizing a conjugated polymer precursor in the presence of a polymer dopant.
  • Metal ions are usually added to the conductive polymer in the form of a salt of the polymer dopant and metal ions. Therefore, the amount of metal ions is small compared to the total amount of polymeric dopants contained in the liquid mixture. More specifically, it is less than 1 equivalent with respect to 1 equivalent of the anionic group of the polymeric dopant. In an electrolytic capacitor containing an electrolyte in such a state, ESR can be kept low and high capacity can be obtained.
  • the liquid mixture contains an appropriate amount of metal ions, which facilitates penetration of the liquid mixture into the fine recesses of the dielectric layer, thereby increasing the coverage of the dielectric layer with the conductive polymer. This is probably because the capacity increases and tan ⁇ decreases.
  • the polymer dopant contains many anionic groups, it is thought that the conductive polymer has high conductivity and the ESR of the electrolytic capacitor can be kept low.
  • the electrolytic capacitor will be explained in more detail below.
  • a capacitor element included in an electrolytic capacitor includes at least an anode body having a dielectric layer on its surface and an electrolyte covering a portion of the dielectric layer.
  • the anode body can contain a valve action metal, an alloy containing a valve action metal, a compound containing a valve action metal, and the like. These materials can be used singly or in combination of two or more. For example, aluminum, tantalum, niobium, and titanium are preferably used as valve metals.
  • An anode body having a porous surface can be obtained, for example, by roughening the surface of a base material (such as a foil-like or plate-like base material) containing a valve action metal by etching or the like.
  • the anode body may be a molded body of particles containing a valve metal or a sintered body thereof. Note that the sintered body has a porous structure.
  • the dielectric layer is formed by anodizing the valve action metal on the surface of the anode body by chemical conversion treatment or the like.
  • the dielectric layer may be formed so as to cover at least part of the anode body.
  • a dielectric layer is usually formed on the surface of the anode body. Since the dielectric layer is formed on the porous surface of the anode body, it is formed along the inner wall surfaces of the holes and depressions (pits) on the surface of the anode body.
  • the dielectric layer contains an oxide of a valve metal.
  • the dielectric layer contains Ta 2 O 5 when tantalum is used as the valve metal, and the dielectric layer contains Al 2 O 3 when aluminum is used as the valve metal.
  • the dielectric layer is not limited to this, and may be any material as long as it functions as a dielectric.
  • the dielectric layer is formed along the surface of the anode body (including the inner walls of the pores).
  • the electrolyte includes a conjugated polymer, a polymer dopant having anionic groups, and metal ions.
  • the conjugated polymer and the polymer dopant constitute the conductive polymer, and high conductivity of the electrolyte is obtained.
  • the electrolyte deposited on the surface of the dielectric layer may form a layer.
  • Such an electrolyte layer is sometimes called a solid electrolyte layer, a conductive polymer layer, or the like.
  • the electrolyte constitutes at least part of the cathode body in the electrolytic capacitor.
  • Conjugated polymers include known conjugated polymers used in electrolytic capacitors, such as ⁇ -conjugated polymers.
  • Conjugated polymers include, for example, polymers having polypyrrole, polythiophene, polyaniline, polyfuran, polyacetylene, polyphenylene, polyphenylenevinylene, polyacene, and polythiophenevinylene as a basic skeleton.
  • the above polymer may contain at least one type of monomer unit that constitutes the basic skeleton.
  • the above polymers also include homopolymers, copolymers of two or more monomers, and derivatives thereof (substituents having substituents, etc.).
  • polythiophenes include poly(3,4-ethylenedioxythiophene) and the like.
  • Conjugated polymers may be used singly or in combination of two or more.
  • the weight average molecular weight (Mw) of the conjugated polymer is not particularly limited, but is, for example, 1,000 or more and 1,000,000 or less.
  • the weight average molecular weight (Mw) is a polystyrene-equivalent value measured by gel permeation chromatography (GPC). GPC is usually measured using a polystyrene gel column and water/methanol (volume ratio 8/2) as a mobile phase.
  • a polymer dopant (first dopant) having an anionic group is used as the dopant.
  • the electrolyte may use a second dopant other than the first dopant, if necessary.
  • the second dopant includes relatively low-molecular-weight anions.
  • Examples of the first dopant include polymers having a plurality of anionic groups. Such polymers include those containing monomer units having anionic groups. Examples of anionic groups include sulfonic acid groups and carboxy groups. The first dopant may have one kind of anionic group, or two or more kinds of anionic groups.
  • the anionic groups of the first dopant are in the acid form (eg —SO 3 H for the sulfonic acid group), the anionic form (eg —SO 3 ⁇ for the sulfonic acid group), and the salt form.
  • the salt form includes a form in which an anionic group and a metal ion form a salt.
  • the anionic group may form a salt with a cation present in the vicinity of the electrolyte in the electrolytic capacitor. Such salts are also included in the above salt forms.
  • the anionic group of the first dopant may be contained in the electrolyte in the form of bonding or interacting with the conjugated polymer. In the present specification, all these forms are sometimes simply referred to as "anionic group”, “sulfonic acid group”, or “carboxy group”.
  • the first dopant having a carboxy group are polyacrylic acid, polymethacrylic acid, and copolymers using at least one of acrylic acid and methacrylic acid.
  • the first dopant having a sulfonic acid group include polymeric type polysulfonic acid.
  • Specific examples of the first dopant having a sulfonic acid group include polyvinylsulfonic acid, polystyrenesulfonic acid (including copolymers and substituents having substituents), polyallylsulfonic acid, polyacrylsulfonic acid, and polymethacrylsulfonic acid.
  • polyester sulfonic acid such as aromatic polyester sulfonic acid
  • phenol sulfonic acid novolac resin e.g., phenol sulfonic acid novolac resin.
  • second dopants are sulfate ions, nitrate ions, phosphate ions, borate ions, organic sulfonate ions, and carboxylate ions.
  • Compounds capable of generating these ions eg, acids, salts, etc.
  • compounds that generate sulfonate ions include aromatic sulfonic acids (p-toluenesulfonic acid, naphthalenesulfonic acid, etc.).
  • aromatic sulfonic acids p-toluenesulfonic acid, naphthalenesulfonic acid, etc.
  • the amount of the first dopant contained in the electrolyte is, for example, 10 to 1000 parts by mass, and may be 20 to 500 parts by mass or 50 to 200 parts by mass with respect to 100 parts by mass of the conjugated polymer.
  • the amount of the second dopant contained in the electrolyte is, for example, 10 parts by mass or less, and may be 5 parts by mass or less with respect to 100 parts by mass of the conjugated polymer.
  • the amount of the second dopant contained in the electrolyte may be 1 part by mass or more with respect to 100 parts by mass of the conjugated polymer.
  • part of the first dopant usually forms a salt with the metal ions when the metal ions are not dissociated.
  • the metal ion is usually contained in a state of forming a salt with the anionic group of the first dopant.
  • the metal ion may be contained in a state of forming a salt with the anionic group of the second dopant.
  • some of the metal ions may be contained in the electrolyte in the form of salts with anions present in the vicinity of the electrolyte.
  • the amount of the metal ion is less than 1 equivalent with respect to 1 equivalent of the anionic group of the first dopant.
  • the electrolyte contains such an amount of metal ions, it is possible to keep the ESR low while ensuring high impregnation of the liquid mixture used to form the electrolyte into the fine recesses of the dielectric layer.
  • the permeability of the liquid mixture to the separator also increases.
  • the impregnating property of the liquid mixture is high, the coating property of the electrolyte on the dielectric layer is improved, so that a high capacity can be obtained and tan ⁇ can be kept low.
  • the amount of the metal ion to 1 equivalent of the anionic group of the first dopant is, for example, 0.001 equivalent or more and less than 1 equivalent. From the viewpoint of easily obtaining a higher capacitance, the amount of the metal ion relative to 1 equivalent of the anionic group of the first dopant is preferably 0.005 equivalent or more and 0.95 equivalent or less, and 0.01 equivalent or more (or 0 0.05 equivalents or more) is more preferably 0.95 equivalents or more, more preferably 0.1 equivalents or more and 0.9 equivalents or less, and particularly preferably 0.3 equivalents or more and 0.5 equivalents or less. Within these ranges, the amount of metal ions is preferably 0.9 equivalents or less, more preferably 0.5 equivalents or less, from the viewpoint of obtaining a lower ESR.
  • Alkali metal ions are preferable as metal ions. This is because alkali metal ions are highly effective in increasing the impregnability of the liquid mixture and cause less unwanted side reactions in the electrolytic capacitor.
  • Preferred alkali metal ions are lithium ions, sodium ions, or potassium ions.
  • the electrolyte may contain one kind of metal ions, or may contain two or more kinds of metal ions in combination. At least lithium ions may be used. If necessary, lithium ions may be combined with at least one of sodium ions and potassium ions.
  • the amount (equivalent) of metal ions per equivalent of anionic group in the electrolyte can be obtained by the following procedure.
  • a capacitor element is taken out from an electrolytic capacitor, disassembled, and the electrolyte is scraped out to obtain a sample.
  • the liquid components are removed using equipment such as a centrifugal separator.
  • the obtained samples are analyzed using techniques such as ion chromatography, capillary electrophoresis, and ICP (inductively coupled plasma) emission spectroscopy to identify the types of dopants and metal ions.
