WO2023273479A1 - 一种有机电致发光器件和显示装置 - Google Patents

一种有机电致发光器件和显示装置 Download PDF

Info

Publication number
WO2023273479A1
WO2023273479A1 PCT/CN2022/084857 CN2022084857W WO2023273479A1 WO 2023273479 A1 WO2023273479 A1 WO 2023273479A1 CN 2022084857 W CN2022084857 W CN 2022084857W WO 2023273479 A1 WO2023273479 A1 WO 2023273479A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
homo
blocking layer
emitting unit
photoelectron
Prior art date
Application number
PCT/CN2022/084857
Other languages
English (en)
French (fr)
Inventor
蔡明瀚
段炼
李国孟
李飞霞
刘俊
李梦真
王宏宇
Original Assignee
昆山国显光电有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司, 清华大学 filed Critical 昆山国显光电有限公司
Priority to KR1020237021694A priority Critical patent/KR20230107377A/ko
Publication of WO2023273479A1 publication Critical patent/WO2023273479A1/zh
Priority to US18/342,043 priority patent/US20230345756A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/60Up-conversion, e.g. by triplet-triplet annihilation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes

Definitions

  • the application relates to an organic electroluminescent device and a display device, belonging to the technical field of organic electroluminescence.
  • An organic electroluminescent device is a device that is driven by an electric current to achieve the purpose of emitting light.
  • an organic electroluminescent device includes a cathode, an anode, and functional layers such as a light-emitting layer between the cathode and the anode. When a voltage is applied, electrons from the cathode and holes from the anode will respectively migrate to the light-emitting layer and combine to generate excitons, and then emit light of different wavelengths according to the characteristics of the light-emitting layer.
  • TADF Thermally Activated Delayed Fluorescence
  • the driving voltage of the organic electroluminescent device is often high due to the deep HOMO energy level of the TADF material.
  • the present application provides an organic electroluminescent device.
  • the driving voltage of the organic electroluminescent device can be effectively reduced, and the service life of the organic electroluminescent device can be improved to a certain extent. extension to reduce the power consumption of organic electroluminescent devices.
  • the present application provides an organic electroluminescent device, comprising an anode functional layer, a first electron blocking layer, a second electron blocking layer, a light-emitting layer and a cathode functional layer
  • the anode functional layer includes a first region and a second region adjacently arranged. Two regions, the first electron blocking layer is arranged on the first region of the anode functional layer, and the second electron blocking layer is arranged on the second region of the anode functional layer and the first barrier layer away from the anode functional layer, the luminescent layer is arranged on the side of the second barrier layer away from the anode functional layer, and the cathode functional layer is arranged on the luminescent layer away from the anode functional layer side of
  • the anode functional layer includes at least an anode layer, and the cathode functional layer includes at least a cathode layer;
  • the first electron blocking layer includes a red photoelectron blocking layer and a green photoelectron blocking layer arranged side by side, and the second electron blocking layer is a blue photoelectron blocking layer;
  • the light-emitting layer includes a red light-emitting unit, a green light-emitting unit and a blue light-emitting unit arranged side by side, and the red light-emitting unit and/or the green light-emitting unit includes a host material, a TADF sensitizer and a narrow spectrum boron-containing dye;
  • the red photoelectron blocking layer is stacked corresponding to the red light emitting unit, and the green photoelectron blocking layer is stacked correspondingly to the green light emitting unit;
  • the HOMO R of the red photoelectron blocking material in the red photoelectron blocking layer, the HOMO G of the green photoelectron blocking material in the green photoelectron blocking layer and the HOMO B of the blue photoelectron blocking material in the blue photoelectron blocking layer satisfy The following requirements:
  • HOMO R HOMO R , HOMO G and HOMO B meet the following requirements:
  • the present application also provides a display device, which includes the organic electroluminescent device described in any one of the above.
  • the structure of the electron blocking layer between the anode and the light-emitting layer is limited, and the red photoelectron blocking layer, the green photoelectron blocking layer and the blue photoelectron blocking layer are layered to make blue light
  • the electron blocking layer is closer to the light-emitting layer, and an energy level step is introduced on the path of holes from the anode to the light-emitting layer, so that more holes can be injected into the In the light-emitting layer, the problem that the driving voltage of the organic electroluminescent device is too high due to the TADF material is effectively reduced, and the energy consumption of the organic electroluminescent device is reduced, which is beneficial to prolonging the life of the organic electroluminescent device.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescent device of the present application.
  • the first aspect of the present application provides an organic electroluminescent device.
  • the organic electroluminescent device comprises an anode functional layer 0, a first electron blocking layer, a second electron blocking layer 2, a light-emitting layer, and a cathode functional layer 4 deposited sequentially on a substrate, wherein the anode functional layer 0 includes at least the anode layer 01, and the cathode functional layer 4 includes at least the cathode layer 41.
  • the substrate, the anode layer 01 and the cathode layer 41 can use commonly used materials in the field.
  • the substrate can be made of glass or polymer material with mechanical strength, thermal stability, water resistance, and excellent transparency;
  • the material of the anode layer 01 can be indium tin oxide (ITO), indium zinc oxide (IZO), tin dioxide ( SnO 2 ), oxide transparent conductive materials such as zinc oxide (ZnO), and any combination thereof;
  • the material of the cathode layer 41 can be magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al-Li ), calcium (Ca), magnesium-indium (Mg-In), magnesium-silver (Mg-Ag) and other metals or alloys and any combination thereof.
  • TADF materials have certain defects as sensitizers. For example, due to the deep HOMO energy level of TADF materials, it will be difficult for holes from the anode to complete the injection into the light-emitting layer, resulting in the driving of organic electroluminescent devices. The voltage is too high, thereby shortening the service life of the organic electroluminescent device.
  • the present application limits the functional layers located between the anode functional layer 0 and the cathode functional layer 4 to reduce the driving voltage of the organic electroluminescent device.
  • the first electron blocking layer, the second electron blocking layer 2 and the light-emitting layer located between the anode functional layer 0 and the cathode functional layer 4 of the present application will be described in detail.
  • the first electron blocking layer includes a red light electron blocking layer 11 and a green light electron blocking layer 12 arranged side by side, the first electron blocking layer is arranged on the surface of the anode functional layer 0 away from the substrate, and the surface of the anode functional layer 0 includes the adjacently arranged second electron blocking layer
  • the side of the second region and the side of the first electron blocking layer away from the anode functional layer 0, the second electron blocking layer 2 of the present application is a blue light electron blocking layer.
  • the luminescent layer is arranged on the surface of the second electron blocking layer 2 away from the anode functional layer 0
  • the cathode functional layer 4 is arranged on the surface of the luminescent layer away from the anode functional layer 0 .
  • This application does not specifically limit the installation area of each functional layer.
  • the orthographic projection of the functional layer of the (N+1)th layer on the plane where the anode functional layer 0 is located covers the functional layer of the Nth layer.
  • the orthographic projection of the luminescent layer on the plane where the anode functional layer 0 is located covers the orthographic projection of the second barrier layer 2 on the plane where the anode functional layer 0 is located. Covering here means that the areas of the two orthographic projections are equal and the edges of the two orthographic projections are completely coincident, or the orthographic projection of the Nth layer is located inside the orthographic projection of the (N+1)th layer.
  • the HOMO R of the red photoelectron blocking material in the red photoelectron blocking layer 11 is greater than the HOMO B of the blue photoelectron blocking material in the blue photoelectron blocking layer, and the HOMO G of the green photoelectron blocking material in the green photoelectron blocking layer 12 is larger than the blue photoelectron blocking material.
  • the HOMO B of the blue photoelectron blocking material in the blocking layer and the HOMO R of the red photoelectron blocking material in the red photoelectron blocking layer 11 are greater than or equal to the HOMO G of the green photoelectron blocking material in the green photoelectron blocking layer 12 . That is, HOMO B is deeper than HOMO R and HOMO G , and HOMO G is equal to or deeper than HOMO R.
  • the light-emitting layer of the present application includes a red light-emitting unit 31, a green light-emitting unit 32 and a blue light-emitting unit 33 arranged side by side, and the red light-emitting unit 31, the green light-emitting unit 32 and the blue light-emitting unit 33 The two adjacent ones are staggered by a certain distance in the stacking direction.
  • the red light emitting unit 31 corresponds to the red electron blocking layer 11
  • the green light emitting unit 32 corresponds to the green electron blocking layer 12 .
  • the correspondence here means that the orthographic projection of the red light emitting unit 31 on the plane where the red photoelectron blocking layer 11 is located covers the red photoelectron blocking layer 11, and the orthographic projection of the green light emitting unit 32 on the plane where the green photoelectron blocking layer 12 is located The green photoelectron blocking layer 12 is covered.
  • the juxtaposition of the red light emitting unit 31, the green light emitting unit 32 and the blue light emitting unit 33 of the present application is not only as shown in FIG. or can be arranged side by side in any order.
  • the red light electron blocking layer 11 and the green light electron blocking layer 12 are sequentially adjusted according to the sequence of the red light emitting unit 31 and the green light emitting unit 32 .
  • At least one of the red light emitting unit 31 and the green light emitting unit 32 includes a host material, a TADF sensitizer, and a narrow-spectrum boron-containing dye.
  • the driving voltage of the organic electroluminescent device with the above structure is significantly lower than that of the organic electroluminescent device containing the TADF sensitizer at the present stage.
  • the organic electroluminescent device of the present application includes an anode functional layer 0, a first electron blocking layer, and a second electron blocking layer 2 ( blue light electron blocking layer), light-emitting layer and cathode functional layer 4, that is, in the hole transport path from the first electron blocking layer to the light-emitting layer, there is an energy level step for transferring holes, which ensures that the holes It can smoothly enter the light-emitting layer from the first electron blocking layer, thereby effectively reducing the driving voltage of the organic electroluminescent device.
  • the holes will enter the red electron blocking layer 11 in the first electron blocking layer, because the red electron blocking layer 11 and the red light emitting A blue light electron blocking layer is added in unit 31 and HOMO B is smaller than HOMO R , so the holes in the red light electron blocking layer 11 will be smoothly transferred to the blue light electron blocking layer.
  • the blue photoelectron blocking layer with a deeper HOMO energy level is also more compatible with the deep HOMO energy level TADF sensitizer in the red light emitting unit 31, so the empty The holes will further smoothly enter the red light emitting unit 31 with the help of the blue light electron blocking layer, and then complete the recombination with the electrons from the cathode functional layer 4 .
  • the holes entering the green electron blocking layer 12 will also pass through the green electron blocking layer 12, the blue electron blocking layer 12 sequentially based on the same reason as above. Layer and enter the green light emitting unit 32 to complete the recombination with electrons.
  • the blue light emitting unit 33 when the anode functional layer 0 outputs holes, the holes output from the anode functional layer 0 will enter the blue light emitting unit 33 through the blue electron blocking layer and recombine with electrons.
  • the organic electroluminescent device of the present application by limiting the distribution of the electron blocking layer, can realize the efficient transport of holes to the light-emitting layer without adding other materials, which not only shortens the manufacturing process, but also significantly reduces the TADF content.
  • the driving voltage of the organic electroluminescent device of the sensitizer is beneficial to reduce energy consumption and prolong the service life of the organic electroluminescent device. It should be emphasized here that the reduction of the driving voltage of the organic electroluminescent device referred to in this application refers to reducing the driving voltage of the red light emitting unit 31 and the green light emitting unit 32 in the organic electroluminescent device respectively.
  • the present invention by setting a multi-layer red photoelectron blocking layer (green photoelectron blocking layer) between the anode functional layer 0 and the red light emitting unit 31 (green light emitting unit 32), the present invention
  • the evaporation of the light-emitting layer can be carried out only by evaporating a layer of blue light electron blocking layer, which shortens the waiting period between the evaporation of the second electron blocking layer 2 and the evaporation of the light-emitting layer, and reduces the influence of the external environment on the evaporation layer.
  • Process interference improves the purity of the organic electroluminescent device, so this solution is also conducive to improving the life of the organic electroluminescent device, especially the life of the blue light emitting unit 33 .
  • the composition of at least one of the red light emitting unit 31 and the green light emitting unit 32 in the present application includes a host material, a TADF sensitizer and a narrow-spectrum boron-containing dye, while for the composition of the blue light emitting unit 33, in In this application, the composition of the blue light emitting unit 33 includes TTA material and dye.
  • the host material in the light emitting unit 31 can further improve the injection efficiency of holes into the red light emitting unit 31 through the blue electron blocking layer.
  • HOMO B ⁇ HOMO RH ⁇ 0.4 eV where HOMO RH is the HOMO energy level of the host material in the red light emitting unit 31 .
  • HOMO GH is the HOMO energy level of the host material in the green light emitting unit 32 .
  • the thickness of the blue light electron blocking layer in order to prevent the red light emitting unit 31 and the green light emitting unit 32 from increasing the driving voltage due to the excessive thickness of the blue light electron blocking layer, it is necessary to control the thickness of the blue light electron blocking layer to be less than or equal to 20 nm.
  • the thickness of the red photoelectron blocking layer 11 is greater than or equal to 20 nm, and/or the thickness of the green photoelectron blocking layer 12 is greater than or equal to 20 nm.
  • the thicknesses of the red light emitting unit 31 , the green light emitting unit 32 and the blue light emitting unit 33 constituting the light emitting layer are not completely consistent.
  • the thickness of the blue light emitting unit 33 is less than or equal to 30nm;
  • the hole recombination region is relatively wide, so the thickness of the red light emitting unit 31 and/or the green light emitting unit 32 is less than or equal to 50 nm.
  • the thicknesses of any two adjacent light emitting units are different, so that the red light emitting unit 31, the green light emitting unit 32 and the blue light emitting unit 31 emit light.
  • Two adjacent units in the unit 33 are staggered by a certain distance in the stacking direction.
  • the present application has no special restrictions on the red photoelectron blocking material in the red photoelectron blocking layer 11, the green photoelectron blocking material in the green photoelectron blocking layer 12, and the blue photoelectron blocking layer material in the blue photoelectron blocking layer, as long as each material It is enough to meet the above energy level requirements, for example, it can be selected from, but not limited to, phthalocyanine derivatives such as CuPc, conductive polymers or polymers containing conductive dopants such as polyphenylene vinylene, polyaniline/dodecylbenzenesulfon acid (Pani/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphorsulfonic acid (Pani/CSA), polyaniline / Poly(4-styrene sulfonate) (Pani/PSS), aromatic amine derivatives.
  • phthalocyanine derivatives such
  • the aromatic amine derivative is selected from the compounds shown in HT-1 to HT-37 below.
  • the host material in the red light emitting unit 31 and/or the green light emitting unit 32 can be selected from a traditional host material, and the first excited singlet energy level of the host material is not lower than the first excited singlet state of the TADF sensitizer through control and matching. Excited singlet energy level, the first excited triplet energy level of the host material is not lower than the first excited triplet energy level of the TADF sensitizer.
  • host materials include, but are not limited to, compounds and derivatives thereof selected from one of the following structures:
  • the TADF sensitizer in the red light emitting unit 31 and/or the green light emitting unit 32 is a material with ⁇ Est ⁇ 0.30eV, including but not limited to the following TADF materials.
  • TADF sensitizers include, but are not limited to, compounds and derivatives thereof selected from one of the following structures:
  • a narrow-spectrum boron-containing dye is also included.
  • a narrow-spectrum boron-containing dye When a narrow-spectrum boron-containing dye is selected, it has a more positive impact on the narrowing of the device spectrum and the improvement of color purity.
  • the narrow-spectrum boron-containing material referred to in this application refers to a dye containing boron atoms and having a half-maximum width of less than 80 nm in toluene solution. Including but not limited to compounds and derivatives thereof selected from one of the following structures:
  • the red light-emitting unit and/or the green light-emitting unit comprises: 50-90% of a host material, 9-49% of a TADF sensitizer, and the balance of a narrow-spectrum boron-containing dye.
  • the anode functional layer 0 of the organic electroluminescent device of the present application further includes a hole transport region 02 .
  • the hole transport region 02 is located between the anode layer 01 and the light emitting layer, specifically, between the anode layer 01 and the first electron blocking layer.
  • the hole transport region 02 may be a hole transport layer (HTL) with a single-layer structure, including a single-layer hole-transport layer containing only one compound and a single-layer hole-transport layer containing multiple compounds.
  • the hole transport region 5 may also have a two-layer structure including a hole injection layer (HIL) and a hole transport layer (HTL).
  • HIL hole injection layer
  • HTL hole transport layer
  • the material of the hole transport region 02 can be selected from the compounds shown in the aforementioned red photoelectron blocking material, green photoelectron blocking material and blue photoelectron blocking layer material.
  • the hole injection layer is located between the anode layer 01 and the hole transport layer.
  • the hole injection layer can be a single compound material, or a combination of multiple compounds.
  • the hole injection layer can use one or more compounds of the above-mentioned HT-1 to HT-34, or one or more compounds in the following HI1-HI3; HT-1 to HT-34 can also be used One or more compounds of doped with one or more compounds in the following HI1-HI3.
  • the thickness of the hole injection layer is generally 5-30 nm, and the thickness of the hole transport layer is generally 5-50 nm.
  • the cathode functional layer 4 of the organic electroluminescent device of the present application also includes an electron transport region 42 .
  • the electron transport region 42 may be a single-layer electron transport layer (ETL), including a single-layer electron-transport layer containing only one compound and a single-layer electron-transport layer containing multiple compounds.
  • the electron transport region 42 may also be a multilayer structure including at least two layers of an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer (HBL). Specifically, the electron transport region 42 is located between the light emitting layer and the cathode layer 4 .
  • the electron transport layer material can be selected from, but not limited to, one or more combinations of ET-1 to ET-57 and PH-1 to PH-46 listed below.
  • the thickness of the electron transport layer is generally 5-50 nm.
  • the structure of the light-emitting device may also include an electron injection layer between the electron transport layer and the cathode layer 4.
  • the material of the electron injection layer includes but is not limited to one or more combinations of the following: LiQ, LiF, NaCl, CsF, Li 2 O, Cs 2 CO 3 , BaO, Na, Li, Ca.
  • the thickness of the electron injection layer is generally 0.5-5 nm.
  • a light extraction layer is also provided on the surface of the cathode functional layer 4 away from the anode functional layer 0, which is beneficial to realize the top emission light emitting mode.
  • the material of the light extraction layer is the same as that of the existing light extraction layer in the field, and there is no special limitation in this application.
  • the present application also provides a preparation method of the organic electroluminescent device, which comprises sequentially depositing an anode functional layer, a first electron blocking layer, a second electron blocking layer, a light-emitting layer, and a cathode functional layer on a substrate, and then encapsulating.
  • the deposition method of each functional layer is the same as the existing method in the art.
  • An embodiment of the present application further provides a display device, which includes the organic electroluminescence device as provided above.
  • the display device may be a display device such as an OLED display, and any product or component having a display function such as a TV, a digital camera, a mobile phone, a tablet computer, etc. including the display device.
  • the display device has the same advantages as that of the above-mentioned organic electroluminescent device over the prior art, which will not be repeated here.
  • Embodiments 1-17 provide a kind of organic electroluminescent device respectively, and its device structure is as shown in Figure 1, comprises ITO anode, hole injection layer (HI-3, 5nm), hole transport layer (HT-2, 30nm ), the first electron blocking layer, the second electron blocking layer, the light-emitting layer, the electron transport layer (ET-34:ET-57, 1:1, 30nm), the electron injection layer (LiF, 1nm) and the cathode (Al, 1500nm ).
  • the composition of the first electron blocking layer, the second electron blocking layer and the light-emitting layer of each organic electroluminescent device is different, and the specific composition and thickness are shown in Table 1.
  • Comparative example 1-2 provides a kind of organic electroluminescent device, and its device structure comprises successively stacked ITO anode, hole injection layer (HI-3, 5nm), hole transport layer (HT-2, 30nm), the first Electron blocking layer, light emitting layer, electron transport layer (ET-34:ET-57, 1:1, 30nm), electron injection layer (LiF, 1nm) and cathode (Al, 1500nm).
  • the difference from Examples 1-17 is that the comparative example only includes the first electron blocking layer, and the first electron blocking layer includes a red photoelectron blocking layer, a green photoelectron blocking layer and a blue photoelectron blocking layer arranged side by side.
  • Table 2 The selection of specific materials is shown in Table 2.
  • EBL-R represents a red photoelectron blocking layer
  • EBL-G represents a green photoelectron blocking layer
  • EBL-B represents a blue photoelectron blocking layer.
  • the HOMO energy levels of all the materials in this application were obtained by measuring the cyclic voltammetry (CV) curves of the materials in solution at room temperature with a Potentiostat/Galvanostat Model 283 electrochemical workstation from Princeton Applied Research, USA.
  • the solution concentration is 10 -5 mol L -1 .
  • a platinum disc was used as the working electrode, a silver wire was used as the reference electrode, and a platinum wire was used as the counter electrode.
  • HOMO energy level (E HOMO ) of the material.
  • the test rate was 100mV s -1 .
  • high-purity nitrogen to remove oxygen for more than 10 minutes.
  • ferrocene After testing the oxidation-reduction potential of the sample, add the internal standard ferrocene, and measure its oxidation-reduction potential. According to the relative value of the potential between the material and ferrocene, the HOMO energy level of the material is calculated by the following formula:
  • Eox represents the oxidation-reduction potential of the material when Fc + /Fc (ferrocene/ferrocene) is used as a reference.
  • HT-2 -5.4ev HT-11: -5.5ev HT-35: -5.7ev HT-36: -5.7ev HT-37(w-1): -6.0ev
  • Examples 1-17 of the present application adopt organic electroluminescent devices with a stacked structure of the first electron blocking layer and the second electron blocking layer, which is beneficial to overcome the problem caused by the red light emitting unit or the green light.
  • the light-emitting unit contains the defect that the driving voltage is too high caused by the TADF sensitizer;
  • Example 1 and Example 2 Through the comparison of Example 1 and Example 2 (and the comparison of Example 1 and Example 3), it can be seen that even if only one of the red light-emitting unit or the green light-emitting unit contains a TADF sensitizer, the first The arrangement of the stacked structure of the electron blocking layer and the second electron blocking layer will also not have a negative impact on the driving voltage of the device.
  • the material of the first electron blocking layer, the second electron blocking layer and the host material of the light-emitting unit can be selected to further reduce the organic electrical energy The driving voltage of the luminescent device.
  • the thickness of the second electron blocking layer does not exceed 20 nm;
  • the thickness of the red light-emitting unit, green light-emitting unit and blue light-emitting unit increases, the improvement effect of the driving voltage of the organic electroluminescent device decreases significantly. Therefore, in the actual application process Preferably, the thickness of the red light-emitting unit and the green light-emitting unit does not exceed 50 nm, and the thickness of the blue light-emitting unit does not exceed 30 nm;
  • the half-peak width of the organic electroluminescent device can be adjusted by adjusting the dye in the light-emitting layer, especially when a narrow-spectrum boron-containing dye is selected, the organic electroluminescent
  • the half-peak width of the device is narrower, which is more conducive to the improvement of color purity.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件和显示装置,有机电致发光器件包括阳极功能层(0)、第一电子阻挡层、第二电子阻挡层(2)、发光层以及阴极功能层(4),阳极功能层(0)包括相邻设置的第一区域和第二区域,第一电子阻挡层设置于第一区域,第二电子阻挡层(2)设置于第二区域和第一阻挡层远离阳极功能层的一侧,发光层设置于第二阻挡层(2)远离阳极功能层(0)的一侧;第一电子阻挡层包括并列设置的红光电子阻挡层(11)和绿光电子阻挡层(12),第二电子阻挡层(2)为蓝光电子阻挡层;红光电子阻挡层(11)中的红光电子阻挡材料的HOMO能级和绿光电子阻挡层(12)中的绿光电子阻挡材料的HOMO能级均浅于蓝光电子阻挡层中的蓝光电子阻挡材料的HOMO能级。

Description

一种有机电致发光器件和显示装置
本申请要求于2021年6月30日提交中国专利局、申请号为202110740721.6、申请名称为“一种有机电致发光器件和显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种有机电致发光器件和显示装置,属于有机电致发光技术领域。
背景技术
有机电致发光器件是一种通过电流驱动而达到发光目的的器件。具体地,有机电致发光器件包括阴极、阳极以及位于阴极和阳极之间的发光层等功能层。当施加电压后,来自于阴极的电子和来自于阳极的空穴会分别向发光层迁移并结合产生激子,进而根据发光层的特性发出不同波长的光。
近年来,热活化延迟荧光(Thermally Activated Delayed Fluorescence,TADF)材料被广泛应用于有机电致发光器件的发光材料中。TADF材料可以同时利用生成概率25%的单重态激子和75%的三重态激子从而获得高的发光效率。具体地,由于TADF分子的单线态(S 1)与三线态(T 1)的能级差(ΔE ST)较小,三线态激子可以通过反向系间窜越(Reverse Intersystem Crossing,RISC)回到单线态,形成单线态激子继而辐射发光,从而提高了激子的辐射发光效率。
但是在现阶段的热活化延迟荧光器件中,由于TADF材料的HOMO能级较深,往往造成有机电致发光器件的驱动电压较高的情况。
发明内容
本申请提供一种有机电致发光器件,通过对内部结构,尤其是电子阻挡层的结构进行改进,能够有效降低有机电致发光器件的驱动电压,使有机电致发光器件的使用寿命得到一定程度的延长,以降低有机电致发光器件的功耗。
本申请提供一种有机电致发光器件,包括阳极功能层、第一电子阻挡层、第二电子阻挡层、发光层以及阴极功能层,所述阳极功能层包括相邻设置的第一区域和第二区域,所述第一电子阻挡层设置于所述阳极功能层的所述第一区域,所述第二电子阻挡层设置于所述阳极功能层的所述第二区域和所述第一阻挡层远离所述阳极功能层的一侧,所述发光层设置于所述第二阻挡层远离所述阳极功能层的一侧,所述阴极功能层设置于所述发光层远离所述阳极功能层的一侧;
所述阳极功能层至少包括阳极层,所述阴极功能层至少包括阴极层;
所述第一电子阻挡层包括并列设置的红光电子阻挡层和绿光电子阻挡层,所述第二电子阻挡层为蓝光电子阻挡层;
所述发光层包括并列设置的红光发光单元、绿光发光单元和蓝光发光单元,所述红光发光单元和/或所述绿光发光单元包括主体材料、TADF敏化剂和窄光谱含硼染料;
所述红光电子阻挡层与所述红光发光单元对应层叠设置,所述绿光电子阻挡层与所述绿光发光单元对应层叠设置;
所述红光电子阻挡层中的红光电子阻挡材料的HOMO R、所述绿光电子阻挡层中的绿光电子阻挡材料的HOMO G和所述蓝光电子阻挡层中的蓝光电子阻挡材料的HOMO B满足以下要求:
HOMO B<HOMO R,HOMO B<HOMO G,HOMO G≤HOMO R
可选地,HOMO R、HOMO G与HOMO B满足以下要求:
0<HOMO R-HOMO B≤0.4eV,和/或,0<HOMO G-HOMO B≤0.4eV。
本申请还提供一种显示装置,所述显示装置包括上述任一项所述的有机电致发光器件。
本申请的有机电致发光器件,对阳极和发光层之间的电子阻挡层的结构进行了限定,对红光电子阻 挡层、绿光电子阻挡层和蓝光电子阻挡层进行了分层设置,使蓝光电子阻挡层相较于红光电子阻挡层和绿光电子阻挡层更接近发光层,在空穴从阳极向发光层传输的路径上引入了能级台阶,从而能够保证更多的空穴被注入至发光层中,有效的降低了有机电致发光器件由于包括TADF材料导致的驱动电压过高的问题,减少有机电致发光器件能耗的同时,有利于有机电致发光器件寿命的延长。
附图说明
图1为本申请的有机电致发光器件的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请的实施例,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请第一方面提供一种有机电致发光器件。如图1所示,该有机电致发光器件包括在基板上依次沉积的阳极功能层0、第一电子阻挡层、第二电子阻挡层2和发光层以及阴极功能层4,其中,阳极功能层0至少包括阳极层01,阴极功能层4至少包括阴极层41。
具体地,基板、阳极层01以及阴极层41可以采用本领域常用的材料。例如,基板可以采用具有机械强度、热稳定性、防水性、透明度优异的玻璃或聚合物材料;阳极层01的材料可以采用铟锡氧(ITO)、铟锌氧(IZO)、二氧化锡(SnO 2)、氧化锌(ZnO)等氧化物透明导电材料和它们的任意组合;阴极层41的材料可以采用镁(Mg)、银(Ag)、铝(Al)、铝-锂(Al-Li)、钙(Ca)、镁-铟(Mg-In)、镁-银(Mg-Ag)等金属或合金以及它们之间的任意组合。
大多数TADF材料作为敏化剂存在一定缺陷,例如,由于TADF材料的HOMO能级较深,会导致来自于阳极的空穴很难完成向发光层的注入,从而导致有机电致发光器件的驱动电压过高,进而缩短了有机电致发光器件的使用寿命。
有鉴于此,本申请通过对位于阳极功能层0和阴极功能层4之间的功能层进行限定以降低有机电致发光器件的驱动电压。
以下,对本申请的位于阳极功能层0和阴极功能层4之间的第一电子阻挡层、第二电子阻挡层2以及发光层进行详细介绍。
第一电子阻挡层包括并列设置的红光电子阻挡层11和绿光电子阻挡层12,第一电子阻挡层设置于阳极功能层0远离基板的表面,阳极功能层0的表面包括相邻设置的第一区域和第二区域,其中,红光电子阻挡层11和绿光电子阻挡层12可同层设置设置于阳极功能层0的第一区域,第二电子阻挡层2设置于阳极功能层0的第二区域一侧和第一电子阻挡层的远离阳极功能层0的一侧,本申请的第二电子阻挡层2为蓝光电子阻挡层。依次地,发光层设置在第二电子阻挡层2远离阳极功能层0的表面,阴极功能层4设置在发光层远离阳极功能层0的表面。本申请对各个功能层的设置面积不做具体限定,作为一种优选的实施方式,第(N+1)层的功能层在阳极功能层0所在平面的正投影覆盖第N层的功能层在阳极功能层0所在平面的正投影,其中,第N层功能层相对于第(N+1)层功能层更加靠近阳极功能层0。例如,发光层在阳极功能层0所在平面的正投影覆盖第二阻挡层2在阳极功能层0所在平面的正投影。此处的覆盖是指,两个正投影的面积相等且二个正投影的边缘完全重合,或者第N层的正投影位于第(N+1)层的正投影内部。其中,红光电子阻挡层11中的红光电子阻挡材料的HOMO R大于蓝光电子阻挡层中的蓝光电子阻挡材料的HOMO B,绿光电子阻挡层12中的绿光电子阻挡材料的HOMO G大于蓝光电子阻挡层中的蓝光电子阻挡材料的HOMO B,红光电子阻挡层11中的红光电子阻挡材料的HOMO R大于或等于绿光电子阻挡层12中的绿光电子阻挡材料的HOMO G。即,HOMO B比HOMO R和HOMO G深,HOMO G与HOMO R相等,或者深于HOMO R
此外,如图1所示,本申请的发光层包括并列设置的红光发光单元31、绿光发光单元32和蓝光发光单元33,红光发光单元31、绿光发光单元32和蓝光发光单元33中相邻两者在层叠方向上错开一定距离。其中,在层叠方向上,红光发光单元31与红光电子阻挡层11相对应,绿光发光单元32与绿光电子阻挡层12相对应。能够理解,此处的对应是指红光发光单元31在红光电子阻挡层11所在平面的正投影覆盖红光电子阻挡层11,绿光发光单元32在绿光电子阻挡层12所在平面的正投影覆盖绿光电 子阻挡层12。
当然,本申请的红光发光单元31、绿光发光单元32和蓝光发光单元33的并列方式并不仅仅如图1所示,红光发光单元31、绿光发光单元32和蓝光发光单元33三者可以以任意的顺序并列设置。对应的,红光电子阻挡层11和绿光电子阻挡层12依照红光发光单元31和绿光发光单元32的顺序进行顺序调整。
具体地,红光发光单元31和绿光发光单元32中的至少一个包括主体材料、TADF敏化剂和窄光谱含硼染料。
根据本申请提供方案,具有上述结构的有机电致发光器件的驱动电压相较于现阶段含有TADF敏化剂的有机电致发光器件的驱动电压降低显著。具体原因在于:本申请的有机电致发光器件在层叠方向上(即阳极功能层0指向阴极功能层4的方向),包括阳极功能层0、第一电子阻挡层、第二电子阻挡层2(蓝光电子阻挡层)、发光层和阴极功能层4,即在第一电子阻挡层至发光层的空穴传输途径中,具有用于传递空穴的能级台阶,该能级台阶保证了空穴能够从第一电子阻挡层顺利的进入发光层中,进而有效降低了有机电致发光器件的驱动电压。
具体地,对于红光发光单元31,当阳极功能层0输出空穴后,空穴会进入第一电子阻挡层中的红光电子阻挡层11,由于在红光电子阻挡层11和红光发光单元31中增设了蓝光电子阻挡层并且HOMO B小于HOMO R,因此红光电子阻挡层11中的空穴会被顺利传递至蓝光电子阻挡层。而相对于具有较浅HOMO R的红光电子阻挡层11,具有更深HOMO能级的蓝光电子阻挡层与红光发光单元31中的深HOMO能级TADF敏化剂的也更为匹配,所以空穴进一步会在蓝光电子阻挡层的助力下顺利进入红光发光单元31,进而完成与来自于阴极功能层4的电子的复合。
同样的,对于绿光发光单元32,当阳极功能层0输出空穴后,进入绿光电子阻挡层12中的空穴也会基于与上述相同的原因,依次经过绿光电子阻挡层12、蓝光电子阻挡层而进入绿光发光单元32中完成与电子的复合。
而对于蓝光发光单元33,当阳极功能层0输出空穴后,阳极功能层0输出的空穴会则会经蓝光电子阻挡层进入蓝光发光单元33中与电子复合。
本申请的有机电致发光器件,通过对电子阻挡层的分布进行限定,能够在不额外增加其他材料的基础上实现空穴向发光层的高效传输,不仅缩短了制程,更显著降低了含有TADF敏化剂的有机电致发光器件的驱动电压,从而有利于降低能耗,延长有机电致发光器件的使用寿命。此处需要强调的是,本申请所指的降低有机电致发光器件的驱动电压,是指分别降低有机电致发光器件中的红光发光单元31和绿光发光单元32的驱动电压。
值得一提的是,相对于现有技术通过在阳极功能层0和红光发光单元31(绿光发光单元32)之间设置多层红光电子阻挡层(绿光电子阻挡层)而言,本申请仅通过蒸镀一层蓝光电子阻挡层即可进行发光层的蒸镀,缩短了蒸镀第二电子阻挡层2和蒸镀发光层二者之间的等待周期,降低了外界环境对蒸镀过程的干扰,提高了有机电致发光器件的纯净度,因此该方案也有利于提升有机电致发光器件的寿命,尤其是蓝光发光单元33的寿命。
如前所述,本申请中的红光发光单元31和绿光发光单元32中至少一个的组成包括主体材料、TADF敏化剂以及窄光谱含硼染料,而对于蓝光发光单元33的组成,在本申请中,蓝光发光单元33的组成包括TTA材料和染料。
发明人发现,当0<HOMO R-HOMO B≤0.4eV,和/或,0<HOMO G-HOMO B≤0.4eV时,有助于实现空穴向红光发光单元和/或绿光发光单元更有效的注入。
进一步地,当空穴经红光电子阻挡层11进入蓝光电子阻挡层后,为了更为有效的发挥蓝光电子阻挡层的能级台阶的作用,通过匹配蓝光电子阻挡层的蓝光电子阻挡材料和红光发光单元31中的主体材料,可以进一步提升空穴经蓝光电子阻挡层进入红光发光单元31的注入效率。具体地,HOMO B-HOMO RH≤0.4eV,其中,HOMO RH为红光发光单元31中的主体材料的HOMO能级。
同样地,HOMO GH-HOMO B≤0.4eV,也有助于进一步提升空穴经蓝光电子阻挡层进入绿光发光单元32的注入效率。其中,HOMO GH为绿光发光单元32中的主体材料的HOMO能级。
在一种实施方式中,为了避免蓝光电子阻挡层的厚度过大而导致红光发光单元31和绿光发光单元32驱动电压升高,需要控制蓝光电子阻挡层的厚度小于或等于20nm。
进一步地,为了实现红光和/或绿光光程的调节,所红光电子阻挡层11的厚度大于或等于20nm,和/或,绿光电子阻挡层12的厚度大于或等于20nm。
本申请的有机电致发光器件中,组成发光层的红光发光单元31、绿光发光单元32以及蓝光发光单元33的厚度并不完全一致。其中,由于蓝光器件电子和空穴复合区域靠近第二电子阻挡层2和发光层 的界面处,因此蓝光发光单元33的厚度小于或等于30nm;由于红光和/或绿光器件内电子和空穴复合区域较宽,因此红光发光单元31和/或所述绿光发光单元32的厚度小于或等于50nm。
在一种实施方式中,红光发光单元、绿光发光单元和蓝光发光单元中,任意相邻的两个发光单元的厚度不同,从而使红光发光单元31、绿光发光单元32和蓝光发光单元33中相邻两者在层叠方向上错开一定距离。
本申请对于红光电子阻挡层11中的红光电子阻挡材料、绿光电子阻挡层12中的绿光电子阻挡材料以及蓝光电子阻挡层中的蓝光电子阻挡层材料并无特殊限制,只要各个材料之间满足上述能级要求即可,例如可以选自、但不限于酞菁衍生物如CuPc、导电聚合物或含导电掺杂剂的聚合物如聚苯撑乙烯、聚苯胺/十二烷基苯磺酸(Pani/DBSA)、聚(3,4-乙撑二氧噻吩)/聚(4-苯乙烯磺酸盐)(PEDOT/PSS)、聚苯胺/樟脑磺酸(Pani/CSA)、聚苯胺/聚(4-苯乙烯磺酸盐)(Pani/PSS)、芳香胺衍生物。
其中,芳香胺衍生物选自如下面HT-1至HT-37所示的化合物。
Figure PCTCN2022084857-appb-000001
Figure PCTCN2022084857-appb-000002
此外,红光发光单元31和/或绿光发光单元32中的主体材料可以选用传统主体材料,并且通过控制搭配使主体材料的第一激发单重态能级不低于TADF敏化剂第一激发单重态能级,主体材料的第一激发三重态能级不低于TADF敏化剂的第一激发三重态能级即可。
例如,主体材料包括但不限于选自具有以下结构之一的化合物及其衍生物:
Figure PCTCN2022084857-appb-000003
Figure PCTCN2022084857-appb-000004
Figure PCTCN2022084857-appb-000005
Figure PCTCN2022084857-appb-000006
红光发光单元31和/或绿光发光单元32中的TADF敏化剂为ΔEst≤0.30eV的材料,包括但不限于如下TADF材料。例如,TADF敏化剂包括但不限于的选自具有以下结构之一的化合物及其衍生物:
Figure PCTCN2022084857-appb-000007
Figure PCTCN2022084857-appb-000008
Figure PCTCN2022084857-appb-000009
Figure PCTCN2022084857-appb-000010
在红光发光单元31和/或绿光发光单元32中,除了包括主体材料和TADF敏化剂外,还包括窄光谱含硼染料。当选用窄光谱含硼染料时,对器件光谱的窄化和色纯度的提升具有更为积极的影响。本申请所指的窄光谱含硼材料是指含有硼原子且在甲苯溶液下半峰宽小于80nm的染料。包括但不限于选自具有以下结构之一的化合物及其衍生物:
Figure PCTCN2022084857-appb-000011
Figure PCTCN2022084857-appb-000012
在一种实施方式中,红光发光单元和/或绿光发光单元按照质量百分含量包括:主体材料50-90%,TADF敏化剂9-49%,余量为窄光谱含硼染料。
进一步地,本申请的有机电致发光器件的阳极功能层0还包括空穴传输区02。空穴传输区02位于阳极层01和发光层之间,具体地,位于阳极层01和第一电子阻挡层之间。空穴传输区02可以为单层结构的空穴传输层(HTL),包括只含有一种化合物的单层空穴传输层和含有多种化合物的单层空穴传输层。空穴传输区5也可以为包括空穴注入层(HIL)、空穴传输层(HTL)的两层结构。
空穴传输区02的材料(包括HIL、HTL)可以在前述红光电子阻挡材料、绿光电子阻挡材料以及蓝光电子阻挡层材料所示的化合物中进行选择。
空穴注入层位于阳极层01和空穴传输层之间。空穴注入层可以是单一化合物材料,也可以是多种化合物的组合。例如,空穴注入层可以采用上述HT-1至HT-34的一种或多种化合物,或者采用下述HI1-HI3中的一种或多种化合物;也可以采用HT-1至HT-34的一种或多种化合物掺杂下述HI1-HI3中的一种或多种化合物。空穴注入层的厚度一般为5-30nm,空穴传输层的厚度一般为5-50nm。
Figure PCTCN2022084857-appb-000013
本申请的有机电致发光器件的阴极功能层4还包括电子传输区42。电子传输区42可以为单层结构的电子传输层(ETL),包括只含有一种化合物的单层电子传输层和含有多种化合物的单层电子传输层。电子传输区42也可以为包括电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)中的至少两层的多层结构。具体地,电子传输区42位于发光层和阴极层4之间。
电子传输层材料可以选自、但不限于以下所罗列的ET-1至ET-57以及PH-1至PH-46中的一种或多种的组合。电子传输层的厚度一般为5-50nm。
Figure PCTCN2022084857-appb-000014
Figure PCTCN2022084857-appb-000015
Figure PCTCN2022084857-appb-000016
Figure PCTCN2022084857-appb-000017
Figure PCTCN2022084857-appb-000018
发光器件的结构中还可以包括位于电子传输层与阴极层4之间的电子注入层,电子注入层材料包括但不限于以下罗列的一种或多种的组合:LiQ,LiF,NaCl,CsF,Li 2O,Cs 2CO 3,BaO,Na,Li,Ca。电子注入层的厚度一般为0.5-5nm。
进一步地,本申请在阴极功能层4远离阳极功能层0的表面上还设置有光取出层,从而有利于实现顶发光的发光模式。光取出层的材料与本领域现有的光取出层的材料相同,本申请不做特殊限定。
本申请还提供该有机电致发光器件的制备方法,包括在基板上依次沉积阳极功能层、第一电子阻挡层、第二电子阻挡层、发光层、阴极功能层,然后封装。其中,各个功能层的沉积方式与本领域现有的方式相同。
本申请实施例还提供一种显示装置,所述显示装置包括如上述提供的有机电致发光器件。该显示装置具体可以为OLED显示器等显示器件,以及包括该显示器件的电视、数码相机、手机、平板电脑等任何具有显示功能的产品或者部件。该显示装置与上述有机电致发光器件相对于现有技术所具有的优势相同,在此不再赘述。
以下,通过具体实施例对本申请的有机电致发光器件进行详细的介绍。
实施例1-17
实施例1-17分别提供一种有机电致发光器件,其器件结构如图1所示,包括ITO阳极、空穴注入层(HI-3,5nm)、空穴传输层(HT-2,30nm)、第一电子阻挡层、第二电子阻挡层、发光层、电子传输层(ET-34:ET-57,1:1,30nm)、电子注入层(LiF,1nm)和阴极(Al,1500nm)。
其中,每个有机电致发光器件的第一电子阻挡层、第二电子阻挡层和发光层组成不同,具体组成和厚度见表1。
对比例1-2
对比例1-2提供一种有机电致发光器件,其器件结构包括依次层叠的ITO阳极、空穴注入层(HI-3,5nm)、空穴传输层(HT-2,30nm)、第一电子阻挡层、发光层、电子传输层(ET-34:ET-57,1:1,30nm)、电子注入层(LiF,1nm)和阴极(Al,1500nm)。与实施例1-17的区别在于,对比例只包括第一电子阻挡层,且第一电子阻挡层包括并列设置的红光电子阻挡层、绿光电子阻挡层以及蓝光电子阻挡层。具体材料的选择如表2所示。
Figure PCTCN2022084857-appb-000019
表1和表2中,EBL-R表示红光电子阻挡层、EBL-G表示绿光电子阻挡层、EBL-B表示蓝光电子阻挡层。
本申请所有材料的HOMO能级,采用美国Princeton Applied Research公司的Potentiostat/Galvanostat Model 283型电化学工作站在室温下测定材料在溶液中的循环伏安(cyclic voltammetry,CV)曲线得到。溶液浓度为10 -5mol L -1。采用铂圆盘作为工作电极,银丝作为参比电极,铂丝为对电极。
测定材料的HOMO能级(E HOMO)时采用超干二氯甲烷作为溶剂,四正丁基六氟磷酸铵作为电解质。测试时速率为100mV s -1。测试前,采用高纯氮气除氧10分钟以上。测试完样品氧化还原电位后,加入内标物二茂铁,并测定其氧化还原电位。根据材料与二茂铁之间电位的相对值,由下式计算出材料的HOMO能级:
E HOMO=-(4.8+Eox)eV
其中,Eox代表材料以Fc +/Fc(二茂铁盐/二茂铁)作为参比时的氧化还原电位。
表1和表2中的部分材料的HOMO能级如下所示:
HT-2:-5.4ev HT-11:-5.5ev HT-35:-5.7ev HT-36:-5.7ev HT-37(w-1):-6.0ev
对实施例和对比例的电流密度-电压-亮度进行检测,结果见表3。具体为采用日本滨松C9920-12绝对电致发光量子效率测试系统搭载Keithley2400测试得到。
Figure PCTCN2022084857-appb-000020
表3
Figure PCTCN2022084857-appb-000021
根据表3可知:
1、相较于对比例1-2,本申请实施例1-17采用第一电子阻挡层和第二电子阻挡层层叠结构的有机电致发光器件,有利于克服由于红光发光单元或绿光发光单元含有TADF敏化剂导致的驱动电压过高的缺陷;
2、通过实施例1和实施例2的对比(以及实施例1和实施例3的对比)可知,即使只有红光发光单元或绿光发光单元中一个含有TADF敏化剂,本申请的第一电子阻挡层和第二电子阻挡层层叠结构的设置方式也不会对器件的驱动电压产生消极影响。
3、通过实施例1-7以及8-9的对比可知,可以通过选用HOMO能级更加匹配的第一电子阻挡层、第二电子阻挡层的材料和发光单元的主体材料,从而进一步降低有机电致发光器件的驱动电压。
4、通过实施例1、10和11的对比可知,当第二电子阻挡层厚度大于20nm时,随着厚度增加,有机电致发光器件的驱动电压会呈现明显上升趋势,因此,实际应用过程中优选第二电子阻挡层的厚度不超过20nm;
5、通过实施例1、12和13的对比可知,即使红光电子阻挡层和绿光电子阻挡层的厚度增加,但得益于红光电子阻挡层和绿光电子阻挡层较优的空穴传输能力,厚度的增加对有机电致发光器件的驱电压的影响不大,因此在具体应用过程中可以根据光程的需求调整红光电子阻挡层和绿光电子阻挡层的厚度;
6、通过实施例1、14的对比可知,当红光发光单元、绿光发光单元和蓝光发光单元的厚度增加时,有机电致发光器件的驱动电压的改善效果明显下降,因此,实际应用过程中优选红光发光单元和绿光发光单元的厚度不超过50nm,蓝光发光单元的厚度不超过30nm;
7、通过实施例1、15、16和17可知,可以通过调整发光层中的染料实现对有机电致发光器件的半峰宽的调节,尤其当选用窄光谱含硼染料时,有机电致发光器件的半峰宽更窄,更有利于色纯度的提升。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (14)

  1. 一种有机电致发光器件,包括阳极功能层、第一电子阻挡层、第二电子阻挡层、发光层以及阴极功能层,所述阳极功能层包括相邻设置的第一区域和第二区域,所述第一电子阻挡层设置于所述阳极功能层的所述第一区域,所述第二电子阻挡层设置于所述阳极功能层的所述第二区域和所述第一阻挡层远离所述阳极功能层的一侧,所述发光层设置于所述第二阻挡层远离所述阳极功能层的一侧,所述阴极功能层设置于所述发光层远离所述阳极功能层的一侧;
    所述阳极功能层至少包括阳极层,所述阴极功能层至少包括阴极层;
    所述第一电子阻挡层包括并列设置的红光电子阻挡层和绿光电子阻挡层,所述第二电子阻挡层为蓝光电子阻挡层;
    所述发光层包括并列设置的红光发光单元、绿光发光单元和蓝光发光单元,所述红光发光单元和/或所述绿光发光单元包括主体材料、TADF敏化剂和窄光谱含硼染料;
    所述红光电子阻挡层与所述红光发光单元对应层叠设置,所述绿光电子阻挡层与所述绿光发光单元对应层叠设置;
    所述红光电子阻挡层中的红光电子阻挡材料的HOMO R、所述绿光电子阻挡层中的绿光电子阻挡材料的HOMO G和所述蓝光电子阻挡层中的蓝光电子阻挡材料的HOMO B满足以下要求:
    HOMO B<HOMO R,HOMO B<HOMO G,HOMO G≤HOMO R
  2. 根据权利要求1所述的有机电致发光器件,其中,第(N+1)层的功能层在所述阳极功能层所在平面的正投影覆盖第N层的功能层在所述阳极功能层所在平面的正投影,其中,在层叠方向上,所述第(N+1)层的功能层相较于所述第N层的功能层远离所述阳极功能层;
    所述功能层选自阳极功能层、第一电子阻挡层、第二电子阻挡层、发光层以及阴极功能层中的一种。
  3. 根据权利要求1或2所述的有机电致发光器件,其中,HOMO R、HOMO G与HOMO B满足以下要求:0<HOMO R-HOMO B≤0.4eV,和/或,0<HOMO G-HOMO B≤0.4eV。
  4. 根据权利要求3所述的有机电致发光器件,其特征在于,所述红光发光单元中主体材料的HOMO RH、所述绿光发光单元中主体材料的HOMO GH与所述HOMO B满足以下要求:
    HOMO B-HOMO RH≤0.4eV,和/或,HOMO B-HOMO GH≤0.4eV。
  5. 根据权利要求1-4任一项所述的有机电致发光器件,其特征在于,所述蓝光电子阻挡层的厚度小于或等于20nm。
  6. 根据权利要求5所述的有机电致发光器件,其中,所述红光电子阻挡层的厚度大于或等于20nm,和/或,所述绿光电子阻挡层的厚度大于或等于20nm。
  7. 根据权利要求1-6任一项所述的有机电致发光器件,其中,所述红光发光单元和/或所述绿光发光单元的厚度小于或等于50nm;和/或,所述蓝光发光单元的厚度小于或等于30nm。
  8. 根据权利要求7所述的有机电致发光器件,其中,所述红光发光单元、绿光发光单元和蓝光发光单元中,任意相邻的两个发光单元的厚度不同。
  9. 根据权利要求1所述的有机电致发光器件,其中,所述蓝光发光单元包括TTA主体材料和染料。
  10. 根据权利要求1所述的有机电致发光器件,其中,所述窄光谱含硼染料含有硼原子,且所述窄光谱含硼染料在甲苯溶液下的半峰宽小于80nm。
  11. 根据权利要求10所述的有机电致发光器件,其中,所述窄光谱含硼染料选自具有如下结构之一的化合物及其衍生物:
    Figure PCTCN2022084857-appb-100001
    Figure PCTCN2022084857-appb-100002
  12. 根据权利要求1-11任一项所述的有机电致发光器件,其中,所述主体材料的第一激发单重态能级不低于所述TADF敏化剂第一激发单重态能级,所述主体材料的第一激发三重态能级不低于所述TADF敏化剂的第一激发三重态能级。
  13. 根据权利要求12所述的有机电致发光器件,其中,所述红光发光单元和/或绿光发光单元按照质量百分含量包括:主体材料50-90%,TADF敏化剂9-49%,余量为窄光谱含硼染料。
  14. 一种显示装置,包括权利要求1-13任一项所述的有机电致发光器件。
PCT/CN2022/084857 2021-06-30 2022-04-01 一种有机电致发光器件和显示装置 WO2023273479A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237021694A KR20230107377A (ko) 2021-06-30 2022-04-01 유기 전계 발광 소자 및 디스플레이 장치
US18/342,043 US20230345756A1 (en) 2021-06-30 2023-06-27 Organic electroluminescent device and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110740721.6A CN113410405B (zh) 2021-06-30 2021-06-30 一种有机电致发光器件和显示装置
CN202110740721.6 2021-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/342,043 Continuation US20230345756A1 (en) 2021-06-30 2023-06-27 Organic electroluminescent device and display apparatus

Publications (1)

Publication Number Publication Date
WO2023273479A1 true WO2023273479A1 (zh) 2023-01-05

Family

ID=77680693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084857 WO2023273479A1 (zh) 2021-06-30 2022-04-01 一种有机电致发光器件和显示装置

Country Status (4)

Country Link
US (1) US20230345756A1 (zh)
KR (1) KR20230107377A (zh)
CN (1) CN113410405B (zh)
WO (1) WO2023273479A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410405B (zh) * 2021-06-30 2023-04-18 昆山国显光电有限公司 一种有机电致发光器件和显示装置
CN114195809B (zh) * 2021-12-27 2023-11-14 中国科学院长春应用化学研究所 一种硼杂或磷杂稠环化合物及其制备方法和应用
CN114373877B (zh) * 2021-12-31 2023-08-29 昆山国显光电有限公司 一种有机电致发光器件和显示装置
KR20230108808A (ko) * 2022-01-11 2023-07-19 삼성디스플레이 주식회사 발광 소자 및 상기 발광 소자를 포함한 전자 장치
TW202404072A (zh) * 2022-05-20 2024-01-16 南韓商延原表股份有限公司 有機發光顯示裝置
CN114773370A (zh) * 2022-05-26 2022-07-22 上海天马微电子有限公司 有机化合物、显示面板及显示装置
WO2024004964A1 (ja) * 2022-06-27 2024-01-04 三菱ケミカル株式会社 有機電界発光素子、有機el表示装置、有機el照明及び有機電界発光素子の製造方法
WO2024004963A1 (ja) * 2022-06-27 2024-01-04 三菱ケミカル株式会社 有機電界発光素子用材料、有機電界発光素子、有機el表示装置、有機el照明、有機電界発光素子形成用組成物及び有機電界発光素子の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208797047U (zh) * 2018-07-26 2019-04-26 云谷(固安)科技有限公司 有机电致发光器件
CN110783473A (zh) * 2019-10-31 2020-02-11 昆山国显光电有限公司 一种发光器件和显示面板
CN110931649A (zh) * 2019-11-29 2020-03-27 昆山国显光电有限公司 一种有机电致发光器件及显示装置
CN112242492A (zh) * 2019-07-18 2021-01-19 固安鼎材科技有限公司 有机电致发光器件及装置和制备方法
US20210126205A1 (en) * 2019-10-24 2021-04-29 Lg Display Co., Ltd. Organic light emitting diode and organic light emitting device including the same
CN113410405A (zh) * 2021-06-30 2021-09-17 昆山国显光电有限公司 一种有机电致发光器件和显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109456346B (zh) * 2018-10-11 2021-01-22 宁波卢米蓝新材料有限公司 一种含硼化合物及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208797047U (zh) * 2018-07-26 2019-04-26 云谷(固安)科技有限公司 有机电致发光器件
CN112242492A (zh) * 2019-07-18 2021-01-19 固安鼎材科技有限公司 有机电致发光器件及装置和制备方法
US20210126205A1 (en) * 2019-10-24 2021-04-29 Lg Display Co., Ltd. Organic light emitting diode and organic light emitting device including the same
CN110783473A (zh) * 2019-10-31 2020-02-11 昆山国显光电有限公司 一种发光器件和显示面板
CN110931649A (zh) * 2019-11-29 2020-03-27 昆山国显光电有限公司 一种有机电致发光器件及显示装置
CN113410405A (zh) * 2021-06-30 2021-09-17 昆山国显光电有限公司 一种有机电致发光器件和显示装置

Also Published As

Publication number Publication date
CN113410405A (zh) 2021-09-17
KR20230107377A (ko) 2023-07-14
CN113410405B (zh) 2023-04-18
US20230345756A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
WO2023273479A1 (zh) 一种有机电致发光器件和显示装置
CN106068267B (zh) 电子缓冲材料和包含其的有机电致发光装置
CN1244167C (zh) 光电器件及其形成方法
CN111916573B (zh) 一种有机电致发光器件及显示装置
US20090211640A1 (en) Electron injecting layer including superacid salt, lithium salt or mixture thereof, photovoltaic device including the electron injecting layer, method of manufacturing the photovoltaic device, and organic light-emitting device including the electron injecting layer
CN109378392B (zh) 一种有机电致发光器件及显示装置
KR20110125861A (ko) 유기 발광 소자
KR20160091445A (ko) 유기 광학-전자 소자 및 이의 제조 방법
CN107452886A (zh) 一种复合薄膜和有机发光二极管及其制备方法
US9282612B2 (en) Dual mode organic light emitting device and pixel circuit including the same
CN111883680B (zh) 有机电致发光器件和显示装置
CN114864851A (zh) 有机物、发光器件、叠层发光器件、显示基板及显示装置
US8969864B2 (en) Organic light emitting device having a bulk layer comprising a first and second material
CN111740020B (zh) 一种高效长寿命的蓝光器件
CN113299844B (zh) 一种有机电致发光器件和显示装置
CN112467058B (zh) 一种三元激基复合物复合材料主体及其oled器件制备
KR100859821B1 (ko) 이중 계면층을 갖는 유기반도체 소자
CN1784099A (zh) 电激发光元件
Li et al. Efficient and Stable OLEDs with Inverted Device Structure Utilizing Solution‐Processed ZnO‐Based Electron Injection Layer
WO2022104753A1 (zh) 发光器件、显示面板及显示装置
CN113224248B (zh) 一种有机电致发光器件和显示装置
KR102277670B1 (ko) 가스 차단층, 이를 기능층으로 포함하는 유기무기 반도체 소자, 이의 제조 방법 및 구동방법
EP3989303A1 (en) Organic compound of formula (i) for use in organic electronic devices, an organic electronic device comprising a compound of formula (i) and a display device comprising the organic electronic device
US20230247900A1 (en) Organic Compound of Formula (I) for Use in Organic Electronic Devices, an Organic Electronic Device Comprising a Compound of Formula (I) and a Display Device Comprising the Organic Electronic Device
WO2023117748A1 (en) Display device comprising a common charge generation layer and method for making the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20237021694

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE