WO2023276254A1 - 情報処理装置、顕微鏡システム、及び情報処理方法 - Google Patents

情報処理装置、顕微鏡システム、及び情報処理方法 Download PDF

Info

Publication number
WO2023276254A1
WO2023276254A1 PCT/JP2022/006842 JP2022006842W WO2023276254A1 WO 2023276254 A1 WO2023276254 A1 WO 2023276254A1 JP 2022006842 W JP2022006842 W JP 2022006842W WO 2023276254 A1 WO2023276254 A1 WO 2023276254A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
spectrum
unstained
stained
specimen
Prior art date
Application number
PCT/JP2022/006842
Other languages
English (en)
French (fr)
Inventor
咲湖 安川
典之 岸井
和博 中川
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to DE112022003308.8T priority Critical patent/DE112022003308T5/de
Priority to JP2023531381A priority patent/JPWO2023276254A1/ja
Publication of WO2023276254A1 publication Critical patent/WO2023276254A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology

Definitions

  • the present disclosure relates to an information processing device, a microscope system, and an information processing method.
  • Patent Document 1 discloses a method for detecting positive cells in a stained tissue specimen. According to the detection method of Patent Document 1, a region stained with a detection threshold value or more is detected with respect to a standardized image of a stained tissue specimen, and the number of positive cell images selected from the detected region and the coordinates of the center of gravity are Recorded.
  • the positive threshold may be determined or adjusted based on the user's subjectivity.
  • the detection method disclosed in the above-mentioned Patent Document 1 uses only the image of the stained section as input data for analysis, and detects the detected cell image while gradually changing the detection threshold. Therefore, in the detection method of Patent Document 1, for example, when the number of cells is extremely small or large, or when the background noise is large, sufficient detection accuracy cannot be guaranteed.
  • the present disclosure provides techniques that are advantageous for determining positivity thresholds used in analyzing fluorescence spectra of stained specimens.
  • the fluorescent spectrum of the stained specimen obtained by irradiating the fluorescently stained specimen obtained by labeling the specimen with a fluorescent reagent with excitation light is obtained using the fluorescence reference spectrum and the autofluorescence reference spectrum. Acquired by irradiating excitation light to a first separation unit that separates a stained fluorescent component image containing a reagent and a stained autofluorescent component image containing an autofluorescent component, and a fluorescent unstained specimen that is not labeled with a fluorescent reagent.
  • a second separating unit that separates the unstained sample fluorescence spectrum into an unstained fluorescent component image containing the fluorescent reagent and an unstained autofluorescent component image containing the autofluorescent component using the fluorescent reference spectrum and the autofluorescent reference spectrum; , a positive threshold to be compared with image data of a plurality of image sections included in the stained fluorescent component image, based on the unstained fluorescent component image, and whether each of the plurality of image sections corresponds to a positive cell image and a threshold output unit for outputting the positive threshold.
  • the first separation unit generates a pseudo-stained fluorescence spectrum based on the stained fluorescence component image and the fluorescence reference spectrum, generates a pseudo-stained autofluorescence spectrum based on the stained autofluorescence component image and the autofluorescence reference spectrum, and creates a pseudo generating a pseudo-stained specimen fluorescence spectrum based on the stained fluorescence spectrum and the pseudo-stained autofluorescence spectrum, generating a differentially stained specimen fluorescence spectrum based on the difference between the stained specimen fluorescence spectrum and the pseudo-stained specimen fluorescence spectrum, and differentially staining
  • the sample fluorescence spectrum is separated into a differentially stained fluorescent component image containing the fluorescent reagent and a differentially stained autofluorescent component image containing the autofluorescent component, and the second separation unit generating a pseudo-unstained fluorescence spectrum based on the unstained fluorescence component image and the fluorescence reference spectrum; generating a pseudo-
  • the first separation unit generates a pseudo-stained fluorescence spectrum based on the stained fluorescence component image and the fluorescence reference spectrum, generates a pseudo-stained autofluorescence spectrum based on the stained autofluorescence component image and the autofluorescence reference spectrum, and creates a pseudo generating a pseudo-stained specimen fluorescence spectrum based on the stained fluorescence spectrum and the pseudo-stained autofluorescence spectrum; generating a differentially stained specimen fluorescence spectrum based on the difference between the stained specimen fluorescence spectrum and the pseudo-stained specimen fluorescence spectrum; The separation unit generates a pseudo-unstained fluorescence spectrum based on the unstained fluorescence component image and the fluorescence reference spectrum, and generates a pseudo-unstained autofluorescence spectrum based on the unstained autofluorescence component image and the autofluorescence reference spectrum.
  • a fluorescence spectrum may be generated, and the threshold determination unit may correct the positive threshold based on the differentially stained specimen fluorescence spectrum and the differentially unstained specimen fluorescence spectrum.
  • the second separation unit generates a pseudo-unstained fluorescence spectrum based on the unstained fluorescence component image and the fluorescence reference spectrum, and generates a pseudo-unstained autofluorescence spectrum based on the unstained autofluorescence component image and the autofluorescence reference spectrum.
  • a stained sample fluorescence spectrum is generated, differential unstained norm data that is norm data of the differential unstained sample fluorescence spectrum is generated, and a threshold determination unit analyzes the differential unstained norm data to obtain outlier data,
  • the unstained fluorescent component image may be corrected based on the value data and a positive threshold determined based on the corrected unstained fluorescent component image.
  • the threshold determination unit may correct the positive threshold based on a correction value predetermined according to the fluorescent reagent.
  • the threshold determination unit may acquire the correction value from the correction data storage unit that stores the reagent identification information and the correction value in association with each other based on the reagent identification information associated with the fluorescent reagent.
  • the threshold determination unit may correct the positive threshold based on a correction value predetermined according to the combination of the fluorescent reagent and the labeling target with the fluorescent reagent.
  • the threshold determination unit stores the labeling target identification information, the reagent identification information, and the correction value in association with each other based on the labeling target identification information associated with the specimen and the reagent identification information associated with the fluorescent reagent.
  • the correction value may be obtained from.
  • the threshold determination unit may determine a positive threshold for each of a plurality of observation regions determined by segmenting the stained fluorescence component image.
  • the threshold determination unit may determine a positive threshold for each of a plurality of observation areas defined by the user.
  • the threshold determination unit may determine a plurality of observation regions by identifying noise components contained in the fluorescence spectrum of the stained specimen and dividing the stained fluorescence component image according to the noise components.
  • the threshold determination unit may determine the correctable range of the positive threshold, and the threshold output unit may output information indicating the positive threshold and the correctable range.
  • Another aspect of the present disclosure includes a light irradiation unit that emits excitation light that excites a fluorescent reagent, an imaging device that captures a sample irradiated with the excitation light to obtain a sample fluorescence spectrum, and an analysis of the sample fluorescence spectrum.
  • the information processing device converts the fluorescence spectrum of the stained specimen obtained by irradiating the fluorescently stained specimen obtained by labeling the specimen with a fluorescent reagent with excitation light into the fluorescence reference spectrum and the autologous
  • a first separation section for separating into a stained fluorescent component image containing a fluorescent reagent and a stained autofluorescent component image containing an autofluorescent component using a fluorescence reference spectrum;
  • An unstained specimen fluorescence spectrum obtained by irradiating light is used as a fluorescence reference spectrum and an autofluorescence reference spectrum to form an unstained fluorescence component image containing a fluorescent reagent and an unstained autofluorescence component image containing an autofluorescence component.
  • the present invention relates to a microscope system having a threshold determination unit that determines a positive threshold that is a criterion for determining whether or not the image corresponds to a cell image.
  • the microscope system may include a presentation information generation unit that generates presentation information that is displayed on the display unit and includes threshold information that indicates a positive threshold.
  • the threshold determination unit may determine the correctable range of the positive threshold, and the presentation information may include correctable range information indicating the correctable range.
  • the microscope system may include an analysis unit that performs analysis based on the positive threshold.
  • Another aspect of the present disclosure is to obtain a stained specimen fluorescence spectrum obtained by irradiating a fluorescently stained specimen obtained by labeling a specimen with a fluorescent reagent with excitation light, using a fluorescence reference spectrum and an autofluorescence reference spectrum, A step of separating into a stained fluorescent component image containing a fluorescent reagent and a stained autofluorescent component image containing an autofluorescent component; separating a sample fluorescence spectrum into an unstained fluorescent component image containing a fluorescent reagent and an unstained autofluorescent component image containing an autofluorescent component using a fluorescent reference spectrum and an autofluorescent reference spectrum; A positive threshold to be compared with image data of a plurality of image sections included in the stained fluorescence component image based on the image, and a criterion for determining whether each of the plurality of image sections corresponds to a positive cell image.
  • the present invention relates to an information processing method including the steps of determining a positive threshold and outputting the positive threshold.
  • FIG. 1 is a block diagram showing a configuration example of an information processing system.
  • FIG. 2A is a specific example of a fluorescence spectrum acquired by the fluorescence signal acquiring section.
  • FIG. 2B is a specific example of a fluorescence spectrum acquired by the fluorescence signal acquiring section.
  • FIG. 2C is a specific example of the fluorescence spectrum acquired by the fluorescence signal acquiring section.
  • FIG. 2D is a specific example of a fluorescence spectrum acquired by the fluorescence signal acquiring section.
  • FIG. 3 is a diagram illustrating an example of a method for generating a coupled fluorescence spectrum by a coupling portion.
  • FIG. 3 is a diagram illustrating an example of a method for generating a coupled fluorescence spectrum by a coupling portion.
  • FIG. 4 is a diagram showing an example of a concatenated fluorescence spectrum generated from the fluorescence spectra shown in "A" to "D" in FIG.
  • FIG. 5 is a diagram explaining an outline of an example of NMF.
  • FIG. 6 is a diagram explaining an overview of an example of clustering.
  • FIG. 7 is a diagram illustrating an example of a functional configuration for determining a positive threshold in an information processing apparatus;
  • FIG. 8 is a diagram showing an example of image spectrum data obtained by the information processing apparatus.
  • FIG. 9 is a flowchart showing an example of image processing (in particular, image processing based on the fluorescence spectrum of a stained specimen) performed in the information processing apparatus.
  • FIG. 10 is a flowchart showing an example of image processing (particularly, image processing based on an unstained specimen fluorescence spectrum) performed in the information processing apparatus.
  • FIG. 11 is a diagram showing the concept of an example of a dyed autofluorescence component image.
  • FIG. 12 is a conceptual diagram of an example of an autofluorescence reference spectrum.
  • FIG. 13 is a diagram showing a concept of an example of computation for calculating a pseudo-stained autofluorescence spectrum from a stained autofluorescence component image and an autofluorescence reference spectrum.
  • FIG. 14 shows an example of histograms of stained fluorescent component images and unstained fluorescent component images.
  • FIG. 15 is a diagram showing an example of a differential unstained norm image.
  • FIG. 11 is a diagram showing the concept of an example of a dyed autofluorescence component image.
  • FIG. 12 is a conceptual diagram of an example of an autofluorescence reference spectrum.
  • FIG. 13 is a diagram showing a concept of an example of computation for
  • FIG. 16 is a diagram showing an example of an area showing an outlier in a differential unstained norm image.
  • FIG. 17 is a diagram showing an example of an outlier region in an unstained fluorescence component image.
  • FIG. 18 shows an example of a histogram of an unstained fluorescence component image.
  • FIG. 19 shows an example of a histogram of an unstained fluorescent component image after correction based on outlier data.
  • FIG. 20 shows an example of display of image information on the display unit.
  • FIG. 21 shows an example of display of image information on the display unit.
  • FIG. 22 shows an example of display of image information on the display unit.
  • FIG. 23 shows an example of correction values stored in the correction data storage unit.
  • FIG. 24 shows an example of correction values stored in the correction data storage unit.
  • FIG. 25 is a block diagram showing a configuration example of a microscope system.
  • FIG. 26 is a schematic diagram for explaining an example of a method for calculating the number of fluorescent molecules or the number of antibodies in one pixel.
  • FIG. 27 is a block diagram illustrating a hardware configuration example of an information processing apparatus;
  • the information processing system shown in FIG. 1 includes an information processing device 100 and a database 200 .
  • Fluorescent reagent 10 is a chemical used for staining specimen 20 .
  • the fluorescent reagent 10 is, for example, a fluorescent antibody (including a primary antibody used for direct labeling or a secondary antibody used for indirect labeling), a fluorescent probe, or a nuclear staining reagent. The types are not limited to these.
  • the fluorescent reagent 10 is managed with identification information (hereinafter referred to as “reagent identification information 11”) that can identify the fluorescent reagent 10 or the production lot of the fluorescent reagent 10 .
  • the reagent identification information 11 is, for example, barcode information (one-dimensional barcode information, two-dimensional barcode information, etc.), but is not limited to this.
  • the properties of the fluorescent reagent 10 differ from production lot to production lot, even if the product is the same product, depending on the production method, the state of the cells from which the antibody was obtained, and the like.
  • the spectrum, quantum yield, fluorescence labeling rate, etc. differ for each manufacturing lot. Therefore, in the information processing system according to the present embodiment, the fluorescent reagent 10 is attached with the reagent identification information 11 and managed for each manufacturing lot. Accordingly, the information processing apparatus 100 can perform fluorescence separation in consideration of slight differences in properties that appear in each manufacturing lot.
  • the specimen 20 is prepared from a specimen or tissue sample collected from a human body for the purpose of pathological diagnosis or the like. Specimens 20 may be tissue sections, cells or microparticles. Regarding the specimen 20, the type of tissue used (organs, etc.), the type of target disease, the attributes of the subject (age, sex, blood type, race, etc.), or the subject's lifestyle (eating habits, exercise habits, and smoking habits, etc.) are not limited.
  • the tissue section includes, for example, a tissue section to be stained (hereinafter simply referred to as "section") before staining, a section adjacent to the stained section, and the same block (sampling from the same place as the stained section) Sections different from the stained sections in the 1980's) may be included.
  • Tissue sections can also include sections from different blocks of the same tissue (sampled from different locations than the stained sections), sections taken from different patients, and the like.
  • the specimen 20 is managed with identification information that can identify the specimen 20 (hereinafter referred to as "specimen identification information 21").
  • the specimen identification information 21 is, for example, barcode information (one-dimensional barcode information, two-dimensional barcode information, etc.), but is not limited to this.
  • the properties of the specimen 20 differ depending on the type of tissue used, the type of target disease, the subject's attributes, the subject's lifestyle, and the like.
  • the measurement channels, spectra, etc. differ depending on the type of tissue used.
  • specimens 20 are individually managed by attaching specimen identification information 21 thereto. Accordingly, the information processing apparatus 100 can perform fluorescence separation in consideration of slight differences in properties that appear in each specimen 20 .
  • the fluorescently stained specimen 30 is made by staining the specimen 20 with the fluorescent reagent 10 .
  • the fluorescently stained specimen 30 is obtained by staining the specimen 20 with one or more fluorescent reagents 10 .
  • the number of fluorescent reagents 10 used for staining the specimen 20 is not limited.
  • the staining method is determined by the combination of specimen 20 and fluorescent reagent 10, but is not particularly limited.
  • the specimen 20 is used as it is as a fluorescent unstained specimen without being stained with the fluorescent reagent 10. sell.
  • the information processing apparatus 100 includes an acquisition unit 110, a storage unit 120, a processing unit 130, a display unit 140, a control unit 150, and an operation unit 160, as shown in FIG.
  • the information processing device 100 can be configured by, for example, a fluorescence microscope system, but is not necessarily limited to this, and can include various devices.
  • the information processing apparatus 100 may be configured by, for example, a PC (Personal Computer).
  • Acquisition unit 110 acquires information used for various processes of information processing apparatus 100 .
  • the acquisition unit 110 shown in FIG. 1 includes an information acquisition unit 111 and a fluorescence signal acquisition unit 112 .
  • the information acquisition unit 111 acquires information on the fluorescent reagent 10 (hereinafter referred to as “reagent information”) and information on the specimen 20 (hereinafter referred to as “specimen information”). More specifically, the information acquisition unit 111 obtains the reagent identification information 11 attached to the fluorescent reagent 10 used to generate the fluorescently stained specimen 30 and the Specimen identification information 21 attached to the specimen 20 that has been processed is acquired. For example, the information acquisition unit 111 acquires the reagent identification information 11 and the specimen identification information 21 attached to the fluorescent reagent 10 and the specimen 20 as barcode information using a barcode reader or the like.
  • the information acquisition unit 111 acquires reagent information from the database 200 based on the reagent identification information 11 and sample information from the database 200 based on the sample identification information 21 .
  • the information acquisition unit 111 stores the acquired information in the information storage unit 121, which will be described later.
  • the sample information includes the concatenated autofluorescence reference spectrum
  • the reagent information includes the concatenated fluorescence reference spectrum.
  • the concatenated autofluorescence reference spectrum is obtained by concatenating the spectra of the autofluorescent substances in the specimen 20 in the wavelength direction.
  • the concatenated fluorescence reference spectrum is obtained by concatenating the spectra of the fluorescent substances in the fluorescence-stained specimen 30 in the wavelength direction.
  • the concatenated autofluorescence reference spectrum and the concatenated fluorescence reference spectrum are also simply referred to as the “autofluorescence reference spectrum” and the “fluorescence reference spectrum” respectively, and the concatenated autofluorescence reference spectrum and the concatenated fluorescence reference spectrum are collectively referred to as the “reference spectrum”.
  • the database 200 is a device that manages information such as reagent information and sample information. More specifically, the database 200 associates and manages the reagent identification information 11 and reagent information, and associates and manages the specimen identification information 21 and specimen information.
  • the information acquisition unit 111 can acquire reagent information from the database 200 based on the reagent identification information 11 of the fluorescent reagent 10, and can acquire specimen information from the database 200 based on the specimen identification information 21 of the specimen 20. .
  • the database 200 shown in FIG. 1 is connected to the information processing apparatus 100 (particularly, the acquisition unit 110 (information acquisition unit 111)) via a network.
  • the reagent information managed by the database 200 is assumed to be information including the fluorescent substance-specific measurement channel and fluorescence reference spectrum of the fluorescent reagent 10, but is not necessarily limited to these.
  • a “measurement channel” is a concept indicating a fluorescent substance contained in the fluorescent reagent 10 . Since the number of fluorescent substances varies depending on the fluorescent reagent 10, the measurement channel is linked to each fluorescent reagent 10 as reagent information and managed. Also, the fluorescence reference spectrum included in the reagent information is the fluorescence spectrum of each fluorescent substance included in the measurement channel.
  • the specimen information managed by the database 200 is assumed to be information including the autofluorescent substance-specific measurement channel and the autofluorescence reference spectrum of the specimen 20, but is not necessarily limited to this information.
  • a “measurement channel” is a concept indicating an autofluorescent substance contained in the specimen 20, and for example, a concept indicating Hemoglobin, Archidonic Acid, Catalase, Collagen, FAD, NADPH, and ProLongDiamond. Since the number of autofluorescent substances varies depending on the specimen 20, the measurement channel is linked to each specimen 20 as specimen information and managed. Also, the autofluorescence reference spectrum included in the specimen information is the autofluorescence spectrum of each autofluorescent substance included in the measurement channel. Information managed by the database 200 is not necessarily limited to the above information.
  • the fluorescence signal acquisition unit 112 acquires a plurality of fluorescence signals obtained by irradiating the fluorescence-stained specimen 30 with a plurality of excitation lights having different wavelengths (that is, a plurality of fluorescence signals corresponding to the plurality of excitation lights). More specifically, the fluorescence signal acquisition unit 112 receives light from the fluorescence-stained specimen 30 and outputs a detection signal corresponding to the amount of light received, thereby detecting the fluorescence of the fluorescence-stained specimen 30 based on the detection signal. Acquire the spectrum.
  • the properties of the excitation light are determined based on reagent information and the like (that is, information on the fluorescent reagent 10 and the like).
  • the fluorescence signal referred to here is not particularly limited as long as it is a signal derived from fluorescence, and may be, for example, a fluorescence spectrum.
  • the fluorescence signal acquisition unit 112 can acquire a plurality of fluorescence signals (fluorescence spectra) regarding the fluorescence-unstained specimen by irradiating the fluorescence-unstained specimen with a plurality of excitation lights in a similar manner.
  • FIGS. 2A to 2D are specific examples of fluorescence spectra acquired by the fluorescence signal acquisition unit 112.
  • FIG. The fluorescently stained specimen 30 with respect to FIGS. 2A-2D contains four fluorophores: DAPI, CK/AF488, PgR/AF594, and ER/AF647.
  • Excitation light with excitation wavelengths of 392 [nm] (Fig. 2A), 470 [nm] (Fig. 2B), 549 [nm] (Fig. 2C), and 628 [nm] (Fig. 2D) for each fluorescent substance is fluorescent staining. Examples of fluorescence spectra obtained by irradiating the sample 30 are shown in FIGS. 2A-2D.
  • the fluorescence signal acquisition unit 112 stores the acquired fluorescence spectrum in the fluorescence signal storage unit 122 (see FIG. 1), which will be described later.
  • the storage unit 120 shown in FIG. 1 stores information used for various processes of the information processing apparatus 100 or information output by various processes.
  • the storage unit 120 of the present embodiment includes an information storage unit 121 and a fluorescence signal storage unit 122, as shown in FIG.
  • the information storage unit 121 stores reagent information and sample information acquired by the information acquisition unit 111 .
  • the fluorescence signal storage unit 122 stores the fluorescence signal of the fluorescence-stained specimen 30 acquired by the fluorescence signal acquisition unit 112 .
  • the fluorescence signal storage unit 122 also stores the fluorescence signal of the fluorescence unstained specimen acquired by the fluorescence signal acquisition unit 112 .
  • the processing unit 130 performs various types of processing including fluorescence separation processing (that is, color separation processing). As shown in FIG. 1 , the processing unit 130 includes a connecting unit 131 , a separation processing unit 132 and an image generation unit 133 .
  • the concatenating unit 131 concatenates at least part of the plurality of fluorescence spectra acquired by the fluorescence signal acquisition unit 112 (that is, the plurality of fluorescence spectra stored in the fluorescence signal storage unit 122) in the wavelength direction to obtain a concatenated fluorescence spectrum. to generate For example, for each of the four fluorescence spectra (see symbols “A” to “D” in FIG. 3) acquired by the fluorescence signal acquisition unit 112, the linking unit 131 has a predetermined width so as to include the maximum value of the fluorescence intensity. Data are extracted from each fluorescence spectrum.
  • the width of the wavelength band from which the connecting unit 131 extracts data may be determined based on the reagent information, the excitation wavelength, the fluorescence wavelength, etc., and may differ for each fluorescent substance. That is, the width of the wavelength band from which the connecting part 131 extracts data may differ among the fluorescence spectra shown in "A" to "D” in FIG.
  • the connecting unit 131 generates one connected fluorescence spectrum by connecting the extracted data in the wavelength direction, as indicated by "E” in FIG. Note that since the concatenated fluorescence spectrum is composed of data extracted from a plurality of fluorescence spectra, the wavelengths are not necessarily continuous at the boundaries between the concatenated data.
  • connection unit 131 of the present embodiment After aligning the intensity of the excitation light corresponding to each of the plurality of fluorescence spectra (in other words, after correcting the plurality of fluorescence spectra based on the intensity of the excitation light), the connection unit 131 of the present embodiment provides the plurality of fluorescence spectra are concatenated in the wavelength direction. More specifically, the coupling unit 131 divides each fluorescence spectrum by the excitation power density indicating the intensity of the excitation light, thereby aligning the intensity of the excitation light corresponding to each of the plurality of fluorescence spectra, and then dividing the plurality of fluorescence spectra. Concatenate spectra.
  • the fluorescence spectrum obtained when the fluorescence-stained specimen 30 is irradiated with excitation light of the same intensity is obtained.
  • the intensity of the irradiated excitation light differs, the intensity of the spectrum absorbed by the fluorescence-stained specimen 30 (hereinafter referred to as "absorption spectrum”) also differs according to the intensity of the excitation light. Therefore, by aligning the intensity of the excitation light corresponding to each of the plurality of fluorescence spectra as described above, it is possible to appropriately evaluate the absorption spectra.
  • the intensity of pumping light in this description may be pumping power or pumping power density, as described above.
  • the excitation power or excitation power density may be the power or power density obtained by actually measuring the excitation light emitted from the light source, or the power or power density obtained from the driving voltage applied to the light source.
  • the intensity of the excitation light in this description refers to the excitation power density, the absorption rate of the section to be observed for each excitation light, and the detection signal in a detection system (fluorescence signal acquisition unit, etc.) that detects the fluorescence emitted from the section. It may be a value obtained by correcting using the amplification factor of .
  • the intensity of the excitation light in this description may be the power density of the excitation light that actually contributes to the excitation of the fluorescent substance, or a value obtained by correcting the power density with the amplification factor of the detection system.
  • the absorption rate and amplification factor it is possible to appropriately correct the intensity of the excitation light, which changes according to changes in the machine state and environment.
  • a fluorescence spectrum can be generated.
  • the correction value based on the intensity of the excitation light for each fluorescence spectrum is not limited to a value for aligning the intensity of the excitation light corresponding to each of the plurality of fluorescence spectra, and various may be changed.
  • the signal intensity of a fluorescence spectrum that has an intensity peak on the long wavelength side also referred to as a "long wavelength peak fluorescence spectrum”
  • the long wavelength side peak fluorescence spectrum is hardly taken into consideration, and the short wavelength side peak fluorescence spectrum is mainly extracted.
  • the intensity correction value for the long-wavelength side peak fluorescence spectrum to a larger value, it is possible to improve the separation accuracy of the short-wavelength side peak fluorescence spectrum.
  • the connecting unit 131 may correct the wavelength resolution of each of the plurality of fluorescent spectra to be connected independently of the other fluorescent spectra.
  • the fluorescence spectrum of AF546 and the fluorescence spectrum of AF555 have almost the same spectral shape and peak wavelength. The two are different in that the fluorescence spectrum of AF555 has a shoulder on the high-wavelength side, whereas the fluorescence spectrum of AF546 does not have such a shoulder.
  • a problem arises in that it becomes difficult to color-separate the two by spectral extraction.
  • Such problems may be solved by increasing the wavelength resolution of the concatenated fluorescence spectrum. This indicates that even when using a plurality of fluorescence spectra with similar spectral shapes and peak wavelengths, it is possible to perform color separation using them by increasing the wavelength resolution.
  • the linking unit 131 corrects the fluorescence spectrum, which is assumed to be difficult to color-separate, among the plurality of linked fluorescence spectra so that the wavelength resolution is increased, and it is assumed that the color-separation is easy.
  • the fluorescence spectrum obtained is corrected so that its wavelength resolution is low. As a result, it is possible to improve the accuracy of color separation while suppressing an increase in the amount of data.
  • FIG. 4 is a diagram showing an example of a concatenated fluorescence spectrum generated from the fluorescence spectra shown in "A" to “D” in FIG.
  • the connection unit 131 extracts a fluorescence spectrum SP1 in a wavelength band of excitation wavelengths from 392 nm to 591 nm from the fluorescence spectrum indicated by "A” in FIG. Further, the connection unit 131 extracts the fluorescence spectrum SP2 in the wavelength band of the excitation wavelength of 470 nm or more and 669 nm or less from the fluorescence spectrum shown in "B" of FIG.
  • connection unit 131 extracts the fluorescence spectrum SP3 in the wavelength band of the excitation wavelength of 549 nm or more and 748 nm or less from the fluorescence spectrum shown in "C” of FIG. Further, the connection unit 131 extracts the fluorescence spectrum SP4 in the wavelength band of the excitation wavelength of 628 nm or more and 827 nm or less from the fluorescence spectrum indicated by "D" in FIG. Next, the connecting unit 131 corrects the wavelength resolution of the extracted fluorescence spectrum SP1 to 16 nm (no intensity correction), corrects the intensity of the fluorescence spectrum SP2 to 1.2 times, and corrects the wavelength resolution to 8 nm.
  • the connecting unit 131 corrects the intensity of the fluorescence spectrum SP3 to 1.5 times (no wavelength resolution correction), corrects the intensity of the fluorescence spectrum SP4 to 4.0 times, and corrects the wavelength resolution to 4 nm.
  • the linking unit 131 then links the corrected fluorescence spectra SP1 to SP4 in order to generate the linked fluorescence spectrum shown in FIG.
  • the separation processing unit 132 shown in FIG. 1 performs color separation processing on the fluorescence signal (that is, the fluorescence spectrum of the stained sample) of the fluorescently stained sample 30 acquired by the fluorescence signal storage unit 122 .
  • the separation processing unit 132 also performs color separation processing on the fluorescence signal of the unstained fluorescent specimen (that is, the fluorescence spectrum of the unstained specimen).
  • a stained fluorescence component image created by extracting the fluorescence image of the fluorescent reagent from the fluorescence signal of the fluorescently stained specimen 30, and a stained autofluorescence component image created by extracting the fluorescence image of the autofluorescence component. are derived as separate images.
  • an unstained fluorescence component image created by extracting the fluorescence image of the fluorescent reagent from the fluorescence signal of the unstained fluorescent specimen and an unstained autofluorescence component image created by extracting the fluorescence image of the autofluorescence component. , are derived as separate images.
  • the least squares method (LSM) or the weighted least squares method (WLSM) may be used for the color separation process.
  • LSM least squares method
  • WLSM weighted least squares method
  • NMF non-negative matrix factorization
  • SMD singular value decomposition
  • PCA principal component analysis
  • the least-squares method is a calculation method that calculates the color mixture rate by fitting a reference spectrum to the fluorescence spectrum, which is the pixel value of each pixel in the input sample fluorescence spectrum (for example, the stained sample fluorescence spectrum (stained sample image)).
  • the color mixing ratio is an index indicating the degree of mixing of each substance.
  • the following formula (1) is a formula representing the residual obtained by subtracting the reference spectrum St (fluorescence reference spectrum and autofluorescence reference spectrum) from the fluorescence spectrum (Signal) at a color mixing rate a. .
  • Signal is a matrix representing one or more fluorescence spectra.
  • St number of substances ⁇ number of channels
  • a (1 ⁇ the number of substances) indicates that the color mixing ratio a is provided for each substance (fluorescent substance and self-fluorescent substance).
  • a is a matrix representing the color mixing rate of each reference spectrum in the fluorescence spectrum.
  • the separation processing unit 132 calculates the color mixture ratio a of each substance that minimizes the sum of squares of the equation (1) representing the residual.
  • the sum of squares of the residuals is minimized when the result of partial differentiation with respect to the color mixture rate a is 0 for the equation (1) representing the residuals. Therefore, the separation processing unit 132 solves the following equation (2) to calculate the color mixture ratio a of each substance that minimizes the sum of squares of the residuals.
  • St' in Equation (2) indicates the transposed matrix of the reference spectrum St.
  • inv(St*St') indicates the inverse matrix of St*St'.
  • the separation processing unit 132 may extract the spectrum for each fluorescent substance from the fluorescence spectrum by performing calculations related to the weighted least squares method instead of the least squares method.
  • the noise of the fluorescence spectrum (Signal), which is the measured value, has a Poisson distribution, and is weighted so as to emphasize the error of the low signal level.
  • the offset value is the upper limit value that is not weighted by the weighted least squares method. The offset value is determined by the characteristics of the sensor used for measurement, and requires separate optimization when an imaging device is used as the sensor.
  • NMF About non-negative matrix factorization
  • NMF Non-negative matrix factorization
  • SMD singular value decomposition
  • PCA principal component analysis
  • FIG. 5 is a diagram explaining the outline of NMF.
  • NMF divides a non-negative N-by-M (N ⁇ M) matrix A into a non-negative N-by-k (N ⁇ k) matrix W and a non-negative k-by-M (k ⁇ M) matrix H.
  • the matrix W and the matrix H are determined so that the mean square residual D between the matrix A and the product (W*H) of the matrix W and the matrix H is minimized.
  • matrix A corresponds to the spectrum (N is the number of pixels and M is the number of wavelength channels) before the autofluorescence reference spectrum is extracted.
  • the matrix H corresponds to the extracted autofluorescence reference spectra (k is the number of autofluorescence reference spectra (in other words, the number of autofluorescent substances); M is the number of wavelength channels).
  • the mean squared residual D is represented by the following equation (10). Note that “norm(D, 'fro')” refers to the Frobenius norm of the mean squared residual D.
  • Factorization in NMF uses an iterative method starting with random initial values for matrix W and matrix H.
  • the value of k (the number of autofluorescence reference spectra) is essential in NMF, but the initial values of matrix W and matrix H are not essential and can be set as options, and the initial values of matrix W and matrix H are set Then the solution is constant. On the other hand, if the initial values of matrix W and matrix H are not set, these initial values are set at random and the solution is not constant.
  • the properties of the specimen 20 differ depending on the type of tissue used, the type of target disease, the subject's attributes, the subject's lifestyle, etc., and the autofluorescence spectrum also differs. Therefore, the information processing apparatus 100 can actually measure the autofluorescence reference spectrum for each specimen 20 as described above, thereby realizing more accurate color separation processing.
  • clustering for example, among stained images, spectra that are similar in the wavelength direction and intensity direction are classified into the same class. As a result, an image having a smaller number of pixels than the stained image is generated, so it is possible to reduce the size of the matrix A' using this image as an input.
  • the image generation unit 133 shown in FIG. 1 generates image information based on the image spectrum data (including the dyed fluorescence component image) obtained as a result of a series of processing (including color separation processing for the fluorescence spectrum) in the separation processing unit 132. Generate. For example, the image generator 133 generates image information using fluorescence spectra corresponding to one or more fluorescent substances, or generates image information using autofluorescence spectra corresponding to one or more autofluorescent substances. can be generated. Note that the number and combination of fluorescent substances (molecules) or autofluorescent substances (molecules) used by the image generation unit 133 to generate image information are not particularly limited. Further, when various processes (for example, segmentation, S/N value calculation, etc.) using the separated fluorescence spectrum or autofluorescence spectrum are performed, the image generation unit 133 generates image information indicating the results of the various processes. may
  • Display unit 140 presents the image information to the practitioner (user) by displaying the image information generated by the image generation unit 133 on the display.
  • the type of display used as display unit 140 is not particularly limited.
  • the image information generated by the image generation unit 133 is presented to the practitioner by being projected by the projector (display unit 140) or printed by the printer (display unit 140). may In other words, the method of outputting image information is not particularly limited.
  • the operation unit 160 receives an operation input from a practitioner (user). More specifically, the operation unit 160 includes various input means such as a keyboard, a mouse, buttons, a touch panel, and/or a microphone. It can be carried out. Information about the input made through the operation unit 160 is provided to the control unit 150 .
  • the control unit 150 is a functional configuration that controls overall processing performed by the information processing apparatus 100 .
  • the control unit 150 controls the start and end of various processes as described above, based on an operation input by the operator through the operation unit 160 .
  • the various processes include, for example, a process of adjusting the placement position of the fluorescently stained specimen 30, a process of irradiating the fluorescently stained specimen 30 with excitation light, a process of obtaining a spectrum, a process of generating an autofluorescent component corrected image, a color separation process, and image information. generation processing, image information display processing, and the like.
  • the control content of the control part 150 is not specifically limited.
  • the control unit 150 may control processing generally performed in a general-purpose computer, PC, tablet PC, or the like (for example, processing related to an OS (Operating System)).
  • the above system configuration described with reference to FIG. 1 is merely an example, and the configuration of the above information processing system is not limited to the above example.
  • the information processing apparatus 100 may not necessarily include all of the configurations shown in FIG. 1, and may include configurations not shown in FIG.
  • the separation processing unit 132 performs color separation processing to divide the fluorescence spectrum of the stained specimen into a stained fluorescence component image containing a fluorescent reagent and a stained autofluorescence component image containing an autofluorescence component. separate into As a result, it is possible to effectively separate the fluorescent signal derived from the autofluorescent substance, which is a problem in the photographed image of the fluorescently-stained specimen, from the fluorescent signal derived from the fluorescent substance to be analyzed.
  • each image section corresponds to a positive cell image.
  • Each of the plurality of image sections referred to here may be composed of individual pixels constituting the stained fluorescence component image, or may be composed of a set of two or more pixels.
  • a positive threshold which is a criterion for determining whether each image section corresponds to a positive cell image.
  • FIG. 7 is a diagram showing an example of a functional configuration for determining a positive threshold in the information processing device 100.
  • FIG. 8 is a diagram showing an example of image spectral data obtained by the information processing apparatus 100.
  • FIG. 9 is a flowchart showing an example of image processing (in particular, image processing based on the fluorescence spectrum of a stained specimen) performed in the information processing apparatus 100.
  • FIG. 10 is a flowchart showing an example of image processing (particularly, image processing based on an unstained specimen fluorescence spectrum) performed in the information processing apparatus 100.
  • FIG. 10 is a flowchart showing an example of image processing (particularly, image processing based on an unstained specimen fluorescence spectrum) performed in the information processing apparatus 100.
  • the separation processing unit 132 shown in FIG. 7 includes a separation unit 40, a threshold determination unit 43, and a separation output unit 44.
  • the separation unit 40 acquires the fluorescence spectra D1 and D21 acquired by irradiating the specimen with the excitation light and the reference spectra R1 and R2 (S11 and S12 in FIG. 9; S21 and S22 in FIG. 10).
  • the specimens handled here may include not only the fluorescently stained specimen 30 obtained by labeling the specimen with a fluorescent reagent, but also the fluorescent non-stained specimen that is not labeled with a fluorescent reagent.
  • a fluorescence spectrum obtained by imaging a fluorescently stained specimen irradiated with excitation light is referred to as a stained specimen fluorescence spectrum D1 (see FIG. 8).
  • the fluorescence spectrum obtained by imaging the fluorescent unstained specimen irradiated with the excitation light is called the unstained specimen fluorescence spectrum D21.
  • the reference spectrum includes the fluorescence reference spectrum R1 that refers to the original spectrum of the fluorescent reagent 10 and the autofluorescence reference spectrum R2 that refers to the original spectrum of the autofluorescent substance of the specimen 20.
  • the separation unit 40 acquires these stained specimen fluorescence spectrum D1, unstained specimen fluorescence spectrum D21, fluorescence reference spectrum R1, and autofluorescence reference spectrum R2.
  • the separation unit 40 of this example acquires the stained specimen fluorescence spectrum D1 and the unstained specimen fluorescence spectrum D21 generated as the connected fluorescence spectrum by the above-described connection unit 131 (see FIG. 1). Therefore, the separation unit 40 may directly acquire the stained specimen fluorescence spectrum D1 and the unstained specimen fluorescence spectrum D21 from the connecting unit 131 . Alternatively, when the connecting unit 131 stores the stained specimen fluorescence spectrum D1 and the unstained specimen fluorescence spectrum D21 in the storage unit 120 shown in FIG. A fluorescence spectrum D21 may be acquired.
  • the separation unit 40 also acquires the fluorescence reference spectrum R1 and the autofluorescence reference spectrum R2 from the storage unit 120 (specifically, the information storage unit 121) shown in FIG.
  • the separation unit 40 separates the fluorescence spectra D1 and D21 into a fluorescence component image and an autofluorescence component image (color separation processes P1 and P11 in FIG. 8; S13 in FIG. 9; 10 S23).
  • the color separation processing for the stained specimen fluorescence spectrum D1 and the color separation processing for the unstained specimen fluorescence spectrum D21 are basically performed in the same way. Therefore, the common separation unit 40 may perform color separation processing on both the stained specimen fluorescence spectrum D1 and the unstained specimen fluorescence spectrum D21. However, the first separation unit 41 may perform the color separation processing for the stained sample fluorescence spectrum D1, and the second separation unit 42 different from the first separation unit 41 may perform the color separation processing for the unstained sample fluorescence spectrum D21.
  • the stained specimen fluorescence spectrum D1 is separated into a stained fluorescent component image D2 containing a fluorescent reagent and a stained autofluorescent component image D3 containing an autofluorescent component by a color separation process P1.
  • the unstained specimen fluorescence spectrum D21 is separated into an unstained fluorescent component image D22 containing a fluorescent reagent and an unstained autofluorescent component image D23 containing an autofluorescent component by a color separation process P11.
  • the threshold determining unit 43 determines a positive threshold for the stained fluorescence component image D2 based on the image spectrum data obtained by the processing (including the color separation processing P1 and P11 described above) in the separating unit 40 ( positive threshold determination step).
  • the image spectrum data here can include the stained specimen fluorescence spectrum D1 and the unstained specimen fluorescence spectrum D21, and data derived from the stained specimen fluorescence spectrum D1 and the unstained specimen fluorescence spectrum D21.
  • the threshold determination unit 43 can perform arbitrary processing based on the image spectrum data received from the separation unit 40 to determine the positive threshold for the stained fluorescence component image D2.
  • the separation output unit 44 outputs the positive threshold determined by the threshold determination unit 43 (positive threshold output step).
  • the separation output unit 44 of this example also outputs the image spectral data obtained by the processing in the separation unit 40 along with the positive threshold. That is, the separation output unit 44 correlates the image spectrum data and the positive threshold value and outputs them.
  • the separation output unit 44 may separately include an image spectrum output unit 45 that outputs image spectrum data and a threshold output unit 46 that outputs a positive threshold.
  • the separation output unit 44 outputs the positive threshold, but does not have to output the image spectrum data.
  • the image spectral data obtained in the separation unit 40 may be sent from the separation unit 40 to the storage unit 120 (for example, the fluorescence signal storage unit 122) shown in FIG. 1 and stored.
  • the image spectrum data stored in the storage unit 120 may be appropriately read and used by other devices (for example, the analysis unit 47 and the image generation unit 133, which will be described later).
  • the output destination of the positive threshold value by the separation output unit 44 is not limited. Typically, the separation output unit 44 outputs the positive threshold to the analysis unit 47 and/or the image generation unit 133, but may output the positive threshold to other devices or functional components.
  • the analysis unit 47 performs arbitrary analysis based on the positive threshold output from the separation output unit 44 .
  • the analysis unit 47 typically analyzes the image spectrum data (for example, the stained fluorescence component image D2) based on the positive threshold.
  • the analysis unit 47 may include analysis software (application) that performs cell analysis processing such as cell counting processing.
  • the positive threshold provided from the separation output unit 44 to the analysis unit 47 can be automatically set to the positive threshold used in the analysis processing performed by the analysis unit 47.
  • the analysis unit 47 may use the positive threshold output from the separation output unit 44 as a fixed value or as an initial value. When the positive threshold output from the separation output unit 44 is used as an initial value in the analysis unit 47, the actual analysis in the analysis unit 47 can use the corrected positive threshold as necessary.
  • the analysis unit 47 described above may be provided as part of the information processing device 100 (see FIG. 1), or may be provided separately from the information processing device 100 .
  • Image generator 133 generates image information to be displayed on display 140 .
  • the image information includes presentation information based on the positive threshold, and the image generation unit 133 works as a presentation information generation unit that generates presentation information.
  • the presentation information includes threshold information indicating a positive threshold.
  • the user can confirm the positive threshold by looking at the presentation information (particularly the threshold information) displayed on the display unit 140 .
  • a specific method of generating image information in the image generation unit 133 is not limited.
  • the image generation unit 133 may generate image information (including presentation information) based on the positive threshold and the stained fluorescence component image D2 received from the separation output unit 44.
  • the image generation unit 133 may also receive the result of analysis by the analysis unit 47 and generate image information (including presentation information) based on the analysis result.
  • the image generating unit 133 shown in FIG. 1 is provided as part of the information processing device 100, the image generating unit 133 may be provided separately from the information processing device 100.
  • the display unit 140 displays the image information received from the image generation unit 133 and presents it to the user.
  • the display unit 140 may receive image information based on the analysis result of the analysis unit 47 from the analysis unit 47 and display the image information.
  • a display example of the image information on the display unit 140 will be described later (see FIGS. 20 to 22), but the display mode of the image information on the display unit 140 is not limited.
  • the display unit 140 shown in FIG. 1 is provided as a part of the information processing device 100, the display unit 140 may be provided separately from the information processing device 100.
  • the image information may be sent to a device other than the display unit 140 (for example, an analysis device or server connected via a network).
  • the image information may be used for processing in other devices (for example, analysis processing such as detection of specific cells).
  • the separation unit 40 (see FIG. 7) can perform the following processes in addition to the color separation processes P1 and P11 described above.
  • the separation unit 40 can generate the pseudo-stained fluorescence spectrum D4 based on the above-described stained fluorescence component image D2 and fluorescence reference spectrum R1 (process P2 in FIG. 8; S14 in FIG. 9). For example, the separation unit 40 can obtain a pseudo-stained fluorescence spectrum D4 as a pseudo-stained fluorescence spectrum by multiplying the stained fluorescence component image D2 by the fluorescence reference spectrum R1.
  • the separation unit 40 can also generate a pseudo-stained autofluorescence spectrum D5 based on the above-described stained autofluorescence component image D3 and autofluorescence reference spectrum R2 (process P3 in FIG. 8; S14 in FIG. 9).
  • the separation unit 40 can obtain a pseudo dyed autofluorescence spectrum D5 as a pseudo dyed autofluorescence spectrum by multiplying the dyed autofluorescence component image D3 by the autofluorescence reference spectrum R2.
  • the autofluorescence reference spectrum R2 is changed so as to be optimized for the stained specimen fluorescence spectrum D1 by NMF ( corrected).
  • NMF non-negative matrix factorization
  • the autofluorescence reference spectrum R2 stored in the storage unit 120 may be used as necessary, or after optimization correction
  • An autofluorescence reference spectrum R2 may be used.
  • the 'autofluorescence reference spectrum R2' referred to in the following description is a concept that may include not only the autofluorescence reference spectrum R2 stored in the storage unit 120 but also the autofluorescence reference spectrum R2 after optimization correction.
  • FIG. 11 is a diagram showing the concept of an example of the stained autofluorescence component image D3.
  • FIG. 12 is a conceptual diagram of an example of the autofluorescence reference spectrum R2.
  • FIG. 13 is a diagram showing the concept of an example of computation for calculating the pseudo-stained autofluorescence spectrum D5 from the stained autofluorescence component image D3 and the autofluorescence reference spectrum R2.
  • the separation unit 40 selects an unselected one (this is the stained autofluorescence component image of the autofluorescence channel CHn (n is a natural number)) from among the stained autofluorescence component images D3 (see FIG. 11).
  • the autofluorescence channel referred to here may be identification information assigned to each autofluorescence.
  • the separation unit 40 generates a pseudo-stained autofluorescence spectrum D5 from the stained autofluorescence component image of the selected autofluorescence channel CHn and the autofluorescence reference spectrum corresponding to the selected autofluorescence channel CHn.
  • the separation unit 40 may generate the stained specific channel luminance image D6 by obtaining the luminance value of the spectral data corresponding to the specific channel in the pseudo stained autofluorescence spectrum D5 (process P4 in FIG. 8).
  • the separation unit 40 can generate a pseudo-stained specimen fluorescence spectrum D7 based on the pseudo-stained fluorescence spectrum D4 and the pseudo-stained autofluorescence spectrum D5 (process P5 in FIG. 8; S15 in FIG. 9).
  • the separation unit 40 can obtain a pseudo-stained specimen fluorescence spectrum D7 by adding the pseudo-stained fluorescence spectrum D4 and the pseudo-stained autofluorescence spectrum D5.
  • the pseudo-stained specimen fluorescence spectrum D7 generated in this manner is a pseudo-stained specimen fluorescence spectrum.
  • the separation unit 40 generates a differentially stained specimen fluorescence spectrum D8 based on the difference between the stained specimen fluorescence spectrum D1 and the pseudo-stained specimen fluorescence spectrum D7 (process P6 in FIG. 8; S16 in FIG. 9).
  • the separation unit 40 obtains the norm image of the differential stained specimen fluorescence spectrum D8, which is the differential spectrum data of the stained specimen fluorescence spectrum D1 and the pseudo-stained specimen fluorescence spectrum D7, as the differential stained specimen fluorescence image D9 (process P7 in FIG. 8; 9 S17).
  • the differentially stained norm image D9 is obtained by calculating the Euclidean norm in the wavelength direction (depth direction) of the differentially stained sample fluorescence spectrum D8.
  • the separation unit 40 (second separation unit 42) generates a differential staining norm image (differential staining norm data) D9 that is the norm data of the differential staining specimen fluorescence spectrum D8.
  • the separation unit 40 separates the differentially stained specimen fluorescence spectrum D8 into a differentially stained fluorescent component image D10 containing the fluorescent reagent and a differentially stained autofluorescent component image D11 containing the autofluorescent component. (process P8 in FIG. 8; S18 in FIG. 9). Specifically, the separation unit 40 performs the same process as the above-described color separation process (see P1 in FIG. 8) on the differentially stained specimen fluorescence spectrum D8, thereby separating the differentially stained specimen fluorescence spectrum D8 from the differentially stained fluorescence component into the differentially stained fluorescence component. An image D10 and a differentially stained autofluorescence component image D11 are generated.
  • the separation unit 40 can continuously perform a series of processes (P1 to P8) based on the stained specimen fluorescence spectrum D1 as described above.
  • the separation unit 40 can continuously perform a series of processes (P11 to P18) based on the unstained sample fluorescence spectrum D21.
  • the separation unit 40 can generate the pseudo unstained fluorescence spectrum D24 based on the unstained fluorescence component image D22 and the fluorescence reference spectrum R1 described above (process P12 in FIG. 8; S24 in FIG. 10).
  • the separation unit 40 can also generate a pseudo unstained autofluorescence spectrum D25 based on the above-described unstained autofluorescence component image D23 and the autofluorescence reference spectrum R2 (process P13 in FIG. 8; S24 in FIG. 10). .
  • the separation unit 40 may generate the unstained specific channel luminance image D26 by obtaining the luminance value of the spectral data corresponding to the specific channel in the pseudo unstained autofluorescence spectrum D25 (process P14 in FIG. 8).
  • the separation unit 40 can generate a pseudo unstained specimen fluorescence spectrum D27 based on the pseudo unstained fluorescence spectrum D24 and the pseudo unstained autofluorescence spectrum D25 (process P15 in FIG. 8; S25 in FIG. 10).
  • the separation unit 40 can generate a differential unstained specimen fluorescence spectrum D28 based on the difference between the unstained specimen fluorescence spectrum D21 and the pseudo unstained specimen fluorescence spectrum D27 (process P16 in FIG. 8; S26).
  • the separation unit 40 obtains the norm image of the differential unstained specimen fluorescence spectrum D28 as the differential unstained norm image D29 (process P17 in FIG. 8; S27 in FIG. 10).
  • the differential unstained norm image D29 is obtained by calculating the Euclidean norm in the wavelength direction (depth direction) of the differential unstained specimen fluorescence spectrum D28.
  • the separation unit 40 (second separation unit 42) generates a differential unstained norm image (differential unstained norm data) D29, which is the norm data of the differential unstained specimen fluorescence spectrum D28.
  • the separation unit 40 divides the differential unstained specimen fluorescence spectrum D28 into a differential unstained fluorescence component image D30 containing the fluorescent reagent and a differential unstained autofluorescence component image D31 containing the autofluorescence component. (process P18 in FIG. 8; S28 in FIG. 10). That is, the separation unit 40 performs the same process as the above-described color separation process (see P11 in FIG. 8) on the differential unstained specimen fluorescence spectrum D28, thereby converting the differential unstained specimen fluorescence spectrum D28 into a differential unstained fluorescence component image. D30 and a differential unstained autofluorescence component image D31 are generated.
  • the threshold determination unit 43 can determine a positive threshold for the stained fluorescence component image D2 based on the unstained fluorescence component image D22 (see FIG. 8) derived by the separation unit 40 as described above.
  • the positive threshold is determined based on the unstained fluorescence component image D22 obtained from the unstained specimen fluorescence spectrum D21 used as the negative control group. Therefore, in the stained fluorescent component image D2, the image section affected by the fluorescence caused by the fluorescent reagent 10 can be accurately distinguished from the image section not affected by the fluorescence, and can be specified as the positive cell image. can.
  • the specific method for determining the positive threshold in this example is not limited.
  • FIG. 14 shows an example of histograms of the stained fluorescent component image D2 and the unstained fluorescent component image D22.
  • the X-axis indicates the luminance value and the Y-axis indicates the frequency.
  • the threshold determination unit 43 may determine, for example, the luminance value (see symbol “T1” in FIG. 14) corresponding to the edge (especially the edge on the high luminance value side) of the histogram of the unstained fluorescence component image D22 as the positive threshold. .
  • the method of obtaining the edge of the histogram of the unstained fluorescence component image D22 is not limited.
  • the maximum luminance value in the unstained fluorescence component image D22 may be determined as the edge of the histogram of the unstained fluorescence component image D22.
  • the gradient of the histogram of the unstained fluorescence component image D22 may be obtained, and the edges of the histogram of the unstained specimen fluorescence spectrum D21 may be determined based on the gradient.
  • the method of determining the “gradient point for determining the slope” in the histogram of the unstained fluorescence component image D22 is not limited.
  • the gradient location may be determined based on the frequency of luminance values in the unstained fluorescence component image D22. Specifically, it is possible to determine the gradient location in the same manner as the method of determining the "positive threshold value T2" described later.
  • the threshold determination unit 43 may determine and use a brightness value (see symbol "T2" in FIG. 14) determined based on the frequency of brightness values of the unstained fluorescence component image D22 as a positive threshold. For example, among the areas of the histogram of the unstained fluorescence component image D22, the luminance value corresponding to a predetermined area from the low luminance value side or from the high luminance value side (for example, 95% area from the low luminance value side) is used as a positive threshold. You can decide. Alternatively, of the distance between both edges of the histogram of the unstained fluorescence component image D22 (distance in the X-axis direction in FIG. 14), a predetermined value from the low luminance value side or the high luminance value side (for example, 95% from the low luminance value side) ) may be determined as the positive threshold.
  • a predetermined value from the low luminance value side or the high luminance value side for example, 95% from the low luminance value side
  • the threshold determination unit 43 can determine the positive threshold based only on the unstained fluorescence component image D22. Therefore, the threshold determination unit 43 can determine the positive threshold without the separation unit 40 performing the above-described processes P2 to P8 and P12 to P18 (see FIG. 8).
  • the separation unit 40 does not need to perform the processes that do not contribute to the determination of the positive threshold (that is, the processes P2 to P8 and P12 to P18) among the above processes. In this case, the processing load on the separation unit 40 can be reduced, and the overall processing speed and processing time for calculating the positive threshold can be improved.
  • the threshold determining unit 43 may determine the final positive threshold by correcting the positive threshold after once deriving the positive threshold.
  • the threshold determination unit 43 derives a positive threshold from the unstained fluorescence component image D22 in the same manner as the above-described first positive threshold determination method. After that, the threshold determination unit 43 corrects the positive threshold based on the spectrum of the differentially stained fluorescence component image D10 and the spectrum of the differentially unstained fluorescence component image D30.
  • a specific correction method for the positive threshold is not limited, but typically, the positive threshold can be corrected based on the ratio of the spectrum of the differential unstained fluorescent component image D30 to the spectrum of the differential stained fluorescent component image D10. .
  • the correction value of the positive threshold can be determined based on the "histogram based on luminance value and frequency (see FIG. 14)" of the spectrum.
  • the edge of the histogram of the spectrum of the differentially stained fluorescence component image D10 (for example, the edge on the high luminance value side) is represented by “E1”.
  • the corresponding edge (for example, edge on the high luminance value side) of the spectrum histogram of the differential unstained fluorescence component image D30 is represented by “E2”.
  • the threshold determining unit 43 may determine the final positive threshold by applying (that is, multiplying) the positive threshold using "E1/E2" as a correction value (correction coefficient).
  • intermediate data derived from both the stained specimen fluorescence spectrum D1 and the unstained specimen fluorescence spectrum D21 i.e., the differential stained fluorescence component image D10 and the differential unstained fluorescence component image D30) are used to set the positive threshold as corrected.
  • the positive threshold with high accuracy can be stably obtained.
  • the differential stained fluorescence component image D10 and the differential unstained fluorescence component image D30 used to determine the correction value are intermediate data obtained by arithmetic processing of the stained specimen fluorescence spectrum D1 and the unstained specimen fluorescence spectrum D21.
  • the positive threshold correction value can be calculated without requiring input data other than the input data used to derive the stained fluorescence component image D2 and the unstained fluorescence component image D22. Therefore, it is possible to derive the stained fluorescence component image D2 and the unstained fluorescence component image D22, and derive the differential stained fluorescence component image D10 and the differential unstained fluorescence component image D30 in the series of arithmetic processing in the separation unit 40. can.
  • the threshold determination unit 43 of this example also derives a positive threshold from the unstained fluorescence component image D22, and then corrects the positive threshold to obtain a final positive threshold. decide.
  • the threshold determining unit 43 of this example corrects the positive threshold based on the differentially stained specimen fluorescence spectrum D8 and the differentially unstained specimen fluorescence spectrum D28.
  • a specific correction method for the positive threshold is not limited, but typically, the positive threshold can be corrected based on the ratio of the differential unstained sample fluorescence spectrum D28 to the differentially stained sample fluorescence spectrum D8.
  • the positive threshold correction value can be determined based on the "histogram based on luminance values and frequencies (see FIG. 14)" of the spectrum.
  • the edge of the histogram of the fluorescence spectrum D8 of the differentially stained specimen (for example, the edge on the high luminance value side) is represented by "E3".
  • the corresponding edge (for example, edge on the high luminance value side) of the histogram of the differential unstained sample fluorescence spectrum D28 is represented by "E4".
  • the threshold determining unit 43 may determine the final positive threshold by applying (that is, multiplying) the positive threshold using "E3/E4" as a correction value (correction coefficient).
  • the intermediate data derived from both the stained specimen fluorescence spectrum D1 and the unstained specimen fluorescence spectrum D21 are used to correct the positive threshold. be done.
  • a highly accurate positive threshold can be stably obtained, and a more accurate positive threshold can be determined by correcting the positive threshold so as to compensate for the calculation error.
  • the positive threshold correction value can be calculated without requiring input data other than the input data used for deriving the stained fluorescence component image D2 and the unstained fluorescence component image D22.
  • the threshold determination unit 43 of this example corrects the unstained fluorescence component image D22 prior to deriving the positive threshold from the unstained fluorescence component image D22. That is, the threshold determination unit 43 derives a positive threshold from the corrected unstained fluorescence component image D22.
  • FIG. 15 is a diagram showing an example of the differential unstained norm image D29.
  • FIG. 16 is a diagram showing an example of a region showing outliers (hereinafter also referred to as “outlier region Rh”) in the differential unstained norm image D29.
  • FIG. 17 is a diagram showing an example of the corresponding outlier region Rh in the unstained fluorescence component image D22. 15 to 17 are images showing luminance.
  • the differential unstained norm image D29 may sparsely include regions with significantly large luminance values (that is, regions that are significantly bright).
  • regions with significantly large luminance values that is, regions that are significantly bright.
  • the luminance value indicated by the tissue that exhibits such strong autofluorescence constitutes an error value (outlier) that can occur suddenly in the fluorescence spectrum, and can hinder the determination of an appropriate positive threshold.
  • an error value outlier
  • the luminance value provided by red blood cells tends to be larger than the luminance values of other regions.
  • the influence of error values due to red blood cells on determination of the positive threshold tends to be large.
  • NMF non-negative matrix factorization
  • the threshold determination unit 43 of this example analyzes the differential unstained norm image D29 to acquire outlier data.
  • typically outlier data can be acquired by the following methods.
  • the threshold determination unit 43 may determine an outlier in the differential unstained norm image D29 based on the average value of the pixel brightness values of the differential unstained norm image D29.
  • a luminance value that is 3 ⁇ (3 sigma) or more away from the average pixel luminance value of the differential undyed norm image D29 may be determined as an outlier.
  • " ⁇ " indicates the standard deviation of the pixel brightness values of the differential unstained norm image D29.
  • the robustness may be inferior to the "example of determining outliers based on the median" exemplified below.
  • the threshold determination unit 43 may also determine an outlier in the differential unstained norm image D29 based on the median value of the pixel brightness values of the differential unstained norm image D29. As an example, a brightness value that is more than three times the MAD (median absolute deviation) away from the median value of the pixel brightness values of the differential unstained norm image D29 may be defined as an outlier.
  • the threshold determination unit 43 may also determine outliers in the differential unstained norm image D29 based on the quantiles of the pixel brightness values of the differential unstained norm image D29. As an example, pixel luminance values exceeding 1.5 times the interquartile range from the upper quartile (75%) of the pixel luminance values of the differential unstained norm image D29 may be defined as outliers. .
  • the threshold determination unit 43 corrects the unstained fluorescence component image D22 based on the outlier data determined as described above. That is, the threshold determination unit 43 corrects the unstained fluorescence component image D22 so as to reduce the influence of outliers on the unstained fluorescence component image D22.
  • a specific correction method for the unstained fluorescence component image D22 based on the outlier data is not limited, but is performed, for example, as follows.
  • FIG. 18 shows an example of a histogram of the unstained fluorescent component image D22.
  • FIG. 19 shows an example of a histogram of the unstained fluorescence component image D22 after correction based on the outlier data.
  • the X-axis indicates the brightness value and the Y-axis indicates the frequency.
  • the threshold determination unit 43 determines a positive threshold based on the unstained fluorescence component image D22 corrected in this way.
  • the positive threshold determination method of this example can be applied to the first to third positive threshold determination methods described above.
  • the positive threshold correction value can be calculated without requiring input data other than the input data used for deriving the stained fluorescence component image D2 and the unstained fluorescence component image D22.
  • the threshold determining unit 43 can determine the positive threshold based on the unstained fluorescence component image D22 and the differential unstained norm image D29. Therefore, the threshold determining unit 43 can determine the positive threshold without the separating unit 40 performing the above-described processes P2 to P8 (see FIG. 8), so the processing load on the separating unit 40 can be reduced.
  • the positive threshold for the stained fluorescence component image D2 is derived based on the image spectrum data (especially the unstained fluorescence component image D22) obtained from the unstained specimen fluorescence spectrum D21. be.
  • the threshold determination unit 43 can also derive and determine the positive threshold based on image spectrum data derived based on the stained fluorescence component image D2 and the fluorescence reference spectrum R1, for example.
  • the positive threshold for the stained fluorescent component image D2 is determined based on the differential stained fluorescent component image D10 (see FIG. 8).
  • the threshold determining unit 43 may determine the positive threshold based on the luminance value corresponding to the edge of the "luminance value (X axis)-frequency (Y axis)" histogram of the differentially stained fluorescence component image D10.
  • the method of obtaining the edge of the histogram of the differentially stained fluorescence component image D10 is not limited.
  • the threshold determination unit 43 can determine the edges of the histogram of the differentially stained fluorescence component image D10, for example, by the same method as the above-described method of determining the edges of the histogram of the unstained fluorescence component image D22 (see FIG. 14).
  • the threshold determination unit 43 may determine, as the positive threshold, a luminance value determined based on the frequency of the luminance values of the differentially stained fluorescence component image D10. For example, among the areas of the histogram of the differentially stained fluorescence component image D10, the luminance value corresponding to a predetermined area from the low luminance value side or from the high luminance value side (for example, 95% area from the low luminance value side) is set as a positive threshold. You can decide. Alternatively, the luminance value corresponding to a predetermined value (for example, 95% from the low luminance value side) from the low luminance value side or the high luminance value side of the distance between both edges of the histogram of the differentially stained fluorescence component image D10 is positive. It may be determined as a threshold value.
  • the threshold determination unit 43 can determine the positive threshold for the stained fluorescence component image D2 based on the stained specimen fluorescence spectrum D1, the fluorescence reference spectrum R1, and the autofluorescence reference spectrum R2.
  • the unstained specimen fluorescence spectrum D21 and the data derived from the unstained specimen fluorescence spectrum D21 are not required to determine the positive threshold for the stained fluorescence component image D2. That is, according to this example, the positive threshold can be determined without the separation unit 40 performing the above-described processes P11 to P18 (see FIG. 8).
  • the separation unit 40 does not need to perform the processes that do not contribute to the determination of the positive threshold (that is, the processes P11 to P18) among the processes described above.
  • the unstained specimen fluorescence spectrum D21 is unnecessary for determining the positive threshold, it is not necessary to prepare the unstained specimen fluorescence spectrum D21 in the first place.
  • the differential stained fluorescence component image D10 used to determine the positive threshold corresponds to the calculation error in the color separation processing P1 of the stained specimen fluorescence spectrum D1. Therefore, according to the positive threshold determination method of this example, it is possible to determine a positive threshold that is effective in reducing the influence of the calculation error.
  • FIG. 20 shows an example of image information display on the display unit 140.
  • the image information shown in FIG. 20 includes specimen image information J1 and presentation information J2.
  • the specimen image information J1 is image information based on the stained specimen fluorescence spectrum D1, and is typically a stained fluorescence component image D2 obtained by performing color separation processing on the stained specimen fluorescence spectrum D1.
  • the specimen image information J1 may be an image other than the stained fluorescence component image D2, and is not particularly limited.
  • the specimen image information J1 may be a stained specimen image corresponding to the stained specimen fluorescence spectrum D1, or may be a stained fluorescence component image D2 or another image generated based on the stained specimen image.
  • the stained specimen image here may be, for example, an image obtained by photographing the fluorescently stained specimen 30 with an imaging device.
  • An image obtained by photographing a fluorescent unstained specimen with an imaging device is called an unstained specimen image.
  • the specimen image information J1 displayed on the display unit 140 may be an image corresponding to the entire range of the fluorescently stained specimen 30 (particularly, the imaging target range) or an image corresponding to a partial range of the fluorescently stained specimen 30. There may be.
  • a range (for example, A range including the positive cell image K2) is preferably displayed on the display unit 140.
  • the labeled cell image is classified into a non-positive cell image K1 determined as non-positive based on the positive threshold and a positive cell image K2 determined as positive based on the positive threshold.
  • a non-positive cell image K1 determined as non-positive based on the positive threshold
  • a positive cell image K2 determined as positive based on the positive threshold.
  • image sections (particularly labeled cell images) showing brightness values equal to or higher than the positive threshold are classified as positive cell images K2
  • image sections (especially labeled cell images) can be classified as non-positive cell images K1.
  • the classification of the non-positive cell image K1 and the positive cell image K2 may be performed, for example, by the image generation unit 133 (see FIGS. 1 and 7), or may be performed by any device such as the analysis unit 47. .
  • each labeled cell image displayed on the display unit 140 is highlighted by a cell image position highlighting mark M1.
  • the specific display mode for example, color, thickness, pattern and/or shape
  • the specific display mode for example, color, thickness, pattern and/or shape
  • the presentation information J2 displayed on the display unit 140 includes threshold information indicating a positive threshold.
  • the positive threshold is indicated by a gauge (indicator). That is, the positive threshold mark Q indicates the positive threshold used to classify the non-positive cell image K1 and the positive cell image K2.
  • the indicator of the presentation information J2 in FIG. 20 is represented by 16 bits (0 to 65535), and the lower the indicator (that is, the larger the value), the higher the positive threshold corresponding to the high luminance value.
  • the user can appropriately adjust the positive threshold used for classifying the non-positive cell image K1 and the positive cell image K2 by moving the positive threshold mark Q along the indicator via the operation unit 160 (see FIG. 1). .
  • control unit 150 adjusts the position of the positive threshold mark Q displayed on the display unit 140 according to the adjustment instruction signal input by the user via the operation unit 160. It controls the image generation unit 133 and/or the display unit 140 .
  • the image generation unit 133 acquires, for example, the control unit 150 from the control unit 150, for example, the adjusted positive threshold according to the adjustment instruction signal input via the operation unit 160. Then, the image generator 133 reclassifies the non-positive cell image K1 and the positive cell image K2 according to the adjusted positive threshold. The image generation unit 133 then generates image information (specimen image information J1 and presentation information J2) according to the reclassification result and the adjusted positive threshold, and sends the generated image information to the display unit 140 .
  • image information generated based on the user-adjusted positive threshold is displayed on the display unit 140 .
  • FIG. 21 shows another example of display of image information on the display unit 140.
  • elements that are the same as or correspond to elements shown in FIG. 20 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • a common positive threshold is used throughout the specimen image information J1 to classify the non-positive cell image K1 and the positive cell image K2.
  • a positive threshold is determined for each of a plurality of observation regions (small regions) Rs1 and Rs2 determined by dividing the stained fluorescence component image D2 displayed in the specimen image information J1. .
  • the threshold determining unit 43 determines a positive threshold for each of a plurality of observation regions Rs1 and Rs2 determined by dividing the stained fluorescence component image D2.
  • tissue image such as WSI (Whole Slide Imaging)
  • unique features may appear in each of multiple segmented regions (eg, regions with high and low background noise). Therefore, there is a need to set a positive threshold value for each segmented region of the tissue image for analysis.
  • the threshold determination unit 43 acquires information indicating noise components included in the stained specimen fluorescence spectrum D1 by, for example, analyzing the stained specimen fluorescence spectrum D1, the stained fluorescence component image D2, and/or the stained autofluorescence component image D3.
  • the threshold determination unit 43 can define a plurality of observation regions Rs1 and Rs2 by dividing the stained fluorescence component image D2 according to the acquired noise components. Thereby, the image of the specimen image information J1 can be divided according to the magnitude of the background noise, and a plurality of observation regions Rs1 and Rs2 can be automatically set.
  • the second observation area Rs2 showing relatively large background noise is surrounded by observation area emphasis marks M2.
  • the area outside the observation area highlighting mark M2 is the first observation area Rs1 exhibiting relatively little background noise.
  • the user may designate a plurality of observation regions Rs1 and Rs2 on the user interface, and a positive threshold may be set for each of the designated plurality of observation regions Rs1 and Rs2.
  • the threshold determination unit 43 may determine a positive threshold for each of the plurality of observation regions Rs1 and Rs2 defined by the user.
  • a method for specifying the plurality of observation regions Rs1 and Rs2 by the user is not limited. For example, while viewing the sample image information J1 (stained fluorescence component image D2) on the display unit 140, the user operates the operation unit 160 (see FIG. 1) to specify the plurality of observation regions Rs1 and Rs2 in any manner. You may
  • the control unit 150 can acquire information about the plurality of observation regions Rs1 and Rs2 specified by the user from the operation unit 160 and provide the information directly or indirectly to the processing unit 130. Then, the processing unit 130 (for example, the separation processing unit 132 and the image generation unit 133) may determine a positive threshold and generate image information based on information regarding the plurality of observation regions Rs1 and Rs2. As a result, image information based on a plurality of observation regions Rs1 and Rs2 designated by the user can be displayed on the display unit 140.
  • the user can adjust the positive threshold by moving the positive threshold marks Q1 and Q2 via the operation unit 160.
  • a positive threshold mark may be provided for each observation area.
  • a first positive threshold mark Q1 shown in FIG. 21 is provided for the first observation region Rs1, and a second positive threshold mark Q2 is provided for the second observation region Rs2.
  • the user moves the first positive threshold mark Q1 and the second positive threshold mark Q2 via the operation unit 160 in the same manner as the positive threshold mark Q shown in FIG.
  • the positivity threshold assigned to each of the regions Rs2 can be modified and adjusted.
  • FIG. 22 shows another example of display of image information on the display unit 140.
  • elements that are the same as or correspond to elements shown in FIGS. 20 and 21 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the presentation information J2 displayed on the display unit 140 includes, in addition to threshold information indicating the positive threshold, correctable range information indicating the correctable range of the positive threshold.
  • the presentation information J2 shown in FIG. 22 includes displays of the correctable upper limit value Lu and the correctable lower limit value Ld in addition to the positive threshold mark Q.
  • the display of the correctable upper limit value Lu and the correctable lower limit value Ld respectively indicate the upper limit value and the lower limit value of the correctable range of the positive threshold. Therefore, in the indicator of the presentation information J2, the positive threshold mark Q basically points somewhere in the range defined by the correctable upper limit value Lu and the correctable lower limit value Ld.
  • the correctable range of the positive threshold determined by the correctable upper limit value Lu and the correctable lower limit value Ld can be displayed in any form.
  • the inside and outside of the positive threshold correctable range may be displayed in different colors or patterns.
  • a display such as a line indicating the correctable upper limit value Lu and the correctable lower limit value Ld may be displayed.
  • the user can adjust the positive threshold by moving the positive threshold mark Q via the operation unit 160 while using the correctable range of the positive threshold indicated in the presentation information J2 as a guide.
  • the correctable range of the positive threshold (that is, the correctable upper limit value Lu and the correctable lower limit value Ld) can be determined by the threshold determining unit 43 (see FIG. 7).
  • Information indicating the correctable range determined by the threshold determination unit 43 is output from the separation output unit 44 and sent to the analysis unit 47, the image generation unit 133, and the like.
  • a specific method for determining the correctable range of the positive threshold is not limited.
  • the correctable range of the positive threshold may be determined based on the positive threshold determined by each of a plurality of positive threshold determination methods. For example, the correctable lower limit Ld is determined based on the minimum value of the positive thresholds determined by the first to fifth positive threshold determination methods described above, and the correctable upper limit is determined based on the maximum value of the positive thresholds. A value Lu may be determined.
  • the correctable range of the positive threshold is determined based on a correction value assigned to the positive threshold (for example, a predetermined correction value as described in the first modified example (FIGS. 23 and 24) described later).
  • a correction value assigned to the positive threshold for example, a predetermined correction value as described in the first modified example (FIGS. 23 and 24) described later.
  • the threshold determination unit 43 may acquire the data of the correctable range of the positive threshold, for example, by reading from the storage unit (for example, the database 200 or the information storage unit 121).
  • the correctable range of the positive threshold determined in this way is displayed on the display unit 140 as described above, but may be sent to another device and used for analysis software processing and the like.
  • the display unit 140 may display image information in any other form.
  • the positive threshold used in the analysis of the stained fluorescence component image D2 is set to the specimen fluorescence spectrum (stained specimen fluorescence spectrum D1 and/or unstained specimen It can be determined based on the fluorescence spectrum D21).
  • the positive threshold can be automatically determined from the stained specimen fluorescence spectrum D1 and/or the unstained specimen fluorescence spectrum D21, adjustment work for analysis can be made more efficient. As a result, it is possible to reduce the user's labor for the analysis process and the user's adjustment work time, and it is possible to promote the speeding up and improvement in the accuracy of result calculation when performing clinical research and diagnosis.
  • the determined positive threshold can be automatically displayed on the display unit 140.
  • the user confirms the positive threshold by looking at the presentation information J2 displayed on the display unit 140, and confirms the sample image information J1 (especially the non-positive cell image K1 and the positive cell image K2) displayed on the display unit 140. be able to.
  • the positive threshold can be determined regardless of the phenotype of the individual stained specimen fluorescence spectrum D1 (corresponding specimen image information J1). High versatility of application without depending on
  • the threshold determination unit 43 may correct the positive threshold based on a predetermined correction value.
  • the method of correcting the positive threshold using a predetermined correction value is not limited.
  • limit values that is, upper and/or lower limits
  • limit values that is, upper and/or lower limits
  • Such a correction value can be determined, for example, according to the fluorescent reagent, or can be determined according to the combination of the fluorescent reagent and the labeling target with the fluorescent reagent.
  • the labeling target here refers to a substance that can be labeled with a fluorescent reagent (for example, a substance that reacts with a fluorescent reagent and emits fluorescence).
  • a fluorescent reagent for example, a substance that reacts with a fluorescent reagent and emits fluorescence.
  • targets such as antibodies may be included in the labeling target, but other cells and tissues (eg, organs, cancer cells, and other cells/tissues) may also be included in the labeling target herein.
  • the database 200 and the storage unit 120 can be used as a correction data storage unit that stores correction values that can be used to correct the positive threshold.
  • the database 200 can store in advance the reagent identification information 11 and the corresponding correction value in association with each other for each of a plurality of fluorescent reagents that can be used.
  • the database 200 can store labeling target identification information, reagent identification information 11, and correction values in association with each other for each of a plurality of fluorescent reagents that can be used and each of a plurality of targets that can be labeled.
  • the labeling target identification information is information that identifies the labeling target.
  • the specimen identification information 21 includes the tagged object identification information, and the tagged object identification information is associated with the specimen 20 .
  • a single fluorescent reagent may be used for two or more types of labeling targets. That is, there are cases where the fluorescent reagent is common but the labeling targets are different, and the database 200 can associate and store different correction values for each of such cases.
  • the corresponding “lower limit value” and “upper limit value” associated with each combination of “dye” and “antibody (labeling target)” are stored as correction values in the correction data storage unit. be.
  • the corresponding "coefficient” associated with each combination of “dye” and “antibody (labeling target)” is stored as a correction value in the correction data storage unit.
  • correction values are stored in an arbitrary form such as a lookup table.
  • the information acquisition unit 111 can read and acquire the corresponding correction value from the database 200 based on the reagent identification information 11 associated with the fluorescent reagent 10 used in the fluorescently stained specimen 30. Alternatively, the information acquisition unit 111 obtains a corresponding correction value based on the reagent identification information 11 and specimen identification information 21 (especially labeling target identification information) associated with the fluorescent reagent 10 and the specimen 20 used in the fluorescently stained specimen 30. It can be obtained by reading from the database 200 .
  • the information acquisition unit 111 then stores the correction values read from the database 200 in the information storage unit 121 .
  • the correction value stored in the information storage unit 121 is obtained directly or indirectly by the separation processing unit 132 (threshold determination unit 43 (see FIG. 7)), and the positive threshold in the threshold determination unit 43 (see FIG. 7). used to correct for In this way, the threshold determination unit 43 acquires the correction value from the correction data storage unit that stores the reagent identification information and the correction value in association with each other based on the reagent identification information 11 via the acquisition unit 110 and the storage unit 120. can do. Similarly, the threshold determination unit 43 stores the labeling target identification information, the reagent identification information, and the correction value in association with each other based on the labeling target identification information and the reagent identification information 11 via the acquisition unit 110 and the storage unit 120. A correction value can be obtained from the correction data storage unit.
  • the positive threshold derived by the threshold determining unit 43 is "600" when the fluorescently stained specimen 30 is derived from "AF488-CK".
  • the positive threshold exceeds the upper limit assigned to "AF488-CK" (that is, "500”). Therefore, the threshold determination unit 43 corrects the positive threshold and changes it to "500”.
  • the separation output unit 44 outputs the positive threshold corrected by the threshold determination unit 43, and the post-correction positive threshold is used in the subsequent devices (for example, the analysis unit 47 and the image generation unit 133 in FIG. 7).
  • the threshold determination unit 43 corrects by multiplying the positive threshold by an appropriate coefficient smaller than 1 (“0.92” in the example shown in FIG. 24), thereby suppressing the influence of such a tendency. be able to.
  • correction values corresponding to each reagent that can be used and/or each labeling target that can be detected are stored in advance in the correction data storage unit as database information.
  • the threshold determination unit 43 acquires the correction value corresponding to the actual fluorescently stained specimen 30 from among the correction values stored in advance in the correction data storage unit, and applies it to the positive threshold, thereby obtaining the final positive threshold. can decide.
  • the positive threshold is corrected according to the "fluorescent reagent" used in the fluorescently stained specimen 30 and the "combination of the fluorescent reagent and the labeling target".
  • the threshold determination unit 43 erroneously derives a positive threshold value that is greatly deviated from the original value for some reason, such an erroneous value can be used as the positive threshold value as it is. can be prevented.
  • the "correction value used to correct the positive threshold" stored in the correction data storage unit may be updated as appropriate.
  • the user may update the correction values stored in the correction data storage section at appropriate timing (for example, periodically).
  • the information processing system described above may include an imaging device (including, for example, a scanner) that acquires the fluorescence spectrum, and an information processing device that performs processing using the fluorescence spectrum.
  • the fluorescence signal acquisition unit 112 shown in FIG. 1 can be implemented by the imaging device, and other configurations can be implemented by the information processing device.
  • the information processing system described above may also include an imaging device that acquires a fluorescence spectrum and software that is used for processing using the fluorescence spectrum. In other words, the information processing system may not have a physical configuration (eg, memory, processor, etc.) for storing and executing the software.
  • the imaging device 1 can be realized by the imaging device, and other configurations can be realized by the information processing device that executes the software.
  • the software is provided to the information processing apparatus via a network, for example, from a website or a cloud server, or provided to the information processing apparatus via an arbitrary storage medium (for example, a disk or the like).
  • Information processing apparatuses on which the software is executed may be various servers (for example, cloud servers, etc.), general-purpose computers, PCs, tablet PCs, or the like.
  • the method by which software is provided to the information processing device and the type of information processing device are not limited to the above. Also, it should be noted that the configuration of the information processing system described above is not necessarily limited to the configuration described above, and that a configuration that can be conceived by a person skilled in the art can be applied based on the technical level at the time of use.
  • the information processing system described above may be implemented as, for example, a microscope system.
  • a configuration example of a microscope system that implements the information processing system described above will be described with reference to FIG.
  • the microscope system shown in FIG. 25 includes a microscope 101 and a data processing section 107.
  • FIG. 25 shows an example of a measurement system capable of photographing a wide-field area of the fluorescence-stained specimen 30 and the fluorescence-unstained specimen, and the measurement system can also be applied to WSI, for example.
  • the microscope 101 includes a stage 102 , an optical system 103 , a light source 104 , a stage drive section 105 , a light source drive section 106 and a fluorescence signal acquisition section 112 .
  • the stage 102 has a mounting surface on which the fluorescent-stained specimen 30 and the fluorescent-unstained specimen can be mounted. and movably in the vertical direction (z-axis direction).
  • the fluorescence-stained specimen 30 has a thickness of, for example, several micrometers to several tens of micrometers in the Z-axis direction, and is fixed by a predetermined method while being sandwiched between a slide glass SG and a cover glass (not shown).
  • the optical system 103 is arranged above the stage 102 .
  • the optical system 103 includes an objective lens 103A, an imaging lens 103B, a dichroic mirror 103C, an emission filter 103D, and an excitation filter 103E.
  • the light source 104 is, for example, a light bulb such as a mercury lamp, an LED (Light Emitting Diode), or the like, and emits light by being driven by the light source driving section 106 .
  • the light emitted from the light source 104 is guided through the optical system 103 to the fluorescently stained specimen 30 or the fluorescently unstained specimen on the mounting surface of the stage 102 .
  • the excitation filter 103E generates excitation light by transmitting only the light of the excitation wavelength that excites the fluorescent dye among the light emitted from the light source 104 when obtaining the fluorescent images of the fluorescently stained specimen 30 and the fluorescently unstained specimen. do.
  • the dichroic mirror 103C reflects and guides the excitation light incident through the excitation filter 103E to the objective lens 103A.
  • the objective lens 103A converges the excitation light onto the fluorescence-stained specimen 30.
  • the objective lens 103A and the imaging lens 103B magnify the image of the fluorescence-stained specimen 30 to a predetermined magnification, and form the magnified image on the imaging plane of the fluorescence signal acquisition unit 112 .
  • the staining agent fluorescent reagent 10
  • the autofluorescent component bound to each tissue of the fluorescently-stained specimen 30 emit fluorescence.
  • This fluorescence passes through the dichroic mirror 103C via the objective lens 103A and reaches the imaging lens 103B via the emission filter 103D.
  • the emission filter 103D is magnified by the objective lens 103A, absorbs part of the light transmitted through the excitation filter 103E, and transmits only part of the colored light.
  • the image of the colored light with the external light lost is magnified by the imaging lens 103B and formed on the fluorescence signal acquisition unit 112, as described above.
  • a spectroscope may be provided instead of the imaging lens 103B shown in FIG.
  • the spectroscope can be configured using one or more prisms, lenses, or the like, and splits the fluorescence from the fluorescence-stained specimen 30 or the fluorescence-unstained specimen in a predetermined direction.
  • the fluorescence signal acquisition unit 112 is configured as a photodetector that detects the light intensity of each wavelength of the fluorescence separated by the spectroscope, and inputs the detected fluorescence signal to the data processing unit 107 .
  • the data processing unit 107 drives the light source 104 via the light source driving unit 106, acquires the fluorescence spectrum/fluorescence image of the fluorescence-stained specimen 30 and the fluorescence-unstained specimen using the fluorescence signal acquisition unit 112, and acquires the fluorescence spectrum / Various processing is performed using the fluorescence image. More specifically, the data processing unit 107 is the information acquisition unit 111, the storage unit 120, the processing unit 130, the display unit 140, the control unit 150, the operation unit 160, or the database 200 of the information processing apparatus 100 shown in FIG. It can function as part or all. The data processing unit 107 can also include an analysis unit 47 (see FIG. 7) that performs analysis based on the positive threshold.
  • the data processing unit 107 functions as the control unit 150 of the information processing apparatus 100 to control the driving of the stage driving unit 105 and the light source driving unit 106, and control the spectrum acquisition by the fluorescence signal acquisition unit 112. or Further, the data processing unit 107 functions as the processing unit 130 of the information processing apparatus 100 to generate image spectrum data, calculate a positive threshold value, perform analysis, and generate image information.
  • the light source 104 work as a light irradiation unit that emits excitation light that excites the fluorescent reagent 10.
  • the fluorescence signal acquisition unit 112 functions as an imaging device that captures an image of the specimen (the fluorescence-stained specimen 30 or the fluorescence-unstained specimen) irradiated with the excitation light and acquires the specimen fluorescence spectrum.
  • the data processing unit 107 also functions as an information processing device that analyzes the sample fluorescence spectrum.
  • the above apparatus described with reference to FIG. 25 is merely an example, and the measurement systems according to the above-described embodiments and modifications are not limited to the example shown in FIG.
  • the microscope system may not necessarily include all of the configurations shown in FIG. 25, or may include configurations not shown in FIG.
  • a measurement system that can acquire sufficient resolution image data (hereinafter referred to as "wide-field image data") for the entire imaging target area or the required area of the imaging target area (hereinafter also referred to as “region of interest”) can implement the above-described embodiments and modifications.
  • a measurement system that can capture the entire imaging target region or a required region of the imaging target region (hereinafter referred to as "region of interest") at once, or a measurement that acquires an image of the entire imaging region or the region of interest by line scanning
  • the system may be used to implement the embodiments and variations described above.
  • the stage 102 is moved every shot. By moving and moving the field of view, each field of view is photographed sequentially.
  • field of view image data By tiling the image data obtained by photographing each field of view (hereinafter referred to as “field of view image data"), wide field of view image data of the entire photographing area is generated.
  • the generated wide-field image data is stored, for example, in the fluorescence signal storage unit 122 (see FIG. 1). Note that the tiling of the view image data may be performed in the acquisition unit 110 of the information processing device 100, may be performed in the storage unit 120, or may be performed in the processing unit .
  • the processing unit 130 can execute a series of processes including a positive threshold acquisition process on the obtained wide-field image data.
  • FIG. 26 is a schematic diagram for explaining a method for calculating the number of fluorescent molecules or the number of antibodies in one pixel.
  • the size of the bottom surface of the sample corresponding to 1 [pixel] of the imaging device is assumed to be 13/20 ( ⁇ m) ⁇ 13 /20 ( ⁇ m).
  • the thickness of the sample is 10 ( ⁇ m).
  • the volume of the cuboid of this sample is represented by 13/20 ( ⁇ m) ⁇ 13/20 ( ⁇ m) ⁇ 10 ( ⁇ m).
  • the volume (liter) of this sample is represented by 13/20 ( ⁇ m) ⁇ 13/20 ( ⁇ m) ⁇ 10 ( ⁇ m) ⁇ 10 3 .
  • the concentration of the number of antibodies (which may be the number of fluorescent molecules) contained in the sample is uniform and is 300 (nM)
  • the number of antibodies per pixel is expressed by the following equation (24). be done.
  • the number of fluorescent molecules or the number of antibodies in the fluorescently stained specimen 30 is calculated as a result of the fluorescence separation process, so that the practitioner can compare the number of fluorescent molecules among a plurality of fluorescent substances, or Imaged data can be compared. Further, while the luminance (or fluorescence intensity) is a continuous value, the number of fluorescent molecules or the number of antibodies is a discrete value, so the information processing apparatus 100 outputs image information based on the number of fluorescent molecules or the number of antibodies. can reduce the amount of data.
  • FIG. 27 is a block diagram showing a hardware configuration example of the information processing apparatus 100. As shown in FIG. Various processes by the information processing apparatus 100 are realized by cooperation between software and hardware described below.
  • the information processing apparatus 100 includes a CPU (Central Processing Unit) 901, a ROM (Read Only Memory) 902, a RAM (Random Access Memory) 903, and a host bus 904a.
  • the information processing apparatus 100 also includes a bridge 904 , an external bus 904 b , an interface 905 , an input device 906 , an output device 907 , a storage device 908 , a drive 909 , a connection port 911 , a communication device 913 and a sensor 915 .
  • the information processing apparatus 100 may have a processing circuit such as a DSP or ASIC in place of or together with the CPU 901 .
  • the CPU 901 functions as an arithmetic processing device and a control device, and controls general operations within the information processing device 100 according to various programs.
  • the CPU 901 may be a microprocessor.
  • the ROM 902 stores programs, calculation parameters, and the like used by the CPU 901 .
  • the RAM 903 temporarily stores programs used in the execution of the CPU 901, parameters that change as appropriate during the execution, and the like.
  • the CPU 901 can embody at least the processing unit 130 and the control unit 150 of the information processing apparatus 100, for example.
  • the CPU 901, ROM 902 and RAM 903 are interconnected by a host bus 904a including a CPU bus.
  • the host bus 904a is connected via a bridge 904 to an external bus 904b such as a PCI (Peripheral Component Interconnect/Interface) bus.
  • PCI Peripheral Component Interconnect/Interface
  • host bus 904a, bridge 904 and external bus 904b need not necessarily have separate configurations from each other and may be implemented in a single configuration (eg, one bus).
  • the input device 906 is implemented by a device such as a mouse, keyboard, touch panel, button, microphone, switch, lever, etc., through which information is input by the practitioner. Further, the input device 906 may be, for example, a remote control device using infrared rays or other radio waves, or may be an externally connected device such as a mobile phone or PDA corresponding to the operation of the information processing device 100. . Furthermore, the input device 906 may include, for example, an input control circuit that generates an input signal based on information input by the practitioner using the above input means and outputs the signal to the CPU 901 . By operating the input device 906, the practitioner can input various data to the information processing apparatus 100 and instruct processing operations. The input device 906 can embody at least the operation unit 160 of the information processing device 100, for example.
  • the output device 907 is formed by a device capable of visually or audibly notifying the practitioner of the acquired information.
  • Such devices include display devices such as CRT display devices, liquid crystal display devices, plasma display devices, EL display devices and lamps, audio output devices such as speakers and headphones, and printer devices.
  • the output device 907 can embody at least the display unit 140 of the information processing device 100, for example.
  • the storage device 908 is a device for storing data.
  • the storage device 908 is implemented by, for example, a magnetic storage device such as an HDD, a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
  • the storage device 908 may include a storage medium, a recording device that records data on the storage medium, a reading device that reads data from the storage medium, a deletion device that deletes data recorded on the storage medium, and the like.
  • the storage device 908 stores programs executed by the CPU 901, various data, and various data acquired from the outside.
  • the storage device 908 can embody at least the storage unit 120 of the information processing device 100, for example.
  • the drive 909 is a storage medium reader/writer, and is built in or externally attached to the information processing apparatus 100 .
  • the drive 909 reads information recorded on a removable storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, and outputs the information to the RAM 903 .
  • Drive 909 can also write information to a removable storage medium.
  • connection port 911 is an interface connected to an external device, and is a connection port with an external device capable of data transmission by, for example, USB (Universal Serial Bus).
  • USB Universal Serial Bus
  • the communication device 913 is, for example, a communication interface formed of a communication device or the like for connecting to the network 920 .
  • the communication device 913 is, for example, a communication card for wired or wireless LAN (Local Area Network), LTE (Long Term Evolution), Bluetooth (registered trademark), or WUSB (Wireless USB).
  • the communication device 913 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), a modem for various types of communication, or the like.
  • This communication device 913 can transmit and receive signals and the like to and from the Internet and other communication devices, for example, according to a predetermined protocol such as TCP/IP.
  • the sensor 915 includes a sensor capable of acquiring a spectrum (e.g., an imaging device, etc.) in this embodiment, but other sensors (e.g., acceleration sensor, gyro sensor, geomagnetic sensor, pressure sensor, sound sensor, and range sensor, etc.).
  • the sensor 915 can embody at least the fluorescence signal acquisition unit 112 of the information processing apparatus 100, for example.
  • the network 920 is a wired or wireless transmission path for information transmitted from devices connected to the network 920 .
  • the network 920 may include a public network such as the Internet, a telephone network, a satellite communication network, various LANs (Local Area Networks) including Ethernet (registered trademark), WANs (Wide Area Networks), and the like.
  • Network 920 may also include a dedicated line network such as IP-VPN (Internet Protocol--Virtual Private Network).
  • a hardware configuration example capable of realizing the functions of the information processing apparatus 100 has been shown above.
  • Each component described above may be implemented using general-purpose members, or may be implemented by hardware specialized for the function of each component. Therefore, it is possible to appropriately change the hardware configuration to be used according to the technical level at which the present disclosure is implemented.
  • a computer-readable recording medium storing such a computer program can also be provided. Recording media include, for example, magnetic disks, optical disks, magneto-optical disks, flash memories, and the like. Also, the above computer program may be distributed, for example, via a network without using a recording medium.
  • the technical categories that embody the above technical ideas are not limited.
  • the above technical ideas may be embodied by a computer program for causing a computer to execute one or more procedures (steps) included in the method of manufacturing or using the above apparatus.
  • the above technical idea may be embodied by a computer-readable non-transitory recording medium in which such a computer program is recorded.
  • the present disclosure can also take the following configuration.
  • the fluorescent spectrum of the stained specimen obtained by irradiating the fluorescently stained specimen obtained by labeling the specimen with a fluorescent reagent is irradiated with excitation light, using the fluorescence reference spectrum and the autofluorescence reference spectrum, the stained fluorescent component containing the fluorescent reagent a first separating unit that separates an image and a dyed autofluorescent component image containing the autofluorescent component;
  • An unstained specimen fluorescence spectrum obtained by irradiating a fluorescent unstained specimen that is not labeled with the fluorescent reagent with the excitation light is obtained by using the fluorescence reference spectrum and the autofluorescence reference spectrum to obtain a non-stained specimen containing the fluorescent reagent a second separating unit for separating into a stained fluorescent component image and an unstained autofluorescent component image containing the autofluorescent component;
  • the first separation section is generating a pseudo-stain fluorescence spectrum based on the stain fluorescence component image and the fluorescence reference spectrum; generating a pseudo-stained autofluorescence spectrum based on the stained autofluorescence component image and the autofluorescence reference spectrum; generating a pseudo-stained specimen fluorescence spectrum based on the pseudo-stained fluorescence spectrum and the pseudo-stained autofluorescence spectrum; generating a differentially stained specimen fluorescence spectrum based on the difference between the stained specimen fluorescence spectrum and the pseudo-stained specimen fluorescence spectrum; separating the differentially stained sample fluorescence spectrum into a differentially stained fluorescent component image containing the fluorescent reagent and a differentially stained autofluorescent component image containing the autofluorescent component using the fluorescent reference spectrum and the autofluorescent reference spectrum; ,
  • the second separation section is generating a pseudo-unstained fluorescence spectrum based on the unstained fluorescence component image and the fluorescence reference spectrum; generating a pseudo-un
  • the first separation section is generating a pseudo-stain fluorescence spectrum based on the stain fluorescence component image and the fluorescence reference spectrum; generating a pseudo-stained autofluorescence spectrum based on the stained autofluorescence component image and the autofluorescence reference spectrum; generating a pseudo-stained specimen fluorescence spectrum based on the pseudo-stained fluorescence spectrum and the pseudo-stained autofluorescence spectrum; generating a differentially stained specimen fluorescence spectrum based on the difference between the stained specimen fluorescence spectrum and the pseudo-stained specimen fluorescence spectrum;
  • the second separation section is generating a pseudo-unstained fluorescence spectrum based on the unstained fluorescence component image and the fluorescence reference spectrum; generating a pseudo-unstained autofluorescence spectrum based on the unstained autofluorescence component image and the autofluorescence reference spectrum; generating a pseudo-unstained specimen fluorescence spectrum based on the pseudo-unstained fluorescence spectrum and the pseudo-unstained auto
  • the second separation section is generating a pseudo-unstained fluorescence spectrum based on the unstained fluorescence component image and the fluorescence reference spectrum; generating a pseudo-unstained autofluorescence spectrum based on the unstained autofluorescence component image and the autofluorescence reference spectrum; generating a pseudo-unstained specimen fluorescence spectrum based on the pseudo-unstained fluorescence spectrum and the pseudo-unstained autofluorescence spectrum; generating a differential unstained specimen fluorescence spectrum based on the difference between the unstained specimen fluorescence spectrum and the pseudo unstained specimen fluorescence spectrum; generating differential unstained norm data that is the norm data of the differential unstained sample fluorescence spectrum; The threshold determination unit obtaining outlier data by analyzing the differential unstained norm data; correcting the unstained fluorescence component image based on the outlier data; The information processing apparatus according to item 1, wherein the positive threshold is determined based on the corrected unstained fluorescence component image.
  • the threshold determination unit acquires the correction value from a correction data storage unit that stores the reagent identification information and the correction value in association with each other based on the reagent identification information associated with the fluorescent reagent. information processing equipment.
  • the threshold determination unit associates the labeling target identification information, the reagent identification information, and the correction value with each other based on the labeling target identification information associated with the specimen and the reagent identification information associated with the fluorescent reagent.
  • the information processing apparatus according to item 7, wherein the correction value is obtained from a correction data storage unit that stores the correction data.
  • the threshold determination unit determines a correctable range of the positive threshold, The information processing apparatus according to any one of items 1 to 11, wherein the threshold output unit outputs information indicating the positive threshold and the correctable range.
  • a light irradiation unit that emits excitation light that excites the fluorescent reagent; an imaging device that captures an image of the specimen irradiated with the excitation light and obtains a specimen fluorescence spectrum; and an information processing device that analyzes the sample fluorescence spectrum,
  • the information processing device is Using the fluorescence reference spectrum and the autofluorescence reference spectrum, the fluorescence spectrum of the stained specimen obtained by irradiating the excitation light on the fluorescently stained specimen obtained by labeling the specimen with the fluorescent reagent is used for staining containing the fluorescent reagent a first separating unit that separates into a fluorescent component image and a dyed autofluorescent component image containing the autofluorescent component;
  • An unstained specimen fluorescence spectrum obtained by irradiating a fluorescent unstained specimen that is not labeled with the fluorescent reagent with the excitation light is obtained by using the fluorescence reference spectrum and the autofluorescence reference spectrum to obtain a non-stained specimen containing the fluorescent rea
  • Item 14 The microscope system according to Item 13, further comprising a presentation information generating section that generates presentation information including threshold information indicating the positive threshold, which is presentation information to be displayed on the display section.
  • the threshold determination unit determines a correctable range of the positive threshold, Item 15.
  • the fluorescent spectrum of the stained specimen obtained by irradiating the fluorescently stained specimen obtained by labeling the specimen with a fluorescent reagent is irradiated with excitation light, using the fluorescence reference spectrum and the autofluorescence reference spectrum, the stained fluorescent component containing the fluorescent reagent separating into an image and a dyed autofluorescent component image containing the autofluorescent component;
  • An unstained specimen fluorescence spectrum obtained by irradiating a fluorescent unstained specimen that is not labeled with the fluorescent reagent with the excitation light is obtained by using the fluorescence reference spectrum and the autofluorescence reference spectrum to obtain a non-stained specimen containing the fluorescent reagent separating into a stained fluorescent component image and an unstained autofluorescent component image containing the autofluorescent component;
  • the fluorescent spectrum of the stained specimen obtained by irradiating the fluorescently stained specimen obtained by labeling the specimen with a fluorescent reagent is irradiated with excitation light, using the fluorescence reference spectrum and the autofluorescence reference spectrum, the stained fluorescent component containing the fluorescent reagent a first separating unit that separates an image and a dyed autofluorescent component image containing the autofluorescent component;
  • a positive threshold that is compared with image data of a plurality of image sections included in the stained fluorescent component image, and is a criterion for determining whether each of the plurality of image sections corresponds to a positive cell image.
  • a threshold determination unit that determines based on image spectral data derived based on the stained fluorescence component image and the fluorescence reference spectrum
  • a threshold output unit that outputs the positive threshold
  • the first separation section is generating a pseudo-stained fluorescent reagent spectrum based on the stained fluorescent component image and the fluorescent reference spectrum; generating a pseudo-stained autofluorescence component spectrum based on the stained autofluorescence component image and the autofluorescence reference spectrum; generating a pseudo-stained sample fluorescence spectrum based on the pseudo-stained fluorescent reagent spectrum and the pseudo-stained autofluorescent component spectrum; generating a differentially stained specimen fluorescence spectrum based on the difference between the stained specimen fluorescence spectrum and the pseudo-stained specimen fluorescence spectrum; separating the differentially stained sample fluorescence spectrum into a differentially stained fluorescent component image containing the fluorescent reagent and a differentially stained autofluorescent component image containing the autofluorescent component using the fluorescent reference spectrum and the autofluorescent reference spectrum; , 19.
  • the threshold determination unit determines the positive threshold based on the differential staining fluorescence component image.
  • the threshold determination unit acquires the correction value from a correction data storage unit that stores the reagent identification information and the correction value in association with each other based on the reagent identification information associated with the fluorescent reagent. information processing equipment.
  • the threshold determination unit associates the labeling target identification information, the reagent identification information, and the correction value with each other based on the labeling target identification information associated with the specimen and the reagent identification information associated with the fluorescent reagent.
  • the correction value is obtained from a correction data storage unit that stores the correction data.
  • the threshold determination unit determines the positive threshold for each of the plurality of observation regions defined by a user; 24.
  • the information processing apparatus according to item 24.
  • the threshold determination unit determines a correctable range of the positive threshold, The information processing apparatus according to any one of Items 18 to 26, wherein the threshold output unit outputs information indicating the positive threshold and the correctable range.
  • a light irradiation unit that emits excitation light that excites the fluorescent reagent; an imaging device that captures an image of the specimen irradiated with the excitation light and obtains a specimen fluorescence spectrum; and an information processing device that analyzes the sample fluorescence spectrum
  • the information processing device is The fluorescent spectrum of the stained specimen obtained by irradiating the fluorescently stained specimen obtained by labeling the specimen with a fluorescent reagent is irradiated with excitation light, using the fluorescence reference spectrum and the autofluorescence reference spectrum, the stained fluorescent component containing the fluorescent reagent a first separating unit that separates an image and a dyed autofluorescent component image containing the autofluorescent component;
  • a positive threshold that is compared with image data of a plurality of image sections included in the stained fluorescent component image, and is a criterion for determining whether each of the plurality of image sections corresponds to a positive cell image.
  • a threshold determination unit that determines based on image spectral data
  • Item 29 The microscope system according to Item 28, further comprising a presentation information generating section that generates presentation information that is displayed on a display section and includes threshold information that indicates the positive threshold.
  • the threshold determination unit determines a correctable range of the positive threshold, Item 30.
  • the fluorescent spectrum of the stained specimen obtained by irradiating the fluorescently stained specimen obtained by labeling the specimen with a fluorescent reagent is irradiated with excitation light, using the fluorescence reference spectrum and the autofluorescence reference spectrum, the stained fluorescent component containing the fluorescent reagent separating into an image and a dyed autofluorescent component image containing the autofluorescent component;
  • a positive threshold that is compared with image data of a plurality of image sections included in the stained fluorescent component image, and is a criterion for determining whether each of the plurality of image sections corresponds to a positive cell image. , determining based on image spectral data derived based on the stained fluorescence component image and the fluorescence reference spectrum; outputting the positive threshold;
  • Information processing method including.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

[課題]染色標本蛍光スペクトルの解析において用いられる陽性閾値を決定するのに有利な技術を提供する。 [解決手段]情報処理装置は、染色蛍光成分画像に含まれる複数の画像セクションの画像データと比較される陽性閾値であって、複数の画像セクションの各々が陽性細胞像に該当するか否かの判定基準である陽性閾値を決定する閾値決定部を備える。閾値決定部は、非染色蛍光成分画像に基づいて、陽性閾値を決定する。

Description

情報処理装置、顕微鏡システム、及び情報処理方法
 本開示は、情報処理装置、顕微鏡システム、及び情報処理方法に関する。
 近年、がん免疫療法等の発展により免疫染色の蛍光化及び多重標識化が広く利用されるようになってきている。例えば、同一組織ブロックの非染色切片から自家蛍光スペクトルを抽出し、当該自家蛍光スペクトルを用いて染色切片の蛍光分離を行う計測手法が知られている。
 また染色切片の画像解析に基づいて、染色切片における陽性細胞の検出を行う方法も提案されている。特許文献1は、染色された組織標本の陽性細胞の検出方法を開示する。特許文献1の検出方法によれば、染色された組織標本の標準化画像に関して検出閾値以上に染色された領域が検出され、検出された当該領域から選択される陽性細胞像の数及び重心の座標が記録される。
特開2008-216077号公報
 個々の細胞の光強度値を測定するフローサイトメトリーを利用した細胞数計測手法では、組織細胞に由来する自家蛍光の影響が小さい。またフローサイトメトリーにおいて、非標識細胞などの対照サンプルで検出される強度値(バックグラウンド値)のヒストグラムを用いて、目的サンプルを陽性として検出するための陽性閾値を設定することは、十分な光強度を検出できていれば比較的容易である。
 一方、フローサイトメトリーを用いずに組織標本の画像に基づいて細胞数計測等の画像解析を行う場合、試薬の非特異的吸着による物理的シグナル、ハードウェア由来のノイズ、及び組織成分及び封入材由来の自家蛍光シグナル、等のバックグラウンド値が高い。また組織標本の画像解析において、フローサイトメトリーで用いられる陰性対照サンプルのバックグラウンド値を使って陽性閾値を推定する場合、解析が不安定になって陽性閾値を適切に推定できないことがある。
 またフローサイトメトリーでは、細胞の母集団を「染色をした細胞群」と「陰性対照群」とに分けて測定が行われる。一方、染色標本及び陰性対照標本が連続切片である場合、染色標本及び陰性対照標本は、組織学的特徴は類似するが、互いに異なる細胞集団である。
 このように組織標本の画像解析を利用した計測手法では、フローサイトメトリーを利用した計測手法に比べ、陽性閾値を適切に決定するのが難しく、自動化の難易度が高い。そのため実際には、ユーザの主観に基づいて陽性閾値が決定又は調整されることがあるが、その場合、異なるユーザ間で高精度な計測を安定的に行うことが難しい。
 上述の特許文献1が開示する検出方法は、染色切片の画像のみを解析の入力データとして用いており、検出閾値を徐々に変動させながら、検出細胞像の検出を行う。そのため特許文献1の検出方法では、例えば細胞数が極端に少なかったり多かったりする場合やバックグラウンドノイズが大きい場合には、十分な検出精度を保証することができない。
 本開示は、染色標本蛍光スペクトルの解析において用いられる陽性閾値を決定するのに有利な技術を提供する。
 本開示の一態様は、標本を蛍光試薬により標識することで得られる蛍光染色標本に励起光を照射して取得される染色標本蛍光スペクトルを、蛍光参照スペクトル及び自家蛍光参照スペクトルを使って、蛍光試薬を含む染色蛍光成分画像と、自家蛍光成分を含む染色自家蛍光成分画像とに分離する第1分離部と、蛍光試薬により標識されていない蛍光非染色標本に励起光を照射して取得される非染色標本蛍光スペクトルを、蛍光参照スペクトル及び自家蛍光参照スペクトルを使って、蛍光試薬を含む非染色蛍光成分画像と、自家蛍光成分を含む非染色自家蛍光成分画像とに分離する第2分離部と、非染色蛍光成分画像に基づいて、染色蛍光成分画像に含まれる複数の画像セクションの画像データと比較される陽性閾値であって、複数の画像セクションの各々が陽性細胞像に該当するか否かの判定基準である陽性閾値を決定する閾値決定部と、陽性閾値を出力する閾値出力部と、を備える情報処理装置に関する。
 第1分離部は、染色蛍光成分画像及び蛍光参照スペクトルに基づいて、疑似染色蛍光スペクトルを生成し、染色自家蛍光成分画像及び自家蛍光参照スペクトルに基づいて、疑似染色自家蛍光スペクトルを生成し、疑似染色蛍光スペクトル及び疑似染色自家蛍光スペクトルに基づいて、疑似染色標本蛍光スペクトルを生成し、染色標本蛍光スペクトルと疑似染色標本蛍光スペクトルとの差分に基づいて、差分染色標本蛍光スペクトルを生成し、差分染色標本蛍光スペクトルを、蛍光参照スペクトル及び自家蛍光参照スペクトルを使って、蛍光試薬を含む差分染色蛍光成分画像と、自家蛍光成分を含む差分染色自家蛍光成分画像とに分離し、第2分離部は、非染色蛍光成分画像及び蛍光参照スペクトルに基づいて、疑似非染色蛍光スペクトルを生成し、非染色自家蛍光成分画像及び自家蛍光参照スペクトルに基づいて、疑似非染色自家蛍光スペクトルを生成し、疑似非染色蛍光スペクトル及び疑似非染色自家蛍光スペクトルに基づいて、疑似非染色標本蛍光スペクトルを生成し、非染色標本蛍光スペクトルと疑似非染色標本蛍光スペクトルとの差分に基づいて、差分非染色標本蛍光スペクトルを生成し、差分非染色標本蛍光スペクトルを、蛍光参照スペクトル及び自家蛍光参照スペクトルを使って、蛍光試薬を含む差分非染色蛍光成分画像と、自家蛍光成分を含む差分非染色自家蛍光成分画像とに分離し、閾値決定部は、差分染色蛍光成分画像のスペクトル及び差分非染色蛍光成分画像のスペクトルに基づいて陽性閾値を補正してもよい。
 第1分離部は、染色蛍光成分画像及び蛍光参照スペクトルに基づいて、疑似染色蛍光スペクトルを生成し、染色自家蛍光成分画像及び自家蛍光参照スペクトルに基づいて、疑似染色自家蛍光スペクトルを生成し、疑似染色蛍光スペクトル及び疑似染色自家蛍光スペクトルに基づいて、疑似染色標本蛍光スペクトルを生成し、染色標本蛍光スペクトルと疑似染色標本蛍光スペクトルとの差分に基づいて、差分染色標本蛍光スペクトルを生成し、第2分離部は、非染色蛍光成分画像及び蛍光参照スペクトルに基づいて、疑似非染色蛍光スペクトルを生成し、非染色自家蛍光成分画像及び自家蛍光参照スペクトルに基づいて、疑似非染色自家蛍光スペクトルを生成し、疑似非染色蛍光スペクトル及び疑似非染色自家蛍光スペクトルに基づいて、疑似非染色標本蛍光スペクトルを生成し、非染色標本蛍光スペクトルと疑似非染色標本蛍光スペクトルとの差分に基づいて、差分非染色標本蛍光スペクトルを生成し、閾値決定部は、差分染色標本蛍光スペクトル及び差分非染色標本蛍光スペクトルに基づいて陽性閾値を補正してもよい。
 第2分離部は、非染色蛍光成分画像及び蛍光参照スペクトルに基づいて、疑似非染色蛍光スペクトルを生成し、非染色自家蛍光成分画像及び自家蛍光参照スペクトルに基づいて、疑似非染色自家蛍光スペクトルを生成し、疑似非染色蛍光スペクトル及び疑似非染色自家蛍光スペクトルに基づいて、疑似非染色標本蛍光スペクトルを生成し、非染色標本蛍光スペクトルと疑似非染色標本蛍光スペクトルとの差分に基づいて、差分非染色標本蛍光スペクトルを生成し、差分非染色標本蛍光スペクトルのノルムデータである差分非染色ノルムデータを生成し、閾値決定部は、差分非染色ノルムデータを解析して外れ値データを取得し、外れ値データに基づいて非染色蛍光成分画像を補正し、補正された非染色蛍光成分画像に基づいて陽性閾値を決定してもよい。
 閾値決定部は、蛍光試薬に応じて予め定められる補正値に基づいて、陽性閾値を補正してもよい。
 閾値決定部は、蛍光試薬に関連付けられる試薬識別情報に基づいて、試薬識別情報及び補正値を相互に関連付けて記憶する補正データ記憶部から、補正値を取得してもよい。
 閾値決定部は、蛍光試薬と蛍光試薬による標識対象との組み合わせに応じて予め定められる補正値に基づいて、陽性閾値を補正してもよい。
 閾値決定部は、標本に関連付けられる標識対象識別情報と、蛍光試薬に関連付けられる試薬識別情報とに基づいて、標識対象識別情報、試薬識別情報及び補正値を相互に関連付けて記憶する補正データ記憶部から、補正値を取得してもよい。
 閾値決定部は、染色蛍光成分画像を区分することで定められる複数の観察領域の各々に関し、陽性閾値を決定してもよい。
 閾値決定部は、ユーザにより定められる複数の観察領域の各々に関し、陽性閾値を決定してもよい。
 閾値決定部は、染色標本蛍光スペクトルに含まれるノイズ成分を特定し、ノイズ成分に応じて染色蛍光成分画像を区分することで複数の観察領域を定めてもよい。
 閾値決定部は、陽性閾値の補正可能範囲を決定し、閾値出力部は、陽性閾値及び補正可能範囲を示す情報を出力してもよい。
 本開示の他の態様は、蛍光試薬を励起させる励起光を照射する光照射部と、励起光が照射されている標本を撮像して標本蛍光スペクトルを取得する撮像装置と、標本蛍光スペクトルの解析を行う情報処理装置と、を備え、情報処理装置は、標本を蛍光試薬により標識することで得られる蛍光染色標本に励起光を照射して取得される染色標本蛍光スペクトルを、蛍光参照スペクトル及び自家蛍光参照スペクトルを使って、蛍光試薬を含む染色蛍光成分画像と、自家蛍光成分を含む染色自家蛍光成分画像とに分離する第1分離部と、蛍光試薬により標識されていない蛍光非染色標本に励起光を照射して取得される非染色標本蛍光スペクトルを、蛍光参照スペクトル及び自家蛍光参照スペクトルを使って、蛍光試薬を含む非染色蛍光成分画像と、自家蛍光成分を含む非染色自家蛍光成分画像とに分離する第2分離部と、非染色蛍光成分画像に基づいて、染色蛍光成分画像に含まれる複数の画像セクションの画像データと比較される陽性閾値であって、複数の画像セクションの各々が陽性細胞像に該当するか否かの判定基準である陽性閾値を決定する閾値決定部と、を有する顕微鏡システムに関する。
 顕微鏡システムは、表示部に表示される提示情報であって、陽性閾値を示す閾値情報を含む提示情報を生成する提示情報生成部を備えてもよい。
 閾値決定部は、陽性閾値の補正可能範囲を決定し、提示情報は、補正可能範囲を示す補正可能範囲情報を含んでもよい。
 顕微鏡システムは、陽性閾値に基づいて解析を行う解析部を備えてもよい。
 本開示の他の態様は、標本を蛍光試薬により標識することで得られる蛍光染色標本に励起光を照射して取得される染色標本蛍光スペクトルを、蛍光参照スペクトル及び自家蛍光参照スペクトルを使って、蛍光試薬を含む染色蛍光成分画像と、自家蛍光成分を含む染色自家蛍光成分画像とに分離する工程と、蛍光試薬により標識されていない蛍光非染色標本に励起光を照射して取得される非染色標本蛍光スペクトルを、蛍光参照スペクトル及び自家蛍光参照スペクトルを使って、蛍光試薬を含む非染色蛍光成分画像と、自家蛍光成分を含む非染色自家蛍光成分画像とに分離する工程と、非染色蛍光成分画像に基づいて、染色蛍光成分画像に含まれる複数の画像セクションの画像データと比較される陽性閾値であって、複数の画像セクションの各々が陽性細胞像に該当するか否かの判定基準である陽性閾値を決定する工程と、陽性閾値を出力する工程と、を含む情報処理方法に関する。
図1は、情報処理システムの構成例を示すブロック図である。 図2Aは、蛍光信号取得部によって取得される蛍光スペクトルの具体例である。 図2Bは、蛍光信号取得部によって取得される蛍光スペクトルの具体例である。 図2Cは、蛍光信号取得部によって取得される蛍光スペクトルの具体例である。 図2Dは、蛍光信号取得部によって取得される蛍光スペクトルの具体例である。 図3は、連結部による連結蛍光スペクトルの生成方法の一例を説明する図である。 図4は、図3の「A」~「D」に示す蛍光スペクトルから生成される連結蛍光スペクトルの一例を示す図である。 図5は、NMFの一例の概要を説明する図である。 図6は、クラスタリングの一例の概要を説明する図である。 図7は、情報処理装置のうち陽性閾値を決定する機能構成の一例を示す図である。 図8は、情報処理装置において得られる画像スペクトルデータの一例を示す図である。 図9は、情報処理装置において行われる画像処理(特に染色標本蛍光スペクトルに基づく画像処理)の一例を示すフローチャートである。 図10は、情報処理装置において行われる画像処理(特に非染色標本蛍光スペクトルに基づく画像処理)の一例を示すフローチャートである。 図11は、染色自家蛍光成分画像の一例の概念を示す図である。 図12は、自家蛍光参照スペクトルの一例の概念を示す図である。 図13は、染色自家蛍光成分画像及び自家蛍光参照スペクトルから疑似染色自家蛍光スペクトルを算出する演算の一例の概念を示す図である。 図14は、染色蛍光成分画像及び非染色蛍光成分画像のヒストグラムの一例を示す。 図15は、差分非染色ノルム画像の一例を示す図である。 図16は、差分非染色ノルム画像において外れ値を示す領域の一例を示す図である。 図17は、非染色蛍光成分画像における外れ値領域の一例を示す図である。 図18は、非染色蛍光成分画像のヒストグラムの一例を示す。 図19は、外れ値データに基づいて補正された後の非染色蛍光成分画像のヒストグラムの一例を示す。 図20は、表示部における画像情報の表示の一例を示す。 図21は、表示部における画像情報の表示の一例を示す。 図22は、表示部における画像情報の表示の一例を示す。 図23は、補正データ記憶部に記憶される補正値の一例を示す。 図24は、補正データ記憶部に記憶される補正値の一例を示す。 図25は、顕微鏡システムの構成例を示すブロック図である。 図26は、1画素中の蛍光分子数又は抗体数を算出する方法の一例を説明するための模式図である。 図27は、情報処理装置のハードウェア構成例を示すブロック図である。
 以下、図面を参照して、本開示の典型的な実施形態を例示的に説明する
 図1を参照して、一実施形態に係る情報処理システムの構成例について説明する。図1に示す情報処理システムは、情報処理装置100及びデータベース200を備える。
(蛍光試薬10)
 蛍光試薬10は、標本20の染色に使用される薬品である。蛍光試薬10は、例えば、蛍光抗体(直接標識に使用される一次抗体、又は間接標識に使用される二次抗体が含まれる)、蛍光プローブ、又は核染色試薬等であるが、蛍光試薬10の種類はこれらに限定されない。蛍光試薬10は、蛍光試薬10又は蛍光試薬10の製造ロットを識別可能な識別情報(以下「試薬識別情報11」と称される)が付されて管理される。試薬識別情報11は、例えばバーコード情報(一次元バーコード情報や二次元バーコード情報等)であるが、これに限定されない。蛍光試薬10は、同一の製品であっても、製造方法や抗体が取得された細胞の状態等に応じて製造ロット毎にその性質が異なる。例えば、蛍光試薬10において、製造ロット毎にスペクトル、量子収率、又は蛍光標識率等が異なる。そこで、本実施形態に係る情報処理システムにおいて、蛍光試薬10は、試薬識別情報11が付されることによって、製造ロット毎に管理される。これにより、情報処理装置100は、製造ロット毎に現れる僅かな性質の違いも考慮した蛍光分離を行うことができる。
(標本20)
 標本20は、人体から採取された検体又は組織サンプルから、病理診断などを目的に作製される。標本20は、組織切片、細胞或いは微粒子であってもよい。標本20に関し、使用組織(臓器等)の種類、対象の疾病の種類、対象者の属性(年齢、性別、血液型、及び人種等)、又は対象者の生活習慣(食生活、運動習慣、及び喫煙習慣等)は、限定されない。組織切片には、例えば、染色対象の組織切片(以下単に「切片」とも称される)の染色前の切片、染色された切片に隣接する切片、及び同一ブロック(染色切片と同一の場所からサンプリングされたもの)における染色切片と異なる切片が含まれうる。また組織切片には、同一組織における異なるブロック(染色切片と異なる場所からサンプリングされたもの)における切片、及び異なる患者から採取した切片などが含まれうる。
 標本20は、標本20を識別可能な識別情報(以下「標本識別情報21」と称される)を付されて管理される。標本識別情報21は、試薬識別情報11と同様に、例えばバーコード情報(一次元バーコード情報や二次元バーコード情報等)であるが、これに限定されない。標本20は、使用される組織の種類、対象となる疾病の種類、対象者の属性、又は対象者の生活習慣等に応じて、その性質が異なる。例えば、標本20において、使用される組織の種類等に応じて、計測チャネル又はスペクトル等が異なる。本実施形態に係る情報処理システムにおいて、標本20は、標本識別情報21が付されることによって個々に管理される。これによって、情報処理装置100は、標本20毎に現れる僅かな性質の違いも考慮した蛍光分離を行うことができる。
(蛍光染色標本30)
 蛍光染色標本30は、標本20が蛍光試薬10により染色されることで作られる。本実施形態において、蛍光染色標本30は、標本20が1以上の蛍光試薬10によって染色されることが想定される。ただし、標本20の染色に用いられる蛍光試薬10の数は、限定されない。染色方法は、標本20及び蛍光試薬10の組み合わせ等によって決められるが、特に限定されない。
 蛍光試薬10により標識されていない標本(以下「蛍光非染色標本」と称される)を用いる場合には、例えば標本20を、蛍光試薬10により染色することなく、そのまま蛍光非染色標本として使用しうる。
(情報処理装置100)
 情報処理装置100は、図1に示すように、取得部110、保存部120、処理部130、表示部140、制御部150、及び操作部160を備える。情報処理装置100は、例えば蛍光顕微鏡システムによって構成可能であるが、必ずしもこれには限定されず、各種の装置を含みうる。情報処理装置100は、例えばPC(Personal Computer)により構成されてもよい。
(取得部110)
 取得部110は、情報処理装置100の各種処理に使用される情報を取得する。図1に示す取得部110は、情報取得部111及び蛍光信号取得部112を備える。
(情報取得部111)
 情報取得部111は、蛍光試薬10に関する情報(以下「試薬情報」と称される)及び標本20に関する情報(以下「標本情報」と称される)を取得する。より具体的には、情報取得部111は、蛍光染色標本30の生成に使用された蛍光試薬10に付された試薬識別情報11と、蛍光染色標本30及び/又は蛍光非染色標本の生成に使用された標本20に付された標本識別情報21とを取得する。例えば、情報取得部111は、バーコードリーダ等を用いて、バーコード情報として蛍光試薬10及び標本20に付された試薬識別情報11及び標本識別情報21を取得する。そして、情報取得部111は、試薬識別情報11に基づいて試薬情報をデータベース200から取得し、標本識別情報21に基づいて標本情報をデータベース200から取得する。情報取得部111は、取得したこれらの情報を、後述する情報保存部121に保存する。
 本実施形態において、標本情報には連結自家蛍光参照スペクトルが含まれ、試薬情報には連結蛍光参照スペクトルが含まれる。連結自家蛍光参照スペクトルは、標本20における自家蛍光物質のスペクトルが波長方向に連結されることで得られる。連結蛍光参照スペクトルは、蛍光染色標本30における蛍光物質のスペクトルが波長方向に連結されることで得られる。なお、連結自家蛍光参照スペクトル及び連結蛍光参照スペクトルはそれぞれ単に「自家蛍光参照スペクトル」及び「蛍光参照スペクトル」ともされ、連結自家蛍光参照スペクトル及び連結蛍光参照スペクトルは「参照スペクトル」と総称される。
(データベース200)
 データベース200は、試薬情報及び標本情報等の情報を管理する装置である。より具体的には、データベース200は、試薬識別情報11と試薬情報とを紐付けて管理し、標本識別情報21と標本情報とを紐付けて管理する。情報取得部111は、蛍光試薬10の試薬識別情報11に基づいて試薬情報をデータベース200から取得することができ、標本20の標本識別情報21に基づいて標本情報をデータベース200から取得することができる。図1に示すデータベース200は、ネットワークを介して情報処理装置100(特に取得部110(情報取得部111))に接続されている。
 データベース200が管理する試薬情報は、蛍光試薬10が有する蛍光物質固有の計測チャネル及び蛍光参照スペクトルを含む情報であることを想定されるが、必ずしもこれらに限定されない。「計測チャネル」とは、蛍光試薬10に含まれる蛍光物質を示す概念である。蛍光物質の数は蛍光試薬10によって様々であるため、計測チャネルは、試薬情報として各蛍光試薬10に紐付けられて管理されている。また、試薬情報に含まれる蛍光参照スペクトルとは、計測チャネルに含まれる蛍光物質それぞれの蛍光スペクトルある。
 データベース200が管理する標本情報は、標本20が有する自家蛍光物質固有の計測チャネル及び自家蛍光参照スペクトルを含む情報であることを想定されるが、必ずしもこの情報には限定されない。「計測チャネル」とは、標本20に含まれる自家蛍光物質を示す概念であり、一例として、Hemoglobin、Archidonic Acid、Catalase、Collagen、FAD、NADPH、及びProLongDiamondを指す概念である。自家蛍光物質の数は標本20によって様々であるため、計測チャネルは、標本情報として各標本20に紐付けられて管理されている。また、標本情報に含まれる自家蛍光参照スペクトルとは、計測チャネルに含まれる自家蛍光物質それぞれの自家蛍光スペクトルである。なお、データベース200で管理される情報は必ずしも上記の情報に限定されない。
(蛍光信号取得部112)
 蛍光信号取得部112は、波長が互いに異なる複数の励起光を蛍光染色標本30に照射することで得られる複数の蛍光信号(すなわち複数の励起光それぞれに対応する複数の蛍光信号)を取得する。より具体的には、蛍光信号取得部112は、蛍光染色標本30からの光を受光し、その受光量に応じた検出信号を出力することで、当該検出信号に基づいて蛍光染色標本30の蛍光スペクトルを取得する。ここで、励起光の特性(例えば波長や光強度を含む)は、試薬情報等(すなわち蛍光試薬10に関する情報等)に基づいて決定される。なお、ここでいう蛍光信号は蛍光に由来する信号であれば特に限定されず、例えば蛍光スペクトルでもよい。
 蛍光信号取得部112は、同様の方法で、蛍光非染色標本に複数の励起光を照射することで、蛍光非染色標本に関する複数の蛍光信号(蛍光スペクトル)を取得することが可能である。
 図2A~図2Dは、蛍光信号取得部112によって取得される蛍光スペクトルの具体例である。図2A~図2Dに関する蛍光染色標本30には、DAPI、CK/AF488、PgR/AF594、及びER/AF647という4種の蛍光物質が含まれる。それぞれの蛍光物質の励起波長として392[nm](図2A)、470[nm](図2B)、549[nm](図2C)、628[nm](図2D)を有する励起光が蛍光染色標本30に照射されて取得される蛍光スペクトルの例が、図2A~図2Dに示される。なお、蛍光発光のためにエネルギーが放出されるため、蛍光波長は励起波長よりも長波長側にシフトする(ストークスシフト)。また、蛍光染色標本30に含まれる蛍光物質及び照射される励起光の励起波長は、上述の例に限定されない。蛍光信号取得部112は、取得した蛍光スペクトルを後述する蛍光信号保存部122(図1参照)に保存する。
(保存部120)
 図1に示す保存部120は、情報処理装置100の各種処理に使用される情報又は各種処理によって出力された情報を保存する。本実施形態の保存部120は、図1に示すように、情報保存部121及び蛍光信号保存部122を備える。
(情報保存部121)
 情報保存部121は、情報取得部111によって取得された試薬情報及び標本情報を保存する。
(蛍光信号保存部122)
 蛍光信号保存部122は、蛍光信号取得部112によって取得された蛍光染色標本30の蛍光信号を保存する。また蛍光信号保存部122は、蛍光信号取得部112によって取得された蛍光非染色標本の蛍光信号も保存する。
(処理部130)
 処理部130は、蛍光分離を行う処理(すなわち色分離処理)を含む各種処理を行う。図1に示すように、処理部130は、連結部131、分離処理部132、及び画像生成部133を備える。
(連結部131)
 連結部131は、蛍光信号取得部112によって取得された複数の蛍光スペクトル(すなわち蛍光信号保存部122に保存される複数の蛍光スペクトル)の少なくとも一部を波長方向に連結することで、連結蛍光スペクトルを生成する。例えば、連結部131は、蛍光信号取得部112により取得された4つの蛍光スペクトル(図3の符号「A」~「D」参照)の各々に関し、蛍光強度の最大値を含むように所定幅のデータを各蛍光スペクトルから抽出する。連結部131がデータを抽出する波長帯域の幅は、試薬情報、励起波長及び蛍光波長等に基づいて決定されてもよく、蛍光物質毎に異なってもよい。すなわち、連結部131がデータを抽出する波長帯域の幅は、図3の「A」~「D」に示される蛍光スペクトル間で異なっていてもよい。そして連結部131は、図3の「E」に示すように、抽出したデータを波長方向に互いに連結することで1つの連結蛍光スペクトルを生成する。なお、連結蛍光スペクトルは、複数の蛍光スペクトルから抽出されたデータによって構成されるため、連結されたデータ間の境界では、波長が必ずしも連続しない点に留意されたい。
 本実施形態の連結部131は、複数の蛍光スペクトルそれぞれに対応する励起光の強度を揃えた後に(換言すると、複数の蛍光スペクトルを励起光の強度に基づいて補正した後に)、複数の蛍光スペクトルを波長方向に連結する。より具体的には、連結部131は、励起光の強度を示す励起パワー密度によって各蛍光スペクトルを除算することで、複数の蛍光スペクトルそれぞれに対応する励起光の強度を揃えた後、複数の蛍光スペクトルの連結を行う。これによって、同一強度の励起光が蛍光染色標本30に照射された場合に得られることになる蛍光スペクトルが、求められる。また、照射される励起光の強度が異なる場合、励起光の強度に応じて蛍光染色標本30に吸収されるスペクトル(以下「吸収スペクトル」と称される)の強度も異なる。したがって、上記のように複数の蛍光スペクトルそれぞれに対応する励起光の強度が揃えられることで、吸収スペクトルを適切に評価することが可能になる。
 本説明における励起光の強度は、上述したように、励起パワーや励起パワー密度であってもよい。励起パワー又は励起パワー密度は、光源から出射した励起光を実測することで得られたパワー又はパワー密度であってもよいし、光源に与える駆動電圧から求まるパワー又はパワー密度であってもよい。なお、本説明における励起光の強度は、上記励起パワー密度を、観測対象である切片の各励起光に対する吸収率や切片から放射した蛍光を検出する検出系(蛍光信号取得部等)における検出信号の増幅率等を使って補正することで得られる値であってもよい。すなわち、本説明における励起光の強度は、蛍光物質の励起に実際に寄与した励起光のパワー密度や、そのパワー密度を検出系の増幅率等で補正した値等であってもよい。吸収率や増幅率等を考慮することで、マシン状態や環境の変化に応じて変化する励起光の強度を適切に補正することが可能となるため、より高い精度の色分離を可能にする連結蛍光スペクトルを生成することが可能となる。
 各蛍光スペクトルに対する励起光の強度に基づいた補正値(「強度補正値」とも称される)は、複数の蛍光スペクトルそれぞれに対応する励起光の強度を揃えるための値に限定されず、様々に変えられてもよい。例えば、長波長側に強度ピークを持つ蛍光スペクトル(「長波長側ピーク蛍光スペクトル」とも称される)のシグナル強度は、短波長側に強度ピークを蛍光スペクトル(「短波長側ピーク蛍光スペクトル」とも称される)のシグナル強度よりも低い傾向にある。そのため、連結蛍光スペクトルに長波長側ピーク蛍光スペクトル及び短波長側ピーク蛍光スペクトルの両方が含まれる場合、長波長側ピーク蛍光スペクトルが殆ど加味されず、主として短波長側ピーク蛍光スペクトルが抽出されてしまう場合がある。この場合、例えば、長波長側ピーク蛍光スペクトルに対する強度補正値をより大きな値とすることで、短波長側ピーク蛍光スペクトルの分離精度を高めることが可能である。
 また、連結部131は、連結する複数の蛍光スペクトルの各々の波長分解能を他の蛍光スペクトルから独立して補正してもよい。例えば、AF546の蛍光スペクトル及びAF555の蛍光スペクトルにおいて、スペクトル形状及びピーク波長は殆ど同じである。AF555の蛍光スペクトルには高波長側の裾部分にショルダがあるのに対し、AF546の蛍光スペクトルにはそのようなショルダがない点で、両者は相違する。このように、2つの蛍光スペクトルが近しい場合、スペクトル抽出にて両者を色分離することが困難になるという問題が発生する。
 このような問題は、連結蛍光スペクトルの波長分解能を高くすることで解決できる場合がある。これは、スペクトル形状及びピーク波長が近しい複数の蛍光スペクトルを用いる場合でも、波長分解能を高くすることでそれらを用いて色分離することが可能であることを示している。
 ただし、波長分解能を高めると、連結蛍光スペクトルのデータ量が大きくなり、必要なメモリ容量や蛍光分離処理における計算コスト等が増大してしまう。そこで、連結部131は、連結する複数の蛍光スペクトルのうち、色分離が困難であることが想定される蛍光スペクトルをその波長分解能が高くなるように補正し、色分離が容易であることが想定される蛍光スペクトルをその波長分解能が低くなるように補正する。それにより、データ量の増大化を抑制しつつ、色分離精度を向上させることが可能となる。
 ここで、連結部131による連結蛍光スペクトルの生成方法について、具体例を挙げて説明する。本例では、上述において図3を用いて説明した連結蛍光スペクトルの生成方法と同様に、DAPI、CK/AF488、PgR/AF594、及びER/AF647という4種の蛍光物質を含む蛍光染色標本30が用いられる。それぞれの蛍光物質の励起波長として392nm、470nm、549nm及び628nmを有する励起光を蛍光染色標本30に照射することで得られる4つの蛍光スペクトルを連結する場合を例示する。
 図4は、図3の「A」~「D」に示す蛍光スペクトルから生成される連結蛍光スペクトルの一例を示す図である。図4に示すように、連結部131は、図3の「A」に示す蛍光スペクトルから励起波長392nm以上591nm以下の波長帯域の蛍光スペクトルSP1を抽出する。また連結部131は、図3の「B」に示す蛍光スペクトルから励起波長470nm以上669nm以下の波長帯域の蛍光スペクトルSP2を抽出する。また連結部131は、図3の「C」に示す蛍光スペクトルから励起波長549nm以上748nm以下の波長帯域の蛍光スペクトルSP3を抽出する。また連結部131は、図3の「D」に示す蛍光スペクトルから励起波長628nm以上827nm以下の波長帯域の蛍光スペクトルSP4を抽出する。次に、連結部131は、抽出した蛍光スペクトルSP1の波長分解能を16nmに補正し(強度補正は無し)、蛍光スペクトルSP2の強度を1.2倍に補正するとともに波長分解能を8nmに補正する。また連結部131は、蛍光スペクトルSP3の強度を1.5倍に補正し(波長分解能の補正は無し)、蛍光スペクトルSP4の強度を4.0倍に補正するとともに波長分解能を4nmに補正する。そして、連結部131は、補正後の蛍光スペクトルSP1~SP4を順番に連結することで、図4に示す連結蛍光スペクトルを生成する。
 なお、図4には、連結部131が各蛍光スペクトルを取得した際の励起波長から所定帯域幅(図4では200nm幅)の蛍光スペクトルSP1~SP4を抽出して連結することで得られる連結蛍光スペクトルが示されている。ただし、連結部131が抽出する蛍光スペクトルの帯域幅は、蛍光スペクトル間で一致している必要はなく、蛍光スペクトル間で異なっていてもよい。すなわち、連結部131が各蛍光スペクトルから抽出する領域は、各蛍光スペクトルのピーク波長を含む領域であればよく、抽出する領域の波長帯域及び帯域幅は適宜変更されてもよい。抽出する領域の波長帯域及び帯域幅を変更する際、ストークスシフトによるスペクトル波長のズレが考慮されてもよい。このように、限定された波長帯域を抽出して使用することで、データ量を削減することが可能となるため、より高速に蛍光分離処理を実行することが可能となる。
(分離処理部132)
 図1に示す分離処理部132は、蛍光信号保存部122が取得した蛍光染色標本30の蛍光信号(すなわち染色標本蛍光スペクトル)に対して色分離処理を行う。また分離処理部132は、蛍光非染色標本の蛍光信号(すなわち非染色標本蛍光スペクトル)に対して色分離処理を行う。色分離処理の結果、蛍光染色標本30の蛍光信号から、蛍光試薬の蛍光像が抽出されて作られる染色蛍光成分画像と、自家蛍光成分の蛍光像が抽出されて作られる染色自家蛍光成分画像とが、別個の画像として導出される。同様に、蛍光非染色標本の蛍光信号から、蛍光試薬の蛍光像が抽出されて作られる非染色蛍光成分画像と、自家蛍光成分の蛍光像が抽出されて作られる非染色自家蛍光成分画像とが、別個の画像として導出される。
 色分離処理には、例えば、最小二乗法(LSM)や重み付け最小二乗法(WLSM)等が用いられてもよい。また、自家蛍光スペクトル及び/又は蛍光スペクトルの抽出には、例えば、非負値行列因子分解(NMF)や特異値分解(SVD)や主成分分析(PCA)等が用いられてもよい。
(最小二乗法について)
 ここで、分離処理部132による色分離処理において用いられうる最小二乗法について説明する。最小二乗法は、入力された標本蛍光スペクトル(例えば染色標本蛍光スペクトル(染色標本画像))における各画素の画素値である蛍光スペクトルに参照スペクトルをフィッティングすることで、混色率を算出する計算法である。なお、混色率は、各物質が混ざり合う度合を示す指標である。以下の式(1)は、蛍光スペクトル(Signal)から、参照スペクトルSt(蛍光参照スペクトル及び自家蛍光参照スペクトル)が混色率aで混色されたものを減算して得られる残差を表す式である。なお、式(1)における「Signal(1×チャネル数)」とは、蛍光スペクトル(Signal)が波長のチャネル数だけ存在することを示している。例えば、Signalは、1以上の蛍光スペクトルを表す行列である。また、「St(物質数×チャネル数)」とは、参照スペクトルが、それぞれの物質(蛍光物質及び自家蛍光物質)について波長のチャネル数だけ存在することを示している。例えば、Stは、1以上の参照スペクトルを表す行列である。また、「a(1×物質数)」とは、混色率aが各物質(蛍光物質及び自家蛍光物質)について設けられることを示している。例えば、aは、蛍光スペクトルにおける参照スペクトルそれぞれの混色率を表す行列である。
Figure JPOXMLDOC01-appb-M000001
 そして、分離処理部132は、残差を表す式(1)の2乗和が最小となる各物質の混色率aを算出する。残差の2乗和が最小となるのは、残差を表す式(1)について、混色率aに関する偏微分の結果が0である場合である。そのため、分離処理部132は、以下の式(2)を解くことで残差の2乗和が最小となる各物質の混色率aを算出する。なお、式(2)における「St´」は、参照スペクトルStの転置行列を示す。また、「inv(St*St´)」は、St*St´の逆行列を示している。
Figure JPOXMLDOC01-appb-M000002
 ここで、上記式(1)の各値の具体例を以下の式(3)~式(5)に示す。式(3)~式(5)の例では、蛍光スペクトル(Signal)において、3種の物質(物質数が3)の参照スペクトル(St)がそれぞれ異なる混色率aで混色される場合が示されている。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 そして、式(3)及び式(5)の各値による上記式(2)の計算結果の具体例を以下の式(6)に示す。式(6)のとおり、計算結果として正しく「a=(3 2 1)」(すなわち上記式(4)と同一の値)が算出されることがわかる。
Figure JPOXMLDOC01-appb-M000006
 なお、分離処理部132は、上述したように、最小二乗法ではなく重み付け最小二乗法(Weighted Least Square Method)に関する計算を行うことにより、蛍光スペクトルから蛍光物質毎のスペクトルを抽出してもよい。重み付け最小二乗法においては、測定値である蛍光スペクトル(Signal)のノイズがポアソン分布になることを利用して、低いシグナルレベルの誤差を重視するように重みが付けられる。ただし、重み付け最小二乗法で加重が行われない上限値をOffset値とする。Offset値は測定に使用されるセンサの特性によって決まり、センサとして撮像素子が使用される場合には別途最適化が必要である。重み付け最小二乗法が行われる場合には、上記の式(1)及び式(2)における参照スペクトルStが以下の式(7)で表されるSt_に置換される。なお、以下の式(7)は、行列で表されるStの各要素(各成分)を、同じく行列で表される「Signal+Offset値」においてそれぞれ対応する各要素(各成分)で除算(換言すると、要素除算)することでSt_を算出することを意味する。
Figure JPOXMLDOC01-appb-M000007
 ここで、Offset値が1であり、参照スペクトルSt及び蛍光スペクトルSignalの値がそれぞれ上記の式(3)及び式(5)で表される場合の、上記式(7)で表されるSt_の具体例を以下の式(8)に示す。
Figure JPOXMLDOC01-appb-M000008
 そして、この場合の混色率aの計算結果の具体例を以下の式(9)に示す。式(9)のとおり、計算結果として正しく「a=(3 2 1)」が算出されることがわかる。
Figure JPOXMLDOC01-appb-M000009
(非負値行列因子分解(NMF)について)
 分離処理部132が自家蛍光スペクトル及び/又は蛍光スペクトルの抽出に用いる非負値行列因子分解(NMF)について説明する。ただし、非負値行列因子分解(NMF)に限定されず、特異値分解(SVD)や主成分分析(PCA)等が用いられてもよい。
 図5は、NMFの概要を説明する図である。図5に示すように、NMFは、非負のN行M列(N×M)の行列Aを、非負のN行k列(N×k)の行列W、及び非負のk行M列(k×M)の行列Hに分解する。行列Aと、行列W及び行列Hの積(W*H)間の平均平方二乗残差Dが最小となるように行列W及び行列Hが決定される。本実施形態においては、行列Aが、自家蛍光参照スペクトルが抽出される前のスペクトル(Nが画素数であり、Mが波長チャネル数である)に相当する。行列Hが、抽出された自家蛍光参照スペクトル(kが自家蛍光参照スペクトルの数(換言すると、自家蛍光物質の数)である。Mが波長チャネル数である)に相当する。ここで、平均平方二乗残差Dは、以下の式(10)で表される。なお、「norm(D,’fro')」とは、平均平方二乗残差Dのフロベニウスノルムを指す。
Figure JPOXMLDOC01-appb-M000010
 NMFにおける因子分解は、行列W及び行列Hに対する無作為な初期値で始まる反復法が用いられる。NMFにおいてkの値(自家蛍光参照スペクトルの数)は必須であるが、行列W及び行列Hの初期値は必須ではなくオプションとして設定されうるものであり、行列W及び行列Hの初期値が設定されると解が一定となる。一方で、行列W及び行列Hの初期値が設定されない場合、これらの初期値は無作為に設定され、解が一定とならない。
 標本20は、使用される組織の種類、対象となる疾病の種類、対象者の属性、又は対象者の生活習慣等に応じてその性質が異なり、自家蛍光スペクトルも異なる。そのため、情報処理装置100が、上記のように、標本20毎に自家蛍光参照スペクトルを実測することで、より精度の高い色分離処理を実現することができる。
 なお、NMFの入力である行列Aは、上述したように、染色標本画像の画素数N(=Hpix×Vpix)と同数の行と、波長チャネル数Mと同数の列とからなる行列である。そのため、染色標本画像の画素数が大きい場合や波長チャネル数Mが大きい場合には、行列Aが非常に大きな行列となり、NMFの計算コストが増大して処理時間が長くなる。
 そのような場合には、例えば、図6に示すように、染色画像の画素数N(=Hpix×Vpix)を指定しておいたクラス数N(<Hpix×Vpix)にクラスタリングすることで、行列Aの巨大化による処理時間の冗長化を抑制することができる。
 クラスタリングでは、例えば、染色画像のうち、波長方向や強度方向において類似したスペクトル同士が同じクラスに分類される。これにより、染色画像よりも画素数の小さい画像が生成されるため、この画像を入力とした行列A'の規模を縮小することが可能となる。
(画像生成部133)
 図1に示す画像生成部133は、分離処理部132における一連の処理(蛍光スペクトルに対する色分離処理を含む)の結果得られる画像スペクトルデータ(染色蛍光成分画像を含む)に基づいて、画像情報を生成する。例えば、画像生成部133は、1つ又は複数の蛍光物質に対応する蛍光スペクトルを用いて画像情報を生成したり、1つ又は複数の自家蛍光物質に対応する自家蛍光スペクトルを用いて画像情報を生成したりすることができる。なお、画像生成部133が画像情報の生成に用いる蛍光物質(分子)又は自家蛍光物質(分子)の数や組み合わせは特に限定されない。また、分離後の蛍光スペクトル又は自家蛍光スペクトルを用いた各種処理(例えばセグメンテーションやS/N値算出等)が行われた場合、画像生成部133は、各種処理の結果を示す画像情報を生成してもよい。
(表示部140)
 表示部140は、画像生成部133によって生成された画像情報をディスプレイに表示することで、実施者(ユーザ)へ画像情報を提示する。なお、表示部140として用いられるディスプレイの種類は特に限定されない。また、詳細に説明しないが、画像生成部133によって生成された画像情報は、プロジェクター(表示部140)によって投影されたり、プリンタ(表示部140)によってプリントされたりすることで、実施者へ提示されてもよい。換言すると、画像情報の出力方法は特に限定されない。
(操作部160)
 操作部160は、実施者(ユーザ)からの操作入力を受ける。より具体的には、操作部160は、キーボード、マウス、ボタン、タッチパネル及び/又はマイクロフォン等の各種入力手段を備え、実施者は当該入力手段を操作することで情報処理装置100に対する様々な入力を行うことができる。操作部160を介して行われた入力に関する情報は制御部150に提供される。
(制御部150)
 制御部150は、情報処理装置100が行う処理全般を統括的に制御する機能構成である。例えば、制御部150は、操作部160を介して行われる実施者による操作入力に基づいて、上記で説明したような各種処理の開始や終了等を制御する。当該各種処理として、例えば、蛍光染色標本30の載置位置の調整処理、蛍光染色標本30に対する励起光の照射処理、スペクトルの取得処理、自家蛍光成分補正画像の生成処理、色分離処理、画像情報の生成処理、及び画像情報の表示処理等が挙げられる。なお、制御部150の制御内容は特に限定されない。例えば、制御部150は、汎用コンピュータ、PC、タブレットPC等において一般的に行われる処理(例えば、OS(Operating System)に関する処理)を制御してもよい。
 図1を参照して説明した上記のシステム構成はあくまで一例であり、上述の情報処理システムの構成は上記例に限定されない。例えば、情報処理装置100は、図1に示す構成の全てを必ずしも備えなくてもよいし、図1に示されていない構成を備えてもよい。
(陽性細胞像の検知)
 上述のように、分離処理部132(図1参照)は色分離処理を行うことで、染色標本蛍光スペクトルを、蛍光試薬を含む染色蛍光成分画像と、自家蛍光成分を含む染色自家蛍光成分画像とに分離する。これにより、蛍光染色標本の撮影画像において問題とされる自家蛍光物質由来の蛍光信号を、解析対象である蛍光物質由来の蛍光信号から効果的に分離することができる。
 そして、自家蛍光成分が取り除かれ又は低減された染色蛍光成分画像を解析することで、染色蛍光成分画像中の陽性細胞像を精度良く検知することができる。
 具体的には、染色蛍光成分画像に含まれる複数の画像セクションの画像データ(例えば輝度値などの特性データ)を陽性閾値と比較することで、各画像セクションが陽性細胞像に該当するか否かを判定することができる。ここでいう複数の画像セクションの各々は、染色蛍光成分画像を構成する個々の画素により構成されてもよいし、2以上の画素の集合により構成されてもよい。
 このように、染色蛍光成分画像中の陽性細胞像を検知するために、各画像セクションが陽性細胞像に該当するか否かの判定基準である陽性閾値を決定する必要がある。
 以下、染色蛍光成分画像に対する陽性閾値を決定する装置及び手法の典型例について説明する。
 図7は、情報処理装置100のうち陽性閾値を決定する機能構成の一例を示す図である。図8は、情報処理装置100において得られる画像スペクトルデータの一例を示す図である。図9は、情報処理装置100において行われる画像処理(特に染色標本蛍光スペクトルに基づく画像処理)の一例を示すフローチャートである。図10は、情報処理装置100において行われる画像処理(特に非染色標本蛍光スペクトルに基づく画像処理)の一例を示すフローチャートである。
 図7に示す分離処理部132は、分離部40、閾値決定部43及び分離出力部44を含む。
(分離部40)
 分離部40は、標本に励起光を照射して取得される蛍光スペクトルD1、D21と、参照スペクトルR1、R2と、を取得する(図9のS11及びS12;図10のS21及びS22)。
 ここで扱われる標本は、標本を蛍光試薬により標識することで得られる蛍光染色標本30だけではなく、蛍光試薬により標識されていない蛍光非染色標本も含みうる。励起光が照射されている蛍光染色標本を撮像することで得られる蛍光スペクトルが、染色標本蛍光スペクトルD1(図8参照)と称される。一方、励起光が照射されている蛍光非染色標本を撮像することで得られる蛍光スペクトルは、非染色標本蛍光スペクトルD21と称される。
 参照スペクトルは、上述のように、蛍光試薬10の本来のスペクトルを参照として示す蛍光参照スペクトルR1と、標本20の自家蛍光物質の本来のスペクトルを参照として示す自家蛍光参照スペクトルR2と、を含む。
 分離部40は、これらの染色標本蛍光スペクトルD1、非染色標本蛍光スペクトルD21、蛍光参照スペクトルR1及び自家蛍光参照スペクトルR2を取得する。
 本例の分離部40は、上述の連結部131(図1参照)により連結蛍光スペクトルとして生成された染色標本蛍光スペクトルD1及び非染色標本蛍光スペクトルD21を取得する。そのため、分離部40は、染色標本蛍光スペクトルD1及び非染色標本蛍光スペクトルD21を、連結部131から直接的に取得してもよい。或いは、連結部131が染色標本蛍光スペクトルD1及び非染色標本蛍光スペクトルD21を図1に示す保存部120に記憶させる場合には、分離部40は保存部120から染色標本蛍光スペクトルD1及び非染色標本蛍光スペクトルD21を取得してもよい。
 また分離部40は、図1に示す保存部120(具体的には情報保存部121)から蛍光参照スペクトルR1及び自家蛍光参照スペクトルR2を取得する。
 そして分離部40は、参照スペクトルR1、R2を使って、蛍光スペクトルD1、D21を蛍光成分画像と自家蛍光成分画像とに分離する(図8の色分離処理P1、P11;図9のS13;図10のS23)。
 染色標本蛍光スペクトルD1に対する色分離処理と、非染色標本蛍光スペクトルD21に対する色分離処理とは、基本的に同じようにして行われる。そのため共通の分離部40によって、染色標本蛍光スペクトルD1及び非染色標本蛍光スペクトルD21の両方に対する色分離処理を行ってもよい。ただし、第1分離部41によって染色標本蛍光スペクトルD1に対する色分離処理を行い、第1分離部41とは異なる第2分離部42によって非染色標本蛍光スペクトルD21に対する色分離処理を行ってもよい。
 染色標本蛍光スペクトルD1は、色分離処理P1によって、蛍光試薬を含む染色蛍光成分画像D2と、自家蛍光成分を含む染色自家蛍光成分画像D3とに分離される。同様に、非染色標本蛍光スペクトルD21は、色分離処理P11によって、蛍光試薬を含む非染色蛍光成分画像D22と、自家蛍光成分を含む非染色自家蛍光成分画像D23とに分離される。
(閾値決定部43)
 閾値決定部43(図7参照)は、分離部40における処理(上述の色分離処理P1、P11を含む)により得られる画像スペクトルデータに基づいて、染色蛍光成分画像D2に対する陽性閾値を決定する(陽性閾値決定工程)。
 ここでいう画像スペクトルデータは、染色標本蛍光スペクトルD1及び非染色標本蛍光スペクトルD21と、染色標本蛍光スペクトルD1及び非染色標本蛍光スペクトルD21から導出されるデータと、を含みうる。
 閾値決定部43は、分離部40から受信した画像スペクトルデータに基づいて任意の処理を行うことで、染色蛍光成分画像D2に対する陽性閾値を決定することができる。
 閾値決定部43における陽性閾値の決定方法の典型例については後述する。
(分離出力部44)
 分離出力部44は、閾値決定部43により決定された陽性閾値を出力する(陽性閾値出力工程)。
 本例の分離出力部44は、陽性閾値とともに、分離部40における処理によって得られる画像スペクトルデータも出力する。すなわち分離出力部44は、画像スペクトルデータ及び陽性閾値を相互に関連付けて出力する。
 なお分離出力部44は、画像スペクトルデータを出力する画像スペクトル出力部45と、陽性閾値を出力する閾値出力部46とを、別体として含んでもよい。
 また分離出力部44は、陽性閾値を出力するが、画像スペクトルデータを出力しなくてもよい。この場合、分離部40において得られる画像スペクトルデータは、分離部40から図1に示す保存部120(例えば蛍光信号保存部122)に送られて保存されてもよい。保存部120に保存される画像スペクトルデータは、他の装置(例えば後述の解析部47及び画像生成部133)により適宜読み出されて使われてもよい。
 分離出力部44による陽性閾値の出力先は限定されない。典型的には、分離出力部44は、解析部47及び/又は画像生成部133に陽性閾値を出力するが、他の装置や機能構成部に陽性閾値を出力してもよい。
(解析部47)
 解析部47は、分離出力部44から出力される陽性閾値に基づいて、任意の解析を行う。解析部47は、典型的には、画像スペクトルデータ(例えば染色蛍光成分画像D2)を陽性閾値に基づいて解析する。解析部47は、例えば細胞カウント処理等の細胞解析処理を行う解析ソフトウェア(アプリケーション)を含みうる。
 分離出力部44から解析部47に提供される陽性閾値は、解析部47において行われる解析処理で使われる陽性閾値に、自動的に設定可能である。
 ただし、解析部47が、分離出力部44から出力される陽性閾値をどのように使用するかについては、限定されない。
 解析部47は、分離出力部44から出力される陽性閾値を、固定値として使用してもよいし、或いは初期値として使用してもよい。分離出力部44から出力される陽性閾値が解析部47において初期値として使用される場合、解析部47における実際の解析では、必要に応じて補正された陽性閾値が用いられうる。
 上述の解析部47は、情報処理装置100(図1参照)の一部として設けられてもよいし、情報処理装置100とは別体として設けられてもよい。
(画像生成部133)
 画像生成部133は、表示部140に表示する画像情報を生成する。
 画像情報には、陽性閾値に基づく提示情報が含まれ、画像生成部133は、提示情報を生成する提示情報生成部として働く。
 本実施形態において、提示情報は、陽性閾値を示す閾値情報を含む。
 ユーザは、表示部140に表示される提示情報(特に閾値情報)を見ることで、陽性閾値を確認することができる。
 画像生成部133における画像情報の具体的な生成方法は限定されない。
 例えば、画像生成部133は、分離出力部44から受信した陽性閾値及び染色蛍光成分画像D2に基づいて、画像情報(提示情報を含む)を生成してもよい。
 また画像生成部133は、解析部47による解析の結果を受信し、当該解析結果に基づいて画像情報(提示情報を含む)を生成してもよい。
 図1に示す画像生成部133は情報処理装置100の一部として設けられるが、画像生成部133は情報処理装置100とは別体として設けられてもよい。
(表示部140)
 表示部140は、画像生成部133から受信した画像情報を表示して、ユーザに提示する。なお、表示部140は、解析部47の解析結果に基づく画像情報を解析部47から受信して、当該画像情報を表示してもよい。
 表示部140における画像情報の表示例については後述するが(図20~図22参照)、表示部140における画像情報の表示態様は限定されない。
 図1に示す表示部140は情報処理装置100の一部として設けられるが、表示部140は情報処理装置100とは別体として設けられてもよい。
 画像情報は、表示部140以外の他の装置(例えば、ネットワークを介して接続された解析装置やサーバ等)に送られてもよい。この場合、画像情報は、他の装置における処理(例えば特定の細胞の検出等の解析処理)に使われてもよい。
(陽性閾値の決定)
 次に、陽性閾値の具体的な決定方法について説明する。
 分離部40(図7参照)は、上述の色分離処理P1、P11に加え、以下の処理を行うことができる。
 すなわち分離部40は、上述の染色蛍光成分画像D2及び蛍光参照スペクトルR1に基づいて、疑似染色蛍光スペクトルD4を生成することができる(図8の処理P2;図9のS14)。例えば分離部40は、染色蛍光成分画像D2に対して蛍光参照スペクトルR1を掛け合わせることで、擬似的な染色蛍光スペクトルとして疑似染色蛍光スペクトルD4を得ることができる。
 また分離部40は、上述の染色自家蛍光成分画像D3及び自家蛍光参照スペクトルR2に基づいて、疑似染色自家蛍光スペクトルD5を生成することができる(図8の処理P3;図9のS14)。例えば分離部40は、染色自家蛍光成分画像D3に対して自家蛍光参照スペクトルR2を掛け合わせることで、擬似的な染色自家蛍光スペクトルとして疑似染色自家蛍光スペクトルD5を得ることができる。
 なお染色標本蛍光スペクトルD1の色分離処理P1において、上述の非負値行列因子分解(NMF)が用いられる場合、自家蛍光参照スペクトルR2はNMFによって染色標本蛍光スペクトルD1に最適化されるように変わる(補正される)。この場合、疑似染色自家蛍光スペクトルD5を生成する際には、最適化補正された後の自家蛍光参照スペクトルR2を用いることで、より正確な疑似染色自家蛍光スペクトルD5が得られうる。
 このように、陽性閾値を決定するために行われる各種処理では、必要に応じて、保存部120に保存されている自家蛍光参照スペクトルR2が用いられてもよいし、最適化補正された後の自家蛍光参照スペクトルR2が用いられてもよい。以下の説明で言及される「自家蛍光参照スペクトルR2」は、保存部120に保存されている自家蛍光参照スペクトルR2だけではなく、最適化補正後の自家蛍光参照スペクトルR2も含みうる概念である。
 図11は、染色自家蛍光成分画像D3の一例の概念を示す図である。図12は、自家蛍光参照スペクトルR2の一例の概念を示す図である。図13は、染色自家蛍光成分画像D3及び自家蛍光参照スペクトルR2から疑似染色自家蛍光スペクトルD5を算出する演算の一例の概念を示す図である。
 分離部40は、染色自家蛍光成分画像D3(図11参照)のうち、未選択の1つ(これを自家蛍光チャネルCHn(nは自然数)の染色自家蛍光成分画像とする)を選択する。なお、ここでいう自家蛍光チャネルとは、自家蛍光毎に付与された識別情報であってもよい。
 そして分離部40は、選択した自家蛍光チャネルCHnの染色自家蛍光成分画像と、選択した自家蛍光チャネルCHnに対応する自家蛍光参照スペクトルとから、疑似染色自家蛍光スペクトルD5を生成する。
 分離部40は、疑似染色自家蛍光スペクトルD5のうち特定チャネルに対応するスペクトルデータの輝度値を求めることで、染色特定チャネル輝度画像D6を生成してもよい(図8の処理P4)。
 そして分離部40は、疑似染色蛍光スペクトルD4及び疑似染色自家蛍光スペクトルD5に基づいて、疑似染色標本蛍光スペクトルD7を生成することができる(図8の処理P5;図9のS15)。例えば、分離部40は、疑似染色蛍光スペクトルD4及び疑似染色自家蛍光スペクトルD5を足し合わせることで、疑似染色標本蛍光スペクトルD7を得ることができる。このようにして生成される疑似染色標本蛍光スペクトルD7は、擬似的な染色標本蛍光スペクトルとなる。
 そして分離部40は、染色標本蛍光スペクトルD1と疑似染色標本蛍光スペクトルD7との差分に基づいて、差分染色標本蛍光スペクトルD8を生成する(図8の処理P6;図9のS16)。
 そして分離部40は、染色標本蛍光スペクトルD1及び疑似染色標本蛍光スペクトルD7の差分スペクトルデータである差分染色標本蛍光スペクトルD8のノルム画像を、差分染色ノルム画像D9として得る(図8の処理P7;図9のS17)。差分染色ノルム画像D9は、差分染色標本蛍光スペクトルD8の波長方向(奥行き方向)へのユークリッドノルムを算出することで得られる。このように分離部40(第2分離部42)は、差分染色標本蛍光スペクトルD8のノルムデータである差分染色ノルム画像(差分染色ノルムデータ)D9を生成する。
 そして分離部40は、差分染色標本蛍光スペクトルD8を、参照スペクトルR1、R2を使って、蛍光試薬を含む差分染色蛍光成分画像D10と、自家蛍光成分を含む差分染色自家蛍光成分画像D11とに分離することができる(図8の処理P8;図9のS18)。具体的には、分離部40は、差分染色標本蛍光スペクトルD8に対して上述の色分離処理(図8のP1参照)と同じ処理を行うことで、差分染色標本蛍光スペクトルD8から差分染色蛍光成分画像D10及び差分染色自家蛍光成分画像D11を生成する。
 分離部40は、上述のようにして、染色標本蛍光スペクトルD1に基づく一連の処理(P1~P8)を連続的に行うことができる。
 分離部40は、同様のやり方で、非染色標本蛍光スペクトルD21に基づく一連の処理(P11~P18)を連続的に行うことができる。
 すなわち分離部40は、上述の非染色蛍光成分画像D22及び蛍光参照スペクトルR1に基づいて、疑似非染色蛍光スペクトルD24を生成することができる(図8の処理P12;図10のS24)。
 また分離部40は、上述の非染色自家蛍光成分画像D23及び自家蛍光参照スペクトルR2に基づいて、疑似非染色自家蛍光スペクトルD25を生成することができる(図8の処理P13;図10のS24)。
 分離部40は、疑似非染色自家蛍光スペクトルD25のうち特定チャネルに対応するスペクトルデータの輝度値を求めることで、非染色特定チャネル輝度画像D26を生成してもよい(図8の処理P14)。
 そして分離部40は、疑似非染色蛍光スペクトルD24及び疑似非染色自家蛍光スペクトルD25に基づいて、疑似非染色標本蛍光スペクトルD27を生成することができる(図8の処理P15;図10のS25)。
 そして分離部40は、非染色標本蛍光スペクトルD21と疑似非染色標本蛍光スペクトルD27との差分に基づいて、差分非染色標本蛍光スペクトルD28を生成することができる(図8の処理P16;図10のS26)。
 そして分離部40は、差分非染色標本蛍光スペクトルD28のノルム画像を差分非染色ノルム画像D29として得る(図8の処理P17;図10のS27)。差分非染色ノルム画像D29は、差分非染色標本蛍光スペクトルD28の波長方向(奥行き方向)へのユークリッドノルムを算出することで得られる。このように分離部40(第2分離部42)は、差分非染色標本蛍光スペクトルD28のノルムデータである差分非染色ノルム画像(差分非染色ノルムデータ)D29を生成する。
 そして分離部40は、差分非染色標本蛍光スペクトルD28を、参照スペクトルR1、R2を使って、蛍光試薬を含む差分非染色蛍光成分画像D30と、自家蛍光成分を含む差分非染色自家蛍光成分画像D31とに分離できる(図8の処理P18;図10のS28)。すなわち分離部40は、差分非染色標本蛍光スペクトルD28に対して上述の色分離処理(図8のP11参照)と同じ処理を行うことで、差分非染色標本蛍光スペクトルD28から差分非染色蛍光成分画像D30及び差分非染色自家蛍光成分画像D31を生成する。
(第1の陽性閾値決定方法)
 閾値決定部43は、上述のようにして分離部40により導出される非染色蛍光成分画像D22(図8参照)に基づき、染色蛍光成分画像D2に対する陽性閾値を決定することができる。
 本例によれば、陰性対照群として用いられる非染色標本蛍光スペクトルD21から得られる非染色蛍光成分画像D22に基づいて、陽性閾値が決定される。そのため染色蛍光成分画像D2のうち、蛍光試薬10に起因する蛍光の影響を受けている画像セクションを、当該蛍光の影響を受けていない画像セクションから精度良く区別して、陽性細胞像として特定することができる。
 本例における陽性閾値の具体的な決定方法は限定されない。
 一例として、非染色蛍光成分画像D22の輝度値に基づいて、陽性閾値を決めることが可能である。
 図14は、染色蛍光成分画像D2及び非染色蛍光成分画像D22のヒストグラムの一例を示す。図14においてX軸は輝度値を示し、Y軸は頻度を示す。
 閾値決定部43は、例えば、非染色蛍光成分画像D22のヒストグラムのエッジ(特に高輝度値側エッジ)に対応する輝度値(図14の符号「T1」参照)を、陽性閾値として決めてもよい。
 非染色蛍光成分画像D22のヒストグラムのエッジの求め方は限定されない。
 例えば、非染色蛍光成分画像D22のうちの最大の輝度値を、非染色蛍光成分画像D22のヒストグラムのエッジとして決めてもよい。
 或いは、非染色蛍光成分画像D22のヒストグラムの勾配の傾き(図14の符号「G」参照)を求め、当該傾きに基づいて非染色標本蛍光スペクトルD21のヒストグラムのエッジを決めてもよい。この場合、非染色蛍光成分画像D22のヒストグラムにおける「傾きを決定するための勾配箇所」の決め方は限定されない。
 例えば、非染色蛍光成分画像D22の輝度値の頻度に基づいて、当該勾配箇所を決めてもよい。具体的には、後述の「陽性閾値T2」の決め方と同様にして、当該勾配箇所を決めることが可能である。
 或いは、閾値決定部43は、非染色蛍光成分画像D22の輝度値の頻度に基づいて決められる輝度値(図14の符号「T2」参照)を、陽性閾値として決めて用いてもよい。例えば、非染色蛍光成分画像D22のヒストグラムの面積のうち、低輝度値側又は高輝度値側からの所定面積(例えば低輝度値側からの95%面積)に対応する輝度値を、陽性閾値として決めてもよい。或いは、非染色蛍光成分画像D22のヒストグラムの両エッジ間の距離(図14のX軸方向距離)のうち、低輝度値側又は高輝度値側から所定の値(例えば低輝度値側から95%)に対応する輝度値を、陽性閾値として決めてもよい。
 上述のように本例によれば、閾値決定部43は、非染色蛍光成分画像D22のみに基づいて陽性閾値を決定することができる。したがって分離部40が上述の処理P2~P8及びP12~P18(図8参照)を行うことなく、閾値決定部43は陽性閾値を決定することができる。
 そのため分離部40は、上述の処理のうち陽性閾値の決定に寄与しない処理(すなわち処理P2~P8及びP12~P18)を行わなくてもよい。この場合、分離部40における処理負荷を軽減することができ、陽性閾値の算出に関する全体の処理速度の向上及び処理時間の短縮を促しうる。
(第2の陽性閾値決定方法)
 閾値決定部43は、陽性閾値を一旦導出した後、陽性閾値を補正することで、最終的な陽性閾値を決定してもよい。
 本例において閾値決定部43は、上述の第1の陽性閾値決定方法と同様にして、非染色蛍光成分画像D22から陽性閾値を導出する。その後、閾値決定部43は、差分染色蛍光成分画像D10のスペクトル及び差分非染色蛍光成分画像D30のスペクトルに基づいて、陽性閾値を補正する。
 陽性閾値の具体的な補正方法は限定されないが、典型的には、差分染色蛍光成分画像D10のスペクトルに対する差分非染色蛍光成分画像D30のスペクトルの比率に基づいて、陽性閾値を補正することができる。
 例えば、スペクトルの「輝度値及び頻度に基づくヒストグラム(図14参照)」に基づいて陽性閾値の補正値を決めることができる。差分染色蛍光成分画像D10のスペクトルのヒストグラムのエッジ(例えば高輝度値側エッジ)を「E1」で表す。また差分非染色蛍光成分画像D30のスペクトルのヒストグラムの対応のエッジ(例えば高輝度値側エッジ)を「E2」で表す。この場合、閾値決定部43は、「E1/E2」を補正値(補正係数)として使用して陽性閾値に適用する(すなわち乗算する)ことで、最終的な陽性閾値を決めてもよい。
 本例によれば、染色標本蛍光スペクトルD1及び非染色標本蛍光スペクトルD21の両方から導き出される中間データ(すなわち差分染色蛍光成分画像D10及び差分非染色蛍光成分画像D30)が使われて、陽性閾値が補正される。
 そのため、非染色標本蛍光スペクトルD21から導出される中間データ(すなわち非染色蛍光成分画像D22)のみに基づいて陽性閾値が決められる上述の第1の陽性閾値決定方法に比べ、正確性の高い陽性閾値を安定的に得ることができる。このように本例によれば、演算誤差を補償するように陽性閾値を補正して、より正確な陽性閾値の決定が可能である。
 また補正値を決めるために使われる差分染色蛍光成分画像D10及び差分非染色蛍光成分画像D30は、染色標本蛍光スペクトルD1及び非染色標本蛍光スペクトルD21の演算処理によって得られる中間データである。
 したがって、染色蛍光成分画像D2及び非染色蛍光成分画像D22の導出に使われる入力データ以外の入力データを必要とすることなく、陽性閾値の補正値を算出することができる。そのため分離部40における一連の演算処理の中で、染色蛍光成分画像D2及び非染色蛍光成分画像D22の導出と、差分染色蛍光成分画像D10及び差分非染色蛍光成分画像D30の導出とを行うことができる。
(第3の陽性閾値決定方法)
 本例の閾値決定部43も、上述の第2の陽性閾値決定方法と同様に、非染色蛍光成分画像D22から陽性閾値を導出した後、陽性閾値を補正することで、最終的な陽性閾値を決定する。
 本例の閾値決定部43は、差分染色標本蛍光スペクトルD8及び差分非染色標本蛍光スペクトルD28に基づいて、陽性閾値を補正する。
 陽性閾値の具体的な補正方法は限定されないが、典型的には、差分染色標本蛍光スペクトルD8に対する差分非染色標本蛍光スペクトルD28の比率に基づいて、陽性閾値を補正することができる。
 例えば上述の第2の陽性閾値決定方法と同様にして、スペクトルの「輝度値及び頻度に基づくヒストグラム(図14参照)」に基づいて陽性閾値の補正値を決めることができる。差分染色標本蛍光スペクトルD8のヒストグラムのエッジ(例えば高輝度値側エッジ)を「E3」で表す。また差分非染色標本蛍光スペクトルD28のヒストグラムの対応のエッジ(例えば高輝度値側エッジ)を「E4」で表す。この場合、閾値決定部43は、「E3/E4」を補正値(補正係数)として使用して陽性閾値に適用する(すなわち乗算する)ことで、最終的な陽性閾値を決めてもよい。
 本例においても、染色標本蛍光スペクトルD1及び非染色標本蛍光スペクトルD21の両方から導き出される中間データ(すなわち差分染色標本蛍光スペクトルD8及び差分非染色標本蛍光スペクトルD28)が使われて、陽性閾値が補正される。
 そのため、正確性の高い陽性閾値を安定的に得ることができ、演算誤差を補償するように陽性閾値を補正して、より正確な陽性閾値の決定が可能である。
 また染色蛍光成分画像D2及び非染色蛍光成分画像D22の導出に使われる入力データ以外の入力データを必要とすることなく、陽性閾値の補正値を算出することができる。
(第4の陽性閾値決定方法)
 本例の閾値決定部43は、非染色蛍光成分画像D22から陽性閾値を導出するのに先立って、非染色蛍光成分画像D22が補正される。すなわち閾値決定部43は、補正された非染色蛍光成分画像D22から陽性閾値を導出する。
 図15は、差分非染色ノルム画像D29の一例を示す図である。図16は、差分非染色ノルム画像D29において外れ値を示す領域(以下「外れ値領域Rh」とも称する)の一例を示す図である。図17は、非染色蛍光成分画像D22における対応の外れ値領域Rhの一例を示す図である。図15~図17は、輝度を示す画像である。
 図15に示すように、差分非染色ノルム画像D29は、輝度値が著しく大きい領域(すなわち著しく明るくなる領域)がまばらに含まれることがある。このように、例えば病理標本において、空間(画素)としてはスパース(sparse)に存在する「著しく大きな輝度値を示す領域」の発生は、本来的に強い自家蛍光を示す組織(例えば赤血球など)に起因しうる。
 このような強い自家蛍光を示す組織が示す輝度値は、蛍光スペクトルにおいて突発的に生じうるエラー値(外れ値)を構成し、適切な陽性閾値の決定を阻害しうる。特に、例えば赤血球が少ない組織標本を撮像することで得られる画像スペクトルを判定対象とする場合、赤血球がもたらす輝度値が他の領域の輝度値と比較して大きくなりやすい。その結果、赤血球に起因するエラー値が陽性閾値の決定に及ぼす影響も大きくなりやすい。
 なお上述の非負値行列因子分解(NMF)による自家蛍光参照スペクトルR2の最適化は、その特性上、画像全体を対象とする。そのため、強い自家蛍光を示す組織に起因する局所的なエラーを低減又は除去するのに特化したNMFの適用は、実際上難しい。
 そこで、本例の閾値決定部43は、差分非染色ノルム画像D29を解析して外れ値データを取得する。
 外れ値データを取得する具体的な方法は限定されないが、典型的には以下の手法によって外れ値データを取得することができる。
 例えば、閾値決定部43は、差分非染色ノルム画像D29の画素輝度値の平均値に基づいて、差分非染色ノルム画像D29における外れ値を決めてもよい。一例として、差分非染色ノルム画像D29の画素輝度値の平均値から3σ(3シグマ)以上離れる輝度値を、外れ値として定めてもよい。ここで「σ」は、差分非染色ノルム画像D29の画素輝度値の標準偏差を示す。本例では、以下に例示する「中央値に基づいて外れ値を決める例」に比べ、ロバスト性が劣ることがある。
 また閾値決定部43は、差分非染色ノルム画像D29の画素輝度値の中央値に基づいて、差分非染色ノルム画像D29における外れ値を決めてもよい。一例として、差分非染色ノルム画像D29の画素輝度値の中央値から、MAD(中央絶対偏差)の3倍を超えて離れる輝度値を、外れ値として定めてもよい。
 また閾値決定部43は、差分非染色ノルム画像D29の画素輝度値の分位数に基づいて、差分非染色ノルム画像D29における外れ値を決めてもよい。一例として、差分非染色ノルム画像D29の画素輝度値の上位四分位数(75%)から上位へ、四分位範囲の1.5倍を超える画素輝度値を、外れ値として定めてもよい。
 閾値決定部43は、上述のようにして決定した外れ値データに基づいて非染色蛍光成分画像D22を補正する。すなわち閾値決定部43は、非染色蛍光成分画像D22における外れ値の影響が低減するように、非染色蛍光成分画像D22を補正する。
 外れ値データに基づく非染色蛍光成分画像D22の具体的な補正方法は限定されないが、例えば以下のようにして行われる。
 図18は、非染色蛍光成分画像D22のヒストグラムの一例を示す。図19は、外れ値データに基づいて補正された後の非染色蛍光成分画像D22のヒストグラムの一例を示す。図18及び図19においてX軸は輝度値を示し、Y軸は頻度を示す。
 閾値決定部43は、例えば、上述のようにして差分非染色ノルム画像D29から求められる外れ値に基づいて、マスク閾値Tmを決定する(例えば「マスク閾値Tm=外れ値))。そして閾値決定部43は、当該マスク閾値Tmよりも大きな輝度値を示す画素の輝度値を低減することで、非染色蛍光成分画像D22を補正してもよい。
 図18及び図19に示す例では、非染色蛍光成分画像D22においてマスク閾値Tmよりも大きな輝度値を示す画素は、当該補正方法によって「輝度値=0(ゼロ)」が割り当てられる。その結果、図18において著しく大きな輝度値を示すグラフ領域が、補正後には図19に示すように消滅する。すなわち、図18においてマスク閾値Tmよりも大きな輝度値を示すグラフ領域が、図19において「輝度値=0」を示すグラフ領域に移るように、非染色蛍光成分画像D22は補正される。
 閾値決定部43は、このようにして補正された非染色蛍光成分画像D22に基づいて陽性閾値を決定する。補正された非染色蛍光成分画像D22に基づく陽性閾値の具体的な決定方法は限定されない。例えば、非染色蛍光成分画像D22においてマスク閾値Tmよりも大きな輝度値を示す画素に「輝度値=0(ゼロ)」を割り当てる補正を行う場合、補正後の非染色蛍光成分画像D22が示す最大輝度値に基づいて陽性閾値を決定してもよい。すなわち、補正後の非染色蛍光成分画像D22が示す最大輝度値を、陽性閾値として決定してもよい。
 また、上述の第1~第3の陽性閾値決定方法に対しても、本例の陽性閾値決定方法を応用しうる。
 本例によれば、外れ値の影響を抑えた正確性の高い陽性閾値を安定的に得ることができる。また染色蛍光成分画像D2及び非染色蛍光成分画像D22の導出に使われる入力データ以外の入力データを必要とすることなく、陽性閾値の補正値を算出することができる。
 また本例によれば、閾値決定部43は、非染色蛍光成分画像D22及び差分非染色ノルム画像D29に基づいて陽性閾値を決定することができる。したがって分離部40が上述の処理P2~P8(図8参照)を行うことなく、閾値決定部43は陽性閾値を決定することができるため、分離部40における処理負荷を軽減しうる。
(第5の陽性閾値決定方法)
 上述の第1~第4の陽性閾値決定方法では、非染色標本蛍光スペクトルD21から得られる画像スペクトルデータ(特に非染色蛍光成分画像D22)に基づいて、染色蛍光成分画像D2に対する陽性閾値が導出される。
 一方、染色標本蛍光スペクトルD1から得られる画像スペクトルデータに基づいて、染色蛍光成分画像D2に対する陽性閾値を導出することも可能である。閾値決定部43は、例えば、染色蛍光成分画像D2及び蛍光参照スペクトルR1に基づいて導き出される画像スペクトルデータに基づいて陽性閾値を導出及び決定することも可能である。
 本例の陽性閾値決定方法では、差分染色蛍光成分画像D10(図8参照)に基づいて、染色蛍光成分画像D2に対する陽性閾値が決められる。
 閾値決定部43は、例えば、差分染色蛍光成分画像D10の「輝度値(X軸)-頻度(Y軸)」のヒストグラムのエッジに対応する輝度値に基づいて、陽性閾値を決めてもよい。
 ここで差分染色蛍光成分画像D10のヒストグラムのエッジの求め方は限定されない。閾値決定部43は、例えば上述の非染色蛍光成分画像D22のヒストグラムのエッジの決め方(図14参照)と同様の方法によって、差分染色蛍光成分画像D10のヒストグラムのエッジを決めることが可能である。
 或いは閾値決定部43は、差分染色蛍光成分画像D10の輝度値の頻度に基づいて決められる輝度値を、陽性閾値として決めてもよい。例えば、差分染色蛍光成分画像D10のヒストグラムの面積のうち、低輝度値側又は高輝度値側からの所定面積(例えば低輝度値側からの95%面積)に対応する輝度値を、陽性閾値として決めてもよい。或いは、差分染色蛍光成分画像D10のヒストグラムの両エッジ間の距離のうち、低輝度値側又は高輝度値側から所定の値(例えば低輝度値側から95%)に対応する輝度値を、陽性閾値として決めてもよい。
 本例によれば、閾値決定部43は、染色標本蛍光スペクトルD1、蛍光参照スペクトルR1及び自家蛍光参照スペクトルR2に基づいて、染色蛍光成分画像D2に対する陽性閾値を決定することができる。
 したがって染色蛍光成分画像D2に対する陽性閾値を決めるために、非染色標本蛍光スペクトルD21及び非染色標本蛍光スペクトルD21から導出されるデータを必要としない。すなわち本例によれば、分離部40が上述の処理P11~P18(図8参照)を行うことなく、陽性閾値を決定することができる。
 そのため分離部40は、上述の処理のうち陽性閾値の決定に寄与しない処理(すなわち処理P11~P18)を行わなくてもよい。また陽性閾値の決定に非染色標本蛍光スペクトルD21が不要であるため、そもそも非染色標本蛍光スペクトルD21を準備する必要がない。
 また本例において、陽性閾値の決定に使用される差分染色蛍光成分画像D10は、染色標本蛍光スペクトルD1の色分離処理P1における計算誤差に相当する。したがって本例の陽性閾値決定方法によれば、当該計算誤差の影響を低減するのに有効な陽性閾値を決定することができる。
(表示例)
 次に、表示部140における画像情報の表示例について、図20~図22を参照して説明する。
 図20は、表示部140における画像情報の表示の一例を示す。
 図20に示す画像情報は、標本画像情報J1及び提示情報J2を含む。
 標本画像情報J1は、染色標本蛍光スペクトルD1に基づく画像の情報であり、典型的には染色標本蛍光スペクトルD1を色分離処理することで得られる染色蛍光成分画像D2である。ただし標本画像情報J1は、染色蛍光成分画像D2以外の画像であってもよく、特に限定されない。例えば、標本画像情報J1は、染色標本蛍光スペクトルD1に対応する染色標本画像であってもよいし、染色蛍光成分画像D2又は染色標本画像に基づいて生成される他の画像であってもよい。
 ここでいう染色標本画像は、例えば蛍光染色標本30を撮像装置によって撮影することで取得される画像であってもよい。蛍光非染色標本を撮像装置によって撮影することで取得される画像は、非染色標本画像と称される。
 表示部140に表示される標本画像情報J1は、蛍光染色標本30(特に撮影対象範囲)の全範囲に対応する画像であってもよいし、蛍光染色標本30の一部範囲に対応する画像であってもよい。
 蛍光染色標本30の一部範囲のみが標本画像情報J1として表示部140に表示される場合、蛍光試薬10により標識された細胞像(以下「標識細胞像」とも称される)を含む範囲(例えば陽性細胞像K2を含む範囲)が、表示部140に表示されることが好ましい。
 標識細胞像は、陽性閾値に基づいて非陽性と判定される非陽性細胞像K1と、陽性閾値に基づいて陽性と判定される陽性細胞像K2とに分類される。一例として、染色蛍光成分画像D2のうち、陽性閾値以上の輝度値を示す画像セクション(特に標識細胞像)を陽性細胞像K2に分類し、陽性閾値よりも小さい輝度値を示す画像セクション(特に標識細胞像)を非陽性細胞像K1に分類することができる。
 非陽性細胞像K1及び陽性細胞像K2の分類は、例えば、画像生成部133(図1及び図7参照)で行われてもよいし、解析部47等の任意の装置で行われてもよい。
 図20に示す例において、表示部140に表示される各標識細胞像は、細胞像位置強調マークM1により強調される。ただし、非陽性細胞像K1と陽性細胞像K2との間で、細胞像位置強調マークM1の具体的な表示態様(例えば色、太さ、模様及び/又は形)が変えられる。これにより、表示部140に表示されている標本画像情報J1を見たユーザは、標本画像情報J1中の非陽性細胞像K1及び陽性細胞像K2を直感的に認識することが可能である。
 一方、表示部140に表示される提示情報J2は、陽性閾値を示す閾値情報を含む。
 図20に示す例では、ゲージ(インジケータ)によって陽性閾値が示されている。すなわち、非陽性細胞像K1及び陽性細胞像K2の分類に使用される陽性閾値が、陽性閾値マークQにより示されている。図20における提示情報J2のインジケータは、16ビット(0~65535)で表されており、インジケータの下方ほど(すなわち値が大きくなるほど)、高輝度値に対応する陽性閾値を示す。
 ユーザは、操作部160(図1参照)を介して陽性閾値マークQをインジケータに沿って動かすことで、非陽性細胞像K1及び陽性細胞像K2の分類に使用される陽性閾値を適宜調整しうる。
 この場合、制御部150(図1参照)は、ユーザにより操作部160を介して入力される調整指示信号に応じて、表示部140に表示される陽性閾値マークQの位置を調整するように、画像生成部133及び/又は表示部140を制御する。
 一方、画像生成部133は、操作部160を介して入力される調整指示信号に応じた調整後の陽性閾値を、例えば制御部150から、取得する。そして画像生成部133は、調整後の陽性閾値に応じて、非陽性細胞像K1及び陽性細胞像K2の再分類を行う。そして画像生成部133は、再分類結果及び調整後の陽性閾値に応じた画像情報(標本画像情報J1及び提示情報J2)を生成し、表示部140に送る。
 その結果、ユーザによる調整後の陽性閾値に基づいて生成される画像情報が、表示部140に表示される。
 図21は、表示部140における画像情報の表示の他の例を示す。図21において、図20に示される要素と同一又は対応の要素には同一の符号を付し、その詳細な説明は省略する。
 上述の図20に示す例では、標本画像情報J1の全体にわたり共通の陽性閾値が用いられて、非陽性細胞像K1及び陽性細胞像K2の分類が行われる。
 一方、図21に示す例では、標本画像情報J1に表示される染色蛍光成分画像D2を区分することで定められる複数の観察領域(小領域)Rs1、Rs2の各々に関し、陽性閾値が決定される。
 閾値決定部43(図7参照)は、染色蛍光成分画像D2を区分することで定められる複数の観察領域Rs1、Rs2の各々に関し、陽性閾値を決定する。
 WSI(Whole Slide Imaging)のような広視野の組織画像においては、複数の区分領域(例えばバックグラウンドノイズが高い領域及び低い領域)の各々に固有の特徴が出現することがある。そのため、組織画像の区分領域毎に陽性閾値を設定して解析したいというニーズがある。
 閾値決定部43は、例えば、染色標本蛍光スペクトルD1、染色蛍光成分画像D2及び/又は染色自家蛍光成分画像D3を解析することで、染色標本蛍光スペクトルD1に含まれるノイズ成分を示す情報を取得してもよい。この場合、閾値決定部43は、取得したノイズ成分に応じて染色蛍光成分画像D2を区分することで、複数の観察領域Rs1、Rs2を定めることができる。これによりバックグラウンドノイズの大きさに応じて標本画像情報J1の画像を区分して、複数の観察領域Rs1、Rs2を自動的に設定することができる。
 図21に示す例では、相対的に大きいバックグラウンドノイズを示す第2観察領域Rs2が、観察領域強調マークM2により囲まれている。観察領域強調マークM2の外側の領域は、相対的に小さいバックグラウンドノイズを示す第1観察領域Rs1である。
 なお、ユーザが任意の領域毎に閾値を調整できるようなユーザインターフェースが求められることがある。そのためユーザインターフェース上でユーザが複数の観察領域Rs1、Rs2を指定し、指定された複数の観察領域Rs1、Rs2のそれぞれに陽性閾値が設定されてもよい。
 すなわち閾値決定部43は、ユーザにより定められる複数の観察領域Rs1、Rs2の各々に関し、陽性閾値を決定してもよい。
 ユーザによる複数の観察領域Rs1、Rs2の指定方法は、限定されない。例えば、ユーザが、表示部140上の標本画像情報J1(染色蛍光成分画像D2)を見ながら、操作部160(図1参照)を操作して複数の観察領域Rs1、Rs2を任意のやり方で指定してもよい。
 制御部150は、ユーザにより指定された複数の観察領域Rs1、Rs2に関する情報を、操作部160から取得し、処理部130に直接的又は間接的に提供することができる。そして処理部130(例えば分離処理部132及び画像生成部133)は、複数の観察領域Rs1、Rs2に関する情報に基づいて陽性閾値の決定及び画像情報の生成を行ってもよい。その結果、ユーザにより指定された複数の観察領域Rs1、Rs2に基づく画像情報を、表示部140に表示することができる。
 図21に示す例においても、ユーザは、操作部160を介して陽性閾値マークQ1、Q2を動かすことで、陽性閾値を調整しうる。
 陽性閾値マークは、それぞれの観察領域に関して設けられてもよい。図21に示す第1陽性閾値マークQ1は第1観察領域Rs1に関して設けられており、第2陽性閾値マークQ2は第2観察領域Rs2に関して設けられている。
 ユーザは、図20に示す陽性閾値マークQと同様に、操作部160を介して第1陽性閾値マークQ1及び第2陽性閾値マークQ2の各々を動かすことで、第1観察領域Rs1及び第2観察領域Rs2の各々に割り当てられる陽性閾値を変更調整することができる。
 図22は、表示部140における画像情報の表示の他の例を示す。図22において、図20及び図21に示される要素と同一又は対応の要素には同一の符号を付し、その詳細な説明は省略する。
 図22に示す例において、表示部140に表示される提示情報J2は、陽性閾値を示す閾値情報に加え、陽性閾値の補正可能範囲を示す補正可能範囲情報を含む。
 図22に示す提示情報J2は、陽性閾値マークQに加えて、補正可能上限値Lu及び補正可能下限値Ldの表示を含む。
 補正可能上限値Lu及び補正可能下限値Ldの表示は、それぞれ陽性閾値の補正可能範囲の上限値及び下限値を示す。したがって、提示情報J2のインジケータにおいて、陽性閾値マークQは、基本的に、補正可能上限値Lu及び補正可能下限値Ldによって区画される範囲のどこかを指す。
 補正可能上限値Lu及び補正可能下限値Ldによって定められる陽性閾値の補正可能範囲は、任意の形態で表示可能である。例えば、陽性閾値の補正可能範囲の内側及び外側が、お互いに異なる色や模様で表示されてもよい。また提示情報J2のインジケータにおいて、補正可能上限値Lu及び補正可能下限値Ldを示す線等の表示が表されてもよい。
 ユーザは、提示情報J2において示される陽性閾値の補正可能範囲を目安にしながら、操作部160を介して陽性閾値マークQを動かすことで、陽性閾値の調整を行うことが可能である。
 陽性閾値の補正可能範囲(すなわち補正可能上限値Lu及び補正可能下限値Ld)は、閾値決定部43(図7参照)によって決定可能である。閾値決定部43により決定された補正可能範囲を示す情報は、分離出力部44から出力され、解析部47や画像生成部133等に送られる。
 なお陽性閾値の補正可能範囲の具体的な決定方法は限定されない。
 一例として、複数の陽性閾値決定方法のそれぞれによって決定される陽性閾値に基づいて、陽性閾値の補正可能範囲が決められてもよい。例えば、上述の第1~第5の陽性閾値決定方法によって決められる陽性閾値のうちの最小値に基づいて補正可能下限値Ldが決められ、当該陽性閾値のうちの最大値に基づいて補正可能上限値Luが決められてもよい。
 或いは、陽性閾値に対して割り当てられる補正値(例えば後述の第1変形例(図23及び図24)において説明されるような予め定められる補正値)に基づいて、陽性閾値の補正可能範囲が決められてもよい。この場合、閾値決定部43は、陽性閾値の補正可能範囲のデータを、例えば記憶部(例えばデータベース200又は情報保存部121)から読み出すことで、取得してもよい。
 このようにして決められる陽性閾値の補正可能範囲は、上述のように表示部140に表示されるが、他の装置に送られて、解析ソフトウェアの処理等に用いられてもよい。
 なお、上述の図20~図22は表示部140における表示例を示すに過ぎず、表示部140は、他の任意の形態によって画像情報を表示してもよい。
 以上説明したように本実施形態(情報処理装置及び情報処理方法)によれば、染色蛍光成分画像D2の解析において用いられる陽性閾値を、標本蛍光スペクトル(染色標本蛍光スペクトルD1及び/又は非染色標本蛍光スペクトルD21)に基づいて決定できる。
 このようにユーザの主観を介入させることなく決定される陽性閾値を用いることによって、染色蛍光成分画像D2の解析結果がユーザ間でばらつくのを防ぎ、安定的に高精度な解析結果を得ることできる。また、ユーザが解析に熟練した専門オペレーターでなくても、高精度な解析結果を得ることができる。
 また、染色標本蛍光スペクトルD1及び/又は非染色標本蛍光スペクトルD21から陽性閾値を自動的に決定することができるため、解析のための調整作業を効率化することができる。その結果、解析処理のためのユーザの手間やユーザの調整作業時間を低減することができ、臨床研究及び診断を行う際の結果算出の迅速化及び正確性の向上を促すことができる。
 また、決定した陽性閾値の表示部140における表示も自動的に行うことができる。ユーザは、表示部140に表示される提示情報J2を見て陽性閾値を確認しつつ、表示部140に表示される標本画像情報J1(特に非陽性細胞像K1及び陽性細胞像K2)を確認することができる。
 また上述の実施形態は、個々の染色標本蛍光スペクトルD1(対応の標本画像情報J1)の表現型によらずに、陽性閾値を決定することができるため、染色標本蛍光スペクトルD1のXY空間の特徴によることなく適用の汎用性が高い。
(第1変形例)
 閾値決定部43は、予め定められる補正値に基づいて、陽性閾値を補正してもよい。
 予め定められる補正値を使った陽性閾値の補正方法は限定されない。典型的には、陽性閾値が採りうる数値の範囲を定める限界値(すなわち上限値及び/又は下限値)を、補正値として予め定めることが可能である。また、陽性閾値に対する乗算に用いられる補正係数を、補正値として予め定めることが可能である。
 そのような補正値は、例えば蛍光試薬に応じて定められることができ、或いは蛍光試薬と、蛍光試薬による標識対象との組み合わせに応じて定められることができる。
 ここでいう標識対象は、蛍光試薬によって標識可能な物質(例えば蛍光試薬と反応して蛍光を発する物質)を指す。典型的には、抗体等のターゲットが標識対象に含まれうるが、他の細胞及び組織(例えば臓器、がん細胞、及びその他の細胞/組織)も、ここでいう標識対象に含まれうる。
 図1に示すデータベース200及び保存部120(例えば情報保存部121)は、陽性閾値の補正に用いられうる補正値を記憶する補正データ記憶部として、利用可能である。例えば、データベース200は、使用されうる複数の蛍光試薬の各々に関し、試薬識別情報11と対応の補正値とを相互に関連付けて予め記憶することができる。またデータベース200は、使用されうる複数の蛍光試薬の各々及び標識されうる複数の対象の各々に関し、標識対象識別情報、試薬識別情報11及び補正値を相互に関連付けて記憶することができる。
 ここで標識対象識別情報は、標識対象を識別する情報である。本例では、標本識別情報21に標識対象識別情報が含まれ、標識対象識別情報は標本20に関連付けられる。
 1つの蛍光試薬が、2種類以上の標識対象に使用される場合がある。すなわち蛍光試薬は共通するが標識対象が異なるケースがあり、データベース200は、そのようなケースのそれぞれに対して異なる補正値を関連付けて記憶しうる。
 図23及び図24は、補正データ記憶部(例えばデータベース200)に記憶される補正値の一例を示す。
 図23に示す例では、「色素」及び「抗体(標識対象)」の組み合わせの各々に対して関連付けられる対応の「下限値」及び「上限値」が、補正値として補正データ記憶部に記憶される。一方、図24に示す例では、「色素」及び「抗体(標識対象)」の組み合わせの各々に対して関連付けられる対応の「係数」が、補正値として補正データ記憶部に記憶される。
 補正データ記憶部において、補正値は、ルックアップテーブル等の任意の形態で記憶される。
 情報取得部111(図1参照)は、蛍光染色標本30に使われた蛍光試薬10に関連付けられる試薬識別情報11に基づいて、データベース200から対応の補正値を読み出して取得することができる。或いは、情報取得部111は、蛍光染色標本30に使われた蛍光試薬10及び標本20に関連付けられる試薬識別情報11及び標本識別情報21(特に標識対象識別情報)に基づいて、対応の補正値をデータベース200から読み出して取得することができる。
 そして情報取得部111は、データベース200から読み出した補正値を、情報保存部121に保存する。
 情報保存部121に保存された補正値は、分離処理部132(閾値決定部43(図7参照))によって直接的に又は間接的に取得され、閾値決定部43(図7参照)における陽性閾値の補正に使用される。このように閾値決定部43は、取得部110及び保存部120を介し、試薬識別情報11に基づいて、試薬識別情報及び補正値を相互に関連付けて記憶する補正データ記憶部から、補正値を取得することができる。同様に、閾値決定部43は、取得部110及び保存部120を介し、標識対象識別情報及び試薬識別情報11に基づいて、標識対象識別情報、試薬識別情報及び補正値を相互に関連付けて記憶する補正データ記憶部から、補正値を取得することができる。
 例えば、図23に示す例において、蛍光染色標本30が「AF488-CK」に由来する場合に、閾値決定部43により導出された陽性閾値が「600」であったケースを想定する。
 このケースにおいて、図23からも明らかなように、陽性閾値は、「AF488-CK」に割り当てられた上限値(すなわち「500」)を超えている。そのため閾値決定部43は、陽性閾値を補正して「500」に変更する。
 分離出力部44は、閾値決定部43による補正後の陽性閾値を出力し、後段装置(例えば図7の解析部47や画像生成部133)では補正後の陽性閾値が用いられる。
 このように陽性閾値の限界値を定めることによって、想定外の極端に大きな値や極端に小さな値が、陽性閾値に設定されるのを防ぐことができる。
 一方、図24に示す例において、蛍光染色標本30が「AF488-CK」に由来する場合、閾値決定部43により導出される陽性閾値が、本来の値よりも高く導出される傾向があるケースを想定する。
 このケースにおいて、閾値決定部43は、1よりも小さい適切な係数(図24に示す例では「0.92」)を陽性閾値に掛け合わせて補正することで、そのような傾向の影響を抑えることができる。
 なお、閾値決定部43により導出される陽性閾値が、本来の値よりも小さく導出される傾向がある場合には、1よりも大きな適切な係数が補正値として使用されてもよい(図24の「AF532-CD68」参照)。
 このように本例では、使用されうる各試薬及び/又は検出対象となりうる各標識対象に対応する補正値が、データベース情報として補正データ記憶部に予め記憶される。閾値決定部43は、補正データ記憶部に予め記憶されている補正値の中から、実際の蛍光染色標本30に対応する補正値を取得して陽性閾値に適用することで、最終的な陽性閾値を決めることができる。
 そのため、陽性閾値は、蛍光染色標本30に用いられる「蛍光試薬」や「蛍光試薬及び標識対象の組み合わせ」に応じて補正される。その結果、閾値決定部43が、何らかの理由により本来の値から大きく外れた値を陽性閾値として誤って導出する場合であっても、そのような誤った値が陽性閾値としてそのまま使用されることを防ぐことができる。
 なお、補正データ記憶部(例えばデータベース200)に記憶される「陽性閾値の補正に用いられる補正値」は、適宜更新されてもよい。例えばユーザが、適当なタイミングで(例えば定期的に)、補正データ記憶部に記憶される補正値を更新してもよい。
(応用例)
 上述の情報処理システムは、蛍光スペクトルを取得する撮像装置(例えば、スキャナ等を含む)と、蛍光スペクトルを用いて処理を行う情報処理装置と、を備えていてもよい。この場合、図1に示した蛍光信号取得部112は撮像装置によって実現されうるものであり、その他の構成は情報処理装置によって実現されうる。また、上述の情報処理システムは、蛍光スペクトルを取得する撮像装置と、蛍光スペクトルを用いる処理に使われるソフトウェアと、を備えていてもよい。換言すると、当該ソフトウェアを記憶したり実行したりする物理構成(例えば、メモリやプロセッサ等)が情報処理システムに備えられていなくてもよい。この場合、図1に示した蛍光信号取得部112は撮像装置によって実現されうるものであり、その他の構成は当該ソフトウェアが実行される情報処理装置によって実現されうる。そして、ソフトウェアは、ネットワークを介して、例えばウェブサイトやクラウドサーバ等から、情報処理装置に提供されたり、任意の記憶媒体(例えば、ディスク等)を介して情報処理装置に提供されたりする。また、当該ソフトウェアが実行される情報処理装置は、各種サーバ(例えば、クラウドサーバ等)、汎用コンピュータ、PC、又はタブレットPC等でありうる。なお、ソフトウェアが情報処理装置に提供される方法及び情報処理装置の種類は上記に限定されない。また、上述の情報処理システムの構成は必ずしも上記構成に限定されず、使用時の技術水準に基づいて、いわゆる当業者が想到可能な構成が適用されうる点に留意されたい。
(顕微鏡システムへの応用例)
 上記の情報処理システムは、例えば顕微鏡システムとして実現されてもよい。図25を参照して、上述の情報処理システムを実現する顕微鏡システムの構成例を説明する。
 図25に示す顕微鏡システムは、顕微鏡101及びデータ処理部107を備える。図25には、蛍光染色標本30及び蛍光非染色標本の広視野領域を撮影可能な測定系の一例が示されており、当該測定系は例えばWSIに対しても適用可能である。
 顕微鏡101は、ステージ102と、光学系103と、光源104と、ステージ駆動部105と、光源駆動部106と、蛍光信号取得部112と、を備える。
 ステージ102は、蛍光染色標本30及び蛍光非染色標本を載置可能な載置面を有し、ステージ駆動部105の駆動により当該載置面に対して平行な水平方向(x-y平面方向)及び垂直方向(z軸方向)へ移動可能に設けられている。蛍光染色標本30は、Z軸方向に例えば数μm~数十μmの厚さを有し、スライドガラスSG及びカバーガラス(図示省略)に挟まれつつ、所定の手法により固定されている。
 ステージ102の上方には光学系103が配置される。光学系103は、対物レンズ103Aと、結像レンズ103Bと、ダイクロイックミラー103Cと、エミッションフィルタ103Dと、励起フィルタ103Eと、を備える。光源104は、例えば水銀ランプ等の電球やLED(Light Emitting Diode)等であり、光源駆動部106の駆動によって光を発する。光源104から発せられた光は、光学系103を介して、ステージ102の載置面上の蛍光染色標本30又は蛍光非染色標本に導かれる。
 励起フィルタ103Eは、蛍光染色標本30及び蛍光非染色標本の蛍光像を得る場合に、光源104から出射された光のうち蛍光色素を励起する励起波長の光のみを透過させることで励起光を生成する。ダイクロイックミラー103Cは、励起フィルタ103Eを透過して入射する励起光を反射して対物レンズ103Aへ導く。対物レンズ103Aは、当該励起光を蛍光染色標本30へ集光する。対物レンズ103A及び結像レンズ103Bは、蛍光染色標本30の像を所定の倍率に拡大し、当該拡大像を蛍光信号取得部112の撮像面に結像させる。
 蛍光染色標本30に励起光が照射されると、蛍光染色標本30の各組織に結合している染色剤(蛍光試薬10)及び自家蛍光成分が蛍光を発する。この蛍光は、対物レンズ103Aを介してダイクロイックミラー103Cを透過し、エミッションフィルタ103Dを介して結像レンズ103Bへ到達する。エミッションフィルタ103Dは、対物レンズ103Aによって拡大され、励起フィルタ103Eを透過した光の一部を吸収し、発色光の一部のみを透過する。当該外光が喪失された発色光の像は、上述のとおり、結像レンズ103Bにより拡大され、蛍光信号取得部112上に結像される。
 なお図25に示す結像レンズ103Bの代わりに、分光器(図示省略)が設けられてもよい。当該分光器は、1以上のプリズムやレンズ等を用いて構成可能であり、蛍光染色標本30又は蛍光非染色標本からの蛍光を所定方向に分光する。この場合、蛍光信号取得部112は、分光器で分光された蛍光の波長毎の光強度を検出する光検出器として構成され、検出した蛍光信号をデータ処理部107に入力する。
 データ処理部107は、光源駆動部106を介して光源104を駆動させ、蛍光信号取得部112を用いて蛍光染色標本30及び蛍光非染色標本の蛍光スペクトル/蛍光像を取得し、取得した蛍光スペクトル/蛍光像を用いて各種処理を行う。より具体的には、データ処理部107は、図1に示す情報処理装置100の情報取得部111、保存部120、処理部130、表示部140、制御部150、操作部160、又はデータベース200の一部又は全部として機能しうる。またデータ処理部107は、陽性閾値に基づいて解析を行う解析部47(図7参照)を備えうる。例えば、データ処理部107は、情報処理装置100の制御部150として機能することで、ステージ駆動部105及び光源駆動部106の駆動を制御したり、蛍光信号取得部112によるスペクトルの取得を制御したりする。また、データ処理部107は、情報処理装置100の処理部130として機能することで、画像スペクトルデータを生成したり、陽性閾値を算出したり、解析を行ったり、画像情報を生成したりする。
 上述のように図25に示す顕微鏡システムでは、少なくとも光源104、励起フィルタ103E、ダイクロイックミラー103C及び対物レンズ103Aが、蛍光試薬10を励起させる励起光を照射する光照射部として働く。また蛍光信号取得部112が、励起光が照射されている標本(蛍光染色標本30又は蛍光非染色標本)を撮像して標本蛍光スペクトルを取得する撮像装置として働く。またデータ処理部107が、標本蛍光スペクトルの解析を行う情報処理装置として働く。
 なお、図25を参照して説明した上記の装置はあくまで一例であり、上述した実施形態及び変形例に係る測定系は、図25に示す例に限定されない。例えば、顕微鏡システムは、図25に示す構成の全てを必ずしも備えなくてもよいし、図25に示されていない構成を備えてもよい。
 撮影対象領域の全体又は撮影対象領域のうち必要な領域(以下「関心領域」とも称する)についての十分な解像度の画像データ(以下「広視野画像データ」と称する)を取得可能な測定系を使って、上述の実施形態及び変形例を実現しうる。例えば、撮影対象領域の全体又は撮影対象領域のうち必要な領域(以下「関心領域」と称する)を一度に撮影可能な測定系や、ラインスキャンにより撮影領域全体又は関心領域の画像を取得する測定系を使って、上述の実施形態及び変形例を実現しうる。
 図25に示す顕微鏡システムにおいて、撮影領域全体が、1回の撮影で画像データを取得可能な領域(以下「視野」と称する)を超えるWSIのような場合、1回の撮影毎にステージ102を動かして視野を移動させることで、各視野の撮影が順次行われる。それぞれの視野の撮影により得られた画像データ(以下「視野画像データ」と称する)をタイリングすることで、撮影領域全体の広視野画像データが生成される。生成された広視野画像データは、例えば蛍光信号保存部122(図1参照)に保存される。なお、視野画像データのタイリングは、情報処理装置100の取得部110において実行されてもよいし、保存部120において実行されてもよいし、処理部130において実行されてもよい。
 そして処理部130は、得られた広視野画像データに対し、陽性閾値の取得処理を含む一連の処理を実行することができる。
(蛍光分子数又は抗体数の算出方法)
 次に、1画素中の蛍光分子数又は抗体数を算出する方法について説明する。図26は、1画素中の蛍光分子数又は抗体数を算出する方法を説明するための模式図である。図26に示す例では、撮像素子とサンプルが対物レンズを介して配置された場合において、撮像素子の1[pixel]に対応するサンプルの底面のサイズが、仮に、13/20(μm)×13/20(μm)であるとする。そして、サンプルの厚みが、仮に、10(μm)であるとする。その場合、このサンプルの直方体の体積は、13/20(μm)×13/20(μm)×10(μm)で表される。なお、このサンプルの体積(リットル)は、13/20(μm)×13/20(μm)×10(μm)×103で表される。
 そして、サンプルに含まれる抗体数(蛍光分子数であってもよい)の濃度が均一であり、300(nM)であるとすると、1画素あたりの抗体数は、以下の式(24)によって表される。
Figure JPOXMLDOC01-appb-M000011
 このように、蛍光染色標本30における蛍光分子数又は抗体数が、蛍光分離処理の結果として算出されることで、実施者は、複数の蛍光物質間で蛍光分子数を比較したり、異なる条件で撮像されたデータを比較したりすることができる。また、輝度(又は蛍光強度)が連続値である一方で、蛍光分子数又は抗体数は離散値であるため、情報処理装置100は、蛍光分子数又は抗体数に基づいて画像情報を出力することでデータ量を削減することができる。
(ハードウェア構成例)
 図27を参照して、情報処理装置100のハードウェア構成例について説明する。図27は、情報処理装置100のハードウェア構成例を示すブロック図である。情報処理装置100による各種処理は、ソフトウェアと、以下に説明するハードウェアとの協働により実現される。
 図27に示すように、情報処理装置100は、CPU(Central Processing Unit)901、ROM(Read Only Memory)902、RAM(Random Access Memory)903及びホストバス904aを備える。また、情報処理装置100は、ブリッジ904、外部バス904b、インターフェース905、入力装置906、出力装置907、ストレージ装置908、ドライブ909、接続ポート911、通信装置913、及びセンサ915を備える。情報処理装置100は、CPU901に代えて、又はこれとともに、DSP若しくはASICなどの処理回路を有してもよい。
 CPU901は、演算処理装置及び制御装置として機能し、各種プログラムに従って情報処理装置100内の動作全般を制御する。また、CPU901は、マイクロプロセッサであってもよい。ROM902は、CPU901が使用するプログラムや演算パラメータ等を記憶する。RAM903は、CPU901の実行において使用するプログラムや、その実行において適宜変化するパラメータ等を一時記憶する。CPU901は、例えば、情報処理装置100の少なくとも処理部130及び制御部150を具現しうる。
 CPU901、ROM902及びRAM903は、CPUバスなどを含むホストバス904aにより相互に接続されている。ホストバス904aは、ブリッジ904を介して、PCI(Peripheral Component Interconnect/Interface)バス等の外部バス904bに接続されている。なお、ホストバス904a、ブリッジ904及び外部バス904bは、お互いから分離した構成を必ずしも有する必要はなく、単一の構成(例えば1つのバス)において実装されてもよい。
 入力装置906は、例えば、マウス、キーボード、タッチパネル、ボタン、マイクロフォン、スイッチ及びレバー等、実施者によって情報が入力される装置によって実現される。また、入力装置906は、例えば、赤外線やその他の電波を利用したリモートコントロール装置であってもよいし、情報処理装置100の操作に対応した携帯電話やPDA等の外部接続機器であってもよい。さらに、入力装置906は、例えば、上記の入力手段を用いて実施者により入力された情報に基づいて入力信号を生成し、CPU901に出力する入力制御回路などを含んでいてもよい。実施者は、この入力装置906を操作することにより、情報処理装置100に対して各種のデータを入力したり処理動作を指示したりすることができる。入力装置906は、例えば、情報処理装置100の少なくとも操作部160を具現しうる。
 出力装置907は、取得した情報を実施者に対して視覚的又は聴覚的に通知することが可能な装置で形成される。このような装置として、CRTディスプレイ装置、液晶ディスプレイ装置、プラズマディスプレイ装置、ELディスプレイ装置及びランプ等の表示装置や、スピーカ及びヘッドホン等の音響出力装置や、プリンタ装置等がある。出力装置907は、例えば、情報処理装置100の少なくとも表示部140を具現しうる。
 ストレージ装置908は、データ格納用の装置である。ストレージ装置908は、例えば、HDD等の磁気記憶部デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等により実現される。ストレージ装置908は、記憶媒体、記憶媒体にデータを記録する記録装置、記憶媒体からデータを読み出す読出し装置及び記憶媒体に記録されたデータを削除する削除装置などを含んでもよい。このストレージ装置908は、CPU901が実行するプログラムや各種データ及び外部から取得した各種のデータ等を格納する。ストレージ装置908は、例えば、情報処理装置100の少なくとも保存部120を具現しうる。
 ドライブ909は、記憶媒体用リーダライタであり、情報処理装置100に内蔵、或いは外付けされる。ドライブ909は、装着されている磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリ等のリムーバブル記憶媒体に記録されている情報を読み出して、RAM903に出力する。また、ドライブ909は、リムーバブル記憶媒体に情報を書き込むこともできる。
 接続ポート911は、外部機器と接続されるインターフェースであって、例えばUSB(Universal Serial Bus)などによりデータ伝送可能な外部機器との接続口である。
 通信装置913は、例えば、ネットワーク920に接続するための通信デバイス等で形成された通信インターフェースである。通信装置913は、例えば、有線若しくは無線LAN(Local Area Network)、LTE(Long Term Evolution)、Bluetooth(登録商標)又はWUSB(Wireless USB)用の通信カード等である。また、通信装置913は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ又は各種通信用のモデム等であってもよい。この通信装置913は、例えば、インターネットや他の通信機器との間で、例えばTCP/IP等の所定のプロトコルに則して信号等を送受信することができる。
 センサ915は、本実施形態においては、スペクトルを取得可能なセンサ(例えば、撮像素子等)を含むが、他のセンサ(例えば、加速度センサ、ジャイロセンサ、地磁気センサ、感圧センサ、音センサ、及び測距センサ等)を含んでもよい。センサ915は、例えば、情報処理装置100のうち少なくとも蛍光信号取得部112を具現しうる。
 なお、ネットワーク920は、ネットワーク920に接続されている装置から送信される情報の有線又は無線の伝送路である。例えば、ネットワーク920は、インターネット、電話回線網、衛星通信網などの公衆回線網や、Ethernet(登録商標)を含む各種のLAN(Local Area Network)、WAN(Wide Area Network)などを含んでもよい。また、ネットワーク920は、IP-VPN(Internet Protocol - Virtual Private Network)などの専用回線網を含んでもよい。
 以上、情報処理装置100の機能を実現可能なハードウェア構成例を示した。上記の各構成要素は、汎用的な部材を用いて実現されていてもよいし、各構成要素の機能に特化したハードウェアにより実現されていてもよい。従って、本開示を実施する時々の技術レベルに応じて、適宜、利用するハードウェア構成を変更することが可能である。
 なお、上記のような情報処理装置100の各機能を実現するためのコンピュータプログラムを作製し、PC等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することができる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等を含む。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。
 本明細書で開示されている実施形態及び変形例は全ての点で例示に過ぎず限定的には解釈されないことに留意されるべきである。上述の実施形態及び変形例は、添付の特許請求の範囲及びその趣旨を逸脱することなく、様々な形態での省略、置換及び変更が可能である。例えば上述の実施形態及び変形例が全体的に又は部分的に組み合わされてもよく、また上述以外の実施形態が上述の実施形態又は変形例と組み合わされてもよい。また、本明細書に記載された本開示の効果は例示に過ぎず、その他の効果がもたらされてもよい。
 上述の技術的思想を具現化する技術的カテゴリーは限定されない。例えば上述の装置を製造する方法或いは使用する方法に含まれる1又は複数の手順(ステップ)をコンピュータに実行させるためのコンピュータプログラムによって、上述の技術的思想が具現化されてもよい。またそのようなコンピュータプログラムが記録されたコンピュータが読み取り可能な非一時的(non-transitory)な記録媒体によって、上述の技術的思想が具現化されてもよい。
 本開示は以下の構成を取ることもできる。
[項目1]
 標本を蛍光試薬により標識することで得られる蛍光染色標本に励起光を照射して取得される染色標本蛍光スペクトルを、蛍光参照スペクトル及び自家蛍光参照スペクトルを使って、前記蛍光試薬を含む染色蛍光成分画像と、自家蛍光成分を含む染色自家蛍光成分画像とに分離する第1分離部と、
 前記蛍光試薬により標識されていない蛍光非染色標本に前記励起光を照射して取得される非染色標本蛍光スペクトルを、前記蛍光参照スペクトル及び前記自家蛍光参照スペクトルを使って、前記蛍光試薬を含む非染色蛍光成分画像と、前記自家蛍光成分を含む非染色自家蛍光成分画像とに分離する第2分離部と、
 前記非染色蛍光成分画像に基づいて、前記染色蛍光成分画像に含まれる複数の画像セクションの画像データと比較される陽性閾値であって、前記複数の画像セクションの各々が陽性細胞像に該当するか否かの判定基準である陽性閾値を決定する閾値決定部と、
 前記陽性閾値を出力する閾値出力部と、
 を備える情報処理装置。
[項目2]
 前記第1分離部は、
 前記染色蛍光成分画像及び前記蛍光参照スペクトルに基づいて、疑似染色蛍光スペクトルを生成し、
 前記染色自家蛍光成分画像及び前記自家蛍光参照スペクトルに基づいて、疑似染色自家蛍光スペクトルを生成し、
 前記疑似染色蛍光スペクトル及び前記疑似染色自家蛍光スペクトルに基づいて、疑似染色標本蛍光スペクトルを生成し、
 前記染色標本蛍光スペクトルと前記疑似染色標本蛍光スペクトルとの差分に基づいて、差分染色標本蛍光スペクトルを生成し、
 前記差分染色標本蛍光スペクトルを、前記蛍光参照スペクトル及び前記自家蛍光参照スペクトルを使って、前記蛍光試薬を含む差分染色蛍光成分画像と、前記自家蛍光成分を含む差分染色自家蛍光成分画像とに分離し、
 前記第2分離部は、
 前記非染色蛍光成分画像及び前記蛍光参照スペクトルに基づいて、疑似非染色蛍光スペクトルを生成し、
 前記非染色自家蛍光成分画像及び前記自家蛍光参照スペクトルに基づいて、疑似非染色自家蛍光スペクトルを生成し、
 前記疑似非染色蛍光スペクトル及び前記疑似非染色自家蛍光スペクトルに基づいて、疑似非染色標本蛍光スペクトルを生成し、
 前記非染色標本蛍光スペクトルと前記疑似非染色標本蛍光スペクトルとの差分に基づいて、差分非染色標本蛍光スペクトルを生成し、
 前記差分非染色標本蛍光スペクトルを、前記蛍光参照スペクトル及び前記自家蛍光参照スペクトルを使って、前記蛍光試薬を含む差分非染色蛍光成分画像と、前記自家蛍光成分を含む差分非染色自家蛍光成分画像とに分離し、
 前記閾値決定部は、前記差分染色蛍光成分画像のスペクトル及び前記差分非染色蛍光成分画像のスペクトルに基づいて前記陽性閾値を補正する
 項目1に記載の情報処理装置。
[項目3]
 前記第1分離部は、
 前記染色蛍光成分画像及び前記蛍光参照スペクトルに基づいて、疑似染色蛍光スペクトルを生成し、
 前記染色自家蛍光成分画像及び前記自家蛍光参照スペクトルに基づいて、疑似染色自家蛍光スペクトルを生成し、
 前記疑似染色蛍光スペクトル及び前記疑似染色自家蛍光スペクトルに基づいて、疑似染色標本蛍光スペクトルを生成し、
 前記染色標本蛍光スペクトルと前記疑似染色標本蛍光スペクトルとの差分に基づいて、差分染色標本蛍光スペクトルを生成し、
 前記第2分離部は、
 前記非染色蛍光成分画像及び前記蛍光参照スペクトルに基づいて、疑似非染色蛍光スペクトルを生成し、
 前記非染色自家蛍光成分画像及び前記自家蛍光参照スペクトルに基づいて、疑似非染色自家蛍光スペクトルを生成し、
 前記疑似非染色蛍光スペクトル及び前記疑似非染色自家蛍光スペクトルに基づいて、疑似非染色標本蛍光スペクトルを生成し、
 前記非染色標本蛍光スペクトルと前記疑似非染色標本蛍光スペクトルとの差分に基づいて、差分非染色標本蛍光スペクトルを生成し、
 前記閾値決定部は、前記差分染色標本蛍光スペクトル及び前記差分非染色標本蛍光スペクトルに基づいて前記陽性閾値を補正する
 項目1に記載の情報処理装置。
[項目4]
 前記第2分離部は、
 前記非染色蛍光成分画像及び前記蛍光参照スペクトルに基づいて、疑似非染色蛍光スペクトルを生成し、
 前記非染色自家蛍光成分画像及び前記自家蛍光参照スペクトルに基づいて、疑似非染色自家蛍光スペクトルを生成し、
 前記疑似非染色蛍光スペクトル及び前記疑似非染色自家蛍光スペクトルに基づいて、疑似非染色標本蛍光スペクトルを生成し、
 前記非染色標本蛍光スペクトルと前記疑似非染色標本蛍光スペクトルとの差分に基づいて、差分非染色標本蛍光スペクトルを生成し、
 前記差分非染色標本蛍光スペクトルのノルムデータである差分非染色ノルムデータを生成し、
 前記閾値決定部は、
 前記差分非染色ノルムデータを解析して外れ値データを取得し、
 前記外れ値データに基づいて前記非染色蛍光成分画像を補正し、
 補正された前記非染色蛍光成分画像に基づいて前記陽性閾値を決定する
 項目1に記載の情報処理装置。
[項目5]
 前記閾値決定部は、前記蛍光試薬に応じて予め定められる補正値に基づいて、前記陽性閾値を補正する
 項目1~4のいずれかに記載の情報処理装置。
[項目6]
 前記閾値決定部は、前記蛍光試薬に関連付けられる試薬識別情報に基づいて、前記試薬識別情報及び前記補正値を相互に関連付けて記憶する補正データ記憶部から、前記補正値を取得する
 項目5に記載の情報処理装置。
[項目7]
 前記閾値決定部は、前記蛍光試薬と前記蛍光試薬による標識対象との組み合わせに応じて予め定められる補正値に基づいて、前記陽性閾値を補正する
 項目1~3のいずれかに記載の情報処理装置。
[項目8]
 前記閾値決定部は、前記標本に関連付けられる標識対象識別情報と、前記蛍光試薬に関連付けられる試薬識別情報とに基づいて、前記標識対象識別情報、前記試薬識別情報及び前記補正値を相互に関連付けて記憶する補正データ記憶部から、前記補正値を取得する
 項目7に記載の情報処理装置。
[項目9]
 前記閾値決定部は、前記染色蛍光成分画像を区分することで定められる複数の観察領域の各々に関し、前記陽性閾値を決定する
 項目1~8のいずれかに記載の情報処理装置。
[項目10]
 前記閾値決定部は、ユーザにより定められる前記複数の観察領域の各々に関し、前記陽性閾値を決定する、
 項目9に記載の情報処理装置。
[項目11]
 前記閾値決定部は、前記染色標本蛍光スペクトルに含まれるノイズ成分を特定し、前記ノイズ成分に応じて前記染色蛍光成分画像を区分することで前記複数の観察領域を定める 項目9に記載の情報処理装置。
[項目12]
 前記閾値決定部は、前記陽性閾値の補正可能範囲を決定し、
 前記閾値出力部は、前記陽性閾値及び前記補正可能範囲を示す情報を出力する
 項目1~11のいずれかに記載の情報処理装置。
[項目13]
 蛍光試薬を励起させる励起光を照射する光照射部と、
 前記励起光が照射されている標本を撮像して標本蛍光スペクトルを取得する撮像装置と、
 前記標本蛍光スペクトルの解析を行う情報処理装置と、を備え、
 前記情報処理装置は、
 標本を前記蛍光試薬により標識することで得られる蛍光染色標本に前記励起光を照射して取得される染色標本蛍光スペクトルを、蛍光参照スペクトル及び自家蛍光参照スペクトルを使って、前記蛍光試薬を含む染色蛍光成分画像と、自家蛍光成分を含む染色自家蛍光成分画像とに分離する第1分離部と、
 前記蛍光試薬により標識されていない蛍光非染色標本に前記励起光を照射して取得される非染色標本蛍光スペクトルを、前記蛍光参照スペクトル及び前記自家蛍光参照スペクトルを使って、前記蛍光試薬を含む非染色蛍光成分画像と、前記自家蛍光成分を含む非染色自家蛍光成分画像とに分離する第2分離部と、
 前記非染色蛍光成分画像に基づいて、前記染色蛍光成分画像に含まれる複数の画像セクションの画像データと比較される陽性閾値であって、前記複数の画像セクションの各々が陽性細胞像に該当するか否かの判定基準である陽性閾値を決定する閾値決定部と、を有する
 顕微鏡システム。
[項目14]
 表示部に表示される提示情報であって、前記陽性閾値を示す閾値情報を含む提示情報を生成する提示情報生成部を備える
 項目13に記載の顕微鏡システム。
[項目15]
 前記閾値決定部は、前記陽性閾値の補正可能範囲を決定し、
 前記提示情報は、前記補正可能範囲を示す補正可能範囲情報を含む
 項目14に記載の顕微鏡システム。
[項目16]
 前記陽性閾値に基づいて解析を行う解析部を備える
 項目13~15のいずれかに記載の顕微鏡システム。
[項目17]
 標本を蛍光試薬により標識することで得られる蛍光染色標本に励起光を照射して取得される染色標本蛍光スペクトルを、蛍光参照スペクトル及び自家蛍光参照スペクトルを使って、前記蛍光試薬を含む染色蛍光成分画像と、自家蛍光成分を含む染色自家蛍光成分画像とに分離する工程と、
 前記蛍光試薬により標識されていない蛍光非染色標本に前記励起光を照射して取得される非染色標本蛍光スペクトルを、前記蛍光参照スペクトル及び前記自家蛍光参照スペクトルを使って、前記蛍光試薬を含む非染色蛍光成分画像と、前記自家蛍光成分を含む非染色自家蛍光成分画像とに分離する工程と、
 前記非染色蛍光成分画像に基づいて、前記染色蛍光成分画像に含まれる複数の画像セクションの画像データと比較される陽性閾値であって、前記複数の画像セクションの各々が陽性細胞像に該当するか否かの判定基準である陽性閾値を決定する工程と、
 前記陽性閾値を出力する工程と、
 を含む情報処理方法。
[項目18]
 標本を蛍光試薬により標識することで得られる蛍光染色標本に励起光を照射して取得される染色標本蛍光スペクトルを、蛍光参照スペクトル及び自家蛍光参照スペクトルを使って、前記蛍光試薬を含む染色蛍光成分画像と、自家蛍光成分を含む染色自家蛍光成分画像とに分離する第1分離部と、
 前記染色蛍光成分画像に含まれる複数の画像セクションの画像データと比較される陽性閾値であって、前記複数の画像セクションの各々が陽性細胞像に該当するか否かの判定基準である陽性閾値を、前記染色蛍光成分画像及び前記蛍光参照スペクトルに基づいて導き出される画像スペクトルデータに基づいて決定する閾値決定部と、
 前記陽性閾値を出力する閾値出力部と、
 を備える情報処理装置。
[項目19]
 前記第1分離部は、
 前記染色蛍光成分画像及び前記蛍光参照スペクトルに基づいて、疑似染色蛍光試薬スペクトルを生成し、
 前記染色自家蛍光成分画像及び前記自家蛍光参照スペクトルに基づいて、疑似染色自家蛍光成分スペクトルを生成し、
 前記疑似染色蛍光試薬スペクトル及び前記疑似染色自家蛍光成分スペクトルに基づいて、疑似染色標本蛍光スペクトルを生成し、
 前記染色標本蛍光スペクトルと前記疑似染色標本蛍光スペクトルとの差分に基づいて、差分染色標本蛍光スペクトルを生成し、
 前記差分染色標本蛍光スペクトルを、前記蛍光参照スペクトル及び前記自家蛍光参照スペクトルを使って、前記蛍光試薬を含む差分染色蛍光成分画像と、前記自家蛍光成分を含む差分染色自家蛍光成分画像とに分離し、
 前記閾値決定部は、前記差分染色蛍光成分画像に基づいて、前記陽性閾値を決定する
 項目18に記載の情報処理装置。
[項目20]
 前記閾値決定部は、前記蛍光試薬に応じて予め定められる補正値に基づいて、前記陽性閾値を補正する
 項目18又は19に記載の情報処理装置。
[項目21]
 前記閾値決定部は、前記蛍光試薬に関連付けられる試薬識別情報に基づいて、前記試薬識別情報及び前記補正値を相互に関連付けて記憶する補正データ記憶部から、前記補正値を取得する
 項目20に記載の情報処理装置。
[項目22]
 前記閾値決定部は、前記蛍光試薬と前記蛍光試薬による標識対象との組み合わせに応じて予め定められる補正値に基づいて、前記陽性閾値を補正する
 項目18~21のいずれかに記載の情報処理装置。
[項目23]
 前記閾値決定部は、前記標本に関連付けられる標識対象識別情報と、前記蛍光試薬に関連付けられる試薬識別情報とに基づいて、前記標識対象識別情報、前記試薬識別情報及び前記補正値を相互に関連付けて記憶する補正データ記憶部から、前記補正値を取得する
 項目22に記載の情報処理装置。
[項目24]
 前記閾値決定部は、前記染色蛍光成分画像を区分することで定められる複数の観察領域の各々に関し、前記陽性閾値を決定する
 項目18~23のいずれかに記載の情報処理装置。
[項目25]
 前記閾値決定部は、ユーザにより定められる前記複数の観察領域の各々に関し、前記陽性閾値を決定する、
 項目24に記載の情報処理装置。
[項目26]
 前記閾値決定部は、前記染色標本蛍光スペクトルに含まれるノイズ成分を特定し、前記ノイズ成分に応じて前記染色蛍光成分画像を区分することで前記複数の観察領域を定める 項目24に記載の情報処理装置。
[項目27]
 前記閾値決定部は、前記陽性閾値の補正可能範囲を決定し、
 前記閾値出力部は、前記陽性閾値及び前記補正可能範囲を示す情報を出力する
 項目18~26のいずれかに記載の情報処理装置。
[項目28]
 蛍光試薬を励起させる励起光を照射する光照射部と、
 前記励起光が照射されている標本を撮像して標本蛍光スペクトルを取得する撮像装置と、
 前記標本蛍光スペクトルの解析を行う情報処理装置と、を備え、
 前記情報処理装置は、
 標本を蛍光試薬により標識することで得られる蛍光染色標本に励起光を照射して取得される染色標本蛍光スペクトルを、蛍光参照スペクトル及び自家蛍光参照スペクトルを使って、前記蛍光試薬を含む染色蛍光成分画像と、自家蛍光成分を含む染色自家蛍光成分画像とに分離する第1分離部と、
 前記染色蛍光成分画像に含まれる複数の画像セクションの画像データと比較される陽性閾値であって、前記複数の画像セクションの各々が陽性細胞像に該当するか否かの判定基準である陽性閾値を、前記染色蛍光成分画像及び前記蛍光参照スペクトルに基づいて導き出される画像スペクトルデータに基づいて決定する閾値決定部と、
 前記陽性閾値を出力する閾値出力部と、を有する
 顕微鏡システム。
[項目29]
 表示部に表示される提示情報であって、前記陽性閾値を示す閾値情報を含む提示情報を生成する提示情報生成部を備える
 項目28に記載の顕微鏡システム。
[項目30]
 前記閾値決定部は、前記陽性閾値の補正可能範囲を決定し、
 前記提示情報は、前記補正可能範囲を示す補正可能範囲情報を含む
 項目29に記載の顕微鏡システム。
[項目31]
 前記陽性閾値に基づいて解析を行う解析部を備える
 項目28~30のいずれかに記載の顕微鏡システム。
[項目32]
 標本を蛍光試薬により標識することで得られる蛍光染色標本に励起光を照射して取得される染色標本蛍光スペクトルを、蛍光参照スペクトル及び自家蛍光参照スペクトルを使って、前記蛍光試薬を含む染色蛍光成分画像と、自家蛍光成分を含む染色自家蛍光成分画像とに分離する工程と、
 前記染色蛍光成分画像に含まれる複数の画像セクションの画像データと比較される陽性閾値であって、前記複数の画像セクションの各々が陽性細胞像に該当するか否かの判定基準である陽性閾値を、前記染色蛍光成分画像及び前記蛍光参照スペクトルに基づいて導き出される画像スペクトルデータに基づいて決定する工程と、
 前記陽性閾値を出力する工程と、
 を含む情報処理方法。
10 蛍光試薬、11 試薬識別情報、20 標本、21 標本識別情報、30 蛍光染色標本、40 分離部、41 第1分離部、42 第2分離部、43 閾値決定部、44 分離出力部、45 画像スペクトル出力部、46 閾値出力部、47 解析部、100 情報処理装置、101 顕微鏡、102 ステージ、103 光学系、103A 対物レンズ、103B 結像レンズ、103C ダイクロイックミラー、103D エミッションフィルタ、103E 励起フィルタ、104 光源、105 ステージ駆動部、106 光源駆動部、107 データ処理部、110 取得部、111 情報取得部、112 蛍光信号取得部、120 保存部、Lu 補正可能上限値、Ld 補正可能下限値、121 情報保存部、122 蛍光信号保存部、130 処理部、131 連結部、Q 陽性閾値マーク、132 分離処理部、133 画像生成部、140 表示部、150 制御部、160 操作部、200 データベース、D1 染色標本蛍光スペクトル、D2 染色蛍光成分画像、D3 染色自家蛍光成分画像、D4 疑似染色蛍光スペクトル、D5 疑似染色自家蛍光スペクトル、D6 染色特定チャネル輝度画像、D7 疑似染色標本蛍光スペクトル、D8 差分染色標本蛍光スペクトル、D9 差分染色ノルム画像、D10 差分染色蛍光成分画像、D11 差分染色自家蛍光成分画像、D21 非染色標本蛍光スペクトル、D22 非染色蛍光成分画像、D23 非染色自家蛍光成分画像、D24 疑似非染色蛍光スペクトル、D25 疑似非染色自家蛍光スペクトル、D26 非染色特定チャネル輝度画像、D27 疑似非染色標本蛍光スペクトル、D28 差分非染色標本蛍光スペクトル、D29 差分非染色ノルム画像、D30 差分非染色蛍光成分画像、D31 差分非染色自家蛍光成分画像、J1 標本画像情報、J2 提示情報、K1 非陽性細胞像、K2 陽性細胞像、Ld 補正可能下限値、Lu 補正可能上限値、M1 細胞像位置強調マーク、M2 観察領域強調マーク、Q 陽性閾値マーク、Q1 第1陽性閾値マーク、Q2 第2陽性閾値マーク、R1 蛍光参照スペクトル、R2 自家蛍光参照スペクトル、Rs1 第1観察領域、Rs2 第2観察領域、Tm マスク閾値

Claims (17)

  1.  標本を蛍光試薬により標識することで得られる蛍光染色標本に励起光を照射して取得される染色標本蛍光スペクトルを、蛍光参照スペクトル及び自家蛍光参照スペクトルを使って、前記蛍光試薬を含む染色蛍光成分画像と、自家蛍光成分を含む染色自家蛍光成分画像とに分離する第1分離部と、
     前記蛍光試薬により標識されていない蛍光非染色標本に前記励起光を照射して取得される非染色標本蛍光スペクトルを、前記蛍光参照スペクトル及び前記自家蛍光参照スペクトルを使って、前記蛍光試薬を含む非染色蛍光成分画像と、前記自家蛍光成分を含む非染色自家蛍光成分画像とに分離する第2分離部と、
     前記非染色蛍光成分画像に基づいて、前記染色蛍光成分画像に含まれる複数の画像セクションの画像データと比較される陽性閾値であって、前記複数の画像セクションの各々が陽性細胞像に該当するか否かの判定基準である陽性閾値を決定する閾値決定部と、
     前記陽性閾値を出力する閾値出力部と、
     を備える情報処理装置。
  2.  前記第1分離部は、
     前記染色蛍光成分画像及び前記蛍光参照スペクトルに基づいて、疑似染色蛍光スペクトルを生成し、
     前記染色自家蛍光成分画像及び前記自家蛍光参照スペクトルに基づいて、疑似染色自家蛍光スペクトルを生成し、
     前記疑似染色蛍光スペクトル及び前記疑似染色自家蛍光スペクトルに基づいて、疑似染色標本蛍光スペクトルを生成し、
     前記染色標本蛍光スペクトルと前記疑似染色標本蛍光スペクトルとの差分に基づいて、差分染色標本蛍光スペクトルを生成し、
     前記差分染色標本蛍光スペクトルを、前記蛍光参照スペクトル及び前記自家蛍光参照スペクトルを使って、前記蛍光試薬を含む差分染色蛍光成分画像と、前記自家蛍光成分を含む差分染色自家蛍光成分画像とに分離し、
     前記第2分離部は、
     前記非染色蛍光成分画像及び前記蛍光参照スペクトルに基づいて、疑似非染色蛍光スペクトルを生成し、
     前記非染色自家蛍光成分画像及び前記自家蛍光参照スペクトルに基づいて、疑似非染色自家蛍光スペクトルを生成し、
     前記疑似非染色蛍光スペクトル及び前記疑似非染色自家蛍光スペクトルに基づいて、疑似非染色標本蛍光スペクトルを生成し、
     前記非染色標本蛍光スペクトルと前記疑似非染色標本蛍光スペクトルとの差分に基づいて、差分非染色標本蛍光スペクトルを生成し、
     前記差分非染色標本蛍光スペクトルを、前記蛍光参照スペクトル及び前記自家蛍光参照スペクトルを使って、前記蛍光試薬を含む差分非染色蛍光成分画像と、前記自家蛍光成分を含む差分非染色自家蛍光成分画像とに分離し、
     前記閾値決定部は、前記差分染色蛍光成分画像のスペクトル及び前記差分非染色蛍光成分画像のスペクトルに基づいて前記陽性閾値を補正する
     請求項1に記載の情報処理装置。
  3.  前記第1分離部は、
     前記染色蛍光成分画像及び前記蛍光参照スペクトルに基づいて、疑似染色蛍光スペクトルを生成し、
     前記染色自家蛍光成分画像及び前記自家蛍光参照スペクトルに基づいて、疑似染色自家蛍光スペクトルを生成し、
     前記疑似染色蛍光スペクトル及び前記疑似染色自家蛍光スペクトルに基づいて、疑似染色標本蛍光スペクトルを生成し、
     前記染色標本蛍光スペクトルと前記疑似染色標本蛍光スペクトルとの差分に基づいて、差分染色標本蛍光スペクトルを生成し、
     前記第2分離部は、
     前記非染色蛍光成分画像及び前記蛍光参照スペクトルに基づいて、疑似非染色蛍光スペクトルを生成し、
     前記非染色自家蛍光成分画像及び前記自家蛍光参照スペクトルに基づいて、疑似非染色自家蛍光スペクトルを生成し、
     前記疑似非染色蛍光スペクトル及び前記疑似非染色自家蛍光スペクトルに基づいて、疑似非染色標本蛍光スペクトルを生成し、
     前記非染色標本蛍光スペクトルと前記疑似非染色標本蛍光スペクトルとの差分に基づいて、差分非染色標本蛍光スペクトルを生成し、
     前記閾値決定部は、前記差分染色標本蛍光スペクトル及び前記差分非染色標本蛍光スペクトルに基づいて前記陽性閾値を補正する
     請求項1に記載の情報処理装置。
  4.  前記第2分離部は、
     前記非染色蛍光成分画像及び前記蛍光参照スペクトルに基づいて、疑似非染色蛍光スペクトルを生成し、
     前記非染色自家蛍光成分画像及び前記自家蛍光参照スペクトルに基づいて、疑似非染色自家蛍光スペクトルを生成し、
     前記疑似非染色蛍光スペクトル及び前記疑似非染色自家蛍光スペクトルに基づいて、疑似非染色標本蛍光スペクトルを生成し、
     前記非染色標本蛍光スペクトルと前記疑似非染色標本蛍光スペクトルとの差分に基づいて、差分非染色標本蛍光スペクトルを生成し、
     前記差分非染色標本蛍光スペクトルのノルムデータである差分非染色ノルムデータを生成し、
     前記閾値決定部は、
     前記差分非染色ノルムデータを解析して外れ値データを取得し、
     前記外れ値データに基づいて前記非染色蛍光成分画像を補正し、
     補正された前記非染色蛍光成分画像に基づいて前記陽性閾値を決定する
     請求項1に記載の情報処理装置。
  5.  前記閾値決定部は、前記蛍光試薬に応じて予め定められる補正値に基づいて、前記陽性閾値を補正する
     請求項1に記載の情報処理装置。
  6.  前記閾値決定部は、前記蛍光試薬に関連付けられる試薬識別情報に基づいて、前記試薬識別情報及び前記補正値を相互に関連付けて記憶する補正データ記憶部から、前記補正値を取得する
     請求項5に記載の情報処理装置。
  7.  前記閾値決定部は、前記蛍光試薬と前記蛍光試薬による標識対象との組み合わせに応じて予め定められる補正値に基づいて、前記陽性閾値を補正する
     請求項1に記載の情報処理装置。
  8.  前記閾値決定部は、前記標本に関連付けられる標識対象識別情報と、前記蛍光試薬に関連付けられる試薬識別情報とに基づいて、前記標識対象識別情報、前記試薬識別情報及び前記補正値を相互に関連付けて記憶する補正データ記憶部から、前記補正値を取得する
     請求項7に記載の情報処理装置。
  9.  前記閾値決定部は、前記染色蛍光成分画像を区分することで定められる複数の観察領域の各々に関し、前記陽性閾値を決定する
     請求項1に記載の情報処理装置。
  10.  前記閾値決定部は、ユーザにより定められる前記複数の観察領域の各々に関し、前記陽性閾値を決定する、
     請求項9に記載の情報処理装置。
  11.  前記閾値決定部は、前記染色標本蛍光スペクトルに含まれるノイズ成分を特定し、前記ノイズ成分に応じて前記染色蛍光成分画像を区分することで前記複数の観察領域を定める 請求項9に記載の情報処理装置。
  12.  前記閾値決定部は、前記陽性閾値の補正可能範囲を決定し、
     前記閾値出力部は、前記陽性閾値及び前記補正可能範囲を示す情報を出力する
     請求項1に記載の情報処理装置。
  13.  蛍光試薬を励起させる励起光を照射する光照射部と、
     前記励起光が照射されている標本を撮像して標本蛍光スペクトルを取得する撮像装置と、
     前記標本蛍光スペクトルの解析を行う情報処理装置と、を備え、
     前記情報処理装置は、
     標本を前記蛍光試薬により標識することで得られる蛍光染色標本に前記励起光を照射して取得される染色標本蛍光スペクトルを、蛍光参照スペクトル及び自家蛍光参照スペクトルを使って、前記蛍光試薬を含む染色蛍光成分画像と、自家蛍光成分を含む染色自家蛍光成分画像とに分離する第1分離部と、
     前記蛍光試薬により標識されていない蛍光非染色標本に前記励起光を照射して取得される非染色標本蛍光スペクトルを、前記蛍光参照スペクトル及び前記自家蛍光参照スペクトルを使って、前記蛍光試薬を含む非染色蛍光成分画像と、前記自家蛍光成分を含む非染色自家蛍光成分画像とに分離する第2分離部と、
     前記非染色蛍光成分画像に基づいて、前記染色蛍光成分画像に含まれる複数の画像セクションの画像データと比較される陽性閾値であって、前記複数の画像セクションの各々が陽性細胞像に該当するか否かの判定基準である陽性閾値を決定する閾値決定部と、を有する
     顕微鏡システム。
  14.  表示部に表示される提示情報であって、前記陽性閾値を示す閾値情報を含む提示情報を生成する提示情報生成部を備える
     請求項13に記載の顕微鏡システム。
  15.  前記閾値決定部は、前記陽性閾値の補正可能範囲を決定し、
     前記提示情報は、前記補正可能範囲を示す補正可能範囲情報を含む
     請求項14に記載の顕微鏡システム。
  16.  前記陽性閾値に基づいて解析を行う解析部を備える
     請求項13に記載の顕微鏡システム。
  17.  標本を蛍光試薬により標識することで得られる蛍光染色標本に励起光を照射して取得される染色標本蛍光スペクトルを、蛍光参照スペクトル及び自家蛍光参照スペクトルを使って、前記蛍光試薬を含む染色蛍光成分画像と、自家蛍光成分を含む染色自家蛍光成分画像とに分離する工程と、
     前記蛍光試薬により標識されていない蛍光非染色標本に前記励起光を照射して取得される非染色標本蛍光スペクトルを、前記蛍光参照スペクトル及び前記自家蛍光参照スペクトルを使って、前記蛍光試薬を含む非染色蛍光成分画像と、前記自家蛍光成分を含む非染色自家蛍光成分画像とに分離する工程と、
     前記非染色蛍光成分画像に基づいて、前記染色蛍光成分画像に含まれる複数の画像セクションの画像データと比較される陽性閾値であって、前記複数の画像セクションの各々が陽性細胞像に該当するか否かの判定基準である陽性閾値を決定する工程と、
     前記陽性閾値を出力する工程と、
     を含む情報処理方法。
PCT/JP2022/006842 2021-06-29 2022-02-21 情報処理装置、顕微鏡システム、及び情報処理方法 WO2023276254A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112022003308.8T DE112022003308T5 (de) 2021-06-29 2022-02-21 Informationsverarbeitungsvorrichtung, mikroskopsystem und informationsverarbeitungsverfahren
JP2023531381A JPWO2023276254A1 (ja) 2021-06-29 2022-02-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021107889 2021-06-29
JP2021-107889 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023276254A1 true WO2023276254A1 (ja) 2023-01-05

Family

ID=84692254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006842 WO2023276254A1 (ja) 2021-06-29 2022-02-21 情報処理装置、顕微鏡システム、及び情報処理方法

Country Status (3)

Country Link
JP (1) JPWO2023276254A1 (ja)
DE (1) DE112022003308T5 (ja)
WO (1) WO2023276254A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024171844A1 (ja) * 2023-02-15 2024-08-22 ソニーグループ株式会社 情報処理装置、生体試料観察システム及び情報処理方法
WO2024185434A1 (ja) * 2023-03-03 2024-09-12 ソニーグループ株式会社 情報処理装置、生体試料解析システム及び生体試料解析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216077A (ja) * 2007-03-05 2008-09-18 Juntendo 染色組織標本の陽性細胞の自動検出法
JP2019032283A (ja) * 2017-08-09 2019-02-28 シスメックス株式会社 試料処理装置、試料処理システム、および測定時間の算出方法
WO2019213618A1 (en) * 2018-05-03 2019-11-07 Akoya Biosciences, Inc. Multispectral sample imaging
WO2020262092A1 (ja) * 2019-06-26 2020-12-30 ソニー株式会社 光学測定装置及び光学測定システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216077A (ja) * 2007-03-05 2008-09-18 Juntendo 染色組織標本の陽性細胞の自動検出法
JP2019032283A (ja) * 2017-08-09 2019-02-28 シスメックス株式会社 試料処理装置、試料処理システム、および測定時間の算出方法
WO2019213618A1 (en) * 2018-05-03 2019-11-07 Akoya Biosciences, Inc. Multispectral sample imaging
WO2020262092A1 (ja) * 2019-06-26 2020-12-30 ソニー株式会社 光学測定装置及び光学測定システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024171844A1 (ja) * 2023-02-15 2024-08-22 ソニーグループ株式会社 情報処理装置、生体試料観察システム及び情報処理方法
WO2024185434A1 (ja) * 2023-03-03 2024-09-12 ソニーグループ株式会社 情報処理装置、生体試料解析システム及び生体試料解析方法

Also Published As

Publication number Publication date
DE112022003308T5 (de) 2024-04-18
JPWO2023276254A1 (ja) 2023-01-05

Similar Documents

Publication Publication Date Title
WO2023276254A1 (ja) 情報処理装置、顕微鏡システム、及び情報処理方法
EP3005293B1 (en) Image adaptive physiologically plausible color separation
DK2973397T3 (en) Tissue-object-based machine learning system for automated assessment of digital whole-slide glass
US11062168B2 (en) Systems and methods of unmixing images with varying acquisition properties
US8779387B2 (en) Method and system for detecting fluorochromes in a flow cytometer
US20230243839A1 (en) Information processing device, information processing method, program, microscope system, and analysis system
US10929972B2 (en) Devices, systems and methods for automated quantitative scoring of digitized tissue images
US20240027348A1 (en) Information processing apparatus and microscope system
JP2023525006A (ja) フローサイトメータデータにおけるスピルオーバー拡散を特徴付けるための方法及びシステム
US20230358680A1 (en) Image generation system, microscope system, and image generation method
WO2023276219A1 (ja) 情報処理装置、生体試料観察システム及び画像生成方法
Ojaghi et al. Label-free automated neutropenia detection and grading using deep-ultraviolet microscopy
CN113777053B (zh) 基于量子点荧光与多光谱相机的高通量检测方法及装置
CN115176139A (zh) 用于调整训练门以适应流式细胞仪数据的方法和系统
JP2020144109A (ja) 情報処理装置、及び顕微鏡システム
WO2023157755A1 (ja) 情報処理装置、生体試料解析システム及び生体試料解析方法
CN113168529A (zh) 信息处理设备、信息处理方法和程序
US20240361245A1 (en) Information processing apparatus, microscope system, and information processing method
WO2022249583A1 (ja) 情報処理装置、生体試料観察システム及び画像生成方法
US20230071901A1 (en) Information processing apparatus and information processing system
US20210174147A1 (en) Operating method of image processing apparatus, image processing apparatus, and computer-readable recording medium
JP7452544B2 (ja) 情報処理装置およびプログラム
WO2023149296A1 (ja) 情報処理装置、生体試料観察システム及び画像生成方法
WO2024209965A1 (ja) 陽性判定方法、画像解析システムおよび情報処理装置
WO2024185434A1 (ja) 情報処理装置、生体試料解析システム及び生体試料解析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832421

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531381

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112022003308

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22832421

Country of ref document: EP

Kind code of ref document: A1