WO2023276459A1 - インダクタ回路 - Google Patents
インダクタ回路 Download PDFInfo
- Publication number
- WO2023276459A1 WO2023276459A1 PCT/JP2022/020087 JP2022020087W WO2023276459A1 WO 2023276459 A1 WO2023276459 A1 WO 2023276459A1 JP 2022020087 W JP2022020087 W JP 2022020087W WO 2023276459 A1 WO2023276459 A1 WO 2023276459A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- winding
- inductor
- core
- circuit
- electrically connected
- Prior art date
Links
- 238000004804 winding Methods 0.000 claims abstract description 227
- 238000004088 simulation Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- 230000006866 deterioration Effects 0.000 description 10
- 239000003990 capacitor Substances 0.000 description 9
- 230000008878 coupling Effects 0.000 description 9
- 238000010168 coupling process Methods 0.000 description 9
- 238000005859 coupling reaction Methods 0.000 description 9
- 230000008054 signal transmission Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H5/00—One-port networks comprising only passive electrical elements as network components
- H03H5/02—One-port networks comprising only passive electrical elements as network components without voltage- or current-dependent elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/54—Systems for transmission via power distribution lines
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
Definitions
- the present disclosure relates to inductor circuits.
- Patent Document 1 a power supply current is supplied in a common mode to two signal lines of a twisted pair with a shield via a bias-T circuit, and a return current flows to the ground via the shield.
- Power over Ethernet circuits are described.
- the present disclosure has been made in view of the above, and aims to suppress deterioration in the characteristics of signal transmission paths.
- An inductor circuit is an inductor circuit that transmits a current output from a power supply to a pair of signal lines, and is wound around a first core and the first core, and one end is electrically connected to the power supply.
- a first winding connected to generate a magnetic field in a first direction and a second winding wound around the first core and electrically connected at one end to a power supply to generate a magnetic field in a direction opposite to the first direction.
- a first inductor comprising: a second core; and a third winding wound around the second core and having one end electrically connected to the other end of the first winding to generate a magnetic field in a second direction.
- a second inductor including a fourth winding to generate a magnetic field in a third direction; a third core; a fifth winding to be generated and wound around a third core, one end of which is electrically connected to the other end of the fifth winding, and the other end of which is electrically connected to the other of the pair of signal lines; a third inductor including a sixth winding that generates a magnetic field in a third direction;
- FIG. 1 is a diagram showing the configuration of an inductor circuit according to the first embodiment.
- FIG. 2 is a diagram showing the configuration of the simulation circuit of the first comparative example.
- FIG. 3 is a diagram showing the configuration of the simulation circuit of the second comparative example.
- FIG. 4 is a diagram showing the configuration of the simulation circuit according to the first embodiment.
- FIG. 5 is a diagram showing simulation results of the first comparative example, the second comparative example, and the first embodiment.
- FIG. 6 is a diagram showing the configuration of an inductor circuit according to the second embodiment.
- FIG. 1 is a diagram showing the configuration of an inductor circuit according to the first embodiment.
- the inductor circuit 1 transmits a power supply current output from a power supply 21 to a shielded twisted pair (STP) 22 .
- the inductor circuit 1 is a bias-T (Bias-T) circuit.
- the shielded twisted pair 22 includes a first signal line 22-1, a second signal line 22-2, and a shield 22-3.
- Shield 22-3 is electrically connected to a reference potential.
- the inductor circuit 1 includes a first inductor 11, a second inductor 12, and a third inductor 13.
- the first inductor 11 includes a first winding 11-1, a second winding 11-2, and a first core 11-3.
- the first winding 11-1 is wound around the first core 11-3.
- the first winding 11-1 is exemplified as being wound counterclockwise when viewed from one side of the first core 11-3, but the present disclosure is not limited to this.
- the second winding 11-2 is wound around the first core 11-3 in the same direction (counterclockwise) as the first winding 11-1 when viewed from one side of the first core 11-3.
- the first winding 11-1 and the second winding 11-2 may be wound in an overlapping manner.
- the second winding 11-2 may be wound where it does not overlap the first winding 11-1.
- the first core 11-3 has a closed magnetic circuit structure, but the present disclosure is not limited to this.
- the first core 11-3 may have an open magnetic circuit structure. It is preferable that the first core 11-3 has a closed magnetic circuit structure, because magnetic saturation can be suppressed.
- the second inductor 12 includes a third winding 12-1, a fourth winding 12-2, and a second core 12-3.
- the third winding 12-1 is wound around the second core 12-3.
- the third winding 12-1 is exemplified as being wound counterclockwise when viewed from one side of the second core 12-3, but the present disclosure is not limited thereto.
- the fourth winding 12-2 is wound around the second core 12-3 in the same direction (counterclockwise) as the third winding 12-1 when viewed from one side of the second core 12-3.
- the third winding 12-1 and the fourth winding 12-2 may be wound in an overlapping manner.
- the fourth winding 12-2 may be wound where it does not overlap the third winding 12-1.
- the number of turns of the third winding 12-1 and the fourth winding 12-2 is less than the number of turns of the first winding 11-1 and the second winding 11-2 in order to suppress coupling capacitance.
- the present disclosure is not limited thereto.
- the second core 12-3 has an open magnetic circuit structure, but the present disclosure is not limited to this.
- the second core 12-3 may have a closed magnetic circuit structure. It is preferable that the second core 12-3 has an open magnetic circuit structure because it is possible to suppress the deterioration of the high frequency characteristics.
- the third inductor 13 includes a fifth winding 13-1, a sixth winding 13-2, and a third core 13-3.
- the fifth winding 13-1 is wound around the third core 13-3.
- the fifth winding 13-1 is exemplified as being wound counterclockwise when viewed from one side of the third core 13-3, but the present disclosure is not limited to this.
- the sixth winding 13-2 is wound around the third core 13-3 in the same direction (counterclockwise) as the fifth winding 13-1 when viewed from one side of the third core 13-3.
- the fifth winding 13-1 and the sixth winding 13-2 may be wound in layers.
- the sixth winding 13-2 may be wound where it does not overlap the fifth winding 13-1.
- the number of turns of the fifth winding 13-1 and the sixth winding 13-2 is less than the number of turns of the first winding 11-1 and the second winding 11-2 in order to suppress coupling capacitance.
- the present disclosure is not limited thereto.
- the third core 13-3 has an open magnetic circuit structure, but the present disclosure is not limited to this.
- the third core 13-3 may have a closed magnetic circuit structure. It is preferable that the third core 13-3 has an open magnetic circuit structure because it can suppress the deterioration of the high frequency characteristics.
- Each of the first inductor 11, the second inductor 12, and the third inductor 13 is a common mode choke coil (CMCC),
- the second inductor 12 In order to balance the electrical characteristics between the power supply 21 and the first signal line 22-1 and the electrical characteristics between the power supply 21 and the second signal line 22-2, the second inductor 12 It is preferable that the electrical characteristics and the electrical characteristics of the third inductor 13 are the same. That is, it is preferable that the second inductor 12 and the third inductor 13 are the same.
- One end 11-1a of the first winding 11-1 is electrically connected to the power supply 21.
- the other end 11-1b of the first winding 11-1 is electrically connected to one end 12-1a of the third winding 12-1.
- the other end 12-1b of the third winding 12-1 is electrically connected to one end 12-2a of the fourth winding 12-2.
- the other end 12-2b of the fourth winding 12-2 is electrically connected to the first signal line 22-1.
- One end 11-2a of the second winding 11-2 is electrically connected to the power supply 21.
- the other end 11-2b of the second winding 11-2 is electrically connected to one end 13-1a of the fifth winding 13-1.
- the other end 13-1b of the fifth winding 13-1 is electrically connected to one end 13-2a of the sixth winding 13-2.
- the other end 13-2b of the sixth winding 13-2 is electrically connected to the second signal line 22-2.
- a power supply current output from the power supply 21 is input to the first inductor 11 as indicated by an arrow 31 .
- the power supply current flows from the right to the left in the drawing as indicated by arrow 32.
- a magnetic field is generated in the direction from left to right in the drawing, as indicated by arrow 33.
- the power supply current flows from left to right in the drawing, as indicated by arrow 34.
- a magnetic field is generated in a direction from right to left in the figure as indicated by arrow 35.
- a power supply current flows in the first inductor 11 in a differential mode.
- the 1st inductor 11 can suppress the fall of an inductance. Therefore, the inductor circuit 1 can suppress deterioration in signal reflection characteristics.
- the power supply current flows from right to left in the figure, as indicated by arrow 36.
- a magnetic field is generated in the direction from left to right in the drawing, as indicated by arrow 37.
- the power supply current flows from right to left in the figure, as indicated by arrow 38.
- a magnetic field is generated in the direction from left to right in the drawing, as indicated by arrow 39.
- a power supply current flows in the second inductor 12 in a common mode.
- the magnetic field generated by the third winding 12-1 and the magnetic field generated by the fourth winding 12-2 strengthen each other.
- the power supply current flows from left to right in the figure, as indicated by arrow 40.
- a magnetic field is generated in a direction from right to left in the figure as indicated by an arrow 41.
- the power supply current flows from left to right in the figure, as indicated by arrow 42.
- a magnetic field is generated in the direction from the right to the left in the figure, as indicated by arrow 43.
- a power supply current flows in the third inductor 13 in a common mode.
- the magnetic field generated by the fifth winding 13-1 and the magnetic field generated by the sixth winding 13-2 strengthen each other.
- the power supply current output from the other end 12-2b of the fourth winding is input to the first signal line 22-1 as indicated by an arrow 44.
- the power supply current flows from left to right in the figure as indicated by an arrow 45, and is input to a load circuit (not shown).
- the power supply current output from the other end 13-2b of the sixth winding is input to the second signal line 22-2 as indicated by an arrow 46.
- the power supply current flows from the left to the right in the drawing as indicated by an arrow 47 and is input to the load circuit.
- the return current flowing from the load circuit flows from the right to the left in the drawing as indicated by arrow 48, and flows to the reference potential.
- FIG. 2 is a diagram showing the configuration of the simulation circuit of the first comparative example.
- This circuit 51 is described in IEEE (Institute of Electrical and Electronics Engineers) 802.3 ch as an example of a preferable simulation circuit.
- the circuit 51 includes an inductor circuit 52.
- Inductor circuit 52 is a bias T circuit.
- the inductor circuit 52 includes inductors 52-1 and 52-2.
- Inductor 52-1 includes parasitic capacitance 52-1a.
- Inductor 52-2 includes parasitic capacitance 52-2a.
- One end of the inductor 52-1 is electrically connected to the power supply potential VCC.
- the other end of the inductor 52-1 is electrically connected to the first signal line 22-1 via the connector .
- One end of the inductor 52-2 is electrically connected to the power supply potential VCC.
- the other end of the inductor 52-2 is electrically connected to the second signal line 22-2 via the connector .
- the circuit 53 is an equivalent circuit of a physical layer (PHY) circuit that communicates via the first signal line 22-1 and the second signal line 22-2.
- Circuit 53 includes resistors 53-1 and 53-2 and capacitors 53-3 and 53-4.
- One end of the resistor 53-1 and one end of the capacitor 53-3 are electrically connected to the terminal 53a.
- the other end of the resistor 53-1 and the other end of the capacitor 53-3 are electrically connected to the reference potential.
- One end of the resistor 53-2 and one end of the capacitor 53-4 are electrically connected to the terminal 53b.
- the other end of the resistor 53-2 and the other end of the capacitor 53-4 are electrically connected to the reference potential.
- the terminal 53a is electrically connected to the first signal line 22-1 via a wiring 55 on the printed circuit board, a DC cut capacitor 57 and a connector 54. Terminal 53a is electrically connected to a reference potential through a shunt capacitor 59 .
- the terminal 53b is electrically connected to the second signal line 22-2 via a wiring 56 on the printed circuit board, a DC cut capacitor 58 and a connector 54. Terminal 53b is electrically connected to a reference potential through shunt capacitor 60 .
- FIG. 3 is a diagram showing the configuration of the simulation circuit of the second comparative example.
- This circuit 71 includes an inductor circuit 72 instead of inductor circuit 52 as compared to circuit 51 (see FIG. 2).
- the inductor circuit 72 includes only the first inductor 11 and does not include the second inductor 12 and the third inductor 13 compared to the inductor circuit 1 (see FIG. 1).
- the other end 11-1b of the first winding 11-1 is electrically connected to the first signal line 22-1 via a connector 54.
- the other end 11-2b of the second winding 11-2 is electrically connected to the second signal line 22-2 via the connector 54.
- FIG. 4 is a diagram showing the configuration of the simulation circuit according to the first embodiment.
- This circuit 81 includes inductor circuit 1 instead of inductor circuit 72, as compared with circuit 71 (see FIG. 3).
- the other end 11-1b of the first winding 11-1 is electrically connected to the first signal line 22-1 via a connector 54.
- the other end 11-2b of the second winding 11-2 is electrically connected to the second signal line 22-2 via the connector 54.
- FIG. 5 is a diagram showing simulation results of the first comparative example, the second comparative example, and the first embodiment.
- the horizontal axis in FIG. 5 represents the frequency, and the vertical axis represents the S parameter Sdd11.
- Sdd11 is an index representing signal reflection characteristics.
- a line 91 represents the upper limit of Sdd11 defined by 10GBase-T1.
- the signal reflection characteristic is required to be lower than Sdd11 represented by line 91 .
- a line 92 indicates Sdd11 of the circuit 51 of the first comparative example.
- Sdd11 of circuit 51 is lower than Sdd11 represented by line 91 over frequencies from 1 MHz (megahertz) to 6 GHz (gigahertz).
- a line 93 indicates Sdd11 of the circuit 71 of the second comparative example.
- Sdd11 of circuit 71 is lower than Sdd11 represented by line 91 from a frequency of 1 MHz to a frequency of 300 MHz.
- Sdd11 of circuit 71 is higher than Sdd11 represented by line 91 from frequency 300 MHz to frequency 4 GHz.
- the reason for this is that a coupling capacitance is generated between the first winding 11-1 and the second winding 11-2, and the impedance of the inductor circuit 72 is lowered, so that the signal is reflected in the frequency band from 300 MHz to 4 GHz. It is thought that this is because
- a line 94 indicates Sdd11 of the circuit 81 of the first embodiment.
- Sdd11 of circuit 81 is lower than Sdd11 represented by line 91 over frequencies from 1 MHz to 6 GHz.
- the reason is that the number of turns of the third winding 12-1, the fourth winding 12-2, the fifth winding 13-1 and the sixth winding 13-2 is changed to the number of turns of the first winding 11-1 and the second winding 11-2, the coupling capacitance between the third winding 12-1 and the fourth winding 12-2 and the coupling capacitance between the fifth winding 13-1 and the sixth winding 13-2
- the binding capacity between is suppressed. Therefore, the impedance drop of the second inductor 12 and the third inductor 13 is suppressed. It is believed that this suppresses a decrease in the combined impedance of the first inductor 11, the second inductor 12 and the third inductor 13, that is, the impedance of the inductor circuit 1.
- the inductor circuit 1 can suppress the magnetic saturation of the first core 11-3 by causing the power supply current to flow through the first inductor 11 in differential mode. As a result, the inductor circuit 1 can suppress a decrease in the inductance of the first inductor 11, thereby suppressing a decrease in signal reflection characteristics.
- the inductor circuit 1 can suppress magnetic saturation of the first core 11-3 by forming the first core 11-3 into a closed magnetic circuit structure. As a result, the inductor circuit 1 can suppress a decrease in the inductance of the first inductor 11, thereby suppressing a decrease in signal reflection characteristics.
- the inductor circuit 1 can suppress deterioration of the high-frequency characteristics of the second inductor 12 and the third inductor 13 by making the second core 12-3 and the third core 13-3 open magnetic circuit structures. As a result, the inductor circuit 1 can suppress deterioration in signal reflection characteristics.
- the inductor circuit 1 the number of turns of the third winding 12-1, the fourth winding 12-2, the fifth winding 13-1 and the sixth winding 13-2 is changed to the first winding 11-1 and the second winding
- the coupling capacitance between third winding 12-1 and fourth winding 12-2 and fifth winding 13-1 and sixth winding 13-2 can suppress the coupling capacity between Therefore, the inductor circuit 1 can suppress the impedance drop of the second inductor 12 and the third inductor 13 .
- the inductor circuit 1 can suppress a decrease in impedance, thereby suppressing a decrease in signal reflection characteristics.
- the inductor circuit 1 by making the electrical characteristics of the second inductor 12 and the electrical characteristics of the third inductor 13 the same, the electrical characteristics between the power supply 21 and the first signal line 22-1, It is possible to balance the electrical characteristics between the power supply 21 and the second signal line 22-2. As a result, the inductor circuit 1 can suppress common mode noise due to mode conversion characteristics.
- FIG. 6 is a diagram showing the configuration of the inductor circuit of the second embodiment.
- Inductor circuit 101 transmits power supply current output from power supply 21 to shielded twisted pair 22 .
- Inductor circuit 101 is a bias T circuit.
- the inductor circuit 101 includes a first inductor 111, a second inductor 112, and a third inductor 113.
- the first inductor 111 includes a first winding 111-1, a second winding 111-2, and a first core 111-3.
- the first winding 111-1 is wound around the first core 111-3.
- the first winding 111-1 is exemplified as being wound counterclockwise when viewed from one side of the first core 111-3, but the present disclosure is not limited to this.
- the second winding 111-2 is wound around the first core 111-3 counterclockwise (clockwise) to the first winding 111-1 when viewed from one side of the first core 111-3. .
- the first winding 111-1 and the second winding 111-2 may be wound in layers. Alternatively, the second winding 111-2 may be wound where it does not overlap the first winding 111-1.
- the first core 111-3 has a closed magnetic circuit structure, but the present disclosure is not limited to this.
- the first core 111-3 may have an open magnetic circuit structure.
- the first core 111-3 preferably has a closed magnetic circuit structure because it can suppress magnetic saturation.
- the second inductor 112 includes a third winding 112-1, a fourth winding 112-2, and a second core 112-3.
- the third winding 112-1 is wound around the second core 112-3.
- Third winding 112-1 is exemplified as being wound counterclockwise when viewed from one side of second core 112-3, but the present disclosure is not limited thereto.
- the fourth winding 112-2 is wound around the second core 112-3 counterclockwise (clockwise) to the third winding 112-1 when viewed from one side of the second core 112-3. .
- the third winding 112-1 and the fourth winding 112-2 may be wound in an overlapping manner.
- the fourth winding 112-2 may be wound where it does not overlap the third winding 112-1.
- the number of turns of the third winding 112-1 and the fourth winding 112-2 is less than the number of turns of the first winding 111-1 and the second winding 111-2 in order to suppress coupling capacitance.
- the present disclosure is not limited thereto.
- the second core 112-3 has an open magnetic circuit structure, but the present disclosure is not limited to this.
- the second core 112-3 may have a closed magnetic circuit structure.
- the second core 112-3 preferably has an open magnetic circuit structure because it can suppress deterioration in high frequency characteristics.
- the third inductor 113 includes a fifth winding 113-1, a sixth winding 113-2, and a third core 113-3.
- the fifth winding 113-1 is wound around the third core 113-3.
- Fifth winding 113-1 is exemplified as being wound counterclockwise when viewed from one side of third core 113-3, but the present disclosure is not limited thereto.
- the sixth winding 113-2 is wound around the third core 113-3 counterclockwise (clockwise) to the fifth winding 113-1 when viewed from one side of the third core 113-3. .
- the fifth winding 113-1 and the sixth winding 113-2 may be wound in an overlapping manner.
- the sixth winding 113-2 may be wound where it does not overlap the fifth winding 113-1.
- the number of turns of the fifth winding 113-1 and the sixth winding 113-2 is less than the number of turns of the first winding 111-1 and the second winding 111-2 in order to suppress coupling capacitance.
- the present disclosure is not limited thereto.
- the third core 113-3 has an open magnetic circuit structure, but the present disclosure is not limited to this.
- the third core 113-3 may have a closed magnetic circuit structure.
- the third core 113-3 preferably has an open magnetic circuit structure because it can suppress deterioration in high frequency characteristics.
- Each of the first inductor 111, the second inductor 112 and the third inductor 113 is a differential mode inductor (DMI).
- DMI differential mode inductor
- the second inductor 112 In order to balance the electrical characteristics between the power supply 21 and the first signal line 22-1 and the electrical characteristics between the power supply 21 and the second signal line 22-2, the second inductor 112 It is preferable that the electrical characteristics and the electrical characteristics of the third inductor 113 are the same. That is, the second inductor 112 and the third inductor 113 are preferably the same.
- One end 111-1a of the first winding 111-1 is electrically connected to the power supply 21.
- the other end 111-1b of the first winding 111-1 is electrically connected to one end 112-1a of the third winding 112-1.
- the other end 112-1b of the third winding 112-1 is electrically connected to one end 112-2a of the fourth winding 112-2.
- the other end 112-2b of the fourth winding 112-2 is electrically connected to the first signal line 22-1.
- One end 111-2a of the second winding 111-2 is electrically connected to the power supply 21.
- the other end 111-2b of the second winding 111-2 is electrically connected to one end 113-1a of the fifth winding 113-1.
- the other end 113-1b of the fifth winding 113-1 is electrically connected to one end 113-2a of the sixth winding 113-2.
- the other end 113-2b of the sixth winding 113-2 is electrically connected to the second signal line 22-2.
- a power supply current output from the power supply 21 is input to the first inductor 111 as indicated by an arrow 31 .
- the power supply current flows from left to right in the drawing, as indicated by an arrow 121.
- a magnetic field is generated in a direction from right to left in the figure as indicated by arrow 122.
- the power supply current flows from left to right in the figure, as indicated by an arrow 123.
- a magnetic field is generated in the direction from left to right in the drawing, as indicated by arrow 124.
- a power supply current flows in the first inductor 111 in a common mode.
- the 1st inductor 111 can suppress the fall of an inductance. Therefore, the inductor circuit 101 can suppress deterioration in signal reflection characteristics.
- the power supply current flows from right to left in the figure, as indicated by arrow 125.
- a magnetic field is generated in the direction from left to right in the drawing, as indicated by arrow 126.
- the power supply current flows from left to right in the figure, as indicated by an arrow 127.
- a magnetic field is generated in the direction from left to right in the drawing, as indicated by arrow 128.
- a power supply current flows in the second inductor 112 in a differential mode.
- the magnetic field generated by the third winding 112-1 and the magnetic field generated by the fourth winding 112-2 strengthen each other.
- the power supply current flows from left to right in the drawing as indicated by an arrow 129.
- a magnetic field is generated in the direction from right to left in the drawing, as indicated by arrow 130.
- the power supply current flows from right to left in the figure as indicated by an arrow 131.
- a magnetic field is generated in the direction from right to left in the figure, as indicated by arrow 132.
- a power supply current flows through the third inductor 113 in a differential mode.
- the magnetic field generated by the fifth winding 113-1 and the magnetic field generated by the sixth winding 113-2 strengthen each other.
- the power supply current output from the other end 112-2b of the fourth winding is input to the first signal line 22-1 as indicated by an arrow 44.
- the power supply current flows from left to right in the figure as indicated by an arrow 45, and is input to a load circuit (not shown).
- the power supply current output from the other end 113-2b of the sixth winding is input to the second signal line 22-2 as indicated by an arrow 46.
- the power supply current flows from the left to the right in the drawing as indicated by an arrow 47 and is input to the load circuit.
- the return current flowing from the load circuit flows from the right to the left in the drawing as indicated by arrow 48, and flows to the reference potential.
- the inductor circuit 101 of the second embodiment has the same effects as the inductor circuit 1 of the first embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
インダクタ回路は、第1コアに巻回され、一端が電源に電気的に接続され、第1方向に磁界を発生する第1巻線と、第1コアに巻回され、一端が電源に電気的に接続され、第1方向と逆方向に磁界を発生する第2巻線と、を含む第1インダクタと、第2コアに巻回され、一端が第1巻線の他端に電気的に接続され、第2方向に磁界を発生する第3巻線と、第2コアに巻回され、一端が第3巻線の他端に電気的に接続され、他端が一対の信号線の内の一方に電気的に接続され、第2方向に磁界を発生する第4巻線と、を含む第2インダクタと、第3コアに巻回され、一端が第2巻線の他端に電気的に接続され、第3方向に磁界を発生する第5巻線と、第3コアに巻回され、一端が第5巻線の他端に電気的に接続され、他端が一対の信号線の内の他方に電気的に接続され、第3方向に磁界を発生する第6巻線と、を含む第3インダクタと、を含む。
Description
本開示は、インダクタ回路に関する。
特許文献1には、電源電流が、バイアスT(Bias-T)回路を介してシールド付き撚り対線の2本の信号線にコモンモードで供給され、リターン電流が、シールドを介してグランドに流れる、パワーオーバーイーサネット(登録商標)回路が記載されている。
特許文献1記載の回路では、電源電流がバイアスT回路のインダクタに流れることで、インダクタに磁気飽和が生じる可能性があり、インダクタンスが低下してしまう可能性がある。このインダクタンスの低下により、信号伝送路に要求される特性を満たさなくなる可能性がある。
本開示は、上記に鑑みてなされたものであって、信号伝送路の特性の低下を抑制することを目的とする。
本開示の一側面のインダクタ回路は、電源から出力される電流を一対の信号線に伝送するインダクタ回路であって、第1コアと、第1コアに巻回され、一端が電源に電気的に接続され、第1方向に磁界を発生する第1巻線と、第1コアに巻回され、一端が電源に電気的に接続され、第1方向と逆方向に磁界を発生する第2巻線と、を含む第1インダクタと、第2コアと、第2コアに巻回され、一端が第1巻線の他端に電気的に接続され、第2方向に磁界を発生する第3巻線と、第2コアに巻回され、一端が第3巻線の他端に電気的に接続され、他端が一対の信号線の内の一方に電気的に接続され、第2方向に磁界を発生する第4巻線と、を含む第2インダクタと、第3コアと、第3コアに巻回され、一端が第2巻線の他端に電気的に接続され、第3方向に磁界を発生する第5巻線と、第3コアに巻回され、一端が第5巻線の他端に電気的に接続され、他端が一対の信号線の内の他方に電気的に接続され、第3方向に磁界を発生する第6巻線と、を含む第3インダクタと、を含む。
本開示によれば、信号伝送路の特性の低下を抑制することが可能となる。
以下に、本開示のインダクタ回路の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態により本開示が限定されるものではない。各実施の形態は例示であり、異なる実施の形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもない。第2の実施の形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
<第1の実施の形態>
(構成)
図1は、第1の実施の形態のインダクタ回路の構成を示す図である。インダクタ回路1は、電源21から出力される電源電流を、シールド付き撚り対線(Shielded Twisted Pair:STP)22に伝送する。インダクタ回路1は、バイアスT(Bias-T)回路である。
(構成)
図1は、第1の実施の形態のインダクタ回路の構成を示す図である。インダクタ回路1は、電源21から出力される電源電流を、シールド付き撚り対線(Shielded Twisted Pair:STP)22に伝送する。インダクタ回路1は、バイアスT(Bias-T)回路である。
シールド付き撚り対線22は、第1信号線22-1及び第2信号線22-2と、シールド22-3と、を含む。シールド22-3は、基準電位に電気的に接続されている。
インダクタ回路1は、第1インダクタ11と、第2インダクタ12と、第3インダクタ13と、を含む。
第1インダクタ11は、第1巻線11-1と、第2巻線11-2と、第1コア11-3と、を含む。
第1巻線11-1は、第1コア11-3に巻回されている。第1巻線11-1は、第1コア11-3の一方側から見て、反時計回りに巻回されていることが例示されるが、本開示はこれに限定されない。第2巻線11-2は、第1コア11-3の一方側から見て、第1巻線11-1と同じ回り(反時計回り)に、第1コア11-3に巻回されている。
第1巻線11-1及び第2巻線11-2は、重ねて巻回されても良い。或いは、第2巻線11-2は、第1巻線11-1と重ならない場所に巻回されても良い。
第1巻線11-1及び第2巻線11-2の巻数は、同じであることが例示されるが、本開示はこれに限定されない。
第1コア11-3は、閉磁路構造とするが、本開示はこれに限定されない。第1コア11-3は、開磁路構造であっても良い。第1コア11-3は、閉磁路構造とすると、磁気飽和を抑制できるので、好ましい。
第2インダクタ12は、第3巻線12-1と、第4巻線12-2と、第2コア12-3と、を含む。
第3巻線12-1は、第2コア12-3に巻回されている。第3巻線12-1は、第2コア12-3の一方側から見て、反時計回りに巻回されていることが例示されるが、本開示はこれに限定されない。第4巻線12-2は、第2コア12-3の一方側から見て、第3巻線12-1と同じ回り(反時計回り)に、第2コア12-3に巻回されている。
第3巻線12-1及び第4巻線12-2は、重ねて巻回されても良い。或いは、第4巻線12-2は、第3巻線12-1と重ならない場所に巻回されても良い。
第3巻線12-1及び第4巻線12-2の巻数は、同じであることが例示されるが、本開示はこれに限定されない。
第3巻線12-1及び第4巻線12-2の巻数は、結合容量を抑制するために、第1巻線11-1及び第2巻線11-2の巻数よりも少ないことが例示されるが、本開示はこれに限定されない。
第2コア12-3は、開磁路構造とするが、本開示はこれに限定されない。第2コア12-3は、閉磁路構造であっても良い。第2コア12-3は、開磁路構造とすると、高周波特性の低下を抑制できるので、好ましい。
第3インダクタ13は、第5巻線13-1と、第6巻線13-2と、第3コア13-3と、を含む。
第5巻線13-1は、第3コア13-3に巻回されている。第5巻線13-1は、第3コア13-3の一方側から見て、反時計回りに巻回されていることが例示されるが、本開示はこれに限定されない。第6巻線13-2は、第3コア13-3の一方側から見て、第5巻線13-1と同じ回り(反時計回り)に、第3コア13-3に巻回されている。
第5巻線13-1及び第6巻線13-2は、重ねて巻回されても良い。或いは、第6巻線13-2は、第5巻線13-1と重ならない場所に巻回されても良い。
第5巻線13-1及び第6巻線13-2の巻数は、同じであることが例示されるが、本開示はこれに限定されない。
第5巻線13-1及び第6巻線13-2の巻数は、結合容量を抑制するために、第1巻線11-1及び第2巻線11-2の巻数よりも少ないことが例示されるが、本開示はこれに限定されない。
第3コア13-3は、開磁路構造とするが、本開示はこれに限定されない。第3コア13-3は、閉磁路構造であっても良い。第3コア13-3は、開磁路構造とすると、高周波特性の低下を抑制できるので、好ましい。
第1インダクタ11、第2インダクタ12及び第3インダクタ13の各々は、コモンモードチョークコイル(Common Mode Choke Coils:CMCC)である、
電源21と第1信号線22-1との間の電気的特性と、電源21と第2信号線22-2との間の電気的特性と、のバランスを図るために、第2インダクタ12の電気的特性と第3インダクタ13の電気的特性とは同特性であることが好ましい。つまり、第2インダクタ12及び第3インダクタ13は、同じものであることが好ましい。
第1巻線11-1の一端11-1aは、電源21に電気的に接続されている。第1巻線11-1の他端11-1bは、第3巻線12-1の一端12-1aに電気的に接続されている。
第3巻線12-1の他端12-1bは、第4巻線12-2の一端12-2aに電気的に接続されている。第4巻線12-2の他端12-2bは、第1信号線22-1に電気的に接続されている。
第2巻線11-2の一端11-2aは、電源21に電気的に接続されている。第2巻線11-2の他端11-2bは、第5巻線13-1の一端13-1aに電気的に接続されている。
第5巻線13-1の他端13-1bは、第6巻線13-2の一端13-2aに電気的に接続されている。第6巻線13-2の他端13-2bは、第2信号線22-2に電気的に接続されている。
電源21から出力される電源電流は、矢印31で示すように、第1インダクタ11に入力される。
第1巻線11-1では、電源電流は、矢印32で示すように、図中右から図中左に向かって流れる。第1巻線11-1では、磁界は、矢印33で示すように、図中左から図中右に向かう方向に発生する。
第2巻線11-2では、電源電流は、矢印34で示すように、図中左から図中右に向かって流れる。第2巻線11-2では、磁界は、矢印35で示すように、図中右から図中左に向かう方向に発生する。
第1インダクタ11では、電源電流が、ディファレンシャルモードで流れる。
第1コア11-3では、第1巻線11-1によって発生する磁界と、第2巻線11-2によって発生する磁界と、が打ち消し合うので、磁気飽和が抑制される。これにより、第1インダクタ11は、インダクタンスの低下を抑制できる。従って、インダクタ回路1は、信号反射特性の低下を抑制できる。
第3巻線12-1では、電源電流は、矢印36で示すように、図中右から図中左に向かって流れる。第3巻線12-1では、磁界は、矢印37で示すように、図中左から図中右に向かう方向に発生する。
第4巻線12-2では、電源電流は、矢印38で示すように、図中右から図中左に向かって流れる。第4巻線12-2では、磁界は、矢印39で示すように、図中左から図中右に向かう方向に発生する。
第2インダクタ12では、電源電流が、コモンモードで流れる。
第2コア12-3では、第3巻線12-1によって発生する磁界と、第4巻線12-2によって発生する磁界と、が強め合う。
第5巻線13-1では、電源電流は、矢印40で示すように、図中左から図中右に向かって流れる。第5巻線13-1では、磁界は、矢印41で示すように、図中右から図中左に向かう方向に発生する。
第6巻線13-2では、電源電流は、矢印42で示すように、図中左から図中右に向かって流れる。第6巻線13-2では、磁界は、矢印43で示すように、図中右から図中左に向かう方向に発生する。
第3インダクタ13では、電源電流が、コモンモードで流れる。
第3コア13-3では、第5巻線13-1によって発生する磁界と、第6巻線13-2によって発生する磁界と、が強め合う。
第4巻線の他端12-2bから出力される電源電流は、矢印44で示すように、第1信号線22-1に入力される。第1信号線22-1では、電源電流は、矢印45で示すように、図中左から図中右に向かって流れ、負荷回路(図示せず)に入力される。
第6巻線の他端13-2bから出力される電源電流は、矢印46で示すように、第2信号線22-2に入力される。第2信号線22-2では、電源電流は、矢印47で示すように、図中左から図中右に向かって流れ、負荷回路に入力される。
シールド22-3では、負荷回路から流れ出るリターン電流は、矢印48で示すように、図中右から図中左に向かって流れ、基準電位に流れる。
(回路シミュレーション)
[第1比較例のシミュレーション回路の構成]
図2は、第1比較例のシミュレーション回路の構成を示す図である。この回路51は、IEEE(Institute of Electrical and Electronics Engineers)802.3chに、好ましいシミュレーション回路の例として記載されているものである。
[第1比較例のシミュレーション回路の構成]
図2は、第1比較例のシミュレーション回路の構成を示す図である。この回路51は、IEEE(Institute of Electrical and Electronics Engineers)802.3chに、好ましいシミュレーション回路の例として記載されているものである。
回路51は、インダクタ回路52を含む。インダクタ回路52は、バイアスT回路である。
インダクタ回路52は、インダクタ52-1及び52-2を含む。インダクタ52-1は、寄生容量52-1aを含む。インダクタ52-2は、寄生容量52-2aを含む。
インダクタ52-1の一端は、電源電位VCCに電気的に接続されている。インダクタ52-1の他端は、コネクタ54を介して、第1信号線22-1に電気的に接続されている。
インダクタ52-2の一端は、電源電位VCCに電気的に接続されている。インダクタ52-2の他端は、コネクタ54を介して、第2信号線22-2に電気的に接続されている。
回路53は、第1信号線22-1及び第2信号線22-2を介して通信を行う物理層(PHY)回路の等価回路である。回路53は、抵抗53-1及び53-2と、コンデンサ53-3及び53-4と、を含む。
抵抗53-1の一端及びコンデンサ53-3の一端は、端子53aに電気的に接続されている。抵抗53-1の他端及びコンデンサ53-3の他端は、基準電位に電気的に接続されている。
抵抗53-2の一端及びコンデンサ53-4の一端は、端子53bに電気的に接続されている。抵抗53-2の他端及びコンデンサ53-4の他端は、基準電位に電気的に接続されている。
端子53aは、プリント基板上の配線55、DCカットコンデンサ57及びコネクタ54を介して、第1信号線22-1に電気的に接続されている。端子53aは、シャントコンデンサ59を介して、基準電位に電気的に接続されている。
端子53bは、プリント基板上の配線56、DCカットコンデンサ58及びコネクタ54を介して、第2信号線22-2に電気的に接続されている。端子53bは、シャントコンデンサ60を介して、基準電位に電気的に接続されている。
[第2比較例のシミュレーション回路の構成]
図3は、第2比較例のシミュレーション回路の構成を示す図である。この回路71は、回路51(図2参照)と比較して、インダクタ回路52に代えて、インダクタ回路72を含む。
図3は、第2比較例のシミュレーション回路の構成を示す図である。この回路71は、回路51(図2参照)と比較して、インダクタ回路52に代えて、インダクタ回路72を含む。
インダクタ回路72は、インダクタ回路1(図1参照)と比較して、第1インダクタ11だけを含み、第2インダクタ12及び第3インダクタ13を含んでいない。
第1巻線11-1の他端11-1bは、コネクタ54を介して、第1信号線22-1に電気的に接続されている。
第2巻線11-2の他端11-2bは、コネクタ54を介して、第2信号線22-2に電気的に接続されている。
[第1の実施の形態のシミュレーション回路の構成]
図4は、第1の実施の形態のシミュレーション回路の構成を示す図である。この回路81は、回路71(図3参照)と比較して、インダクタ回路72に代えて、インダクタ回路1を含む。
図4は、第1の実施の形態のシミュレーション回路の構成を示す図である。この回路81は、回路71(図3参照)と比較して、インダクタ回路72に代えて、インダクタ回路1を含む。
第1巻線11-1の他端11-1bは、コネクタ54を介して、第1信号線22-1に電気的に接続されている。
第2巻線11-2の他端11-2bは、コネクタ54を介して、第2信号線22-2に電気的に接続されている。
[シミュレーション結果]
図5は、第1比較例、第2比較例及び第1の実施の形態のシミュレーション結果を示す図である。
図5は、第1比較例、第2比較例及び第1の実施の形態のシミュレーション結果を示す図である。
図5の横軸は、周波数を表し、縦軸は、SパラメータのSdd11を表す。Sdd11は、信号反射特性を表す指標である。
線91は、10GBase-T1で定められている、Sdd11の上限を表す。信号反射特性は、線91で表されるSdd11よりも低いことが求められる。
線92は、第1比較例の回路51のSdd11を示す。回路51のSdd11は、周波数1MHz(メガヘルツ)から周波数6GHz(ギガヘルツ)までに渡って、線91で表されるSdd11よりも低い。
線93は、第2比較例の回路71のSdd11を示す。回路71のSdd11は、周波数1MHzから周波数300MHzまでは、線91で表されるSdd11よりも低い。しかし、回路71のSdd11は、周波数300MHzから周波数4GHzまでは、線91で表されるSdd11よりも高くなってしまっている。その理由は、第1巻線11-1と第2巻線11-2との間に結合容量が生じ、インダクタ回路72のインピーダンスが低下するので、周波数300MHzから周波数4GHzまでの帯域で信号の反射が生じ易くなるからであると考えられる。
線94は、第1の実施の形態の回路81のSdd11を示す。回路81のSdd11は、周波数1MHzから周波数6GHzまでに渡って、線91で表されるSdd11よりも低い。その理由は、第3巻線12-1、第4巻線12-2、第5巻線13-1及び第6巻線13-2の巻数を第1巻線11-1及び第2巻線11-2の巻数よりも少なくすることにより、第3巻線12-1と第4巻線12-2との間の結合容量及び第5巻線13-1と第6巻線13-2との間の結合容量が抑制される。従って、第2インダクタ12及び第3インダクタ13のインピーダンス低下が抑制される。これにより、第1インダクタ11、第2インダクタ12及び第3インダクタ13の合成インピーダンス、即ち、インダクタ回路1のインピーダンスの低下が抑制されるからであると考えられる。
(まとめ)
インダクタ回路1は、電源電流を、ディファレンシャルモードで第1インダクタ11に流すことにより、第1コア11-3の磁気飽和を抑制できる。これにより、インダクタ回路1は、第1インダクタ11のインダクタンスの低下を抑制できるので、信号反射特性の低下を抑制できる。
インダクタ回路1は、電源電流を、ディファレンシャルモードで第1インダクタ11に流すことにより、第1コア11-3の磁気飽和を抑制できる。これにより、インダクタ回路1は、第1インダクタ11のインダクタンスの低下を抑制できるので、信号反射特性の低下を抑制できる。
インダクタ回路1は、第1コア11-3を閉磁路構造とすることにより、第1コア11-3の磁気飽和を抑制できる。これにより、インダクタ回路1は、第1インダクタ11のインダクタンスの低下を抑制できるので、信号反射特性の低下を抑制できる。
インダクタ回路1は、第2コア12-3及び第3コア13-3を開磁路構造とすることにより、第2インダクタ12及び第3インダクタ13の高周波特性の低下を抑制できる。これにより、インダクタ回路1は、信号反射特性の低下を抑制できる。
インダクタ回路1は、第3巻線12-1、第4巻線12-2、第5巻線13-1及び第6巻線13-2の巻数を第1巻線11-1及び第2巻線11-2の巻数よりも少なくすることにより、第3巻線12-1と第4巻線12-2との間の結合容量及び第5巻線13-1と第6巻線13-2との間の結合容量を抑制できる。従って、インダクタ回路1は、第2インダクタ12及び第3インダクタ13のインピーダンス低下を抑制できる。これにより、インダクタ回路1は、インピーダンスの低下を抑制できるので、信号反射特性の低下を抑制できる。
インダクタ回路1は、第2インダクタ12の電気的特性と第3インダクタ13の電気的特性とを同特性とすることにより、電源21と第1信号線22-1との間の電気的特性と、電源21と第2信号線22-2との間の電気的特性と、のバランスを図ることができる。これにより、インダクタ回路1は、モード変換特性によるコモンモードノイズを抑制できる。
<第2の実施の形態>
第2の実施の形態の構成要素のうち、第1の実施の形態の構成要素と同一の構成要素については、同一の符号を付して説明を省略する。
第2の実施の形態の構成要素のうち、第1の実施の形態の構成要素と同一の構成要素については、同一の符号を付して説明を省略する。
図6は、第2の実施の形態のインダクタ回路の構成を示す図である。インダクタ回路101は、電源21から出力される電源電流を、シールド付き撚り対線22に伝送する。インダクタ回路101は、バイアスT回路である。
インダクタ回路101は、第1インダクタ111と、第2インダクタ112と、第3インダクタ113と、を含む。
第1インダクタ111は、第1巻線111-1と、第2巻線111-2と、第1コア111-3と、を含む。
第1巻線111-1は、第1コア111-3に巻回されている。第1巻線111-1は、第1コア111-3の一方側から見て、反時計回りに巻回されていることが例示されるが、本開示はこれに限定されない。第2巻線111-2は、第1コア111-3の一方側から見て、第1巻線111-1と逆回り(時計回り)に、第1コア111-3に巻回されている。
第1巻線111-1及び第2巻線111-2は、重ねて巻回されても良い。或いは、第2巻線111-2は、第1巻線111-1と重ならない場所に巻回されても良い。
第1巻線111-1及び第2巻線111-2の巻数は、同じであることが例示されるが、本開示はこれに限定されない。
第1コア111-3は、閉磁路構造とするが、本開示はこれに限定されない。第1コア111-3は、開磁路構造であっても良い。第1コア111-3は、閉磁路構造とすると、磁気飽和を抑制できるので、好ましい。
第2インダクタ112は、第3巻線112-1と、第4巻線112-2と、第2コア112-3と、を含む。
第3巻線112-1は、第2コア112-3に巻回されている。第3巻線112-1は、第2コア112-3の一方側から見て、反時計回りに巻回されていることが例示されるが、本開示はこれに限定されない。第4巻線112-2は、第2コア112-3の一方側から見て、第3巻線112-1と逆回り(時計回り)に、第2コア112-3に巻回されている。
第3巻線112-1及び第4巻線112-2は、重ねて巻回されても良い。或いは、第4巻線112-2は、第3巻線112-1と重ならない場所に巻回されても良い。
第3巻線112-1及び第4巻線112-2の巻数は、同じであることが例示されるが、本開示はこれに限定されない。
第3巻線112-1及び第4巻線112-2の巻数は、結合容量を抑制するために、第1巻線111-1及び第2巻線111-2の巻数よりも少ないことが例示されるが、本開示はこれに限定されない。
第2コア112-3は、開磁路構造とするが、本開示はこれに限定されない。第2コア112-3は、閉磁路構造であっても良い。第2コア112-3は、開磁路構造とすると、高周波特性の低下を抑制できるので、好ましい。
第3インダクタ113は、第5巻線113-1と、第6巻線113-2と、第3コア113-3と、を含む。
第5巻線113-1は、第3コア113-3に巻回されている。第5巻線113-1は、第3コア113-3の一方側から見て、反時計回りに巻回されていることが例示されるが、本開示はこれに限定されない。第6巻線113-2は、第3コア113-3の一方側から見て、第5巻線113-1と逆回り(時計回り)に、第3コア113-3に巻回されている。
第5巻線113-1及び第6巻線113-2は、重ねて巻回されても良い。或いは、第6巻線113-2は、第5巻線113-1と重ならない場所に巻回されても良い。
第5巻線113-1及び第6巻線113-2の巻数は、同じであることが例示されるが、本開示はこれに限定されない。
第5巻線113-1及び第6巻線113-2の巻数は、結合容量を抑制するために、第1巻線111-1及び第2巻線111-2の巻数よりも少ないことが例示されるが、本開示はこれに限定されない。
第3コア113-3は、開磁路構造とするが、本開示はこれに限定されない。第3コア113-3は、閉磁路構造であっても良い。第3コア113-3は、開磁路構造とすると、高周波特性の低下を抑制できるので、好ましい。
第1インダクタ111、第2インダクタ112及び第3インダクタ113の各々は、ディファレンシャルモードインダクタ(Differential Mode Inductor:DMI)である。
電源21と第1信号線22-1との間の電気的特性と、電源21と第2信号線22-2との間の電気的特性と、のバランスを図るために、第2インダクタ112の電気的特性と第3インダクタ113の電気的特性とは同特性であることが好ましい。つまり、第2インダクタ112及び第3インダクタ113は、同じものであることが好ましい。
第1巻線111-1の一端111-1aは、電源21に電気的に接続されている。第1巻線111-1の他端111-1bは、第3巻線112-1の一端112-1aに電気的に接続されている。
第3巻線112-1の他端112-1bは、第4巻線112-2の一端112-2aに電気的に接続されている。第4巻線112-2の他端112-2bは、第1信号線22-1に電気的に接続されている。
第2巻線111-2の一端111-2aは、電源21に電気的に接続されている。第2巻線111-2の他端111-2bは、第5巻線113-1の一端113-1aに電気的に接続されている。
第5巻線113-1の他端113-1bは、第6巻線113-2の一端113-2aに電気的に接続されている。第6巻線113-2の他端113-2bは、第2信号線22-2に電気的に接続されている。
電源21から出力される電源電流は、矢印31で示すように、第1インダクタ111に入力される。
第1巻線111-1では、電源電流は、矢印121で示すように、図中左から図中右に向かって流れる。第1巻線111-1では、磁界は、矢印122で示すように、図中右から図中左に向かう方向に発生する。
第2巻線111-2では、電源電流は、矢印123で示すように、図中左から図中右に向かって流れる。第2巻線111-2では、磁界は、矢印124で示すように、図中左から図中右に向かう方向に発生する。
第1インダクタ111では、電源電流が、コモンモードで流れる。
第1コア111-3では、第1巻線111-1によって発生する磁界と、第2巻線111-2によって発生する磁界と、が打ち消し合うので、磁気飽和が抑制される。これにより、第1インダクタ111は、インダクタンスの低下を抑制できる。従って、インダクタ回路101は、信号反射特性の低下を抑制できる。
第3巻線112-1では、電源電流は、矢印125で示すように、図中右から図中左に向かって流れる。第3巻線112-1では、磁界は、矢印126で示すように、図中左から図中右に向かう方向に発生する。
第4巻線112-2では、電源電流は、矢印127で示すように、図中左から図中右に向かって流れる。第4巻線112-2では、磁界は、矢印128で示すように、図中左から図中右に向かう方向に発生する。
第2インダクタ112では、電源電流が、ディファレンシャルモードで流れる。
第2コア112-3では、第3巻線112-1によって発生する磁界と、第4巻線112-2によって発生する磁界と、が強め合う。
第5巻線113-1では、電源電流は、矢印129で示すように、図中左から図中右に向かって流れる。第5巻線113-1では、磁界は、矢印130で示すように、図中右から図中左に向かう方向に発生する。
第6巻線113-2では、電源電流は、矢印131で示すように、図中右から図中左に向かって流れる。第6巻線113-2では、磁界は、矢印132で示すように、図中右から図中左に向かう方向に発生する。
第3インダクタ113では、電源電流が、ディファレンシャルモードで流れる。
第3コア113-3では、第5巻線113-1によって発生する磁界と、第6巻線113-2によって発生する磁界と、が強め合う。
第4巻線の他端112-2bから出力される電源電流は、矢印44で示すように、第1信号線22-1に入力される。第1信号線22-1では、電源電流は、矢印45で示すように、図中左から図中右に向かって流れ、負荷回路(図示せず)に入力される。
第6巻線の他端113-2bから出力される電源電流は、矢印46で示すように、第2信号線22-2に入力される。第2信号線22-2では、電源電流は、矢印47で示すように、図中左から図中右に向かって流れ、負荷回路に入力される。
シールド22-3では、負荷回路から流れ出るリターン電流は、矢印48で示すように、図中右から図中左に向かって流れ、基準電位に流れる。
第2の実施の形態のインダクタ回路101は、第1の実施の形態のインダクタ回路1と同様の効果を奏する。
なお、上記した実施の形態は、本開示の理解を容易にするためのものであり、本開示を限定して解釈するためのものではない。本開示は、その趣旨を逸脱することなく、変更/改良され得るとともに、本開示にはその等価物も含まれる。
1、52、72、101 インダクタ回路
11、111 第1インダクタ
11-1、111-1 第1巻線
11-2、111-2 第2巻線
11-3、111-3 第1コア
12、112 第2インダクタ
12-1、112-1 第3巻線
12-2、112-2 第4巻線
12-3、112-3 第2コア
13、113 第3インダクタ
13-1、113-1 第5巻線
13-2、113-2 第6巻線
13-3、113-3 第3コア
22 シールド付き撚り対線
22-1 第1信号線
22-2 第2信号線
22-3 シールド
11、111 第1インダクタ
11-1、111-1 第1巻線
11-2、111-2 第2巻線
11-3、111-3 第1コア
12、112 第2インダクタ
12-1、112-1 第3巻線
12-2、112-2 第4巻線
12-3、112-3 第2コア
13、113 第3インダクタ
13-1、113-1 第5巻線
13-2、113-2 第6巻線
13-3、113-3 第3コア
22 シールド付き撚り対線
22-1 第1信号線
22-2 第2信号線
22-3 シールド
Claims (6)
- 電源から出力される電流を一対の信号線に伝送するインダクタ回路であって、
第1コアと、前記第1コアに巻回され、一端が前記電源に電気的に接続され、第1方向に磁界を発生する第1巻線と、前記第1コアに巻回され、一端が前記電源に電気的に接続され、前記第1方向と逆方向に磁界を発生する第2巻線と、を含む第1インダクタと、
第2コアと、前記第2コアに巻回され、一端が前記第1巻線の他端に電気的に接続され、第2方向に磁界を発生する第3巻線と、前記第2コアに巻回され、一端が前記第3巻線の他端に電気的に接続され、他端が前記一対の信号線の内の一方に電気的に接続され、前記第2方向に磁界を発生する第4巻線と、を含む第2インダクタと、
第3コアと、前記第3コアに巻回され、一端が前記第2巻線の他端に電気的に接続され、第3方向に磁界を発生する第5巻線と、前記第3コアに巻回され、一端が前記第5巻線の他端に電気的に接続され、他端が前記一対の信号線の内の他方に電気的に接続され、前記第3方向に磁界を発生する第6巻線と、を含む第3インダクタと、
を含む、
インダクタ回路。 - 請求項1に記載のインダクタ回路であって、
前記第1コアは、閉磁路構造であり
前記第2コアは、開磁路構造であり
前記第3コアは、開磁路構造である、
インダクタ回路。 - 請求項1又は2に記載のインダクタ回路であって、
前記第2インダクタの電気的特性と前記第3インダクタの電気的特性とは、同特性である、
インダクタ回路。 - 請求項1から3のいずれか1項に記載のインダクタ回路であって、
前記第1インダクタ、前記第2インダクタ及び前記第3インダクタは、コモンモードチョークコイルである、
インダクタ回路。 - 請求項1から3のいずれか1項に記載のインダクタ回路であって、
前記第1インダクタ、前記第2インダクタ及び前記第3インダクタは、ディファレンシャルモードインダクタである、
インダクタ回路。 - 請求項1から5のいずれか1項に記載のインダクタ回路であって、
前記第3巻線、前記第4巻線、前記第5巻線及び前記第6巻線の巻数は、前記第1巻線及び前記第2巻線の巻数よりも少ない、
インダクタ回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023531488A JP7517609B2 (ja) | 2021-06-28 | 2022-05-12 | インダクタ回路 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021106742 | 2021-06-28 | ||
JP2021-106742 | 2021-06-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023276459A1 true WO2023276459A1 (ja) | 2023-01-05 |
Family
ID=84692727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/020087 WO2023276459A1 (ja) | 2021-06-28 | 2022-05-12 | インダクタ回路 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7517609B2 (ja) |
WO (1) | WO2023276459A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019186709A (ja) * | 2018-04-06 | 2019-10-24 | 株式会社村田製作所 | 複合フィルタ部品、及び、電力重畳回路 |
US20190342124A1 (en) * | 2018-05-01 | 2019-11-07 | Linear Technology Holding Llc | Power over data lines system using split or coupled cmcs and dmcs for coupling dc voltage and attenuating common mode noise |
-
2022
- 2022-05-12 JP JP2023531488A patent/JP7517609B2/ja active Active
- 2022-05-12 WO PCT/JP2022/020087 patent/WO2023276459A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019186709A (ja) * | 2018-04-06 | 2019-10-24 | 株式会社村田製作所 | 複合フィルタ部品、及び、電力重畳回路 |
US20190342124A1 (en) * | 2018-05-01 | 2019-11-07 | Linear Technology Holding Llc | Power over data lines system using split or coupled cmcs and dmcs for coupling dc voltage and attenuating common mode noise |
Also Published As
Publication number | Publication date |
---|---|
JP7517609B2 (ja) | 2024-07-17 |
JPWO2023276459A1 (ja) | 2023-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9697938B2 (en) | Pseudo-8-shaped inductor | |
JP5463351B2 (ja) | 無線周波数の8の字形状のバラン | |
US7330085B2 (en) | Balun with localized components | |
TWI682410B (zh) | 放大器電路 | |
US20090289754A1 (en) | Magnetic Induction Device | |
WO2011013543A1 (ja) | コモンモードフィルタ | |
JPH07504556A (ja) | 一体化されたemi/rfiフィルタ磁気装置 | |
WO2020053141A1 (en) | Improvements in and relating to power divider / combiner circuits | |
CN205666116U (zh) | 高频变压器、高频元器件以及通信终端装置 | |
US11901867B2 (en) | Differential amplifier circuit | |
WO2004061877A1 (ja) | チョークコイルを用いた回路およびチョークコイル | |
JP2010154474A (ja) | 薄膜バラン | |
CN115833773A (zh) | 一种串行接口共模噪声抑制电路和电子设备 | |
CN111817672A (zh) | 一种覆盖9kHz~100MHz的大功率合成器及合成方法 | |
WO2023276459A1 (ja) | インダクタ回路 | |
US20090146755A1 (en) | Planar emi filter | |
JP2006100465A (ja) | コイル及びこれを用いたフィルタ回路 | |
JP2004297551A (ja) | ノイズフィルタ装置及びスイッチング電源装置 | |
JP7103505B2 (ja) | 電磁干渉フィルター回路 | |
JP2004248118A (ja) | ノイズフィルタ及び該ノイズフィルタを用いたplcモデム | |
JP2006287577A (ja) | ノイズ抑制回路 | |
JPWO2011086822A1 (ja) | コモンモードフィルタおよびコモンモードフィルタ用インダクタ | |
JP2006179596A (ja) | 半導体装置 | |
TW201611403A (zh) | 諧波抑制濾波電路 | |
JP2015220476A (ja) | コモンモードノイズフィルタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22832618 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023531488 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22832618 Country of ref document: EP Kind code of ref document: A1 |