WO2023273159A1 - 超低温高锰钢的co 2气体保护焊焊丝及制备方法 - Google Patents

超低温高锰钢的co 2气体保护焊焊丝及制备方法 Download PDF

Info

Publication number
WO2023273159A1
WO2023273159A1 PCT/CN2021/135206 CN2021135206W WO2023273159A1 WO 2023273159 A1 WO2023273159 A1 WO 2023273159A1 CN 2021135206 W CN2021135206 W CN 2021135206W WO 2023273159 A1 WO2023273159 A1 WO 2023273159A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
low temperature
high manganese
manganese steel
temperature high
Prior art date
Application number
PCT/CN2021/135206
Other languages
English (en)
French (fr)
Inventor
黄一新
谯明亮
陈兴华
赵柏杰
肖丙政
孙超
邓伟
李松
李伟
张汪洋
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Publication of WO2023273159A1 publication Critical patent/WO2023273159A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding

Definitions

  • the invention belongs to the technical field of CO2 gas shielded welding wire for high manganese steel, and in particular relates to a CO2 gas shielded welding wire for ultra-low temperature high manganese steel and a preparation method.
  • 9Ni steel is generally used for ultra-low temperature storage and transportation containers, and the matching welding materials are nickel-based welding wires.
  • the nickel content in the welding wire is 50-60%, which is expensive;
  • the composition of the base metal and the welding wire belong to different composition systems, and the alloy content is quite different, which will cause the diffusion of elements at the fusion line of the welded joint, and the change of structure and performance.
  • the purpose of this invention is to provide a CO gas shielded welding wire for ultra-low temperature high manganese steel, to solve the problem that there is no CO gas shielded welding wire suitable for preparing high manganese low temperature steel, and the existing nickel base wire is easy to cause Diffusion of elements at the fusion line of welded joints affects the microstructure and properties.
  • the CO2 gas shielded welding wire for ultra-low temperature high manganese steel according to the present invention its raw materials include, in parts by weight: 0.15-0.35 wt% of C, 23-25 wt% of Mn, and 0.60-0.90 wt% of Si %, Ni is 4.0-6.0wt%, Cr is 3.0-4.5wt%, P ⁇ 0.010wt%, S ⁇ 0.006wt%, and the balance is Fe and unavoidable impurities.
  • the preparation method of the CO 2 gas shielded welding wire for ultra-low temperature high manganese steel of the present invention is that the raw material is hot-rolled into a wire rod, and then drawn into a straight rod through multi-pass annealing, and copper-plated on the surface to prepare a welding wire.
  • the specification of the wire rod is ⁇ 5.5 mm, and the specification of the straight rod is ⁇ 1.2 mm.
  • the thickness of the copper plating layer is 0.19-0.23 microns.
  • the remarkable advantages lie in that the price of the alloy elements used in the present invention is low, the alloy composition system is simple, and the preparation cost is low.
  • the manganese content of the formed weld metal is equivalent to that of ultra-low temperature high manganese steel, which ensures that the composition system is basically the same as that of the base metal. When forming a welded joint, it avoids the change of the microstructure and mechanical properties near the fusion line formed by the diffusion of manganese. .
  • the manganese element, carbon element and nickel element are both austenite-forming elements, and when the weld metal molten pool is solidified, the austenite phase is used as the initial phase of solidification, and it is kept until room temperature to form austenite
  • the weld metal with body structure not only ensures the excellent ultra-low temperature toughness of the weld metal, the impact energy Akv is 69 ⁇ 93J at -196°C, but also ensures sufficient strength: the yield strength is 476 ⁇ 507MPa, and the tensile strength is 669 ⁇ 723MPa, the elongation A is 36 ⁇ 40%, which realizes the mechanical property requirements and ultra-low temperature toughness requirements of ultra-low temperature high manganese steel, and reduces the solidification temperature range, avoids the appearance of solidification cracks, and reduces or prevents liquefaction cracks and reheating at the same time The generation of cracks enables the weld metal to have mechanical properties matching that of the base metal.
  • the invention adds 4.0-6.0wt% nickel element, reduces the solidification temperature range, reduces and avoids solidification cracks, and effectively improves the low-temperature impact performance of weld deposit metal.
  • the invention adds 0.60-0.90wt% silicon element, which effectively improves the fluidity of molten steel in the molten pool during welding, and the welding wire has excellent manufacturability.
  • the present invention has low preparation cost and simple alloy composition system; excellent welding manufacturability; the formed weld metal has the characteristics of ultra-low temperature and high toughness, its strength matches that of ultra-low temperature high manganese steel, and the welded joint has high strength and excellent ultra-low temperature toughness
  • the mechanical properties can meet the technical requirements for the strength and ultra-low temperature toughness of the welded ultra-low temperature high manganese steel.
  • a CO2 gas shielded welding wire for ultra-low temperature high manganese steel the chemical composition of raw materials is: C is 0.25wt%, Mn is 23.5wt%, Si is 0.75wt%, Ni is 5.0wt%, Cr is 3.5wt% , P ⁇ 0.010wt%, S ⁇ 0.006wt%, and the balance is Fe and unavoidable impurities.
  • the above raw materials are hot-rolled into a ⁇ 5.5mm wire rod, and then drawn to a ⁇ 1.2mm specification through multiple annealing, and the surface is plated with 0.19-0.23 micron copper to prepare a welding wire.
  • the CO2 gas shielded welding method is used to weld 16mm thick ultra-low temperature high manganese steel.
  • the chemical composition of the ultra-low temperature high manganese steel is: C is 0.40-0.50wt%, Si is 0.10-0.20wt%, Mn is 20-28wt%, Ni is 0.01-0.08wt%, P is ⁇ 0.005wt%, S is ⁇ 0.003wt%.
  • the groove type of the test plate of the ultra-low temperature high manganese steel is X type, and the groove angle on one side is 30°.
  • the welding wire uses carbon dioxide shielding gas with a purity greater than 99.5%, welding with a heat input of 10-25KJ/cm and a dry elongation of the welding wire of 12-18mm.
  • the experimental results of this example show that: the CO2 gas shielded welding welding wire suitable for ultra-low temperature high manganese steel prepared by using the iron and steel raw materials of this example, after CO2 gas shielded welding, the mechanical properties of the weld deposit metal fully meet the requirements of the ultralow temperature high manganese steel The technical requirements of the welded joints meet the technical requirements of the ultra-low temperature high manganese steel structure.
  • a CO2 gas shielded welding wire for ultra-low temperature high manganese steel the chemical composition of raw materials is: C is 0.35wt%, Mn is 24.3wt%, Ni is 5.5wt%, Cr is 4.0wt%, Si is 0.70wt% , P ⁇ 0.010wt%, S ⁇ 0.006wt%, and the balance is Fe and unavoidable impurities.
  • the above raw materials are hot-rolled into a ⁇ 5.5mm wire rod, and then drawn to a ⁇ 1.2mm specification through multiple annealing, and the surface is plated with 0.19-0.23 micron copper to prepare a welding wire.
  • the CO2 gas shielded welding method is used to weld 16mm thick ultra-low temperature high manganese steel.
  • the chemical composition of the ultra-low temperature high manganese steel is: C is 0.40-0.50wt%, Si is 0.10-0.20wt%, Mn is 20-28wt%, Ni is 0.01-0.08wt%, P is ⁇ 0.005wt%, S is ⁇ 0.003wt%.
  • the groove type of the test plate of the ultra-low temperature high manganese steel is X type, and the groove angle on one side is 30°.
  • the welding wire uses carbon dioxide shielding gas with a purity greater than 99.5%, welding with a heat input of 10-25KJ/cm and a dry elongation of the welding wire of 12-18mm.
  • a CO2 gas shielded welding wire for ultra-low temperature high manganese steel the chemical composition of raw materials is: C is 0.18wt%, Mn is 24.5wt%, Ni is 5.2wt%, Cr is 3.8wt%, Si is 0.78wt% , P ⁇ 0.010wt%, S ⁇ 0.006wt%, and the balance is Fe and unavoidable impurities.
  • the above raw materials are hot-rolled into a ⁇ 5.5mm wire rod, and then drawn to a ⁇ 1.2mm specification through multiple annealing, and the surface is plated with 0.19-0.23 micron copper to prepare a welding wire.
  • the CO2 gas shielded welding method is used to weld 16mm thick ultra-low temperature high manganese steel.
  • the chemical composition of the ultra-low temperature high manganese steel is: C is 0.40-0.50wt%, Si is 0.10-0.20wt%, Mn is 20-28wt%, Ni is 0.01-0.08wt%, P is ⁇ 0.005wt%, S is ⁇ 0.003wt%.
  • the groove type of the test plate of the ultra-low temperature high manganese steel is X type, and the groove angle on one side is 30°.
  • the welding wire uses carbon dioxide shielding gas with a purity greater than 99.5%, welding with a heat input of 10-25KJ/cm and a dry elongation of the welding wire of 12-18mm.
  • the above examples show that the content of alloy elements used in the present invention is low in price, the alloy composition system is simple, and the preparation cost is low.
  • the content of the main alloying element Mn used in the present invention is 23 to 25 wt%, and the formed weld metal is equivalent to the manganese content of the ultra-low temperature high manganese steel, which ensures that the composition system is basically the same as that of the base metal, and avoids the Changes in microstructure and properties near the fusion line formed by the diffusion of manganese.
  • the manganese element, carbon element and nickel element are both austenite-forming elements, and when the weld metal molten pool is solidified, the austenite phase is used as the initial phase of solidification, and it is kept until room temperature to form austenite Body tissue weld metal.
  • the weld metal has the mechanical properties that match the base metal.
  • the invention adds 0.60-0.90wt% silicon element, which effectively improves the fluidity of molten steel in the molten pool during welding, and the welding wire has excellent manufacturability.
  • the present invention strictly controls the content of sulfur and phosphorus elements: P ⁇ 0.010wt%, S ⁇ 0.006wt%.
  • the chemical composition system adopted in the present invention makes the weld metal structure fully austenite, which not only ensures the excellent ultra-low temperature toughness and sufficient strength of the weld metal, but also reduces the solidification temperature range and avoids the appearance of solidification cracks. Reduce or prevent liquefaction cracks and reheat cracks.
  • the CO2 gas shielded welding wire prepared by the invention is used for welding ultra-low temperature high manganese steel, and the weld metal forms a full austenite structure, which not only ensures excellent ultra-low temperature toughness, but also has an impact energy Akv of 69-93J at -196°C. ; It also ensures sufficient strength: the yield strength is 476-507MPa, the tensile strength is 669-723MPa, and the elongation A is 36-40%.
  • the welding wire and its wire rod for CO2 gas shielded welding of the present invention have low cost, simple alloy composition system; excellent welding manufacturability; the formed weld metal has the characteristics of ultra-low temperature and high toughness, and its strength matches the ultra-low temperature high manganese steel.
  • the welded joint has the mechanical properties of high strength and excellent ultra-low temperature toughness, which can meet the technical requirements of ultra-low temperature high manganese steel for the strength and ultra-low temperature toughness of welds and welded joints.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

本发明公开了一种超低温高锰钢的CO 2气体保护焊焊丝及制备方法,其原料以重量份数计包括:C为0.15~0.35wt%,Mn为23~25wt%,Si为0.60~0.90wt%,Ni为4.0~6.0wt%,Cr为3.0~4.5wt%,P≤0.010wt%,S≤0.006wt%,余量为Fe和不可避免的杂质。将原料经热轧成盘条,再经多道退火拉拔至直条,并在表面镀铜,制备成焊丝。本发明制备的焊丝具有成本低、合金成分体系简单,所形成的焊缝金属低温韧性优良,强度与超低温高锰钢相匹配,满足对所焊接的适用于超低温高锰钢的强度和超低温韧性的技术要求。

Description

超低温高锰钢的CO 2气体保护焊焊丝及制备方法 技术领域
本发明属于高锰钢的CO 2气体保护焊焊丝技术领域,具体涉及一种超低温高锰钢的CO 2气体保护焊焊丝及制备方法。
背景技术
随着海洋战略和新能源战略的实施,在未来几十年里,用于液化天然气(LNG)等低温或超低温贮存运输容器的钢铁材料,其需求将会出现逐渐上升的趋势。现阶段,用于LNG贮罐的钢为商业用9Ni钢,由于镍含量高达9%,钢板价格昂贵。为节省Ni资源、降低钢铁材料的成本以及能源贮存和运输成本,科研人员正在积极研制超低温高锰钢。
超低温高锰钢在应用过程中,采用焊接工艺制备结构及设备时,手工焊条电弧焊接、CO 2气体保护焊接和埋弧焊接都是常用的焊接方法,而目前除手动电弧焊接外,还没有用于制备高锰低温钢相配套的CO 2气体保护焊和埋弧焊接材料。
工程实践中,目前超低温贮存运输容器普遍采用9Ni钢制备,与之相配套的焊材都是镍基焊丝,存在两个问题:第一,焊丝中镍元素含量为50~60%,价格昂贵;第二,母材与焊丝的成分属于不同成分体系,合金含量差别较大,会引起焊接接头熔合线处元素扩散,组织与性能发生变化。
发明内容
发明目的:本发明的目的是提供一种超低温高锰钢的CO 2气体保护焊焊丝,解决没有适用于制备高锰低温钢相配套的CO 2气体保护焊的焊丝,现有镍基焊丝容易引起焊接接头熔合线处元素扩散进而影响组织与性能的问题。
技术方案:本发明所述的超低温高锰钢的CO 2气体保护焊焊丝,其原料以重量份数计包括:C为0.15~0.35wt%,Mn为23~25wt%,Si为0.60~0.90wt%,Ni为4.0~6.0wt%,Cr为3.0~4.5wt%,P≤0.010wt%,S≤0.006wt%,余量为Fe和不可避免的杂质。
本发明所述的超低温高锰钢的CO 2气体保护焊焊丝的制备方法,将原料经热轧成盘条,再经多道退火拉拔至直条,并在表面镀铜,制备成焊丝。
其中,所述盘条的规格为Φ5.5mm,直条的规格为Φ1.2mm。所述镀铜镀层厚度为0.19-0.23微米。
有益效果:与现有技术相比其显著优点在于,本发明采用的合金元素价格低、合金成分体系简单,制备成本低。形成的焊缝金属与超低温高锰钢的锰含量相当,保证了与母材基本相同的成分体系,在形成焊接接头时,避免了锰元素扩散所形成的熔合线附近微观组织与力学性能的变化。本发明中的锰元素与碳元素、镍元素同为奥氏体形成元素,共同作用在焊缝金属熔池凝固时,以奥氏体相为凝固初始相,且一直保持到室温,形成奥氏体组织的焊缝金属,不仅保证了焊缝金属有优良的超低温韧性,-196℃时冲击功Akv为69~93J,亦保证了足够的强度:屈服强度为476~507MPa,抗拉强度为669~723MPa,延伸率A为36~40%,实现了超低温高锰钢的力学性能要求和超低温韧性的要求,而且降低了凝固温度范围,避免凝固裂纹的出现,同时减少或防止液化裂纹及再热裂纹的产生,使焊缝金属具有了与母材相匹配的力学性能。
本发明添加4.0~6.0wt%的镍元素,在减小凝固温度区间,减少和避免了凝固裂纹的同时,有效提高焊缝熔敷金属的低温冲击性能。本发明添加0.60-0.90wt%的硅元素,有效提高了焊接时熔池的钢水流动性,焊丝工艺性优良。
因此,本发明制备成本低、合金成分体系简单;焊接工艺性优良;所形成的焊缝金属具有超低温高韧性的特点,强度与超低温高锰钢相匹配,焊接接头具有强度高和优良的超低温韧性的力学性能,能满足对所焊接的适用于超低温高锰钢的强度和超低温韧性的技术要求。
具体实施方式
下面结合实施例对本发明的技术方案作进一步说明。
实施例1
一种超低温高锰钢的CO 2气体保护焊焊丝,原料的化学组分是:C为0.25wt%,Mn为23.5wt%,Si为0.75wt%,Ni为5.0wt%,Cr为3.5wt%,P≤0.010wt%,S≤0.006wt%,余量为Fe和不可避免的杂质。
采用以上原材料经热轧成Φ5.5mm规格盘条,再经多道退火拉拔至Φ1.2mm规格,并在表面镀0.19-0.23微米的铜,制备成焊丝。
采用CO 2气体保护焊接方法,焊接16mm厚的超低温高锰钢。所述超低温高锰钢的化学组分是:C为0.40~0.50wt%,Si为0.10~0.20wt%,Mn为20~28wt%,Ni为 0.01~0.08wt%,P为≤0.005wt%,S为≤0.003wt%。所述25Mn超低温钢的力学性能是:抗拉强度为≥400MPa,屈服强度为≥560MPa,延伸率A=40%;-196℃时冲击功Akv≥54J。所述超低温高锰钢的试板坡口型式为X型,单侧坡口角度为30°。焊接时,焊丝采用纯度大于99.5%的二氧化碳保护气体,以10~25KJ/cm的热输入、12~18mm的焊丝干伸长度施焊。
对本实施例焊后的焊缝金属显微组织及力学性能进行检测分析:焊缝金属为全奥氏体组织;没有凝固裂纹及再热裂纹产生;焊缝金属的屈服强度为476~493MPa,抗拉强度为669~701MPa,伸长率A=38~40%,-196℃时冲击功平均值Akv=77~93J。
本实施例实验结果表明:采用本实施例钢铁原材料制备的适用于超低温高锰钢的CO2气体保护焊接用焊丝,经CO2气体保护焊接后,焊缝熔敷金属的力学性能完全满足超低温高锰钢的技术要求,焊接接头满足超低温高锰钢制备结构的技术要求。
实施例2
一种超低温高锰钢的CO 2气体保护焊焊丝,原料的化学组分是:C为0.35wt%,Mn为24.3wt%,Ni为5.5wt%,Cr为4.0wt%,Si为0.70wt%,P≤0.010wt%,S≤0.006wt%,余量为Fe和不可避免的杂质。
采用以上原材料经热轧成Φ5.5mm规格盘条,再经多道退火拉拔至Φ1.2mm规格,并在表面镀0.19-0.23微米的铜,制备成焊丝。
采用CO 2气体保护焊接方法,焊接16mm厚的超低温高锰钢。所述超低温高锰钢的化学组分是:C为0.40~0.50wt%,Si为0.10~0.20wt%,Mn为20~28wt%,Ni为0.01~0.08wt%,P为≤0.005wt%,S为≤0.003wt%。所述25Mn超低温钢的力学性能是:抗拉强度为≥400MPa,屈服强度为≥560MPa,延伸率A=40%;-196℃时冲击功Akv≥54J。所述超低温高锰钢的试板坡口型式为X型,单侧坡口角度为30°。焊接时,焊丝采用纯度大于99.5%的二氧化碳保护气体,以10~25KJ/cm的热输入、12~18mm的焊丝干伸长度施焊。
对本实施例焊后的焊缝金属显微组织及力学性能进行检测分析:焊缝金属为全奥氏体组织;没有凝固裂纹及再热裂纹产生;焊缝金属的屈服强度为485~507MPa,抗拉强 度为682~723MPa,伸长率A=36~39%,-196℃时冲击功平均值Akv=69~89J。
实施例3
一种超低温高锰钢的CO 2气体保护焊焊丝,原料的化学组分是:C为0.18wt%,Mn为24.5wt%,Ni为5.2wt%,Cr为3.8wt%,Si为0.78wt%,P≤0.010wt%,S≤0.006wt%,余量为Fe和不可避免的杂质。
采用以上原材料经热轧成Φ5.5mm规格盘条,再经多道退火拉拔至Φ1.2mm规格,并在表面镀0.19-0.23微米的铜,制备成焊丝。
采用CO 2气体保护焊接方法,焊接16mm厚的超低温高锰钢。所述超低温高锰钢的化学组分是:C为0.40~0.50wt%,Si为0.10~0.20wt%,Mn为20~28wt%,Ni为0.01~0.08wt%,P为≤0.005wt%,S为≤0.003wt%。所述25Mn超低温钢的力学性能是:抗拉强度为≥400MPa,屈服强度为≥560MPa,延伸率A=40%;-196℃时冲击功Akv≥54J。所述超低温高锰钢的试板坡口型式为X型,单侧坡口角度为30°。焊接时,焊丝采用纯度大于99.5%的二氧化碳保护气体,以10~25KJ/cm的热输入、12~18mm的焊丝干伸长度施焊。
对本实施例焊后的焊缝金属显微组织及力学性能进行检测分析:焊缝金属为全奥氏体组织;没有凝固裂纹及再热裂纹产生;焊缝金属的屈服强度为479~503MPa,抗拉强度为672~718MPa,伸长率A=37~40%,-196℃时冲击功平均值Akv=70~91J。
以上实施例表明:本发明采用的合金元素含量价格低和合金成分体系简单,制备成本低。本发明采用的主要合金元素Mn的含量为23~25wt%,形成的焊缝金属与超低温高锰钢的锰含量相当,保证了与母材基本相同的成分体系,在形成焊接接头时,避免了锰元素扩散所形成的熔合线附近组织与性能的变化。本发明中的锰元素与碳元素、镍元素同为奥氏体形成元素,共同作用在焊缝金属熔池凝固时,以奥氏体相为凝固初始相,且一直保持到室温,形成奥氏体组织的焊缝金属。使焊缝金属具有了与母材相匹配的力学性能。本发明添加0.60-0.90wt%的硅元素,有效提高了焊接时熔池的钢水流动性,焊丝工艺性优良。此外,杂质元素硫与磷的存在,使焊缝金属产生液化裂纹与再热裂纹,故本发明严格控制硫、磷元素的含量:P≤0.010wt%,S≤0.006wt%。本发明采用的化学成分体系,使焊缝金属组织为全奥氏体,不仅保证了焊缝金属有优良的超低温韧性和有 足够的强度,且降低了凝固温度范围,避免凝固裂纹的出现,同时减少或防止液化裂纹及再热裂纹的产生。本发明所制备的CO2气体保护焊接用焊丝,用于超低温高锰钢的焊接,焊缝金属形成全奥氏体组织,不仅保证了优良的超低温韧性,-196℃时冲击功Akv为69~93J;亦保证了足够的强度:屈服强度为476~507MPa,抗拉强度为669~723MPa,延伸率A为36~40%,实现了超低温高锰钢的力学性能要求和超低温韧性的要求。
因此,本发明CO2气体保护焊接用焊丝及其盘条具有成本低、合金成分体系简单;焊接工艺性优良;所形成的焊缝金属具有超低温高韧性的特点,强度与超低温高锰钢相匹配,焊接接头具有强度高和优良的超低温韧性的力学性能,能满足超低温高锰钢对焊缝和焊接接头的强度和超低温韧性的技术要求。

Claims (5)

  1. 超低温高锰钢的CO 2气体保护焊焊丝,其特征在于,其原料以重量份数计包括:C为0.15~0.35wt%,Mn为23~25wt%,Si为0.60~0.90wt%,Ni为4.0~6.0wt%,Cr为3.0~4.5wt%,P≤0.010wt%,S≤0.006wt%,余量为Fe和不可避免的杂质。
  2. 如权利要求1所述的超低温高锰钢的CO 2气体保护焊焊丝的制备方法,其特征在于,将原料经热轧成盘条,再经多道退火拉拔至直条,并在表面镀铜,制备成焊丝。
  3. 根据权利要求2所述的超低温高锰钢的CO 2气体保护焊焊丝的制备方法,其特征在于,所述盘条的规格为Φ5.5mm。
  4. 根据权利要求2所述的超低温高锰钢的CO 2气体保护焊焊丝的制备方法,其特征在于,所述直条的规格为Φ1.2mm。
  5. 根据权利要求2所述的超低温高锰钢的CO 2气体保护焊焊丝的制备方法,其特征在于,所述镀铜镀层厚度为0.19-0.23微米。
PCT/CN2021/135206 2021-06-30 2021-12-03 超低温高锰钢的co 2气体保护焊焊丝及制备方法 WO2023273159A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110740205.3A CN113634948A (zh) 2021-06-30 2021-06-30 超低温高锰钢的co2气体保护焊焊丝及制备方法
CN202110740205.3 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023273159A1 true WO2023273159A1 (zh) 2023-01-05

Family

ID=78416528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135206 WO2023273159A1 (zh) 2021-06-30 2021-12-03 超低温高锰钢的co 2气体保护焊焊丝及制备方法

Country Status (2)

Country Link
CN (1) CN113634948A (zh)
WO (1) WO2023273159A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113634948A (zh) * 2021-06-30 2021-11-12 南京钢铁股份有限公司 超低温高锰钢的co2气体保护焊焊丝及制备方法
CN113458653A (zh) * 2021-06-30 2021-10-01 南京钢铁股份有限公司 超低温高锰钢的埋弧焊焊丝及制备方法
CN116079278B (zh) * 2023-04-06 2023-12-08 中国科学院合肥物质科学研究院 一种高吸能高锰钢实心焊丝及其焊接工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106938375A (zh) * 2017-03-28 2017-07-11 武汉科技大学 适用于‑196℃工作温度的熔化极气体保护焊焊丝
WO2020203336A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 ガスメタルアーク溶接用ソリッドワイヤおよびガスメタルアーク溶接方法
WO2020203335A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 極低温用高強度溶接継手の製造方法
CN111805120A (zh) * 2020-07-31 2020-10-23 天津市永昌焊丝有限公司 一种用于极低温奥氏体高锰钢焊接的熔化极实心焊丝
CN112171109A (zh) * 2020-09-21 2021-01-05 武汉科技大学 一种节镍型高锰低温钢用全自动埋弧焊实芯焊丝
CN112566750A (zh) * 2018-08-23 2021-03-26 杰富意钢铁株式会社 气体保护金属极电弧焊用实心焊丝
CN113458653A (zh) * 2021-06-30 2021-10-01 南京钢铁股份有限公司 超低温高锰钢的埋弧焊焊丝及制备方法
CN113634948A (zh) * 2021-06-30 2021-11-12 南京钢铁股份有限公司 超低温高锰钢的co2气体保护焊焊丝及制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150066372A (ko) * 2013-12-06 2015-06-16 주식회사 포스코 내충격성 및 내마모성이 우수한 서브머지드아크용접 및 가스금속아크용접용 용접재료
WO2017192621A1 (en) * 2016-05-02 2017-11-09 Exxonmobil Research And Engineering Company Field dissimilar metal welding technology for enhanced wear resistant high manganese steel
CN107186382B (zh) * 2017-06-09 2019-12-31 南京钢铁股份有限公司 一种高锰超低温钢焊丝及其焊接工艺
CN109530881B (zh) * 2019-01-08 2021-07-09 四川大西洋焊接材料股份有限公司 焊接超低温高锰钢用的埋弧焊焊剂、焊丝及制备方法
CN110814568B (zh) * 2019-10-21 2021-05-18 东北大学 一种高强韧中锰钢气体保护焊焊丝
CN113458654B (zh) * 2021-06-30 2022-10-14 南京钢铁股份有限公司 超低温高锰钢焊丝、焊条及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106938375A (zh) * 2017-03-28 2017-07-11 武汉科技大学 适用于‑196℃工作温度的熔化极气体保护焊焊丝
CN112566750A (zh) * 2018-08-23 2021-03-26 杰富意钢铁株式会社 气体保护金属极电弧焊用实心焊丝
WO2020203336A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 ガスメタルアーク溶接用ソリッドワイヤおよびガスメタルアーク溶接方法
WO2020203335A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 極低温用高強度溶接継手の製造方法
CN111805120A (zh) * 2020-07-31 2020-10-23 天津市永昌焊丝有限公司 一种用于极低温奥氏体高锰钢焊接的熔化极实心焊丝
CN112171109A (zh) * 2020-09-21 2021-01-05 武汉科技大学 一种节镍型高锰低温钢用全自动埋弧焊实芯焊丝
CN113458653A (zh) * 2021-06-30 2021-10-01 南京钢铁股份有限公司 超低温高锰钢的埋弧焊焊丝及制备方法
CN113634948A (zh) * 2021-06-30 2021-11-12 南京钢铁股份有限公司 超低温高锰钢的co2气体保护焊焊丝及制备方法

Also Published As

Publication number Publication date
CN113634948A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2023273159A1 (zh) 超低温高锰钢的co 2气体保护焊焊丝及制备方法
WO2023273160A1 (zh) 超低温高锰钢的埋弧焊焊丝及制备方法
CN107052618B (zh) 制备lng贮罐的高锰钢用全自动埋弧焊实芯焊丝
WO2009123292A1 (ja) 高張力鋼およびその製造方法
WO2021109439A1 (zh) 一种兼具抗hic和抗大变形的管线钢及其制造方法
CN112894198A (zh) 一种用于超低温高锰钢的自保护药芯焊丝
CN112171109A (zh) 一种节镍型高锰低温钢用全自动埋弧焊实芯焊丝
KR20120099158A (ko) 고강도 용접 강관 및 그 제조 방법
JP6451871B2 (ja) 大入熱溶接用鋼材
CN107009046A (zh) 用于超低温高锰钢焊接的钨极氩弧焊实芯焊丝
CN111590237A (zh) 超低温高锰钢的电弧焊焊条及制备方法
JPS58171526A (ja) 極低温用鋼の製造法
CN102069320B (zh) 一种超高强度管线钢用埋弧焊焊丝及其制备方法
CN110802344A (zh) 海洋工程用785MPa级高强高韧熔化极活性气体保护焊丝及其应用
CN112719692B (zh) 一种900MPa级高强钢气保护实心焊丝及其制备方法
WO2021078136A1 (zh) 一种气体保护焊丝用盘条及焊丝
CN103464877B (zh) 用于p690ql1与q370r钢相焊的焊条电弧焊方法
CN112894199A (zh) 一种用于超低温高锰钢的熔化极气体保护焊药芯焊丝
JPH08120338A (ja) 溶接継手部の脆性破壊伝播停止性能の優れた溶接構造用厚鋼板の製造方法
CN110614458A (zh) 一种高强度钢埋弧绞股焊丝及其焊接方法
CN114749827B (zh) 一种实心焊丝及其制备方法和应用
JP4116817B2 (ja) 低温靭性と変形能に優れた高強度鋼管および鋼管用鋼板の製造法
CN105252170A (zh) 提高室温抗拉强度的不锈钢埋弧焊焊带
WO2021237843A1 (zh) 一种深冷环境用节Ni低温钢埋弧焊焊丝及焊接工艺
WO2021078131A1 (zh) 一种正火型uoe焊管及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE