WO2023273395A1 - 测距装置及扫地机器人 - Google Patents

测距装置及扫地机器人 Download PDF

Info

Publication number
WO2023273395A1
WO2023273395A1 PCT/CN2022/079706 CN2022079706W WO2023273395A1 WO 2023273395 A1 WO2023273395 A1 WO 2023273395A1 CN 2022079706 W CN2022079706 W CN 2022079706W WO 2023273395 A1 WO2023273395 A1 WO 2023273395A1
Authority
WO
WIPO (PCT)
Prior art keywords
psd
psd sensor
total reflection
measuring device
signal
Prior art date
Application number
PCT/CN2022/079706
Other languages
English (en)
French (fr)
Inventor
张猛
张哲�
张路
Original Assignee
美智纵横科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美智纵横科技有限责任公司 filed Critical 美智纵横科技有限责任公司
Publication of WO2023273395A1 publication Critical patent/WO2023273395A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems

Definitions

  • the present application belongs to the technical field of position measurement, and in particular relates to a distance measuring device and a sweeping robot.
  • PSD Position Sensitive detector
  • PSD sensor is an optical detector that can measure the continuous position of the light spot on the surface of the detector. Its working principle is: PSD sensor is composed of P substrate, PIN photodiode and surface resistance, and is based on non-uniform
  • the "transverse photoelectric effect" of the semiconductor achieves the sensitivity of the device to the position of the incident laser light, that is, the photocurrent of the PSD can be used to measure the energy center position of the light spot incident on the photosensitive area, and the position of the light spot on the photosensitive surface is converted into an electrical signal, thereby Realize the measurement of the incident laser direction.
  • PSD sensors are often used for distance detection. Because they are not sensitive to material changes, they are often used in sweeping robots to edge or get out of trouble.
  • PSD detects the obstacle distance within the working distance range, its feedback electrical signal has a certain curve relationship with the distance, and different voltages will be fed back for different distances.
  • the output voltage value first increases and then decreases with the increase of the detection distance.
  • the output voltage shows an increasing trend within the detection distance range of 0 to 15mm, and then a decreasing trend. Therefore, in the application of the sweeping robot, the electric signal detection range of 0 to 15mm is called the detection blind area. If the detection is performed within this range, the detection will be distorted.
  • the utility model proposes a distance measuring device and a sweeping robot, which adjusts the reflection of the optical path through a total reflection plane mirror, avoids the detection blind area of a conventional PSD sensor, and greatly improves the detection accuracy.
  • a distance measuring device including a PSD sensor, a total reflection plane mirror, and a light-transmitting cover.
  • the emitted light signal undergoes total reflection, and the emitted light signal after total reflection is irradiated to the plane to be measured through the light-transmitting cover;
  • the plane to be measured reflects the emitted light signal into a received light signal, and the received light signal is received by the PSD sensor according to the optical route of the emitted light signal, and the receiving end of the PSD sensor is used to detect the distance between the PSD sensor and the plane to be measured according to the received light signal.
  • the relative position and/or inclination angle of the total reflection plane mirror and the PSD sensor are adjustable.
  • a partition is provided between the transmitting end and the receiving end of the PSD sensor, and the partition prevents the receiving end from directly receiving the emitted light signal from the transmitting end.
  • the thickness of the separator is 1 mm.
  • a PSD fixing bracket is also included, and the PSD sensor and the light-transmitting cover are fixed on the PSD fixing bracket.
  • the PSD sensor and the light-transmitting cover are fixed on the PSD fixing bracket by buckling.
  • the PSD sensor is fixed on the PSD fixing bracket through an adjustable installation angle.
  • the light-transmitting cover is a groove structure in which the middle part is depressed toward the direction of the total reflection plane mirror.
  • the light-transmitting cover is a fully transparent cover or an infrared light-transmitting cover.
  • a sweeping robot including any one of the distance measuring devices above.
  • the transmitting end of the PSD sensor transmits an optical signal to the total reflection plane mirror, and the total reflection plane mirror emits an optical signal Perform total reflection, and the emitted light signal after total reflection is irradiated to the plane to be measured through the light-transmitting cover;
  • the plane to be measured reflects the emitted light signal into a received light signal, and the received light signal is received by the PSD sensor according to the optical route of the emitted light signal, PSD
  • PSD The receiving end of the sensor is used to detect the distance between the PSD sensor and the plane to be measured according to the received light signal.
  • the application adjusts the reflection of the optical path through the total reflection plane mirror, extends the detection signal range, avoids the detection blind area of the conventional PSD sensor, and greatly improves the detection accuracy.
  • FIG. 1 shows a schematic structural diagram of a ranging device according to an embodiment of the present application
  • Fig. 2 shows the measurement schematic diagram of the PSD sensor of the embodiment of the present application
  • FIG. 3 shows a schematic diagram of signal transmission of a ranging device according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of signal reception of a ranging device according to an embodiment of the present application
  • FIG. 5 shows a schematic structural view of the PSD without a partition in the ranging device of the embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of a partition in the PSD in the ranging device according to the embodiment of the present application.
  • the inventor found that when PSD detects the obstacle distance, within the working distance range, its feedback electrical signal has a certain curvilinear relationship with the distance, and different voltages will be fed back for different distances, and the detection distance is 0 The output voltage tends to increase within the range of 15mm. This detection range is called the detection blind zone. If the detection is performed within this range, the detection will be distorted.
  • the utility model provides a distance measuring device and a sweeping robot, wherein the distance measuring device includes a PSD sensor, a total reflection plane mirror and a light-transmitting cover.
  • the reflective flat mirror performs total reflection on the emitted light signal, and the emitted light signal after total reflection is irradiated to the plane to be measured through the light-transmitting cover; It is received by the PSD sensor, and the receiving end of the PSD sensor is used to detect the distance between the PSD sensor and the plane to be measured according to the received light signal.
  • the application adjusts the reflection of the optical path through the total reflection plane mirror, extends the detection signal range, avoids the detection blind area of the conventional PSD sensor, and greatly improves the detection accuracy.
  • the application utilizes a total reflection mirror to turn the emitted light and received light of the PSD, avoiding the blind area of the existing conventional PSD sensor, and reducing the size required for installation.
  • an independent transmitting channel and receiving channel are formed to avoid signal misidentification and improve ranging accuracy.
  • Fig. 1 shows a schematic structural diagram of a ranging device according to an embodiment of the present application.
  • an embodiment of the present application provides a distance measuring device, including a PSD sensor 10 , a total reflection plane mirror 30 and a light-transmitting cover 40 .
  • the PSD fixing bracket 20 also includes a PSD fixing bracket 20 , and the PSD sensor 10 and the light-transmitting cover 40 are fixed on the PSD fixing bracket 20 by buckling.
  • Fig. 2 shows a measurement principle diagram of the PSD sensor of the embodiment of the present application.
  • the PSD sensor includes a transmitting end 11 and a receiving end 12 .
  • the transmitting end 11 sends a transmitting signal to the plane A to be measured, and the plane A to be measured reflects the received signal to the receiving end 12 .
  • FIG. 3 shows a schematic diagram of signal transmission of the distance measuring device according to the embodiment of the present application
  • FIG. 4 shows a schematic diagram of signal reception of the distance measuring device according to the embodiment of the present application.
  • the transmitting end 11 of the PSD sensor 10 transmits the emission light signal to the total reflection plane mirror 30, the total reflection plane mirror 30 carries out total reflection of the emission light signal, and the emission light signal after the total reflection is irradiated through the light-transmitting cover 40 To the plane A to be measured; the emitted optical signal forms a certain incident angle a with the total reflection plane mirror 30 .
  • the plane A to be measured reflects the emitted optical signal into a received optical signal, and the received optical signal is received by a PSD sensor 10 according to the optical path of the emitted optical signal, and the receiving end 12 of the PSD sensor 10 is used to detect PSD according to the received optical signal.
  • the distance between the sensor and the plane A to be measured is the distance between the sensor and the plane A to be measured.
  • FIG. 3 and FIG. 4 show the transmitted light signal path and the received light signal path of the PSD sensor B not passing through the total reflection plane mirror in common settings.
  • the present application adjusts the reflection of the optical path through the total reflection plane mirror, extends the signal optical path, and extends the detection signal range, thereby avoiding the detection blind area of the conventional PSD sensor and greatly improving the detection accuracy.
  • the PSD sensor 10 is fixed on the PSD fixing bracket 20 and placed horizontally with the plane A to be measured.
  • the ranging signal emitted by the signal transmitting end 11 of the PSD sensor 10 is reflected by the total reflection plane mirror 30 and passes through the light-transmitting cover 40.
  • the ranging signal is reflected on the surface of the obstacle, that is, the plane A to be measured, and after being reflected again by the transparent cover 40 and the total reflection plane mirror 30, the signal receiving end 12 of the PSD sensor 10 feeds back an electrical signal related to the distance. After being reflected twice by the plane mirror, the actual propagation distance of the ranging signal is increased, the blind area of the PSD sensor is avoided, and the space is saved.
  • FIG. 5 shows a schematic structural diagram of the PSD without a partition in the distance measuring device according to an embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of a PSD with a partition in the distance measuring device according to an embodiment of the present application.
  • a partition C is provided between the transmitting end 11 and the receiving end 12 of the PSD sensor 10 , and the partition C prevents the receiving end 12 from directly receiving the transmitted optical signal of the transmitting end 11 .
  • the thickness of the separator C is 1 mm.
  • the minimum thickness of the partition C in this application should ensure that the ranging signal can be effectively blocked, and that the signal received by the signal receiving end only comes from external reflection. It should not be too thick, and the ranging signal strength must be ensured.
  • This application adds a partition C between the PSD signal transmitting end 11 and the PSD signal receiving end 12, which reduces the signal receiving end 12 directly receiving the signal emitted by the signal transmitting end 11 and the signal reflected by the plane mirror, and reduces the distance deviation caused by this part of the ranging signal. , to prevent the sensor from misidentifying the reflector and light-transmitting cover as obstacles.
  • the PSD sensor 10 is fixed on the PSD fixing bracket 20 through an adjustable installation angle.
  • the distance measuring device of this application When the distance measuring device of this application is installed on a machine such as a sweeping robot, it can be placed perpendicular to the plane to be measured, or at a certain angle.
  • the angle between the PSD fixing bracket and the PSD can be adjusted to ensure that the PSD is horizontal to the plane to be measured, or it can be kept Angle to adapt to the working requirements of the PSD distance measuring device in different environments.
  • the light-transmitting cover 40 is a groove structure in which the middle part is depressed toward the total reflection plane mirror 30 .
  • the light-transmitting cover 40 is a fully transparent cover or an infrared light-transmitting cover 40 .
  • the outer side of the light-transmitting cover is designed in the shape of a bell mouth and is recessed inward as much as possible, which can increase the receiving range of reflected signals and improve the distance measurement accuracy.
  • the relative position and/or inclination angle of the total reflection plane mirror and the PSD sensor are adjustable.
  • the incident angle is adjusted by adjusting the relative position and/or inclination angle of the total reflection plane mirror 30 and the PSD sensor 10 .
  • the incident angle is 45°.
  • the PSD sensor 10 can be placed horizontally, or at a certain angle to the plane A to be measured.
  • the tilt angle can be compensated by adjusting the relative position of the total reflection plane mirror 30 and the PSD sensor 10 .
  • the total reflection plane mirror 30 can form 45° with the plane A to be measured, and can also form different angles. When the angle is larger, the vertical height required for the PSD fixing bracket is lower.
  • Fig. 3 shows a schematic structural diagram of the organ transport system of the embodiment of the present application.
  • Embodiment 2 provides a sweeping robot, including the ranging device in any one of Embodiment 1.
  • the distance measuring device and the sweeping robot provided by the utility model, wherein the distance measuring device includes a PSD sensor, a total reflection plane mirror and a light-transmitting cover, the transmitting end of the PSD sensor transmits the emitted light signal to the total reflection plane mirror, and the total reflection plane mirror emits light
  • the signal undergoes total reflection, and the emitted light signal after total reflection is irradiated to the plane to be measured through the light-transmitting cover;
  • the plane to be measured reflects the emitted light signal into a received light signal, and the received light signal is received by the PSD sensor according to the optical route of the emitted light signal.
  • the receiving end of the PSD sensor is used to detect the distance between the PSD sensor and the plane to be measured according to the received light signal.
  • the application adjusts the reflection of the optical path through the total reflection plane mirror, extends the detection signal range, avoids the detection blind area of the conventional PSD sensor, and greatly improves the detection accuracy.
  • the application utilizes a total reflection mirror to turn the emitted light and received light of the PSD, avoiding the blind area of the existing conventional PSD sensor, and reducing the size required for installation.
  • an independent transmitting channel and receiving channel are formed to avoid signal misidentification and improve ranging accuracy.
  • first, second, third, etc. may be used in the present invention to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the present invention, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or “when” or “in response to a determination.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种测距装置及扫地机器人,其中,测距装置包括PSD传感器(10)、全反射平面镜(30)以及透光盖(40),PSD传感器(10)的发射端(11)将发射光信号发射至全反射平面镜(30),全反射平面镜(30)将发射光信号进行全反射,全反射后的发射光信号透过透光盖(40)照射至待测平面(A);待测平面(A)将发射光信号反射为接收光信号,接收光信号按照发射光信号的光路由PSD传感器(10)接收,PSD传感器(10)的接收端(12)用于根据接收光信号检测PSD传感器(10)与待测平面(A)之间距离。通过全反射平面镜(30)调整光路的反射,延长检测信号范围,规避常规PSD传感器(10)的检测盲区,大大提高了检测准确性。

Description

测距装置及扫地机器人
优先权信息
本申请请求2021年7月2日向中国国家知识产权局提交的、专利申请号为202121505973.2的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请属于位置测量技术领域,具体地,涉及一种测距装置及扫地机器人。
背景技术
PSD(Position Sensitive detector)传感器是一种能测量光点在探测器表面上连续位置的光学探测器,其工作原理为:PSD传感器由P衬底、PIN光电二极管及表面电阻组成,是基于非均匀半导体的“横向光电效应”,而达到器件对入射激光位置的敏感,即:利用PSD的光电流可测量入射到感光区域的光斑能量中心位置,将光敏面上光点位置转化为电信号,从而实现对入射激光方向的测量。
现有技术中,PSD传感器常用于距离检测,因其对材质变化不敏感,常被用于扫地机器人中,用于沿边或者脱困。其中,PSD在障碍物距离检测时,在工作距离范围内,其反馈电信号与距离成一定的曲线关系,对于不同距离会反馈不同的电压。具体为:输出电压值由检测距离的增加先增大后减小,通常情况下检测距离为0到15mm范围内输出电压呈增大趋势,之后呈减小趋势。因此,在扫地机器人的运用中,电信号检测范围0到15mm范围内称作检测盲区,若在此范围内进行检测,会造成检测的失真。
因此,需要规避掉PSD传感器的的检测范围盲区,提高距离检测的准确性。
实用新型内容
本实用新型提出了一种测距装置及扫地机器人,通过全反射平面镜调整光路的反射,规避常规PSD传感器的检测盲区,大大提高了检测准确性。
根据本申请实施例的第一个方面,提供了一种测距装置,包括PSD传感器、全反射平面镜以及透光盖,PSD传感器的发射端将发射光信号发射至全反射平面镜,全反射平面镜将发射光信号进行全反射,全反射后的发射光信号透过透光盖照射至待测平面;
待测平面将发射光信号反射为接收光信号,接收光信号按照发射光信号的光路由PSD 传感器接收,PSD传感器的接收端用于根据接收光信号检测PSD传感器与待测平面之间距离。
在本申请一些实施方式中,全反射平面镜与PSD传感器的相对位置和/或倾斜角度为可调节的。
在本申请一些实施方式中,PSD传感器的发射端与接收端之间设置有隔板,隔板阻挡接收端直接接收发射端的发射光信号。
在本申请一些实施方式中,隔板厚度为1mm。
在本申请一些实施方式中,还包括PSD固定支架,PSD传感器与透光盖固定于PSD固定支架上。
在本申请一些实施方式中,PSD传感器与透光盖通过卡扣固定于所述PSD固定支架上。
在本申请一些实施方式中,PSD传感器通过可调节安装角度固定于PSD固定支架上。
在本申请一些实施方式中,透光盖为中部向全反射平面镜方向凹陷的凹槽结构。
在本申请一些实施方式中,透光盖为全透明盖或红外透光盖。
根据本申请实施例的第二个方面,提供了一种扫地机器人,包括以上任一项的测距装置。
采用本申请的测距装置及扫地机器人,其中,测距装置包括PSD传感器、全反射平面镜以及透光盖,PSD传感器的发射端将发射光信号发射至全反射平面镜,全反射平面镜将发射光信号进行全反射,全反射后的发射光信号透过透光盖照射至待测平面;待测平面将发射光信号反射为接收光信号,接收光信号按照发射光信号的光路由PSD传感器接收,PSD传感器的接收端用于根据接收光信号检测PSD传感器与待测平面之间距离。本申请通过全反射平面镜调整光路的反射,延长检测信号范围,规避常规PSD传感器的检测盲区,大大提高了检测准确性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了本申请实施例的测距装置的结构示意图;
图2示出了本申请实施例的PSD传感器的测量原理图;
图3示出了本申请实施例的测距装置的信号发射示意图;
图4示出了本申请实施例的测距装置的信号接收示意图;
图5示出了本申请实施例的测距装置中PSD无隔板的结构示意图;
图6示出了本申请实施例的测距装置中PSD有隔板的结构示意图。
具体实施方式
在实现本申请的过程中,发明人发现PSD在障碍物距离检测时,在工作距离范围内,其反馈电信号与距离成一定的曲线关系,对于不同距离会反馈不同的电压,检测距离为0到15mm范围内输出电压呈增大趋势,此检测范围称作检测盲区,若在此范围内进行检测,会造成检测的失真。
基于此,本实用新型提供了一种测距装置及扫地机器人,其中,测距装置包括PSD传感器、全反射平面镜以及透光盖,PSD传感器的发射端将发射光信号发射至全反射平面镜,全反射平面镜将发射光信号进行全反射,全反射后的发射光信号透过透光盖照射至待测平面;待测平面将发射光信号反射为接收光信号,接收光信号按照发射光信号的光路由PSD传感器接收,PSD传感器的接收端用于根据接收光信号检测PSD传感器与待测平面之间距离。本申请通过全反射平面镜调整光路的反射,延长检测信号范围,规避常规PSD传感器的检测盲区,大大提高了检测准确性。
本申请利用全反射镜片,使PSD的发射光线和接受光线转弯,规避掉现有常规PSD传感器的盲区,减小安装所需尺寸。
同时,通过设置隔板隔开发射端与接收端的信号,形成独立的发射通道和接收通道,避免信号误识别,提高测距精度。
为了使本申请实施例中的技术方案及优点更加清楚明白,以下结合附图对本申请的示例性实施例进行进一步详细的说明,显然,所描述的实施例仅是本申请的一部分实施例,而不是所有实施例的穷举。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
实施例1
图1示出了本申请实施例的测距装置的结构示意图。
如图1所示,本申请实施例提供的提供了一种测距装置,包括PSD传感器10、全反射平面镜30以及透光盖40。
具体的,还包括PSD固定支架20,PSD传感器10与透光盖40通过卡扣方式固定于PSD固定支架20上。
图2示出了本申请实施例的PSD传感器的测量原理图。
如图2所示,PSD传感器包括发射端11和接收端12,PSD在障碍物距离检测时,发射端11发出发射信号至待测平面A,待测平面A反射接收信号至接收端12。
图3示出了本申请实施例的测距装置的信号发射示意图;图4示出了本申请实施例的测距装置的信号接收示意图。
如图3所示,PSD传感器10的发射端11将发射光信号发射至全反射平面镜30,全反射平面镜30将发射光信号进行全反射,全反射后的发射光信号透过透光盖40照射至待测平面A;发射光信号与全反射平面镜30呈一定入射角a。
如图4所示,待测平面A将发射光信号反射为接收光信号,接收光信号按照发射光信号的光路有PSD传感器10接收,PSD传感器10的接收端12用于根据接收光信号检测PSD传感器与待测平面A之间距离。
为了便于与现有技术做对比,图3和图4示出了普通设置PSD传感器B在不通过全反射平面镜的发射光信号路径以及接收光信号路径。
由此,可以看出,本申请通过全反射平面镜调整光路的反射,通过延长信号光路,延长检测信号范围,进而规避了常规PSD传感器的检测盲区,大大提高了检测准确性。
具体的,PSD传感器10固定于PSD固定支架20上,与待测平面A水平放置,PSD传感器10信号发射端11发射的测距信号,经由全反射平面镜30反射后,穿过透光盖40,在障碍物表面即待测平面A反射测距信号,经过透光盖40和全反射平面镜30再次反射后,PSD传感器10信号接收端12,反馈与距离相关的电信号。经过平面镜两次反射后,增加了测距信号实际传播距离,规避了PSD传感器自带的盲区,节约了空间。
图5示出了本申请实施例的测距装置中PSD无隔板的结构示意图;图6示出了本申请实施例的测距装置中PSD有隔板的结构示意图。
进一步的,本申请一些实施方式中,PSD传感器10的发射端11与接收端12之间设置有隔板C,隔板C阻挡接收端12直接接收发射端11的发射光信号。本实施方式中,隔板C厚度为1mm。
本申请隔板C的最低厚度应保证能有效阻隔测距信号,保证信号接受端接收信号仅来自外部反射。不宜过厚,需保证测距信号强度。
本申请在PSD信号发射端11及PSD信号接收端12中间添加隔板C,减少了信号接收端12直接接收信号发射端11发射及平面镜反射的信号,降低由此部分测距信号引起的距离偏差,避免了传感器将反射镜和透光盖误识别为障碍物。
在本申请一些实施方式中,PSD传感器10通过可调节安装角度固定于PSD固定支架20上。本申请测距装置在机器上例如扫地机器人上安装时,可以与待测平面垂直放置,也可以成一定角度,可以通过调节PSD固定支架与PSD的角度保证PSD与待测平面水平,也可以保持角度,适应不同环境下对PSD测距装置的工作需求。
在本申请一些实施方式中,透光盖40为中部向全反射平面镜30方向凹陷的凹槽结构。
具体的,透光盖40为全透明盖或红外透光盖40。
透光盖外侧设计为喇叭口形状并尽可能向内凹陷,可以增加反射信号接收范围,提高测距精度。
在本申请一些实施方式中,全反射平面镜与PSD传感器的相对位置和/或倾斜角度为可调节的。通过调整全反射平面镜30与PSD传感器10的相对位置和/或倾斜角度,来调整入射角。在本申请一些实施方式中,入射角为45°。
具体的,PSD传感器10可以水平放置,也可与待测平面A呈一定角度。
当PSD传感器10与待测平面A成一定角度时,可以通过调整全反射平面镜30与PSD传感器10的相对位置补偿倾斜角。
当PSD传感器10与待测平面水平放置时,全反射平面镜30可与待测平面A成45°,也可以成不同角度,所成角度越大时,PSD固定支架所需安装垂直高度越低。
实施例2
图3示出了本申请实施例的器官转运系统的结构示意图。
本实施例2提供了一种扫地机器人,包括实施例1中任一实施方式下的测距装置。
本实用新型提供的测距装置及扫地机器人,其中,测距装置包括PSD传感器、全反射平面镜以及透光盖,PSD传感器的发射端将发射光信号发射至全反射平面镜,全反射平面镜将发射光信号进行全反射,全反射后的发射光信号透过透光盖照射至待测平面;待测平面将发射光信号反射为接收光信号,接收光信号按照发射光信号的光路由PSD传感器接收,PSD传感器的接收端用于根据接收光信号检测PSD传感器与待测平面之间距离。本申请通过全反射平面镜调整光路的反射,延长检测信号范围,规避常规PSD传感器的检测盲区,大大提高了检测准确性。
本申请利用全反射镜片,使PSD的发射光线和接受光线转弯,规避掉现有常规PSD传感器的盲区,减小安装所需尺寸。
同时,通过设置隔板隔开发射端与接收端的信号,形成独立的发射通道和接收通道,避免信号误识别,提高测距精度。
本领域内的技术人员应明白,本实用新型使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本实用新型。在本实用新型和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可 能组合。
应当理解,尽管在本实用新型可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本实用新型范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (10)

  1. 一种测距装置,其特征在于,包括PSD传感器、全反射平面镜以及透光盖,所述PSD传感器的发射端将发射光信号发射至所述全反射平面镜,所述全反射平面镜将所述发射光信号进行全反射,所述全反射后的发射光信号透过所述透光盖照射至待测平面;
    所述待测平面将发射光信号反射为接收光信号,所述接收光信号按照发射光信号的光路由所述PSD传感器接收,所述PSD传感器的接收端用于根据所述接收光信号检测所述PSD传感器与所述待测平面之间距离。
  2. 根据权利要求1所述的测距装置,其特征在于,所述全反射平面镜与所述PSD传感器的相对位置和/或倾斜角度为可调节的。
  3. 根据权利要求1所述的测距装置,其特征在于,所述PSD传感器的发射端与接收端之间设置有隔板,所述隔板阻挡所述接收端直接接收所述发射端的发射光信号。
  4. 根据权利要求3所述的测距装置,其特征在于,所述隔板厚度为1mm。
  5. 根据权利要求1所述的测距装置,其特征在于,还包括PSD固定支架,所述PSD传感器与透光盖固定于所述PSD固定支架上。
  6. 根据权利要求5所述的测距装置,其特征在于,所述PSD传感器与透光盖通过卡扣固定于所述PSD固定支架上。
  7. 根据权利要求5所述的测距装置,其特征在于,所述PSD传感器通过可调节安装角度固定于所述PSD固定支架上。
  8. 根据权利要求1所述的测距装置,其特征在于,所述透光盖为中部向所述全反射平面镜方向凹陷的凹槽结构。
  9. 根据权利要求1所述的测距装置,其特征在于,所述透光盖为全透明盖或红外透光盖。
  10. 一种扫地机器人,其特征在于,包括权利要求1-9任一项所述的测距装置。
PCT/CN2022/079706 2021-07-02 2022-03-08 测距装置及扫地机器人 WO2023273395A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121505973.2U CN215986475U (zh) 2021-07-02 2021-07-02 测距装置及扫地机器人
CN202121505973.2 2021-07-02

Publications (1)

Publication Number Publication Date
WO2023273395A1 true WO2023273395A1 (zh) 2023-01-05

Family

ID=80578949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079706 WO2023273395A1 (zh) 2021-07-02 2022-03-08 测距装置及扫地机器人

Country Status (2)

Country Link
CN (1) CN215986475U (zh)
WO (1) WO2023273395A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271246A (ja) * 1995-03-31 1996-10-18 Sharp Corp 測距センサ
US20160345113A1 (en) * 2015-05-22 2016-11-24 Samsung Electronics Co., Ltd. Method of recognizing surrounding environment and electronic device for the same
CN107861111A (zh) * 2017-12-25 2018-03-30 杭州隆硕科技有限公司 旋转激光测距传感器
CN108828612A (zh) * 2018-04-23 2018-11-16 北京小米移动软件有限公司 距离感应组件及移动终端
CN110398748A (zh) * 2019-07-19 2019-11-01 Oppo广东移动通信有限公司 距离测量装置及设备、方法
WO2020210953A1 (zh) * 2019-04-15 2020-10-22 深圳市速腾聚创科技有限公司 一种激光雷达及智能感应设备
CN212275966U (zh) * 2019-12-31 2021-01-01 深圳市大疆创新科技有限公司 测距装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271246A (ja) * 1995-03-31 1996-10-18 Sharp Corp 測距センサ
US20160345113A1 (en) * 2015-05-22 2016-11-24 Samsung Electronics Co., Ltd. Method of recognizing surrounding environment and electronic device for the same
CN107861111A (zh) * 2017-12-25 2018-03-30 杭州隆硕科技有限公司 旋转激光测距传感器
CN108828612A (zh) * 2018-04-23 2018-11-16 北京小米移动软件有限公司 距离感应组件及移动终端
WO2020210953A1 (zh) * 2019-04-15 2020-10-22 深圳市速腾聚创科技有限公司 一种激光雷达及智能感应设备
CN110398748A (zh) * 2019-07-19 2019-11-01 Oppo广东移动通信有限公司 距离测量装置及设备、方法
CN212275966U (zh) * 2019-12-31 2021-01-01 深圳市大疆创新科技有限公司 测距装置

Also Published As

Publication number Publication date
CN215986475U (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
US7760332B2 (en) Optical range-finding sensor, object detection device, self-cleaning toilet seat, and method for manufacturing optical range-finding sensor
EP1012621B1 (en) Distance measuring apparatus using pulse light
US6167991B1 (en) Method and apparatus for detecting position of an elevator door
JP5711925B2 (ja) 光測距装置
WO2020216184A1 (zh) 终端
US20030227635A1 (en) Device and method for the optical detection of objects
KR102144541B1 (ko) 2방향 거리 검출 장치
JP2002505649A (ja) スライドドアの安全検出システムのアセンブリ
WO2021109912A1 (zh) 激光测距装置和机器人
EP0519686B1 (en) Laser light transmitter and proximity detector
WO2019024730A1 (zh) 探测器组件、探测器及激光测距系统
WO2023273395A1 (zh) 测距装置及扫地机器人
CN102834692B (zh) 光学位移传感器的调整方法及光学位移传感器的制造方法
CN114594449A (zh) 探测装置、探测方法和激光雷达
US10481082B2 (en) Measuring device
CN109594416B (zh) 一种激光强度可调的纸张涂布定量传感器及其控制方法
KR20170086415A (ko) 광 센서
JP2002286844A (ja) 距離測定装置
CN212845941U (zh) 一种障碍物距离的检测装置
TWI822800B (zh) 測距方法及測距裝置
CN113934209B (zh) 一种机器人及机器人周围障碍物探测方法
CN220040766U (zh) 测距装置及清洁机器人
JP3270800B2 (ja) 測距センサ
JPH08255533A (ja) 光電センサ、回帰反射型光電センサ、回帰反射物体検出方法、色差検出方法及び投光装置
JP2000161924A (ja) 非接触式板厚測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE