WO2023273897A1 - 一种光伏废渣和有色金属冶炼铁渣协同制备硅铁合金和微晶玻璃的方法 - Google Patents

一种光伏废渣和有色金属冶炼铁渣协同制备硅铁合金和微晶玻璃的方法 Download PDF

Info

Publication number
WO2023273897A1
WO2023273897A1 PCT/CN2022/099060 CN2022099060W WO2023273897A1 WO 2023273897 A1 WO2023273897 A1 WO 2023273897A1 CN 2022099060 W CN2022099060 W CN 2022099060W WO 2023273897 A1 WO2023273897 A1 WO 2023273897A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
glass
silicon
rotary kiln
zinc
Prior art date
Application number
PCT/CN2022/099060
Other languages
English (en)
French (fr)
Inventor
吴玉锋
刘晓敏
李彬
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Priority to US17/993,844 priority Critical patent/US11746042B2/en
Publication of WO2023273897A1 publication Critical patent/WO2023273897A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/002Use of waste materials, e.g. slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0063Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing waste materials, e.g. slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C35/00Master alloys for iron or steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of regional coordinated resource utilization of various smelting slags, and in particular relates to a method for synergistically preparing ferrosilicon alloy and glass-ceramic from photovoltaic waste slag and non-ferrous metal smelting iron slag.
  • Ferrosilicon alloys are important raw materials for iron and steel smelting and casting (such as deoxidizers for steelmaking, reducing agents for ferroalloy production, alloy additives for high-end steel production, etc.), which can effectively improve the mechanical and physical and chemical properties of steel and castings.
  • the existing ferrosilicon alloy production process is no longer limited to the traditional scheme (shown in Table 1), including using steel shavings, quartz or silica as raw materials, using coke as a reducing agent, and obtaining a high-temperature ferrosilicon melt by smelting in an electric furnace at 1900 °C. Then, the high-purity ferrosilicon alloy is obtained through refining and ladle mixing with chlorine and nitrogen for refining and purification.
  • Part of the research uses silicon powder directly cut from solar cells, scrap steel sheets, and melting agents to combine at 1580-1620 ° C to obtain ferrosilicon alloys. Or use the mixture of silica and metallurgical silicon slag as the core material, and react with iron materials such as steel shavings and iron pellets and carbonaceous reducing agents such as semi-coke and coke at high temperature to obtain a push-iron alloy.
  • the production process of the above ferrosilicon alloy partly involves the generation of harmful gases, and the high melting temperature of some parts leads to high process costs.
  • the types of raw materials and melting temperature can be further optimized.
  • zinc rotary kiln slag is the zinc leaching slag produced in the zinc smelting process.
  • the remaining slag after being further oxidized and recovered in the flue gas.
  • These slags are rich in iron elements, with an element weight percentage of about 30-42%.
  • Silicon slag is a high-viscosity oxidized slag formed by the oxidation of calcium, aluminum and other impurity elements in silica by compressed air during the industrial silicon smelting process, and a mixed slag formed by part of the elemental silicon wrapped by these oxidized slags.
  • a large amount of silicon slag and zinc rotary kiln slag are rich in iron and elemental silicon respectively, so it is difficult to produce high-value products, such as glass-ceramics. Exploring a method to reduce the silicon/iron components in the two smelting slags is of great significance for realizing the resource utilization goal of waste slag.
  • the technical problem to be solved by the present invention is to reduce or eliminate the negative impact of elemental silicon in the silicon slag on the structure and performance of the glass-ceramics, and the overflow phenomenon caused by the high iron content in the zinc rotary kiln slag.
  • it overcomes the defects of high energy consumption and insufficient environmental protection in the existing ferrosilicon alloy preparation process, and provides a method for preparing ferrosilicon alloy and glass-ceramic by using silicon slag and rotary kiln slag.
  • the present invention provides a method for simultaneously reducing elemental silicon content in silicon slag and iron component content in lead slag to prepare ferrosilicon alloy and glass-ceramic, the method is to combine zinc rotary kiln slag with reducing
  • the prepared material is converted into reduced iron-containing material in advance, and the iron-containing material is smelted and combined with silicon slag to prepare ferrosilicon alloy, and the remaining water-quenched residue is used as a raw material for preparing glass-ceramics.
  • Concrete technical scheme is as follows (shown in table 2):
  • the raw materials for the preparation of the ferrosilicon alloy include zinc rotary kiln slag mixture and silicon slag, the mass percentages of which are (45-60) and (40-55) respectively, and the mass percentage of the zinc rotary kiln slag mixture and silicon slag is and for 100%.
  • the zinc rotary kiln slag mixture includes zinc rotary kiln slag and a reducing and conditioning agent, wherein the reducing and conditioning material includes coke, albite, and borax.
  • the chemical composition of the silicon slag is: SiO 2 , CaO, Al 2 O 3 , Na 2 O, K 2 O, MgO and ZnO, wherein the silicon in the silicon slag exists in the form of simple silicon, silicon carbide and calcite feldspar .
  • the chemical components of the rotary kiln slag are: SiO 2 , CaO, Fe 2 O 3 , Al 2 O 3 , ZnO and MgO.
  • the zinc rotary kiln slag and the reducing and conditioning agent are mixed in proportion, crushed to obtain a mixture, and the mixture is melted at a high temperature to form a reduced iron-containing material.
  • the reduced molten liquid is then mixed with silicon slag, kept warm and water quenched to form a water quenched slag material containing ferrosilicon alloy.
  • the alloy water quenching residue is filtered and sorted to obtain ferrosilicon alloy, and the water quenching residue can be used for other value-added utilization.
  • the method for synergistically preparing ferrosilicon alloys and glass-ceramics with photovoltaic waste slag and nonferrous metal smelting iron slag wherein the photovoltaic waste slag is silicon slag, and the nonferrous metal smelting iron slag is zinc rotary kiln slag; it is characterized in that
  • the preparation method of the reduced iron-containing material, the main steps are as follows:
  • the weight ratio of the components SiO 2 , CaO, Fe 2 O 3 , Al 2 O 3 , ZnO, MnO, CuO, Na 2 O and MgO in the zinc rotary kiln slag is 18-22:10 -20:20-40:5-10:0.02-8:0.05-6:0.01-2:0.2-2:0.03-3.
  • a method for preparing ferrosilicon alloys and glass-ceramics with silicon slag and zinc rotary kiln slag characterized in that each component in the silicon slag is SiO 2 , CaO, Al 2 O 3 , Na 2 O, The weight ratio between K 2 O, MgO and ZnO is 65-72:12-18:8-12:0.6-2:0.4-1:0.2-1:0.1-1; the silicon element in the silicon slag is Silicon, silicon carbide and calcite feldspar exist in the form of 15-30:30-60:5-10 by weight;
  • the method for preparing ferrosilicon alloy and glass-ceramics by using silicon slag and zinc rotary kiln slag is characterized in that the mixing condition of rotary kiln slag mixture and silicon slag is: mixing at 1450-1550°C Melt for 1-2.5 hours to form molten glass with uniform composition.
  • the method for preparing ferrosilicon alloy and glass-ceramics by using silicon slag and zinc rotary kiln slag is characterized in that the high-temperature molten glass is transferred or poured into pre-prepared water lower than or equal to 30°C , forming slag containing ferrosilicon alloy.
  • the alloy slag is filtered out from the water, separated to obtain the ferrosilicon alloy, and dried at 120-150°C.
  • the method for preparing ferrosilicon alloy and glass-ceramics by using silicon slag and zinc rotary kiln slag is characterized in that glass-ceramics is prepared using the above-mentioned water quenching residue as the main ingredient.
  • the raw materials for the preparation of the glass-ceramic are composed of water quenching residue, quartz and flux clarifying agent, which respectively account for the total weight percentage of raw materials as (55-75):(15-35):(8-15).
  • the flux clarifying agent includes potassium feldspar, fluorite, cerium oxide and sodium nitrate, and its mass ratio is (5-8):(2-4):(1-2):(1-2).
  • the method for preparing ferrosilicon alloy and glass-ceramics with silicon slag and zinc rotary kiln slag is characterized in that water quenching residue, quartz and flux clarifying agent are mixed according to the formula ratio, ball milled 1.
  • the basic glass formula with uniform size is obtained, and the formula is melted at high temperature and water quenched to obtain the basic glass.
  • the melting temperature is 1380-1460° C., and the temperature is kept for 2-3 hours to form a homogeneous molten glass.
  • the water-quenched basic glass frit is crushed in a crusher for 25-40 minutes, and the basic glass powder is obtained after passing through a 150-200 mesh sieve.
  • raise the temperature to 600-780°C at a rate of 5-15°C/min for preheating for 1-3 hours, and then increase the temperature at a rate of 5-10°C/min Raise the temperature to 970-1100°C for 1-3 hours of heat-preservation and sintering; lower the temperature to 720-850°C at a rate of 5-10°C/min, keep it warm for 0.5-2 hours and then cool naturally to room temperature to obtain glass-ceramic products, which can be widely used In construction, metallurgy, machinery and chemical industry.
  • the present invention has the following advantages:
  • the present invention aims at the problem that the structural heterogeneity caused by elemental silicon in silicon slag causes the performance reduction of glass-ceramics, and the problem of overflow caused by high iron content in zinc rotary kiln slag, and develops silicon slag and zinc rotary kiln slag to prepare high-value silicon Ferroalloy products.
  • the preparation of ferrosilicon alloy not only realizes the conversion of waste slag to high-value products, but also reduces the content of elemental silicon and iron in waste slag, which is beneficial for the remaining components in the residue to serve as raw materials for the preparation of glass-ceramics.
  • This process directly uses the silicon in the silicon slag to combine with the molten reduced iron material to form a ferrosilicon alloy, without going through the pyrolysis and reduction process of silica (the decomposition temperature is as high as 1900°C), and only needs to be processed at a lower temperature (1450 ⁇ 1550°C) to obtain ferrosilicon alloy products. This process greatly reduces the melting temperature and saves production costs.
  • the cascade utilization of smelting waste silicon slag and waste lead slag was implemented, and ferrosilicon alloy and glass-ceramic products were successfully prepared.
  • the raw materials used do not need to add harmful gases such as chlorine, and the raw materials are green and environmentally friendly, which is in line with the national policy of turning waste into wealth, saving energy and reducing consumption.
  • Figure 1 is a process flow for preparing ferrosilicon alloy and glass-ceramic by using silicon slag and zinc rotary kiln slag.
  • the zinc rotary kiln slag is composed of SiO 2 , CaO, Fe 2 O 3 , Al 2 O 3 , ZnO, MnO, CuO, Na 2 O and MgO, and the weight ratio between them is 18 -22:10-20:20-40:5-10:0.02-8:0.05-6:0.01-2:0.2-2:0.03-3.
  • the components of silicon slag are SiO 2 , CaO, Al 2 O 3 , Na 2 O, K 2 O, MgO and ZnO, and their weight percentages are 65-72:12-18:8-12:0.6-2:0.4 -1:0.2-1:0.1-1.
  • the silicon in the silicon slag exists in the form of elemental silicon, silicon carbide and calcite feldspar, and the weight percentage is 15-30:30-60:5-10.
  • the preparation raw materials of the glass-ceramic are water-quenching residue, quartz and flux clarifying agent respectively accounting for 55-75:15-35:8-15 of the total weight percentage of raw materials, wherein flux clarifying agent potassium feldspar, fluorite, oxide
  • flux clarifying agent potassium feldspar, fluorite, oxide The mass ratio of cerium and sodium nitrate is 5-8:2-4:1-2:1-2.
  • Embodiment 1 65# ferrosilicon alloy:
  • the invention provides a method for preparing ferrosilicon alloy and glass-ceramics with silicon slag and zinc rotary kiln slag, and its technological process (shown in Figure 1) and detailed operation steps are as follows:
  • the zinc rotary kiln slag mixture comprises, in terms of mass fraction, 35 parts of rotary kiln slag, 10 parts of coke, 7 parts of albite and 3 parts of borax.
  • a method for preparing ferrosilicon alloy and glass-ceramics by using silicon slag and zinc rotary kiln slag is as follows:
  • step (2) The zinc rotary kiln slag mixture weighed according to the formula in step (1) is ground and mixed in a crusher, passed through a 200-mesh sieve, put into a crucible, and melted in a high-temperature box furnace at 1450°C And keep it warm for 2 hours to obtain a reduced iron-containing material melt.
  • step (3) Mixing and melting the reduced iron-containing material melt in step (2) with silicon slag under the following conditions: mixing and melting at 1450° C. for 2 hours to form a glass melt with uniform components. Transfer or pour the high-temperature molten glass into pre-prepared water lower than or equal to 30°C to form ferrosilicon-containing slag. The alloy slag is filtered out from the water, separated to obtain the ferrosilicon alloy, and dried at 120°C.
  • step (3) Using the water quenching residue in step (3) as the main material to prepare glass-ceramics.
  • mass fraction 55 wt% of water quenching residue, 35 wt% of quartz, 5 wt% of potassium feldspar, 2 wt% of fluorite, 1 wt% of cerium oxide and 2 wt% of sodium nitrate were weighed.
  • step (6) Put the raw materials weighed in step (5) into a ball mill, mix and crush them, and pass through a 150-mesh sieve to obtain uniform raw material powder. Transfer the raw material powder to a crucible and put it into a box furnace, melt it at 1380°C and keep it warm for 2 hours to form a homogeneous molten glass. Pour the homogeneous glass liquid into the pre-prepared water below or equal to 30°C to form glass particles. The glass particles were filtered out of the water and dried at 150°C.
  • step (6) Crushing the basic glass particles obtained in step (6) in a crusher for 25 minutes, and passing through a 150-mesh sieve to obtain basic glass powder.
  • step (6) Crushing the basic glass particles obtained in step (6) in a crusher for 25 minutes, and passing through a 150-mesh sieve to obtain basic glass powder.
  • step (7) Crushing the basic glass particles obtained in step (6) in a crusher for 25 minutes, and passing through a 150-mesh sieve to obtain basic glass powder.
  • the product has
  • Embodiment 2 72# ferrosilicon alloy:
  • the invention provides a method for preparing ferrosilicon alloy and glass-ceramics with silicon slag and zinc rotary kiln slag.
  • the process flow chart of the preparation method is shown in Figure 1, and the detailed operation steps are as follows:
  • the zinc rotary kiln slag mixture comprises, by mass fraction, 30 parts of rotary kiln slag, 12 parts of coke, 5 parts of albite feldspar and 5 parts of borax.
  • a method for preparing ferrosilicon alloy and glass-ceramics by using silicon slag and zinc rotary kiln slag is as follows:
  • step (2) The zinc rotary kiln slag mixture weighed according to the formula in step (1) is ground and mixed in a crusher, passed through a 200-mesh sieve, put into a crucible, and melted in a high-temperature box furnace at 1480°C And keep it warm for 3 hours to obtain a reduced iron-containing material melt.
  • step (3) Mixing and melting the reduced iron-containing material melt in step (2) with silicon slag under the following conditions: mixing and melting at 1500° C. for 2 hours to form a glass melt with uniform components. Transfer or pour the high-temperature molten glass into pre-prepared water lower than or equal to 30°C to form ferrosilicon-containing slag. The alloy slag is filtered out from the water, separated to obtain the ferrosilicon alloy, and dried at 150°C.
  • step (3) Using the water quenching residue in step (3) as the main material to prepare glass-ceramics.
  • step (6) Put the raw materials weighed in step (5) into a ball mill, mix and crush them, and pass through a 180-mesh sieve to obtain uniform raw material powder. Transfer the raw material powder to a crucible and put it into a box furnace, melt it at 1400°C and keep it warm for 3 hours to form a homogeneous molten glass. Pour the homogeneous glass liquid into the pre-prepared water below or equal to 30°C to form glass particles. The glass particles are filtered out of the water and dried at 180°C.
  • step (6) Crushing the basic glass particles obtained in step (6) in a crusher for 30 minutes, and passing through a 180-mesh sieve to obtain basic glass powder.
  • step (6) Crushing the basic glass particles obtained in step (6) in a crusher for 30 minutes, and passing through a 180-mesh sieve to obtain basic glass powder.
  • step (6) Crushing the basic glass particles obtained in step (6) in a crusher for 30 minutes, and passing through a 180-mesh sieve to obtain basic glass powder.
  • the product has a Mohs hardness of 6
  • Embodiment 3 75# ferrosilicon alloy and glass ceramics:
  • the invention provides a method for preparing ferrosilicon alloy and glass-ceramics with silicon slag and zinc rotary kiln slag.
  • the process flow chart of the preparation method is shown in Figure 1, and the detailed operation steps are as follows:
  • the zinc rotary kiln slag mixture comprises, by mass fraction, 35 parts of zinc rotary kiln slag, 15 parts of coke, 6 parts of albite and 4 parts of borax.
  • a method for preparing ferrosilicon alloy and glass-ceramics by using silicon slag and zinc rotary kiln slag is as follows:
  • step (2) The zinc rotary kiln slag mixture weighed according to the formula in step (1) is ground and mixed in a crusher, passed through a 200-mesh sieve, put into a crucible, and melted in a high-temperature box furnace at 1500°C And keep it warm for 3 hours to obtain a reduced iron-containing material melt.
  • step (3) Mixing and melting the reduced iron-containing material melt in step (2) with silicon slag under the following conditions: mixing and melting at 1550° C. for 2 hours to form a glass melt with uniform components. Transfer or pour the high-temperature molten glass into pre-prepared water lower than or equal to 30°C to form ferrosilicon-containing slag. The alloy slag is filtered out from the water, separated to obtain the ferrosilicon alloy, and dried at 150°C.
  • step (3) Using the water quenching residue in step (3) as the main material to prepare glass-ceramics.
  • step (6) Put the raw materials weighed in step (5) into a ball mill, mix and crush them, and pass through a 200-mesh sieve to obtain uniform raw material powder. Transfer the raw material powder to a crucible and put it into a box furnace, melt it at 1460°C and keep it warm for 3 hours to form a homogeneous molten glass. Pour the homogeneous glass liquid into the pre-prepared water below or equal to 30°C to form glass particles. The glass particles are filtered out of the water and dried at 200°C.
  • step (6) Crushing the basic glass particles obtained in step (6) in a crusher for 40 minutes, and passing through a 200-mesh sieve to obtain basic glass powder.
  • a crystallization furnace raise the temperature to 780°C at a heating rate of 15°C/min for preheating for 3 hours, and then raise the temperature to 1100°C at a heating rate of 10°C/min for heat preservation and sintering 3h; and lower the temperature to 850°C at a cooling rate of 10°C/min, keep warm for 2h and then cool naturally to room temperature to obtain a glass-ceramic product.
  • the product has a Mohs hardness of 5 and a flexural strength of 73.19MPa.
  • This comparative example provides a method for preparing ferrosilicon alloys and glass-ceramics with silicon slag and zinc rotary kiln slag, the steps of which are the same as those of Example 1 of the present invention, the difference being that no coke is added to the raw material for reducing the conditioner, and the rest All the same as in Example 2.
  • the present invention aims at the problem that the structural heterogeneity caused by elemental silicon in silicon slag causes the performance of glass-ceramics to decrease, and the problem of liquid overflow caused by high iron content in zinc rotary kiln slag, develops silicon slag and rotary kiln slag to prepare ferrosilicon alloy and micro crystal glass method.
  • High-value ferrosilicon alloy products are obtained through the combination of iron in the zinc rotary kiln slag and silicon in the silicon slag, and the remaining water-quenched residue is further tempered, melted, formed, annealed and heat-treated to obtain glass ceramics.
  • This process directly uses the silicon in the silicon slag to combine with the molten reduced iron material to form a ferrosilicon alloy, without going through the pyrolysis and reduction process of silica (the decomposition temperature is as high as 1900°C), and only needs to be at a lower temperature (1450 ⁇ 1550°C) Ferrosilicon alloy products can be obtained.
  • This process greatly reduces the melting temperature and saves production costs.
  • using the difference in density between the alloy and the waste slag when the silicon in the silicon slag is combined with the reduced iron-containing material at high temperature, the ferrosilicon alloy formed is located in the lower layer of the melt, and the reduced waste slag is located in the upper layer. High-purity ferrosilicon alloys can be formed.
  • the raw material slag and process used do not involve harmful gases such as chlorine gas, which is in line with the national policy of turning waste into wealth, saving energy and reducing consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种光伏废渣和有色金属冶炼铁渣协同制备硅铁合金和微晶玻璃的方法,属于多种冶炼渣区域协同资源化利用的技术领域。本发明将锌回转窑渣与还原调质剂配料、混料、高温熔融后形成还原态含铁料。将含铁料进一步与硅渣进行混熔、水淬、分选后得到硅铁合金和剩余废渣。剩余废渣再经调质、熔融、成型、退火、热处理后即可得到微晶玻璃。本发明利用硅渣和锌回转窑渣制备了硅铁合金和微晶玻璃,实现了区域冶炼渣的协同资源化利用目标。通过锌回转窑渣的高温还原及其与富硅硅渣的化合获得硅铁合金。因不涉及硅石的高温分解,该工艺大大降低了能耗,节省了成本,适合工业化推广使用。