  • a portion of the sample is removed and weighed accurately to determine the dopant and metal ion content. From the obtained content and the number of anionic groups of the dopant, the amount (equivalent) of the metal ion to one equivalent of the anionic group is determined.
  • the electrolyte may contain cations (second cations) other than metal ions (first cations).
  • the second cation normally forms a salt with an anion present in the vicinity of the electrolyte.
  • the second cation may form a salt with the anionic group of the first dopant, or may form a salt with the anionic group of the second dopant. It may well form a salt with anions other than these.
  • Examples of the second cation include inorganic cations such as ammonium ions and organic cations derived from nitrogen-containing compounds.
  • Nitrogen-containing compounds corresponding to organic cations include amines (primary to tertiary amines, etc.), quaternary ammonium compounds (amidine compounds (including imidazole compounds), etc.), amidinium compounds, and the like.
  • Amines can be aliphatic, aromatic, and heterocyclic. Examples of amines are trimethylamine, diethylamine, triethylamine, ethylenediamine, aniline, pyrrolidine, imidazole, 4-dimethylaminopyridine.
  • the electrolyte may contain one type of second cation or a combination of two or more types.
  • the electrolytes may be of the same composition throughout.
  • the electrolyte layer may be formed so as to include a first portion on the dielectric layer side and a second portion covering the first portion.
  • the metal ion content C1 in the first portion and the metal ion content C2 in the second portion satisfy C1>C2.
  • the second portion may be free of metal ions.
  • the second portion may be free of both metal ions and second cations.
  • the contents C1 and C2 of the metal ions are the first part and the second part, respectively, of the portion filled in the recesses of the dielectric layer of the electrolyte and the portion coated outside the dielectric layer of the electrolyte.
  • the electrolyte is formed by applying a liquid mixture containing a conjugated polymer, a first dopant (specifically, the first polymer dopant), and metal ions to an anode body having a dielectric layer.
  • An electrolyte is formed over at least a portion of the dielectric layer.
  • a liquid mixture may be a solution or a dispersion.
  • Application of the liquid mixture to the anode body may be performed once, or may be repeated twice or more.
  • the liquid mixture is prepared, for example, by polymerizing a precursor of a conjugated polymer in the presence of a first polymeric dopant and an oxidizing agent to obtain a first mixture containing the conjugated polymer and the first polymeric dopant. and a substep of further mixing metal ions into the first mixture to prepare a liquid mixture as the second mixture.
  • metal ions are contained in the liquid mixture at the time they are applied to the anode body having the dielectric layer, high impregnating properties can be obtained. Therefore, metal ions need not be present in the reaction system during polymerization of the precursor.
  • the amount of metal ions contained in the reaction system is preferably small so that the metal ions do not affect the reaction system. In the reaction system, for example, 0.01 equivalent or less or 0.001 equivalent or less of the metal ion may be present per equivalent of the anionic group of the first polymeric dopant.
  • the polymerization of the precursor is preferably carried out in the absence of metal ions.
  • the metal ion may be mixed with the first mixture in the form of a salt.
  • the metal ions may be dissociated.
  • the salt is mixed in the form of a salt.
  • the metal ion may be mixed in the first mixture in the form of a salt of the first dopant (specifically, the second polymeric dopant) and the metal ion.
  • the second polymer dopant is included in the first dopant described above, and the description of the first dopant can be referred to.
  • the second polymer dopant may be used alone or in combination of two or more.
  • the first polymeric dopant contained in the first mixture may be at least partly the same as or different from all of the second polymeric dopant. If a second cation is used, it may be added to the first mixture or the liquid mixture. The second cation is added in salt form, if desired.
  • the salt may be a salt with the first dopant, a salt with the second dopant, or a salt with other anions.
  • the liquid mixture containing metal ions thus obtained is used to form the first part, and the liquid mixture prepared without the metal ions (for example, the first mixture) is used to form the second part.
  • the first portion may be formed by applying the liquid mixture once or by applying it two or more times.
  • the liquid mixture for the second portion may be applied once to form the second portion, or may be applied two or more times to form the second portion.
  • each liquid mixture e.g., each monomer, dopant, metal ion, secondary cation, etc., and their amount, etc.
  • each liquid mixture e.g., each monomer, dopant, metal ion, secondary cation, etc., and their amount, etc.
  • Conjugated polymer precursors used in the liquid mixture include raw material monomers for conjugated polymers, oligomers and prepolymers in which multiple molecular chains of raw material monomers are linked.
  • One type of precursor may be used, or two or more types may be used in combination.
  • the oxidizing agent may be added to the liquid mixture, or the oxidizing agent may be applied to the anode body before or after bringing the liquid mixture into contact with the anode body on which the dielectric layer is formed.
  • oxidizing agents include compounds capable of generating Fe 3+ (ferric sulfate, etc.), persulfates (sodium persulfate, ammonium persulfate, etc.), and hydrogen peroxide.
  • the oxidizing agents may be used singly or in combination of two or more.
  • a liquid mixture usually contains a solvent.
  • solvents include water, organic solvents, and mixed solvents of water and organic solvents (such as water-soluble organic solvents).
  • a metal foil may be used for the cathode body, similarly to the anode body.
  • the metal it is preferable to use a valve-acting metal such as aluminum, tantalum, or niobium, or an alloy containing a valve-acting metal.
  • the metal constituting the cathode body is not limited to these.
  • the surface of the metal foil may be roughened as required.
  • the surface of the metal foil may be provided with a chemical conversion coating, or may be provided with a coating of a metal (dissimilar metal) different from the metal constituting the metal foil (dissimilar metal) or a non-metal coating.
  • Dissimilar metals or non-metals can include, for example, metals such as titanium or non-metals such as carbon.
  • a separator When a metal foil is used as the cathode body, a separator may be arranged between the metal foil and the anode body.
  • the separator is not particularly limited, and for example, a nonwoven fabric containing fibers of cellulose, polyethylene terephthalate, vinylon, polyamide (eg, aromatic polyamide such as aliphatic polyamide and aramid) may be used.
  • a liquid mixture containing metal ions is used to form the electrolyte, so high impregnation of the liquid mixture into the separator can be ensured. Therefore, even when the electrolyte is formed by applying the liquid mixture to the anode body and the cathode body stacked with the separator interposed therebetween, the electrolyte can be formed with high coverage.
  • the electrolytic capacitor contains a liquid component, it is advantageous to ensure a higher capacitance. Also, even when the electrolytic capacitor is exposed to high temperatures, the ESR change can be kept low.
  • the liquid component contains a solvent.
  • the solvent preferably contains at least a polyhydric alcohol.
  • polyhydric alcohols sulfone compounds, lactone compounds, carbonate compounds, and the like may be used.
  • One type of solvent may be used, or two or more types may be used in combination.
  • Sulfone compounds include sulfolane, dimethylsulfoxide and diethylsulfoxide.
  • Lactone compounds include ⁇ -butyrolactone, ⁇ -valerolactone and the like.
  • Carbonate compounds include dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, ethylene carbonate, propylene carbonate and fluoroethylene carbonate.
  • the ratio of the polyhydric alcohol to the total solvent contained in the liquid component is, for example, 50% by mass or more, and may be 75% by mass or more.
  • the ratio of the polyhydric alcohol to the total solvent contained in the liquid component is 100% by mass or less.
  • Polyhydric alcohols include glycerin compounds, sugar alcohol compounds, and glycol compounds.
  • Glycerin compounds include glycerin, polyglycerin (diglycerin, triglycerin, etc.), or derivatives thereof.
  • the number of repeating glycerin units in polyglycerin is, for example, 2 or more and 20 or less, and may be 2 or more and 10 or less.
  • Sugar alcohol compounds include sugar alcohols (erythritol, mannitol, pentaerythritol, etc.) or derivatives thereof.
  • Derivatives include alkylene oxide adducts (such as glycerin, polyglycerin, or adducts in which one alkylene oxide is added to one hydroxy group of sugar alcohol).
  • Alkylene oxide adducts include C 2-4 alkylene oxide adducts (ethylene oxide adducts, etc.).
  • Glycol compounds include alkylene glycol (C 2-4 alkylene glycol (ethylene glycol, propylene glycol, etc.), etc.), polyalkylene glycol (poly-C 2-4 alkylene glycol (diethylene glycol, dipropylene glycol, triethylene glycol, polyethylene glycol, etc.) ), etc.), polyalkylene oxide adducts (poly C 2-4 alkylene oxide adducts (polyethylene oxide adducts, etc.), etc.) of sugar alcohols (glycerin, erythritol, mannitol, pentaerythritol, etc.).
  • the solvent preferably contains any one selected from ethylene glycol, glycerin, diethylene glycol, triethylene glycol and propylene glycol.
  • the liquid component may contain a solute.
  • solutes include acid components, base components, and the like.
  • acid components include carboxylic acids (aliphatic carboxylic acids, aromatic carboxylic acids (including polyvalent carboxylic acids such as phthalic acid and pyromellitic acid), etc.), sulfur-containing acids (sulfuric acid, sulfonic acids (aliphatic sulfone acids, aromatic sulfonic acids, etc.), boron-containing acids (boric acid, halogenated boric acids (tetrafluoroboric acid, etc.), or their partial esters, etc.), phosphorus-containing acids (phosphoric acid, halogenated phosphoric acids ( hexafluorophosphoric acid, etc.), phosphonic acid, phosphinic acid, or partial esters thereof), nitric acid, and nitrous acid.
  • carboxylic acids aliphatic carboxylic acids, aromatic carboxylic acids (including polyvalent carboxylic acids such as phthalic acid and pyromellitic acid), etc.
  • sulfur-containing acids sulfuric acid, sulfonic acids (alipha
  • a condensate (borodisalicylic acid, borodiglycolic acid, borodisoxalic acid, etc.) of a carboxylic acid and an inorganic acid (boric acid, phosphoric acid, etc.) may be used.
  • Aromatic sulfonic acids include, in addition to a sulfo group, aromatic sulfonic acids having a hydroxy group or a carboxy group (oxyaromatic sulfonic acid (eg phenol-2-sulfonic acid), sulfoaromatic carboxylic acids (eg p-sulfobenzoic acid acids, 3-sulfophthalic acid, 5-sulfosalicylic acid), etc.).
  • polymeric acid component may be used.
  • Polymeric acid components include, for example, polyacrylic acid, polymethacrylic acid, polyvinylsulfonic acid, polystyrenesulfonic acid, polyallylsulfonic acid, polyacrylsulfonic acid, polymethacrylsulfonic acid, poly(2-acrylamido-2-methylpropanesulfone acid) and polyisoprene sulfonic acid.
  • the liquid component may contain one type of acid component, or may contain two or more types.
  • base components include ammonia, amines (specifically, primary amines, secondary amines and tertiary amines), quaternary ammonium compounds and amidinium compounds.
  • Amines can be aliphatic, aromatic, and heterocyclic.
  • Examples of amines include trimethylamine, diethylamine, triethylamine, ethylenediamine, aniline, pyrrolidine, imidazole, 4-dimethylaminopyridine and the like.
  • quaternary ammonium compounds include amidine compounds (including imidazole compounds).
  • the liquid component may contain one or more base components.
  • the liquid component may contain the acid component and the base component in a free state, in an ion form, or in a salt form.
  • the liquid component may contain an organic salt.
  • Organic salts include those in which at least one of the acid component and the base component is organic.
  • the concentration of the solute in the liquid component is, for example, 0.1% by mass or more and 25% by mass or less, and may be 0.5% by mass or more and 15% by mass or less. When the concentration of the solute is within this range, dedoping of the dopant is likely to be suppressed.
  • the electrolytic capacitor may be of wound type, chip type or laminated type.
  • An electrolytic capacitor may have at least one capacitor element, and may have a plurality of capacitor elements.
  • the solid electrolytic capacitor may comprise a laminate of two or more capacitor elements, or may comprise two or more wound capacitor elements.
  • the configuration or number of capacitor elements may be selected according to the type or application of the electrolytic capacitor.
  • the electrolytic capacitor of the present disclosure will be described more specifically based on the embodiments.
  • the electrolytic capacitor of the present disclosure is not limited to the following embodiments.
  • FIG. 1 is a schematic cross-sectional view of an electrolytic capacitor according to this embodiment
  • FIG. 2 is a schematic diagram showing a part of a capacitor element of the same electrolytic capacitor.
  • the electrolytic capacitor shown in FIG. 1 includes a capacitor element 10, a bottomed case 11 that accommodates the capacitor element 10, a sealing member 12 that closes an opening of the bottomed case 11, a seat plate 13 that covers the sealing member 12, Lead wires 14A and 14B lead out from sealing member 12 and pass through seat plate 13, lead tabs 15A and 15B connecting the lead wires and electrodes of capacitor element 10, and a liquid component (not shown).
  • the open end of the bottomed case 11 is curled so as to be crimped to the sealing member 12 .
  • the capacitor element 10 is produced from a wound body as shown in FIG.
  • the wound body is a semi-finished product of the capacitor element 10 in which no conductive polymer is arranged between the anode body 21 and the cathode body 22 having dielectric layers on their surfaces.
  • the wound body is obtained by winding the anode body 21 connected to the lead tab 15A and the cathode body 22 connected to the lead tab 15B with the separator 23 interposed therebetween.
  • the outermost circumference of the wound body is fixed by a winding stop tape 24 .
  • FIG. 2 shows a partially unfolded state before the outermost circumference of the wound body is fixed.
  • the anode body 21 has a metal foil with a roughened surface, and a dielectric layer is formed on the roughened surface.
  • Capacitor element 10 is formed by depositing a conductive polymer on at least a portion of the surface of the dielectric layer.
  • Capacitor element 10 is housed in an exterior case together with a liquid component (not shown).
  • Step of Preparing Anode Body 21 and Cathode Body 22 Having Dielectric Layers A metal foil made of a valve metal is used as a raw material for anode body 21 and cathode body 22 .
  • the surface of the metal foil is roughened by etching or the like to form a plurality of irregularities on the surface of the metal foil.
  • a dielectric layer is formed on the roughened surface of the metal foil by chemical conversion treatment or the like. If necessary, the surface of the cathode body 22 may be roughened.
  • Anode body 21 and cathode body 22 are wound with separator 23 in between to produce a wound body.
  • a nonwoven fabric containing synthetic cellulose or the like as a main component can be used for the separator 23 .
  • a winding stop tape 24 is placed on the outer surface of the cathode body 22 located in the outermost layer of the wound body to fix the ends of the cathode body 22 . If necessary, the wound body is further subjected to a chemical conversion treatment.
  • Step of forming capacitor element 10 For example, a dielectric layer is impregnated with a liquid mixture containing the conjugated polymer, the first polymer dopant, and metal ions prepared by the procedure described above, and at least one of the dielectric layers is A conductive polymer film (electrolyte) is formed to cover the part. As a result, capacitor element 10 in which a conductive polymer (electrolyte) is arranged between anode body 21 and cathode body 22 is obtained.
  • the step of applying the liquid mixture to the surface of the dielectric layer may be repeated two or more times. When a liquid component is used, capacitor element 10 is impregnated with the liquid component after the electrolyte is formed.
  • Capacitor element 10 is housed in bottomed case 11 together with a liquid component so that lead wires 14A and 14B are positioned on the opening side of bottomed case 11 .
  • the opening of the bottomed case 11 is closed with a sealing member 12 through which each lead wire passes, the opening end is crimped to the sealing member 12 to be curled, and the seat plate 13 is arranged on the curled portion, as shown in FIG.
  • An electrolytic capacitor as shown in is completed.
  • a wound type electrolytic capacitor has been described, but the scope of application of the present invention is not limited to the above. It can also be applied to capacitors and laminated electrolytic capacitors using a metal plate as an anode.
  • An aluminum foil having a thickness of 100 ⁇ m was subjected to an etching treatment to roughen the surface of the aluminum foil. After that, a dielectric layer was formed on the surface of the aluminum foil by chemical conversion treatment.
  • the chemical conversion treatment was carried out by immersing an aluminum foil in an ammonium adipate solution and applying a voltage of 45 V thereto. After that, the aluminum foil was cut to prepare an anode body.
  • An anode lead tab and a cathode lead tab were connected to the anode body and the cathode body, and the anode body and the cathode body were wound via a separator while winding the lead tab.
  • An anode lead wire and a cathode lead wire were connected to the ends of each lead tab protruding from the wound body.
  • the produced wound body was subjected to chemical conversion treatment again to form a dielectric layer on the cut end of the anode body. Next, the ends of the outer surface of the wound body were fixed with a winding stop tape to produce a wound body.
  • a cellulose nonwoven fabric was used as the separator.
  • a mixed solution was prepared by dissolving 3,4-ethylenedioxythiophene (EDOT) and polystyrene sulfonic acid (PSS, weight average molecular weight of 100,000) as a first polymer dopant in deionized water. While stirring the mixed solution, iron (III) sulfate (oxidizing agent) dissolved in ion-exchanged water was added to carry out a polymerization reaction. After the reaction, the resulting reaction solution is dialyzed to remove unreacted monomers and excess oxidizing agent, and a polymer dispersion (first mixture) containing PSS-doped polyethylenedioxythiophene (PEDOT/PSS) is obtained. Obtained. At this time, the doping amount was adjusted so that EDOT was 0.5 equivalents with respect to 1 equivalent of the anionic group of PSS. In B1, a lithium salt of PSS was used instead of PSS.
  • EDOT 3,4-ethylenedioxythiophene
  • PSS polystyren
  • Polystyrene sulfonic acid (PSS, weight-average molecular weight of 100,000), which is the second polymer dopant, and an aqueous solution of hydroxides of cations shown in the table or aqueous ammonia were added and mixed. Hydroxide or ammonia is added in a ratio such that the cation shown in the table becomes the equivalent shown in the table with respect to 1 equivalent of the anionic group of polystyrene sulfonic acid, and the pH is adjusted to about 2.0 to 3.5. did. Thus, a liquid mixture (second mixture) A was prepared. In B1, the first mixture was used as the liquid mixture.
  • polystyrene sulfonic acid PSS, weight average molecular weight of 100,000
  • aqueous ammonia was added at a ratio of 0.2 equivalents of ammonium ion to 1 equivalent of anionic groups of polystyrenesulfonic acid to adjust the pH to about 2.2.
  • a liquid mixture B was prepared.
  • the wound body was immersed in the first mixture for 2 minutes, then pulled out of the first mixture and dried in a drying oven at 150° C. for 20 minutes.
  • the wound body after drying was immersed in the liquid mixture A for 3 minutes.
  • the capacitor element of each example was pulled out from the liquid mixture and dried in a drying oven at 150° C. for 20 minutes. Thus, a capacitor element was formed.
  • the electrolytic capacitor of the present disclosure can be used for various applications that require high capacity and low ESR. It is also suitable for use as a hybrid electrolytic capacitor. However, the uses of electrolytic capacitors are not limited to these.
  • Capacitor element 11 Bottomed case 12: Sealing member 13: Seat plate 14A, 14B: Lead wire 15A, 15B: Lead tab 21: Anode body 22: Cathode body 23: Separator 24: Winding tape

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

電解コンデンサは、コンデンサ素子を含む。前記コンデンサ素子は、表面に誘電体層を有する陽極体と、前記誘電体層の一部を覆う電解質と、を含む。前記電解質は、共役系高分子と、アニオン性基を有する高分子ドーパントと、金属イオンとを含む。前記金属イオンの量は、前記アニオン性基1当量に対して、1当量未満である。

Description

電解コンデンサおよびその製造方法
 本開示は、電解コンデンサおよびその製造方法に関する。
 小型かつ大容量でESR(等価直列抵抗)の低いコンデンサとして、表面に誘電体層を有する陽極体と、誘電体層の少なくとも一部を覆う固体電解質層とを備える、電解コンデンサが有望視されている。固体電解質層は、通常、共役系高分子とドーパントとを含む導電性高分子を含む。固体電解質層は、例えば、導電性高分子を含む液状分散体を用いて形成される。液状分散体には、一般に、ポリスチレンスルホン酸などの高分子タイプのポリアニオンがドーパントとして多用されている。
 特許文献1は、水を主成分とする溶媒と、チオフェン類およびその誘導体から選ばれた少なくとも一つを重合単位とし、ポリアニオンをドーパントとして含み、前記溶媒中に分散されたポリチオフェンの微粒子と、を備え、pHが3以上であり、前記溶媒に不溶な鉄化合物に含まれる鉄分の濃度が450ppm以下である、導電性高分子微粒子分散体を提案している。
 特許文献2は、固体電解質層を形成するための分散体を、モノマーとしてのチオフェン類とドーパントとしてのポリアニオンとを、水を主成分とする溶媒中に分散させて分散液を調製するステップと、分散液と酸化剤とを混合してモノマーを酸化重合させることにより、ポリアニオンがドープされた導電性のポリチオフェン微粒子分散体を調製するステップと、を備える製造方法により、製造することを提案している。特許文献2では、ポリアニオンとしては、濃度が2%となるようにポリアニオンを水に溶解した水溶液の色相が、APHA法で測定したハーゼン色数で10以上、1000以下であるポリスチレンスルホン酸などを使用することが提案されている。
国際公開第2014/155420号 国際公開第2014/155422号
 ポリスチレンスルホン酸などの高分子ドーパントは、導電性高分子の導電性を向上する効果が高く、電解コンデンサのESRを低く抑える上で有利である。一方で、高分子ドーパントは、高分子量であるため、誘電体層の微細な凹部には含浸させ難い。電解コンデンサにおいて、誘電体層の導電性高分子による被覆性を高めることができれば、さらなる高容量化が可能である。
 本開示の一側面は、コンデンサ素子を含む電解コンデンサであって、
 前記コンデンサ素子は、表面に誘電体層を有する陽極体と、前記誘電体層の一部を覆う電解質と、を含み、
 前記電解質は、共役系高分子と、アニオン性基を有する高分子ドーパントと、金属イオンとを含み、
 前記金属イオンの量は、前記アニオン性基1当量に対して、1当量未満である、電解コンデンサコンデンサ素子を含む電解コンデンサであって、
 前記コンデンサ素子は、表面に誘電体層を有する陽極体と、前記誘電体層の一部を覆う電解質と、を含み、
 前記電解質は、共役系高分子と、アニオン性基を有する高分子ドーパントと、金属イオンとを含み、
 前記金属イオンの量は、前記アニオン性基1当量に対して、1当量未満である、電解コンデンサに関する。
 本開示の他の側面は、表面に誘電体層を有する陽極体と、前記誘電体層の一部を覆う電解質と、を含むコンデンサ素子を含む電解コンデンサを製造する方法であって、
 共役系高分子と、アニオン性基を有する第1高分子ドーパントと、金属イオンとを含む液状混合物を調製する工程と、
 前記液状混合物を前記陽極体に付与して、前記電解質を形成する工程と、を含み、
 前記液状混合物を調製する工程は、前記共役系高分子の前駆体を、前記第1高分子ドーパントおよび酸化剤の存在下で重合させて、前記共役系高分子と前記第1高分子ドーパントとを含む第1混合物を得るサブステップと、
 前記第1混合物に、さらに前記金属イオンを混合して第2混合物として前記液状混合物を調製するサブステップと、を含む、電解コンデンサの製造方法に関する。
 高容量で、ESRが低く抑えられている電解コンデンサを提供できる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本開示の一実施形態に係る電解コンデンサの断面模式図である。 図1のコンデンサ素子の構成を説明するための概略図である。
 以下では、本開示に係る電解コンデンサの実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。以下の説明において、特定の物性や条件などに関する数値の下限と上限とを例示した場合、下限が上限以上とならない限り、例示した下限のいずれかと例示した上限のいずれかを任意に組み合わせることができる。複数の材料が例示される場合、その中から1種を選択して単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 また、本開示は、添付の特許請求の範囲に記載の複数の請求項から任意に選択される2つ以上の請求項に記載の事項の組み合わせを包含する。つまり、技術的な矛盾が生じない限り、添付の特許請求の範囲に記載の複数の請求項から任意に選択される2つ以上の請求項に記載の事項を組み合わせることができる。
 「電解コンデンサ」は、「固体電解コンデンサ」と読み替えてもよく、「コンデンサ」は「キャパシタ」と読み替えてもよい。
 共役系高分子と高分子ドーパントとを含む導電性高分子を含む液状混合物を用いて、電解コンデンサの電解質を形成する場合に、液状混合物が金属イオンを含むと、コンデンサ性能が向上する場合があることが明らかとなった。
 電解質の形成に用いられる液状混合物に含まれる導電性高分子は、通常、共役系高分子の前駆体を高分子ドーパントの存在下で重合させることにより形成される。一方、金属イオンは、通常、高分子ドーパントと金属イオンとの塩の形態で、導電性高分子に添加される。そのため、液状混合物に含まれる高分子ドーパント全体の量に比べて、金属イオンの量は少ない。より具体的には、高分子ドーパントのアニオン性基1当量に対して、1当量未満である。このような状態の電解質を含む電解コンデンサでは、ESRを低く抑えることができるとともに、高容量が得られる。これは、液状混合物が、適度な量の金属イオンを含むことで、液状混合物が誘電体層の微細な凹部に浸透し易くなり、誘電体層の導電性高分子による被覆性が高まることで、容量が高まり、tanδが低くなるためと考えられる。また、高分子ドーパントは多くのアニオン性基を含むため、導電性高分子の高い導電性が得られ、電解コンデンサのESRを低く抑えることができると考えられる。
 なお、前駆体の重合を、高分子ドーパントと金属イオンとの塩を用いて行うことも可能である。しかし、塩の存在下での重合により得られた導電性高分子を用いた場合、誘電体層の導電性高分子による被覆性は高くなるが、ESRが高くなる傾向がある。高分子ドーパントを塩の状態で使用すると、金属イオンの量が、高分子ドーパントのアニオン性基1当量に対して、1当量よりも多くなる。そのため、金属イオンの量が多くなることで、電解質の導電性が低下し、ESRが高くなるのではないかと考えられる。
 以下に、電解コンデンサについてより詳細に説明する。
[電解コンデンサ]
(コンデンサ素子)
 電解コンデンサに含まれるコンデンサ素子は、表面に誘電体層を有する陽極体と、誘電体層の一部を覆う電解質と、を少なくとも含む。
 (陽極体)
 陽極体は、弁作用金属、弁作用金属を含む合金、および弁作用金属を含む化合物などを含むことができる。これらの材料は一種を単独でまたは二種以上を組み合わせて使用できる。弁作用金属としては、例えば、アルミニウム、タンタル、ニオブ、チタンが好ましく使用される。表面が多孔質である陽極体は、例えば、エッチングなどにより弁作用金属を含む基材(箔状または板状の基材など)の表面を粗面化することで得られる。また、陽極体は、弁作用金属を含む粒子の成形体またはその焼結体でもよい。なお、焼結体は、多孔質構造を有する。
 (誘電体層)
 誘電体層は、陽極体の表面の弁作用金属を、化成処理などにより陽極酸化することで形成される。誘電体層は、陽極体の少なくとも一部を覆うように形成されていればよい。誘電体層は、通常、陽極体の表面に形成される。誘電体層は、陽極体の多孔質の表面に形成されるため、陽極体の表面の孔や窪み(ピット)の内壁面に沿って形成される。
 誘電体層は弁作用金属の酸化物を含む。例えば、弁作用金属としてタンタルを用いた場合の誘電体層はTa25を含み、弁作用金属としてアルミニウムを用いた場合の誘電体層はAl23を含む。尚、誘電体層はこれに限らず、誘電体として機能するものであればよい。陽極体の表面が多孔質である場合、誘電体層は、陽極体の表面(孔の内壁面を含む)に沿って形成される。
 (電解質)
 電解質は、共役系高分子と、アニオン性基を有する高分子ドーパントと、金属イオンとを含む。電解質では、共役系高分子および高分子ドーパントが導電性高分子を構成しており、電解質の高い導電性が得られる。誘電体層の表面に付着した電解質は、層を形成していてもよい。このような電解質層は、固体電解質層または導電性高分子層などと呼ばれることもある。電解質は、電解コンデンサにおける陰極体の少なくとも一部を構成する。
  (共役系高分子)
 共役系高分子としては、電解コンデンサに使用される公知の共役系高分子、例えば、π共役系高分子が挙げられる。共役系高分子としては、例えば、ポリピロール、ポリチオフェン、ポリアニリン、ポリフラン、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、およびポリチオフェンビニレンを基本骨格とする高分子が挙げられる。上記の高分子は、基本骨格を構成する少なくとも一種のモノマー単位を含んでいればよい。上記の高分子には、単独重合体、二種以上のモノマーの共重合体、およびこれらの誘導体(置換基を有する置換体など)も含まれる。例えば、ポリチオフェンには、ポリ(3,4-エチレンジオキシチオフェン)などが含まれる。
 共役系高分子は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 共役系高分子の重量平均分子量(Mw)は、特に限定されないが、例えば1,000以上1,000,000以下である。
 なお、本明細書中、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算の値である。なお、GPCは、通常は、ポリスチレンゲルカラムと、移動相としての水/メタノール(体積比8/2)とを用いて測定される。
  (ドーパント)
 ドーパントとしては、アニオン性基を有する高分子ドーパント(第1ドーパント)が用いられる。第1ドーパントを用いることで、共役系高分子からの脱ドープが起こり難く、ESRを低く抑え易く、優れたコンデンサ性能を安定に得ることができる。電解質は、必要に応じて、第1ドーパント以外の第2ドーパントを用いてもよい。第2ドーパントとしては、比較的低分子のアニオンが挙げられる。
 第1ドーパントとしては、例えば、複数のアニオン性基を有するポリマーが挙げられる。このようなポリマーとしては、アニオン性基を有するモノマー単位を含むものが挙げられる。アニオン性基としては、スルホン酸基、カルボキシ基などが挙げられる。第1ドーパントは、一種類のアニオン性基を有していてもよく、二種類以上のアニオン性基を有していてもよい。
 電解質において、第1ドーパントのアニオン性基は、酸の形態(例えば、スルホン酸基では、-SOH)、アニオンの形態(例えば、スルホン酸基では、-SO )、および塩の形態からなる群より選択される少なくとも1つの形態で電解質に含まれていてもよい。塩の形態には、アニオン性基と金属イオンとが塩を形成している形態が包含される。また、アニオン性基は、電解コンデンサ内において、電解質近傍に存在するカチオンと塩を形成していてもよい。このような塩も、上記の塩の形態に包含される。第1ドーパントのアニオン性基は、共役系高分子と結合または相互作用した形態で電解質に含まれていてもよい。本明細書中、これらの全ての形態を含めて、単に「アニオン性基」、「スルホン酸基」、または「カルボキシ基」などと称することがある。
 カルボキシ基を有する第1ドーパントの具体例は、ポリアクリル酸、ポリメタクリル酸、アクリル酸およびメタクリル酸の少なくとも一方を用いた共重合体である。スルホン酸基を有する第1ドーパントとしては、例えば、高分子タイプのポリスルホン酸が挙げられる。スルホン酸基を有する第1ドーパントの具体例は、ポリビニルスルホン酸、ポリスチレンスルホン酸(共重合体および置換基を有する置換体なども含む)、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリエステルスルホン酸(芳香族ポリエステルスルホン酸など)、フェノールスルホン酸ノボラック樹脂である。これらは単なる例示であり、第1ドーパントはこれらに限定されない。
 第2ドーパントの例は、硫酸イオン、硝酸イオン、燐酸イオン、硼酸イオン、有機スルホン酸イオン、およびカルボン酸イオンである。これらのイオンを生成し得る化合物(例えば、酸、塩など)を用いてもよい。例えば、スルホン酸イオンを生成する化合物としては、芳香族スルホン酸(p-トルエンスルホン酸、ナフタレンスルホン酸など)などが挙げられる。しかし、これらは単なる例示であり、第2ドーパントは、これらの例に限定されない。
 電解質に含まれる第1ドーパントの量は、共役系高分子100質量部に対して、例えば、10~1000質量部であり、20~500質量部または50~200質量部であってもよい。
 電解質に含まれる第2ドーパントの量は、共役系高分子100質量部に対して、例えば、10質量部以下であり、5質量部以下であってもよい。電解質に含まれる第2ドーパントの量は、共役系高分子100質量部に対して、1質量部以上であってもよい。
  (金属イオン)
 電解質において、金属イオンが解離していない状態では、通常、第1ドーパントの一部が金属イオンと塩を形成している。例えば、電解コンデンサが液状成分を含まない場合には、金属イオンは、通常、第1ドーパントのアニオン性基と塩を形成した状態で含まれている。電解質に第2ドーパントが含まれる場合には、金属イオンは、第2ドーパントのアニオン性基と塩を形成した状態で含まれていてもよい。電解コンデンサが液状成分を含まない場合には、金属イオンの一部は、電解質近傍に存在するアニオンと塩を形成した状態で電解質に含まれていてもよい。
 金属イオンの量は、第1ドーパントのアニオン性基1当量に対して、1当量未満である。このような量の金属イオンを電解質が含む場合、電解質の形成に用いられる液状混合物の誘電体層の微細な凹部への高い含浸性を確保しながら、ESRを低く抑えることができる。また、セパレータを用いる場合には、液状混合物のセパレータへの浸透性も高まると考えられる。液状混合物の含浸性が高いと、誘電体層に対する電解質の被覆性が向上するため、高容量が得られるとともに、tanδを低く抑えることができる。第1ドーパントのアニオン性基1当量に対する金属イオンの量は、例えば、0.001当量以上1未満である。より高い静電容量が得られ易い観点からは、第1ドーパントのアニオン性基1当量に対する金属イオンの量は、0.005当量以上0.95当量以下が好ましく、0.01当量以上(または0.05当量以上)0.95当量以上がより好ましく、0.1当量以上0.9当量以下がさらに好ましく、0.3当量以上0.5当量以下が特に好ましい。これらの範囲において、より低いESRが得られる観点からは、金属イオンの量は、0.9当量以下が好ましく、0.5当量以下がより好ましい。
 金属イオンとしては、アルカリ金属イオンが好ましい。アルカリ金属イオンは、液状混合物の含浸性を高める効果が高く、電解コンデンサ内で望まない副反応が少ないためである。アルカリ金属イオンとしては、リチウムイオン、ナトリウムイオン、またはカリウムイオンが好ましい。電解質は、一種の金属イオンを含んでもよく、二種以上の金属イオンを組み合わせて含んでもよい。少なくともリチウムイオンを用いてもよい。必要に応じて、リチウムイオンと、ナトリウムイオンおよびカリウムイオンの少なくとも一方とを組み合わせてもよい。
 電解質におけるアニオン性基1当量に対する金属イオンの量(当量)は、次の手順で求めることができる。電解コンデンサからコンデンサ素子を取り出し分解して、電解質を掻き出し、サンプルとする。液成分を含む場合は、遠心分離機などの設備を用いて、液成分を除去する。得られたサンプルをイオンクロマトグラフ、キャピラリー電気泳動、ICP(誘導結合プラズマ)発光分析などの手法を用いて分析することによって、ドーパントおよび金属イオンの種類を同定する。サンプルの一部を取り出し、正確に計量し、ドーパントおよび金属イオンの含有率を求める。得られた含有率とドーパントのアニオン性基の個数から、アニオン性基1当量に対する金属イオンの量(当量)が求められる。
  (第2カチオン)
 電解質は、金属イオン(第1カチオン)以外のカチオン(第2カチオン)を含んでいてもよい。電解質において第2カチオンが解離していない状態では、第2カチオンは、通常、電解質の近傍に存在するアニオンと塩を形成している。例えば、電解コンデンサが液状成分を含まない場合には、第2カチオンは第1ドーパントのアニオン性基と塩を形成していてもよく、第2ドーパントのアニオン性基と塩を形成していてもよく、これら以外のアニオンと塩を形成していてもよい。
 第2カチオンとしては、アンモニウムイオンなどの無機カチオン、窒素含有化合物に由来する有機カチオンなどが挙げられる。有機カチオンに対応する窒素含有化合物としては、アミン(第1級~第3級アミンなど)、第4級アンモニウム化合物(アミジン化合物(イミダゾール化合物も含む)など)、アミジニウム化合物等が挙げられる。アミンは、脂肪族、芳香族、および複素環式のいずれでもよい。アミンの例は、トリメチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、アニリン、ピロリジン、イミダゾール、4-ジメチルアミノピリジンである。
 電解質は、第2カチオンを一種含んでもよく、二種以上組み合わせて含んでもよい。
  (その他)
 電解質は、全体が同じ組成であってもよい。また、電解質層を、誘電体層側の第1部分と第1部分を覆う第2部分とを含むように形成してもよい。この場合、微細な凹部への高い浸透性が求められる第1部分を、少なくとも、金属イオンを含む液状混合物で形成することが好ましい。このような電解質では、第1部分における金属イオンの含有率C1と、第2部分における金属イオンの含有率C2は、C1>C2を充足する。第2部分は、金属イオンを含まなくてもよい。第2部分は、金属イオンおよび第2カチオンの双方を含まなくてもよい。なお、金属イオンの含有率C1およびC2は、電解質の誘電体層の凹部に充填された部分と、電解質の誘電体層よりも外側に被覆された部分を、それぞれ、第1部分および第2部分とし、各部分について、高感度EDS(エネルギー分散型X線分光器)によって金属イオンの分布を測定することによって、C1とC2の大小を確認することができる。
 電解質は、共役系高分子と第1ドーパント(具体的には、第1高分子ドーパント)と金属イオンとを含む液状混合物を、誘電体層を有する陽極体に付与することによって形成される。電解質は、誘電体層の少なくとも一部を覆うように形成される。液状混合物は、溶液であってもよく、分散液であってもよい。陽極体への液状混合物の付与は、1回行ってもよく、2回以上繰り返してもよい。
 液状混合物は、例えば、共役系高分子の前駆体を、第1高分子ドーパントおよび酸化剤の存在下で重合させて、共役系高分子と第1高分子ドーパントとを含む第1混合物を得るサブステップと、第1混合物に、さらに金属イオンを混合して第2混合物として液状混合物を調製するサブステップと、を経ることによって調製することができる。
 金属イオンは、誘電体層を有する陽極体に付与する時点で液状混合物に含まれていれば、高い含浸性が得られる。そのため、金属イオンは、前駆体の重合時には反応系に含まれている必要はない。金属イオンが反応系に影響を与えないように、反応系に含まれる金属イオンの量は少ないことが好ましい。反応系において、例えば、第1高分子ドーパントのアニオン性基1当量当たり、金属イオンは0.01当量以下または0.001当量以下であってもよい。特に、前駆体の重合は、金属イオンの非存在下で行うことが好ましい。
 金属イオンは、塩の形態で第1混合物に混合してもよい。塩を溶媒等に溶解させた状態で第1混合物に混合する場合、金属イオンが解離していることがあるが、このような場合も塩の形態で混合される場合に包含する。例えば、金属イオンは、第1ドーパント(具体的には、第2高分子ドーパント)と金属イオンとの塩の形態で第1混合物に混合してもよい。第2高分子ドーパントは、上述の第1ドーパントに包含され、第1ドーパントの説明を参照できる。第2高分子ドーパントは一種を用いてもよく、二種以上を組み合わせて用いてもよい。第1混合物に含まれる第1高分子ドーパントは、第2高分子ドーパントの少なくとも一部と同じであってもよく、全てと異なっていてもよい。第2カチオンを用いる場合には、第1混合物に加えてもよく、液状混合物に加えてもよい。第2カチオンは、必要に応じて、塩の形態で添加される。塩は、第1ドーパントとの塩であってもよく、第2ドーパントとの塩であってもよく、他のアニオンとの塩であってもよい。
 このようにして得られる金属イオンを含む液状混合物を用いて、第1部分を形成し、金属イオンを用いずに調製した液状混合物(例えば、第1混合物)を用いて、第2部分を形成してもよい。第1部分は、液状混合物を1回付着させることによって形成してもよく、2回以上付着させることによって形成してもよい。同様に、第2部分用の液状混合物を1回付着させることによって第2部分を形成してもよく、2回以上付着させることによって第2部分を形成してもよい。
 電解質の形成に、複数の液状混合物が用いられる場合には、各液状混合物の組成(例えば、各モノマー、ドーパント、金属イオン、第2カチオンなどの種類、およびこれらの量など)は同じであってもよく、異なっていてもよい。
 液状混合物に用いられる共役系高分子の前駆体としては、共役系高分子の原料モノマー、原料モノマーの複数の分子鎖が連なったオリゴマーおよびプレポリマーなどが挙げられる。前駆体は一種を用いてもよく、二種以上を組み合わせて用いてもよい。
 酸化剤は、液状混合物に添加してもよく、誘電体層が形成された陽極体に液状混合物を接触させる前または後に、酸化剤を陽極体に塗布してもよい。このような酸化剤としては、Fe3+を生成可能な化合物(硫酸第二鉄など)、過硫酸塩(過硫酸ナトリウム、過硫酸アンモニウムなど)、過酸化水素が例示できる。酸化剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 液状混合物は、通常、溶媒を含む。溶媒としては、例えば、水、有機溶媒、水と有機溶媒(水溶性有機溶媒など)との混合溶媒が挙げられる。
 他の導電性材料、添加剤などを用いる場合には、液状混合物に添加してもよい。
 (陰極体)
 陰極体には、陽極体と同様、金属箔を用いてもよい。金属としては、アルミニウム、タンタル、ニオブなどの弁作用金属または弁作用金属を含む合金を用いることが好ましい。しかし、陰極体を構成する金属はこれらに限定されない。金属箔の表面は、必要に応じて、粗面化してもよい。金属箔の表面には、化成皮膜が設けられていてもよく、金属箔を構成する金属とは異なる金属(異種金属)または非金属の被膜が設けられていてもよい。異種金属または非金属としては、例えば、チタンのような金属またはカーボンのような非金属を挙げることができる。
 (セパレータ)
 金属箔を陰極体に用いる場合、金属箔と陽極体との間にはセパレータを配置してもよい。セパレータとしては、特に制限されず、例えば、セルロース、ポリエチレンテレフタレート、ビニロン、ポリアミド(例えば、脂肪族ポリアミド、アラミドなどの芳香族ポリアミド)の繊維を含む不織布などを用いてもよい。本開示では、金属イオンを含む液状混合物を用いて電解質を形成するため、セパレータへの液状混合物の高い含浸性を確保することができる。よって、陽極体と陰極体とをセパレータを介して重ねた状態で、液状混合物を付与して、電解質を形成するような場合でも、高い被覆性で電解質を形成することができる。
 (液状成分)
 電解コンデンサが液状成分を含む場合、さらに高い静電容量を確保する上で有利である。また、電解コンデンサを高温に晒した場合でも、ESR変化を低く抑えることができる。
 液状成分は、溶媒を含む。溶媒の揮散を抑制する観点からは、溶媒としては、少なくとも多価アルコールを含むことが好ましい。多価アルコールに加え、スルホン化合物、ラクトン化合物、カーボネート化合物などを用いてもよい。溶媒は、一種を用いてもよく、二種以上を組み合わせて用いてもよい。
 スルホン化合物としては、スルホラン、ジメチルスルホキシドおよびジエチルスルホキシド等が挙げられる。ラクトン化合物としては、γ-ブチロラクトン、γ-バレロラクトン等が挙げられる。カーボネート化合物としては、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、エチレンカーボネート、プロピレンカーボネートおよびフルオロエチレンカーボネート等が挙げられる。
 液状成分に含まれる溶媒全体に占める多価アルコールの比率は、例えば、50質量%以上であり、75質量%以上であってもよい。液状成分に含まれる溶媒全体に占める多価アルコールの比率は、100質量%以下である。
 多価アルコールとしては、グリセリン化合物、糖アルコール化合物、グリコール化合物などが挙げられる。
 グリセリン化合物としては、グリセリン、ポリグリセリン(ジグリセリン、トリグリセリンなど)、またはこれらの誘導体が挙げられる。ポリグリセリンにおけるグリセリン単位の繰り返し数は、例えば、2以上20以下であり、2以上10以下であってもよい。糖アルコール化合物としては、糖アルコール(エリスリトール、マンニトール、ペンタエリスリトールなど)またはその誘導体が挙げられる。誘導体としては、アルキレンオキサイド付加体(グリセリン、ポリグリセリン、または糖アルコールの1つのヒドロキシ基につき1つのアルキレンオキサイドが付加した付加体など)などが挙げられる。アルキレンオキサイド付加体としては、C2-4アルキレンオキサイド付加体(エチレンオキサイド付加体など)などが挙げられる。
 グリコール化合物としては、アルキレングリコール(C2-4アルキレングリコール(エチレングリコール、プロピレングリコールなど)など)、ポリアルキレングリコール(ポリC2-4アルキレングリコール(ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ポリエチレングリコールなど)など)、糖アルコール(グリセリン、エリスリトール、マンニトール、ペンタエリスリトールなど)のポリアルキレンオキサイド付加体(ポリC2-4アルキレンオキサイド付加体(ポリエチレンオキサイド付加体など)など)などが挙げられる。
 溶媒は、多価アルコールの中でも、特に、エチレングリコール、グリセリン、ジエチレングリコール、トリエチレングリコールまたはプロピレングリコールから選ばれるいずれか1つを含むことが好ましい。
 液状成分は、溶質を含んでいてもよい。溶質としては、酸成分、塩基成分などが挙げられる。
 酸成分としては、例えば、カルボン酸(脂肪族カルボン酸、芳香族カルボン酸(フタル酸、ピロメリット酸などの多価カルボン酸を含む)など)、イオウ含有酸(硫酸、スルホン酸(脂肪族スルホン酸、芳香族スルホン酸など)など)、ホウ素含有酸(ホウ酸、ハロゲン化ホウ酸(テトラフルオロホウ酸など)、またはこれらの部分エステルなど)、リン含有酸(リン酸、ハロゲン化リン酸(ヘキサフルオロリン酸など)、ホスホン酸、ホスフィン酸、またはこれらの部分エステル)、硝酸、亜硝酸が挙げられる。酸成分として、カルボン酸と無機酸(ホウ酸、リン酸など)との縮合物(ボロジサリチル酸、ボロジグリコール酸、ボロジシュウ酸など)を用いてもよい。芳香族スルホン酸には、スルホ基に加え、ヒドロキシ基またはカルボキシ基を有する芳香族スルホン酸(オキシ芳香族スルホン酸(例えばフェノール-2-スルホン酸)、スルホ芳香族カルボン酸(例えばp-スルホ安息香酸、3-スルホフタル酸、5-スルホサリチル酸)など)も含まれる。さらに、高分子酸成分を用いてもよい。高分子酸成分は、例えば、ポリアクリル酸、ポリメタクリル酸、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)及びポリイソプレンスルホン酸からなる群から選択される一種以上を含むことができる。液状成分は、酸成分を一種含んでいてもよく、二種以上含んでいてもよい。
 塩基成分としては、例えば、アンモニア、アミン(具体的には、第1級アミン、第2級アミン、第3級アミン)、第4級アンモニウム化合物およびアミジニウム化合物等が挙げられる。アミンは、脂肪族、芳香族、および複素環式のいずれでもよい。アミンとしては、例えば、トリメチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、アニリン、ピロリジン、イミダゾール、4-ジメチルアミノピリジンなどが挙げられる。第4級アンモニウム化合物としては、例えば、アミジン化合物(イミダゾール化合物も含む)が挙げられる。液状成分は、塩基成分を一種含んでいてもよく、二種以上含んでいてもよい。
 液状成分は、酸成分および塩基成分をそれぞれ遊離の状態で含んでいてもよく、イオンの形態で含んでもよく、塩の形態で含んでいてもよい。液状成分は、有機塩を含んでいてもよい。有機塩としては、酸成分および塩基成分の少なくとも一方が有機であるものが挙げられる。
 液状成分中の溶質の濃度は、例えば、0.1質量%以上25質量%以下であり、0.5質量%以上15質量%以下であってもよい。溶質の濃度がこのような範囲である場合、ドーパントの脱ドープが抑制され易い。
 (その他)
 電解コンデンサは、巻回型であってもよく、チップ型または積層型のいずれであってもよい。電解コンデンサは、少なくとも1つのコンデンサ素子を有していればよく、複数のコンデンサ素子を有していてもよい。例えば、固体電解コンデンサは、2つ以上のコンデンサ素子の積層体を備えていてもよく、2つ以上の巻回型のコンデンサ素子を備えていてもよい。コンデンサ素子の構成または数は、電解コンデンサのタイプまたは用途などに応じて、選択すればよい。
 以下、本開示の電解コンデンサを実施形態に基づいて、より具体的に説明する。ただし、本開示の電解コンデンサは、以下の実施形態に限定されるものではない。
 図1は、本実施形態に係る電解コンデンサの断面模式図であり、図2は、同電解コンデンサに係るコンデンサ素子の一部を展開した概略図である。
 図1に示す電解コンデンサは、コンデンサ素子10と、コンデンサ素子10を収容する有底ケース11と、有底ケース11の開口を塞ぐ封止部材12と、封止部材12を覆う座板13と、封止部材12から導出され、座板13を貫通するリード線14A、14Bと、リード線とコンデンサ素子10の電極とを接続するリードタブ15A、15Bと、液状成分(図示せず)とを備える。有底ケース11の開口端は封止部材12にかしめるようにカール加工されている。
 コンデンサ素子10は、図2に示すような巻回体から作製される。巻回体とは、コンデンサ素子10の半製品であり、表面に誘電体層を有する陽極体21と陰極体22との間に導電性高分子が配置されていないものをいう。巻回体は、リードタブ15Aと接続された陽極体21と、リードタブ15Bと接続された陰極体22とを、セパレータ23を介して巻回したものである。巻回体の最外周は巻止めテープ24により固定される。なお、図2は、巻回体の最外周を固定する前の一部が展開された状態を示している。
 陽極体21は表面が粗面化された金属箔を具備し、粗面化された表面には誘電体層が形成されている。誘電体層の表面の少なくとも一部に導電性高分子を付着させることにより、コンデンサ素子10が形成される。コンデンサ素子10は、図示しない液状成分とともに外装ケースに収容されている。
 以下、電解コンデンサの製造方法の一例について説明する。
(i)誘電体層を有する陽極体21および陰極体22を準備する工程
 陽極体21および陰極体22の原料には、弁作用金属で形成された金属箔が用いられる。陽極体21の場合、エッチング処理等により、金属箔の表面が粗面化され、金属箔の表面に複数の凹凸が形成される。次に、化成処理等により、粗面化された金属箔の表面に誘電体層が形成される。必要に応じて、陰極体22の表面を粗面化してもよい。
(ii)巻回体の作製
 陽極体21と陰極体22とをセパレータ23を介して巻回し、巻回体を作製する。セパレータ23には、合成セルロースなどを主成分とする不織布を用い得る。巻回体の最外層に位置する陰極体22の外表面に巻止めテープ24を配置し、陰極体22の端部を固定する。必要に応じて、巻回体に対し、更に化成処理が行われる。
(iii)コンデンサ素子10を形成する工程
 例えば、上述の手順で調製した共役系高分子と第1高分子ドーパントと金属イオンとを含む液状混合物を誘電体層に含浸させ、誘電体層の少なくとも一部を覆う導電性高分子の膜(電解質)を形成する。これにより、陽極体21と陰極体22との間に導電性高分子(電解質)が配置されたコンデンサ素子10が得られる。液状混合物を誘電体層の表面に付与する工程は2回以上繰り返してもよい。液状成分を用いる場合には、電解質を形成した後に、コンデンサ素子10に液状成分を含浸させる。
(iv)コンデンサ素子を封止する工程
 リード線14A、14Bが有底ケース11の開口側に位置するようにコンデンサ素子10を液状成分とともに有底ケース11に収納する。次に、各リード線が貫通する封止部材12で有底ケース11の開口を塞ぎ、開口端を封止部材12にかしめてカール加工し、カール部分に座板13を配置すれば、図1に示すような電解コンデンサが完成する。
 上記の実施形態では、巻回型の電解コンデンサについて説明したが、本発明の適用範囲は上記に限定されず、他の電解コンデンサ、例えば、陽極体として金属の焼結体を用いるチップ型の電解コンデンサや、金属板を陽極体として用いる積層型の電解コンデンサにも適用することができる。
 本明細書に記載の特徴の全ては、任意に組み合わせられる。
[実施例]
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
《電解コンデンサA1~A14およびB1~B3の作製》
 定格電圧25V、定格静電容量330μFの巻回型の電解コンデンサ(直径10mm×L(長さ)10mm)を作製した。以下に、電解コンデンサの具体的な製造方法について説明する。
(陽極体の準備)
 厚さ100μmのアルミニウム箔にエッチング処理を行い、アルミニウム箔の表面を粗面化した。その後、アルミニウム箔の表面に化成処理により誘電体層を形成した。化成処理は、アジピン酸アンモニウム溶液にアルミニウム箔を浸漬し、これに45Vの電圧を印加することにより行った。その後、アルミニウム箔を裁断して、陽極体を準備した。
(陰極体の準備)
 厚さ50μmのアルミニウム箔にエッチング処理を行い、アルミニウム箔の表面を粗面化した。その後、アルミニウム箔を裁断して、陰極体を準備した。
(巻回体の作製)
 陽極体および陰極体に陽極リードタブおよび陰極リードタブを接続し、陽極体と陰極体とをリードタブを巻き込みながらセパレータを介して巻回した。巻回体から突出する各リードタブの端部には、陽極リード線および陰極リード線をそれぞれ接続した。作製された巻回体に対して、再度化成処理を行い、陽極体の切断された端部に誘電体層を形成した。次に、巻回体の外側表面の端部を巻止めテープで固定して巻回体を作製した。セパレータとしては、セルロース製の不織布を用いた。
(液状混合物の調製)
 3,4-エチレンジオキシチオフェン(EDOT)と、第1高分子ドーパントであるポリスチレンスルホン酸(PSS、重量平均分子量10万)とを、イオン交換水に溶かし、混合溶液を調製した。混合溶液を撹拌しながらイオン交換水に溶かした硫酸鉄(III)(酸化剤)を添加し、重合反応を行った。反応後、得られた反応液を透析し、未反応モノマーおよび過剰な酸化剤を除去し、PSSがドープされたポリエチレンジオキシチオフェン(PEDOT/PSS)を含む高分子分散体(第1混合物)を得た。このとき、PSSのアニオン性基1当量に対して、EDOTが0.5当量となるようにドープ量を調節した。なお、B1では、PSSに代えて、PSSのリチウム塩を用いた。
 第2高分子ドーパントであるポリスチレンスルホン酸(PSS、重量平均分子量10万)と、表に示すカチオンの水酸化物の水溶液と、またはアンモニア水とを添加、混合した。水酸化物またはアンモニアは、ポリスチレンスルホン酸のアニオン性基1当量に対して、表に示すカチオンが表に示す当量になるような割合で添加してpHを約2.0~3.5に調節した。このようにして、液状混合物(第2混合物)Aを調製した。なお、B1では、液状混合物として、第1混合物を用いた。
 また、ポリスチレンスルホン酸(PSS、重量平均分子量10万)と、アンモニア水を添加した。アンモニア水は、ポリスチレンスルホン酸のアニオン性基1当量に対して、アンモニウムイオンが0.2当量になるような割合で添加してpHを約2.2に調節した。このようにして、液状混合物Bを調製した。
(電解質の形成)
 減圧雰囲気(40kPa)中で、所定容器に収容された液状混合物に巻回体を5分間浸漬し、その後、液状混合物から巻回体を引き上げた。次に、液状混合物を含浸した巻回体を、150℃の乾燥炉内で20分間乾燥させ、誘電体層の少なくとも一部を被覆する導電性高分子層を形成した。このようにしてコンデンサ素子を形成した。A12およびA13では、巻回体を液状混合物Aに2分間浸漬し、その後、液状混合物から巻回体を引き上げて150℃の乾燥炉内で20分乾燥した。乾燥後の巻回体を、A12では、液状混合物Bに3分間浸漬し、A13では、第1混合物に3分間浸漬した。また、A14では、巻回体を第1混合物に2分間浸漬し、その後、第1混合物から巻回体を引き上げて150℃の乾燥炉内で20分間乾燥した。A14では、乾燥後の巻回体を、液状混合物を液状混合物Aに3分間浸漬した。その後、各例のコンデンサ素子を、液状混合物から引き上げて150℃の乾燥炉内で20分乾燥した。このようにして、コンデンサ素子を形成した。
(液状成分の調製)
 溶媒としてのエチレングリコールに、酸成分としてのフタル酸および塩基成分としてのトリエチルアミンを、それぞれの液状成分中の濃度が5質量%および5質量%となるように加え、混合した。このようにして液状成分を調製した。
(電解コンデンサの組み立て)
 液状成分中に、減圧雰囲気(40kPa)中で、電解質を形成した上記の巻回体を5分間浸漬した。これにより、液状成分を含浸させたコンデンサ素子を得た。得られたコンデンサ素子を、封止して、図1に示すような電解コンデンサを完成させた。その後、定格電圧を印加しながら、130℃で2時間エージング処理を行った。
[評価:ESRおよび静電容量の測定]
 20℃の環境下で、4端子測定用のLCRメータを用いて、各固体電解コンデンサの周波数120Hzにおける初期の静電容量(μF)、および周波数100kHzにおけるESRを測定した。そして、20個の固体電解コンデンサにおける平均値を求めた。
 評価結果を表1および表2に示す。表中、A1~A14は実施例であり、B1~B3は比較例である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、金属イオン(具体的にはリチウムイオン)を含む液状混合物を用いて電解質を形成すると、ESRが低下し、静電容量が向上する(B3とB1およびA1~A8との比較)。アンモニウムイオンを含む液状混合物を用いた場合よりも、金属イオンを含む液状混合物を用いた場合の方が、ESRの低下率が低く、静電容量の上昇率も高い(B3とB2およびA6との比較)。金属イオンが1当量以上になると、静電容量の上昇効果およびESRの低減効果が小さくなる。それに対して、金属イオンが1当量未満である場合には、高い静電容量が得られ、ESRを低く抑えることができる(B1とA1~A9との比較)。
 表2に示されるように、金属イオンとして、ナトリウムイオンやカリウムイオンを用いた場合にも、リチウムイオンの場合とほぼ同等の優れた効果が得られる(A1とA9およびA10との比較)。電解質がアンモニウムイオンを含む場合でも、さらに金属イオンを含む場合には、ある程度高い静電容量を確保でき、ESRを比較的低く抑えることができる(B2およびA1とA11との比較)。より高い静電容量が得られ易い観点からは、アンモニウムイオンを添加する場合には、第1部分よりも第2部分に添加する方が有利である(A11とA12との比較)。また、金属イオンは、第2部分よりも、第1部分に多く含まれている方が、静電容量も高く、ESRが低くなる傾向がある(A1とA14との比較)。
 本開示の電解コンデンサは、高容量および低ESRが求められる様々な用途に利用できる。ハイブリッド型電解コンデンサとしての利用にも適している。しかし、電解コンデンサの用途はこれらに限定されない。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 10:コンデンサ素子
11:有底ケース
12:封止部材
13:座板
14A,14B:リード線
15A,15B:リードタブ
21:陽極体
22:陰極体
23:セパレータ
24:巻止めテープ

Claims (13)

  1.  コンデンサ素子を含む電解コンデンサであって、
     前記コンデンサ素子は、表面に誘電体層を有する陽極体と、前記誘電体層の一部を覆う電解質と、を含み、
     前記電解質は、共役系高分子と、アニオン性基を有する高分子ドーパントと、金属イオンとを含み、
     前記金属イオンの量は、前記アニオン性基1当量に対して、1当量未満である、電解コンデンサ。
  2.  前記金属イオンの量は、前記アニオン性基1当量に対して、0.005当量以上0.95当量以下である、請求項1に記載の電解コンデンサ。
  3.  前記高分子ドーパントの前記アニオン性基は、酸、アニオン、および前記金属イオンとの塩からなる群より選択される少なくとも1つの形態で前記電解質に含まれている、請求項1または2に記載の電解コンデンサ。
  4.  前記金属イオンは、アルカリ金属イオンである、請求項1~3のいずれか1項に記載の電解コンデンサ。
  5.  前記金属イオンは、リチウムイオン、ナトリウムイオン、およびカリウムイオンからなる群より選択される少なくとも一種を含む、請求項1~4のいずれか1項に記載の電解コンデンサ。
  6.  前記電解質は、さらにアンモニウムイオンを含む、請求項1~5のいずれか1項に記載の電解コンデンサ。
  7.  前記電解質は、前記誘電体層側の第1部分と、前記第1部分の少なくとも一部を覆う第2部分とを含み、
     前記第1部分における前記金属イオンの含有率C1と、前記第2部分における前記金属イオンの含有率C2は、C1>C2を充足する、請求項1~6のいずれか1項に記載の電解コンデンサ。
  8.  前記第2部分は、前記金属イオンを含まない、請求項7に記載の電解コンデンサ。
  9.  さらに液状成分を含む、請求項1~8のいずれか1項に記載の電解コンデンサ。
  10.  さらにセパレータを含む、請求項1~9のいずれか1項に記載の電解コンデンサ。
  11.  表面に誘電体層を有する陽極体と、前記誘電体層の一部を覆う電解質と、を含むコンデンサ素子を含む電解コンデンサを製造する方法であって、
     共役系高分子と、アニオン性基を有する第1高分子ドーパントと、金属イオンとを含む液状混合物を調製する工程と、
     前記液状混合物を前記陽極体に付与して、前記電解質を形成する工程と、を含み、
     前記液状混合物を調製する工程は、前記共役系高分子の前駆体を、前記第1高分子ドーパントおよび酸化剤の存在下で重合させて、前記共役系高分子と前記第1高分子ドーパントとを含む第1混合物を得るサブステップと、
     前記第1混合物に、さらに前記金属イオンを混合して第2混合物として前記液状混合物を調製するサブステップと、を含む、電解コンデンサの製造方法。
  12.  前記金属イオンは、アニオン性基を有する第2高分子ドーパントと前記金属イオンとの塩の形態で前記第1混合物に混合される、請求項11に記載の電解コンデンサの製造方法。
  13.  前記前駆体の重合は、前記金属イオンの非存在下で行われる、請求項11または12に記載の電解コンデンサの製造方法。
PCT/JP2022/026050 2021-06-30 2022-06-29 電解コンデンサおよびその製造方法 WO2023277090A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023532035A JPWO2023277090A1 (ja) 2021-06-30 2022-06-29
CN202280045713.2A CN117581319A (zh) 2021-06-30 2022-06-29 电解电容器及其制造方法
US18/575,226 US20240290548A1 (en) 2021-06-30 2022-06-29 Electrolytic capacitor and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-109454 2021-06-30
JP2021109454 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023277090A1 true WO2023277090A1 (ja) 2023-01-05

Family

ID=84691863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026050 WO2023277090A1 (ja) 2021-06-30 2022-06-29 電解コンデンサおよびその製造方法

Country Status (4)

Country Link
US (1) US20240290548A1 (ja)
JP (1) JPWO2023277090A1 (ja)
CN (1) CN117581319A (ja)
WO (1) WO2023277090A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067949A (ja) * 2012-09-27 2014-04-17 Shin Etsu Polymer Co Ltd キャパシタ及びその製造方法
WO2018123255A1 (ja) * 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
WO2020017530A1 (ja) * 2018-07-18 2020-01-23 日本ケミコン株式会社 固体電解コンデンサ
WO2020153242A1 (ja) * 2019-01-25 2020-07-30 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067949A (ja) * 2012-09-27 2014-04-17 Shin Etsu Polymer Co Ltd キャパシタ及びその製造方法
WO2018123255A1 (ja) * 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
WO2020017530A1 (ja) * 2018-07-18 2020-01-23 日本ケミコン株式会社 固体電解コンデンサ
WO2020153242A1 (ja) * 2019-01-25 2020-07-30 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法

Also Published As

Publication number Publication date
US20240290548A1 (en) 2024-08-29
JPWO2023277090A1 (ja) 2023-01-05
CN117581319A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
CN110634679B (zh) 电解电容器
WO2012132248A1 (ja) 電解コンデンサの製造方法
US10325728B2 (en) Electrolytic capacitor and production method for same
CN112335007B (zh) 电解电容器
US12112900B2 (en) Electrolytic capacitor
JP2024099744A (ja) 電解コンデンサ
JP2024099739A (ja) 電解コンデンサ
JP6868848B2 (ja) 電解コンデンサ
CN116325044A (zh) 固体电解电容器元件和固体电解电容器
US20220367121A1 (en) Electrolytic capacitor and method for producing same
JP7294494B2 (ja) 固体電解コンデンサ及びその製造方法
CN118765427A (zh) 电解电容器
WO2023277090A1 (ja) 電解コンデンサおよびその製造方法
WO2023008288A1 (ja) 電解コンデンサ
WO2023162915A1 (ja) 電解コンデンサ
JP7407371B2 (ja) 電解コンデンサ
WO2024181213A1 (ja) 電解コンデンサおよびその製造方法
US20240177941A1 (en) Electrolytic capacitor and liquid component for electrolytic capacitor
JP5015382B2 (ja) 固体電解コンデンサの製造方法
JP2023029570A (ja) 電解コンデンサ
CN115280443A (zh) 电解电容器及电容器元件
JP2013128152A (ja) 固体電解コンデンサの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833236

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023532035

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280045713.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18575226

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22833236

Country of ref document: EP

Kind code of ref document: A1