Description

一种光伏废渣和有色金属冶炼铁渣协同制备硅铁合金和微晶玻璃的方法 技术领域
本发明属于多种冶炼渣区域协同资源化利用的技术领域,具体地,涉及一种光伏废渣和有色金属冶炼铁渣协同制备硅铁合金和微晶玻璃的方法。
背景技术
硅铁合金是钢铁冶炼和铸造的重要原料(例如炼钢脱氧剂、铁合金生产所需的还原剂、高端钢材生产所需的合金添加剂等),可有效提高钢铁及铸件的机械和理化性能。现有硅铁合金生产工艺不再局限于传统方案(表1所示),包括以钢屑、石英或硅石为原料,以焦炭作为还原剂,在1900℃下用电炉冶炼获得高温硅铁熔体,再通过精炼抬包与氯气和氮气进行混合精炼提纯获得高纯硅铁合金。部分研究用太阳能电池切割硅粉直接、废钢片、熔化剂在1580-1620℃下进行化合得到硅铁合金。或者以硅石和冶金硅渣的混合料为炉心料,与钢屑、铁球团等铁料和兰炭、焦炭等炭质还原剂在高温下反应后获得推铁合金。以上硅铁合金的生产工艺部分涉及有害气体产生,部分熔化温度较高导致工艺成本高等问题,可对原料种类和熔化温度进行进一步优化。
表1部分硅铁合金制备方法
Figure PCTCN2022099060-appb-000001
废渣资源化利用是近年来备受关注的热点之一。作为一类冶炼废渣,锌回转窑渣是锌冶炼过程产生的锌浸渣经传输皮带进入回转窑后,在1100-1300℃高温下,渣中的锌铅铟等被还原成金属蒸汽挥发并在烟气中进一步被氧化回收后的剩余渣料。这些渣料中含有丰富的铁元素,其元素重量含量百分比 约为30-42%。硅渣是在工业硅冶炼过程中硅石中的钙、铝等杂质元素被压缩空气氧化形成的高粘度氧化渣,以及由这些氧化渣包裹的部分单质硅等共同形成的混合渣料。大量的硅渣和锌回转窑渣因分别富含铁和单质硅难以制备高值产品,例如微晶玻璃。探索一类降低两种冶炼渣中的硅/铁组份的方法对于实现废渣的资源化利用目标具有重要意义。
发明内容
本发明要解决的技术问题在于减少或消除硅渣中单质硅对微晶玻璃结构和性能产生的负面影响,以及锌回转窑渣中高铁含量导致的溢液现象。此外,克服现有硅铁合金制备工艺存在的能耗高、环保不足等缺陷,提供了一种利用硅渣和回转窑渣制备硅铁合金和微晶玻璃的方法。
1.为了解决上述技术问题,本发明提供一种同时降低硅渣中单质硅含量和铅渣中铁组分含量以制备硅铁合金和微晶玻璃的方法,所述方法为将锌回转窑渣与还原调制料预先转化为还原态含铁料,含铁料再与硅渣进行熔炼化合制备硅铁合金,剩余水淬残渣用做微晶玻璃的制备原料。具体技术方案如下(表2所示):
表2本工作硅铁合金的制备方法
Figure PCTCN2022099060-appb-000002
所述硅铁合金的制备原料包括锌回转窑渣混合料和硅渣,其质量百分比分别为(45-60)和(40-55),所述锌回转窑渣混合料和硅渣的质量百分比之和为100%。所述锌回转窑渣混合料包括锌回转窑渣、还原调质剂,其中还原调质料包括焦炭、钠长石、硼砂。
所述硅渣的化学组份为:SiO 2、CaO、Al 2O 3、Na 2O、K 2O、MgO和ZnO,其中硅渣中的硅以单质硅、碳化硅和钙黄长石的形式存在。所述回转窑渣的化学组份为:SiO 2、CaO、Fe 2O 3、Al 2O 3、ZnO和MgO。
2.本发明先将锌回转窑渣与还原调质剂按比例混合、破碎后得到混料,混 料再经高温熔融后形成还原态含铁料。该还原态熔融液再与硅渣进行混熔、保温和水淬后形成含硅铁合金的水淬渣料。合金水淬渣经过滤、分选后得到硅铁合金,水淬残渣可进行其他增值利用。
3.所述的一种光伏废渣和有色金属冶炼铁渣协同制备硅铁合金和微晶玻璃的方法,所述光伏废渣为硅渣,所述有色金属冶炼铁渣为锌回转窑渣;其特征在于所述还原态含铁料的制备方法,主要步骤如下:
1)将锌回转窑渣、焦炭、钠长石和硼砂四种原料以(25-35):(10-15):(5-7):(3-5)的重量百分比进行球磨均匀。
2)进一步地,所述锌回转窑渣中各组份SiO 2、CaO、Fe 2O 3、Al 2O 3、ZnO、MnO、CuO、Na 2O和MgO的重量比是18-22:10-20:20-40:5-10:0.02-8:0.05-6:0.01-2:0.2-2:0.03-3。
3)按配方称量后的还原态含铁料原料经混匀后在1450-1500℃条件下熔融并保温2-3h,获得还原调质料熔体。
4.所述的一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法,其特征在于所述硅渣中各组份SiO 2、CaO、Al 2O 3、Na 2O、K 2O、MgO和ZnO之间的重量比是65-72:12-18:8-12:0.6-2:0.4-1:0.2-1:0.1-1;其中硅渣中的硅元素以单质硅、碳化硅和钙黄长石形式存在,其重量比为15-30:30-60:5-10;
5.所述的一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法,其特征在于回转窑渣混合料与硅渣混熔的条件为:在1450-1550℃条件下混熔1-2.5h,形成组分均匀的玻璃液。
6.进一步地,所述的一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法,其特征在于将高温玻璃液转移或倒入预先准备好的低于等于30℃的水中,形成含硅铁合金的渣料。将合金渣料从水中过滤出来,分选得到硅铁合金,并在120~150℃下烘干。
7.更进一步地,所述的一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法,其特征在于,利用上述水淬残渣为主料制备微晶玻璃。所述微晶玻璃的制备原料由水淬残渣、石英和助熔澄清剂组成,其分别占原材料总重量 百分比为(55-75):(15-35):(8-15)。所述助熔澄清剂包括钾长石、萤石、氧化铈和硝酸钠,其质量比为(5-8):(2-4):(1-2):(1-2)。
8.更进一步地,所述的一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法,其特征在于,将水淬残渣、石英和助熔澄清剂按配方比例混合、球磨、筛分后获得尺寸均匀的基础玻璃配方料,配方料经高温熔融、水淬后获得基础玻璃。所述熔融温度为1380-1460℃,保温2-3h以形成均质熔融态玻璃液。将均质玻璃液倒入预先准备好的低于等于30℃水中,形成玻璃颗粒。将玻璃颗粒从水中过滤出来,并在150~200℃下烘干。
9.更进一步地,将水淬后的基础玻璃料在破碎机中破碎25~40min,过150-200目筛后得到基础玻璃粉。将上述基础玻璃粉装入坩埚中并转移至晶化炉中,以5~15℃/min的升温速率升温至600~780℃进行预热1-3h,之后以5~10℃/min的升温速率升温至970~1100℃进行保温烧结1~3h;以5~10℃/min的降温速率降至720~850℃,保温0.5~2h后自然冷却至室温,得到微晶玻璃产品,可广泛用于建筑、冶金、机械和化工领域。
与现有技术相比,本发明具有以下优点:
(1)本发明针对硅渣中单质硅引发的结构异质造成微晶玻璃性能降低问题,以及锌回转窑渣中高铁含量造成溢液问题,开发了硅渣与锌回转窑渣制备高值硅铁合金产品。硅铁合金的制备不仅实现了废渣向高值产品的转换,还降低了废渣中的单质硅和铁含量,有利于残渣中的剩余组分充当微晶玻璃的制备原料。
(2)本工艺直接利用硅渣中的硅与熔融态还原铁料进行化合形成硅铁合金,无需经历硅石的高温分解还原过程(分解温度高达1900℃),仅需在较低温度下(1450~1550℃)即可获得硅铁合金产品。该工艺极大降低了熔炼温度,节省了生产成本。
(3)利用合金与废渣密度差异,当硅渣中的硅与高温下还原态的含铁料化合后,所得硅铁合金位于下层,还原态废渣位于上层,分层式样品水淬后利于得到高纯硅铁合金。
(4)根据废渣品位,实施了梯次利用冶炼废硅渣和废铅渣,成功制备了硅铁合金和微晶玻璃产品。此外,所用原料无需添加氯气等有害气体,原料绿色环保,符合国家变废为宝、节能降耗政策。
附图说明
图1为利用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的工艺流程。
具体实施方式
为了更好地解释本发明,下面结合实施例进一步阐明本发明的内容,但本发明不仅仅限于以下实施例。
以下实施例中,所述锌回转窑渣的成分由SiO 2、CaO、Fe 2O 3、Al 2O 3、ZnO、MnO、CuO、Na 2O和MgO组成,它们之间的重量比是18-22:10-20:20-40:5-10:0.02-8:0.05-6:0.01-2:0.2-2:0.03-3。硅渣的组份为SiO 2、CaO、Al 2O 3、Na 2O、K 2O、MgO和ZnO,它们的重量百分比为65-72:12-18:8-12:0.6-2:0.4-1:0.2-1:0.1-1。其中硅渣中的硅以单质硅、碳化硅和钙黄长石的形式存在,其重量百分比为15-30:30-60:5-10。所述微晶玻璃的制备原料水淬残渣、石英和助熔澄清剂分别占原材料总重量百分比为55-75:15-35:8-15,其中助熔澄清剂钾长石、萤石、氧化铈和硝酸钠的质量比为5-8:2-4:1-2:1-2。
实施例1,65#硅铁合金:
本发明提供了一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法,其工艺流程(图1所示)和详细操作步骤如下:
锌回转窑渣混合料,其组成按质量分数计包括:回转窑渣35份,焦炭10份,钠长石7份和硼砂3份。
一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法,采用上述回转窑渣混合料与硅渣进行化合制备硅铁合金的过程如下:
(1)按照质量分数计,称取硅渣55份;并称取锌回转窑渣混合料包括:回转窑渣25份,焦炭10份,钠长石7份和硼砂3份。
(2)按步骤(1)配方称量后的锌回转窑渣混合料在在破碎机中磨碎混匀后 过200目筛并放入坩埚中,在高温箱式炉中1450℃条件下熔融并保温2h,获得还原态含铁料熔体。
(3)将步骤(2)还原态含铁料熔体与硅渣进行混熔,混熔条件为:在1450℃条件下混熔2h,形成组分均匀的玻璃熔体。将高温玻璃液转移或倒入预先准备好的低于等于30℃的水中,形成含硅铁合金的渣料。将合金渣料从水中过滤出来,分选得到硅铁合金,并在120℃下烘干。
(4)对步骤(3)硅铁合金进行成分分析,结果如表3所示。
表3实施例1所得65#硅铁合金的元素含量(wt%)
Figure PCTCN2022099060-appb-000003
由此可知,所得硅铁合金符合国际GB/T2272-2009。
(5)利用步骤(3)中的水淬残渣为主料制备微晶玻璃。按质量分数计,称取水淬残渣55wt%,石英35wt%,钾长石5wt%,萤石2wt%,氧化铈1wt%,硝酸钠2wt%。
(6)将步骤(5)称取的原料放入球磨机中混合破碎并过150目筛后得到均匀原料粉。将原料粉末转移至坩埚中并放入箱式炉中,在1380℃条件下熔融并保温2h,形成均质熔融态玻璃液。将均质玻璃液倒入预先准备好的低于等于30℃水中,形成玻璃颗粒。将玻璃颗粒从水中过滤出来,并在150℃下烘干。
(7)将步骤(6)所得的基础玻璃颗粒在破碎机中破碎25min,过150目筛后得到基础玻璃粉。将上述基础玻璃粉装入坩埚中并转移至晶化炉中,以5℃/min的升温速率升温至600℃进行预热1h,随后以5℃/min的升温速率升温至970℃进行保温烧结1h;并以5℃/min的降温速率降至720℃,保温0.5h后自然冷却至室温,得到微晶玻璃产品。该产品的莫氏硬度为5级,抗弯强度为54.18MPa。
实施例2,72#硅铁合金:
本发明提供了一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法,制备方法的工艺流程图如图1,详细操作步骤如下:
锌回转窑渣混合料,其组成按质量分数计包括:回转窑渣30份,焦炭12份,钠长石5份和硼砂5份。
一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法,采用上述回转窑渣混合料与硅渣进行化合制备硅铁合金的过程如下:
(1)按照质量分数计,称取硅渣48份;并称取锌回转窑渣混合料包括:锌回转窑渣30份,焦炭12份,钠长石5份和硼砂5份。
(2)按步骤(1)配方称量后的锌回转窑渣混合料在在破碎机中磨碎混匀后过200目筛并放入坩埚中,在高温箱式炉中1480℃条件下熔融并保温3h,获得还原态含铁料熔体。
(3)将步骤(2)还原态含铁料熔体与硅渣进行混熔,混熔条件为:在1500℃条件下混熔2h,形成组分均匀的玻璃熔体。将高温玻璃液转移或倒入预先准备好的低于等于30℃的水中,形成含硅铁合金的渣料。将合金渣料从水中过滤出来,分选得到硅铁合金,并在150℃下烘干。
(4)对步骤(3)硅铁合金进行成分分析,结果如表4所示。
表4实施例2所得72#硅铁合金的元素含量(wt%)
Figure PCTCN2022099060-appb-000004
由此可知,所得硅铁合金符合国际GB/T2272-2009。
(5)利用步骤(3)中的水淬残渣为主料制备微晶玻璃。按质量分数计,称取水淬残渣65wt%,石英20wt%,钾长石8wt%,萤石3wt%,氧化铈2 wt%,硝酸钠2wt%。
(6)将步骤(5)称取的原料放入球磨机中混合破碎并过180目筛后得到均匀原料粉。将原料粉末转移至坩埚中并放入箱式炉中,在1400℃条件下熔融并保温3h,形成均质熔融态玻璃液。将均质玻璃液倒入预先准备好的低于等于30℃水中,形成玻璃颗粒。将玻璃颗粒从水中过滤出来,并在180℃下烘干。
(7)将步骤(6)所得的基础玻璃颗粒在破碎机中破碎30min,过180目筛后得到基础玻璃粉。将上述基础玻璃粉装入坩埚中并转移至晶化炉中,以10℃/min的升温速率升温至700℃进行预热2h,随后以8℃/min的升温速率升温至1000℃进行保温烧结2h;并以8℃/min的降温速率降至800℃,保温1h后自然冷却至室温,得到微晶玻璃产品。该产品的莫氏硬度为6级,抗弯强度为94.35MPa。
实施例3,75#硅铁合金和微晶玻璃:
本发明提供了一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法,制备方法的工艺流程图如图1,详细操作步骤如下:
锌回转窑渣混合料,其组成按质量分数计包括:锌回转窑渣35份,焦炭15份,钠长石6份和硼砂4份。
一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法,采用上述回转窑渣混合料与硅渣进行化合制备硅铁合金的过程如下:
(1)按照质量分数计,称取硅渣40份;并称取锌回转窑渣混合料包括:回转窑渣35份,焦炭15份,钠长石6份和硼砂4份。
(2)按步骤(1)配方称量后的锌回转窑渣混合料在在破碎机中磨碎混匀后过200目筛并放入坩埚中,在高温箱式炉中1500℃条件下熔融并保温3h,获得还原态含铁料熔体。
(3)将步骤(2)还原态含铁料熔体与硅渣进行混熔,混熔条件为:在1550℃条件下混熔2h,形成组分均匀的玻璃熔体。将高温玻璃液转移或倒入预先准 备好的低于等于30℃的水中,形成含硅铁合金的渣料。将合金渣料从水中过滤出来,分选得到硅铁合金,并在150℃下烘干。
(4)对步骤(3)硅铁合金进行成分分析,结果如表5所示。
表5实施例3所得75#硅铁合金的元素含量(wt%)
Figure PCTCN2022099060-appb-000005
由此可知,所得硅铁合金符合国际GB/T2272-2009。
(5)利用步骤(3)中的水淬残渣为主料制备微晶玻璃。按质量分数计,称取水淬残渣75wt%,石英15wt%,钾长石6wt%,萤石2wt%,氧化铈1wt%,硝酸钠1wt%。
(6)将步骤(5)称取的原料放入球磨机中混合破碎并过200目筛后得到均匀原料粉。将原料粉末转移至坩埚中并放入箱式炉中,在1460℃条件下熔融并保温3h,形成均质熔融态玻璃液。将均质玻璃液倒入预先准备好的低于等于30℃水中,形成玻璃颗粒。将玻璃颗粒从水中过滤出来,并在200℃下烘干。
(7)将步骤(6)所得的基础玻璃颗粒在破碎机中破碎40min,过200目筛后得到基础玻璃粉。将上述基础玻璃粉装入坩埚中并转移至晶化炉中,以15℃/min的升温速率升温至780℃进行预热3h,随后以10℃/min的升温速率升温至1100℃进行保温烧结3h;并以10℃/min的降温速率降至850℃,保温2h后自然冷却至室温,得到微晶玻璃产品。该产品的莫氏硬度为5级,抗弯强度为73.19MPa。
对比例1
本对比例提供了一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的 方法,其步骤同本发明实施例1,不同之处在于还原调质剂的原料中未加焦炭,其余均与实施例2相同。
由于对比例1中未添焦炭,锌回转窑渣中单质铁含量较低,在混熔步骤难以与硅渣中的单质硅化合,导致无法得到硅铁合金。
综上,本发明针对硅渣中单质硅引发的结构异质造成微晶玻璃性能降低问题,以及锌回转窑渣中高铁含量造成溢液问题,开发了硅渣与回转窑渣制备硅铁合金和微晶玻璃的方法。通过锌回转窑渣中的铁和硅渣中的硅的化合作用获得高值硅铁合金产品,剩余水淬残渣经进一步调质、熔融、成型、退火和热处理化后获得微晶玻璃,实现了不同区域固废协同利用目标。本工艺直接利用硅渣中的硅与熔融态还原铁料进行化合形成硅铁合金,无需经历硅石的高温分解还原过程(分解温度高达1900℃),仅需在较低温度下(1450~1550℃)即可获得硅铁合金产品。该工艺极大降低了熔炼温度,节省了生产成本。此外,利用合金与废渣密度差异,当硅渣中的硅与高温下还原态的含铁料化合后形成的硅铁合金位于熔融液下层,还原态废渣位于上层,该样品经水淬和分选后便可形成高纯硅铁合金。所用原料渣和工艺不涉及氯气等有害气体,符合国家变废为宝、节能降耗政策。

Claims (4)

  1. 一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法,其特征在于,原料包括锌回转窑渣混合料和硅渣,其质量百分比分别为45-60:40-55,所述锌回转窑渣混合料和硅渣的质量百分比之和为100%;
    所述锌回转窑渣混合料包括锌回转窑渣、还原调质剂;
    所述硅渣的组份为SiO 2、CaO、Al 2O 3、Na 2O、K 2O、MgO和ZnO,其中硅渣中的硅以单质硅、碳化硅和钙黄长石的形式存在;
    所述锌回转窑渣的组份为:SiO 2、CaO、Fe 2O 3、Al 2O 3、ZnO和MgO;
    包括如下步骤:
    (1)制备还原态含铁料,按配方称取回转窑渣、焦炭、钠长石和硼砂,形成回转窑渣配合料,所述配合料经熔化后形成还原态含铁料;
    (2)再制备硅铁合金和微晶玻璃,将步骤(1)形成的还原态含铁料与硅渣混熔、澄清后形成基础玻璃液,所得基础玻璃液经水淬、分选后获得硅铁合金;剩余残渣进一步经调质、熔融、水淬和晶化后获得所述微晶玻璃;
    回转窑渣配合料的熔化温度为1450-1500℃,保温2-3h,获得还原态含铁料;还原态含铁料与硅渣的混熔温度为1450-1550℃,混熔时间为1-2.5h,形成均匀的基础玻璃液;
    将熔融基础玻璃液转移或倒入预先准备好的低于等于30℃的水中,形成硅铁合金和水淬残渣;将合金渣料从水中过滤出来,分选后得到硅铁合金,并在120~150℃下烘干。
  2. 根据权利要求1所述的一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法,其特征在于,所述锌回转窑渣中各组份SiO 2、CaO、Fe 2O 3、Al 2O 3、ZnO、MnO、CuO、Na 2O和MgO的重量比是18-22:10-20:20-40:5-10:0.02-8:0.05-6:0.01-2:0.2-2:0.03-3;
    所述硅渣中各组份SiO 2、CaO、Al 2O 3、Na 2O、K 2O、MgO和ZnO之间的重量比是65-72:12-18:8-12:0.6-2:0.4-1:0.2-1:0.1-1;其中硅渣中的硅元素以单质硅、碳化硅和钙黄长石形式存在,其重量比为15-30:30-60:5-10。
  3. 根据权利要求1所述的一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法,其特征在于,锌回转窑渣和还原调质剂的质量比为25-35:20-25;
    所述还原调质剂包括焦炭、钠长石、硼砂,其质量比为10-15:5-7:3-5。
  4. 根据权利要求1所述的一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法,其特征在于,利用上述水淬残渣为主料制备微晶玻璃;所述微晶玻璃的制备原料由水淬残渣、石英和助熔澄清剂组成,其分别占原材料总重量百分比为55-75:15-35:8-15;所述助熔澄清剂包括钾长石、萤石、氧化铈和硝酸钠,其质量比为5-8:2-4:1-2:1-2;
    首先将水淬残渣、石英和助熔澄清剂按配方比例混合、球磨、筛分后获得尺寸均匀的基础玻 璃配方料,配方料经熔融、水淬后获得基础玻璃,所得基础玻璃再经热处理制度后形成微晶玻璃;
    所述熔融温度为1380-1460℃,保温2-3h以形成均质熔融态玻璃液;将均质玻璃液倒入预先准备好的低于等于30℃水中,形成玻璃颗粒;将玻璃颗粒从水中过滤出来,并在150~200℃下烘干;
    将水淬后的基础玻璃料在破碎机中破碎25~40min,过150-200目筛后得到基础玻璃粉;将上述基础玻璃粉装入坩埚中并转移至晶化炉中,以5~15℃/min的升温速率升温至600~780℃进行预热1-3h,之后以5~10℃/min的升温速率升温至970~1100℃进行保温烧结1~3h;以5~10℃/min的降温速率降至720~850℃,保温0.5~2h后自然冷却至室温,得到微晶玻璃产品。
PCT/CN2022/099060 2021-06-29 2022-06-16 一种光伏废渣和有色金属冶炼铁渣协同制备硅铁合金和微晶玻璃的方法 WO2023273897A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/993,844 US11746042B2 (en) 2021-06-29 2022-11-23 Method for synergistically preparing Ferrosilicon alloy and glass-ceramics from photovoltaic waste slag and non-ferrous metal smelting iron slag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110723985.0 2021-06-29
CN202110723985.0A CN113502425B (zh) 2021-06-29 2021-06-29 一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/993,844 Continuation US11746042B2 (en) 2021-06-29 2022-11-23 Method for synergistically preparing Ferrosilicon alloy and glass-ceramics from photovoltaic waste slag and non-ferrous metal smelting iron slag

Publications (1)

Publication Number Publication Date
WO2023273897A1 true WO2023273897A1 (zh) 2023-01-05

Family

ID=78011369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099060 WO2023273897A1 (zh) 2021-06-29 2022-06-16 一种光伏废渣和有色金属冶炼铁渣协同制备硅铁合金和微晶玻璃的方法

Country Status (3)

Country Link
US (1) US11746042B2 (zh)
CN (1) CN113502425B (zh)
WO (1) WO2023273897A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230091102A1 (en) * 2021-06-29 2023-03-23 Beijing University Of Technology Method for synergistically preparing Ferrosilicon alloy and glass-ceramics from photovoltaic waste slag and non-ferrous metal smelting iron slag

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115180834B (zh) * 2022-07-11 2023-12-29 北京工业大学 一种退役光伏组件分选废渣与钢渣协同制备硅铁合金及微晶玻璃的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3138455A (en) * 1962-04-02 1964-06-23 Union Carbide Corp Process for the production of low silicon, medium-to-low carbon ferromanganese
US5002733A (en) * 1989-07-26 1991-03-26 American Alloys, Inc. Silicon alloys containing calcium and method of making same
CN102942383A (zh) * 2012-10-29 2013-02-27 中国科学院过程工程研究所 一种多孔陶瓷与微晶玻璃复合保温装饰板及其制备方法
CN103602846A (zh) * 2013-11-07 2014-02-26 昆明理工大学 一种利用微硅粉生产硅铁合金的方法
CN108624853A (zh) * 2018-05-11 2018-10-09 辽宁科技大学 一种铁尾矿微晶玻璃薄膜及其制备方法与应用
CN111254302A (zh) * 2020-02-26 2020-06-09 贵州镇远鸿丰新材料有限公司 一种用固废硅渣精炼高纯硅铁合金的工艺
CN113502425A (zh) * 2021-06-29 2021-10-15 北京工业大学 一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553337B (zh) * 2013-11-05 2015-08-12 北京科技大学 高炉熔渣生产微晶玻璃的烧结工艺方法及其设备
CN105441683B (zh) * 2015-11-13 2017-12-08 湖南中大联合创新科技发展有限公司 一种混合废渣的综合处理方法
CN106186702A (zh) * 2016-07-22 2016-12-07 南通大明玉新材料科技有限公司 一种利用废渣制备微晶材料的方法
JOP20190184A1 (ar) * 2017-02-09 2019-07-30 Commw Scient Ind Res Org عملية لاستخلاص الفوسفور من المواد الفوسفورية
CN107699701A (zh) * 2017-10-10 2018-02-16 东北大学 由含锌与铁的混合熔渣回收有价组分的方法
CN107653381B (zh) * 2017-10-10 2021-12-21 东北大学 含锌与铁的熔渣熔融还原生产的方法
CN108059351A (zh) * 2017-12-14 2018-05-22 北京工业大学 一种烧结法制备富铁铅渣微晶玻璃的方法
CN108754143A (zh) * 2018-06-13 2018-11-06 鄂尔多斯市西金矿冶有限责任公司 一种利用冶金硅渣生产硅铁合金的方法
CN109020231B (zh) * 2018-10-11 2020-05-05 清华大学 一种制备合金铁和微晶玻璃的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3138455A (en) * 1962-04-02 1964-06-23 Union Carbide Corp Process for the production of low silicon, medium-to-low carbon ferromanganese
US5002733A (en) * 1989-07-26 1991-03-26 American Alloys, Inc. Silicon alloys containing calcium and method of making same
CN102942383A (zh) * 2012-10-29 2013-02-27 中国科学院过程工程研究所 一种多孔陶瓷与微晶玻璃复合保温装饰板及其制备方法
CN103602846A (zh) * 2013-11-07 2014-02-26 昆明理工大学 一种利用微硅粉生产硅铁合金的方法
CN108624853A (zh) * 2018-05-11 2018-10-09 辽宁科技大学 一种铁尾矿微晶玻璃薄膜及其制备方法与应用
CN111254302A (zh) * 2020-02-26 2020-06-09 贵州镇远鸿丰新材料有限公司 一种用固废硅渣精炼高纯硅铁合金的工艺
CN113502425A (zh) * 2021-06-29 2021-10-15 北京工业大学 一种用硅渣和锌回转窑渣制备硅铁合金和微晶玻璃的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230091102A1 (en) * 2021-06-29 2023-03-23 Beijing University Of Technology Method for synergistically preparing Ferrosilicon alloy and glass-ceramics from photovoltaic waste slag and non-ferrous metal smelting iron slag
US11746042B2 (en) * 2021-06-29 2023-09-05 Beijing University Of Technology Method for synergistically preparing Ferrosilicon alloy and glass-ceramics from photovoltaic waste slag and non-ferrous metal smelting iron slag

Also Published As

Publication number Publication date
CN113502425A (zh) 2021-10-15
US11746042B2 (en) 2023-09-05
CN113502425B (zh) 2022-06-24
US20230091102A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
WO2023273897A1 (zh) 一种光伏废渣和有色金属冶炼铁渣协同制备硅铁合金和微晶玻璃的方法
CN101433950B (zh) 回收精炼渣制备保护渣的方法
CN105417950B (zh) 一种微晶材料助熔成核剂及其制备方法
CN106477883A (zh) 一种多孔稀土矿渣微晶玻璃及其制备方法
US11964902B2 (en) Method for preparing lead smelting slag glass-ceramics based on the oxidation of silicon-rich silicon smelting slag and composition adjustment
CN104556702B (zh) 一种利用冶金渣制备高碱度微晶玻璃的方法
CN108503224B (zh) 一种以煤矸石和稻壳灰为主要原料的微晶玻璃及其制备方法
CN108754143A (zh) 一种利用冶金硅渣生产硅铁合金的方法
CN104788112A (zh) 一种电熔刚玉材料及其生产方法
CN105152536B (zh) 一种利用铬铁合金渣合成微晶玻璃材料的方法
CN111320388A (zh) 一种烟化炉渣协同烧结制备选铁尾渣微晶玻璃的方法
CN111254344B (zh) 钒铁合金的制备方法
WO2012026725A2 (ko) 고체-기체 반응에 의한 밀스케일과 산화몰리브데늄 분말의 혼합 분말로부터 폐로몰리브데늄 합금 소결체를 제조하는 방법 및 그 방법에 의하여 제조된 소결체
JP2013543474A (ja) 溶融スラグを利用して平板状の無機非金属材料を製造する方法
US10703675B2 (en) Method for processing steel slag and hydraulic mineral binder
CN115636607A (zh) 协同处理高铁赤泥和电解锰渣的方法及系统
CN106630644A (zh) 一种稀土矿渣微晶玻璃及其制备方法
CN110157860B (zh) 一种硅铁提纯脱铝用精炼渣及配制方法
CN102756103A (zh) 高结晶性高润滑性连铸用结晶器保护渣
CN111809061A (zh) 气氛保护铝还原含钛高炉渣冶炼钛硅铝中间合金的方法
CN110217995A (zh) 熔融高炉渣和粉煤灰协同制备微晶玻璃的方法
CN113548842B (zh) 一种利用灰渣制备免烧砖的方法
CN112851121B (zh) 一种硅渣促进高铁尾渣资源化利用的方法
CN101338373B (zh) 鼓风炉还原熔炼铜钴氧化矿的生产方法
CN106673449A (zh) 一种铜渣二次渣的利用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22831716

Country of ref document: EP

Kind code of ref document: A1