WO2021109439A1 - 一种兼具抗hic和抗大变形的管线钢及其制造方法 - Google Patents

一种兼具抗hic和抗大变形的管线钢及其制造方法 Download PDF

Info

Publication number
WO2021109439A1
WO2021109439A1 PCT/CN2020/088281 CN2020088281W WO2021109439A1 WO 2021109439 A1 WO2021109439 A1 WO 2021109439A1 CN 2020088281 W CN2020088281 W CN 2020088281W WO 2021109439 A1 WO2021109439 A1 WO 2021109439A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
hic
temperature
steel
pipeline steel
Prior art date
Application number
PCT/CN2020/088281
Other languages
English (en)
French (fr)
Inventor
蒋昌林
李国忠
诸建阳
林涛
苗丕峰
徐伟明
徐国庆
周海燕
许晓红
白云
Original Assignee
江阴兴澄特种钢铁有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴兴澄特种钢铁有限公司 filed Critical 江阴兴澄特种钢铁有限公司
Priority to EP20896953.5A priority Critical patent/EP4015669A4/en
Publication of WO2021109439A1 publication Critical patent/WO2021109439A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Definitions

  • the invention belongs to the technical field of iron-based alloys, and specifically relates to a pipeline steel.
  • Pipeline transportation is the most economical and reasonable transportation method for oil and natural gas.
  • Long transmission pipelines not only need to pass through different temperature areas, but also need to pass through stratum movement areas caused by natural disasters such as earthquake tundra, mudslides, landslides and other natural disasters. Therefore, in addition to meeting the requirements of high strength and high toughness, the pipeline also needs to have relatively high strength and toughness. High resistance to large deformation can adapt to the geological environment of transmission.
  • the pipeline steels disclosed in patent documents such as application number CN2009100760066.8, CN201210327206, CN2009100760066.8, etc. all involve the use of relaxation and other methods to obtain a ferrite + bainite duplex structure, which has a relatively high Good resistance to large deformation, but because the structure is a two-phase structure, see Figure 2, and the two-phase structure has an obvious band shape along the rolling direction, so the HIC resistance is not ideal, and the two-way structure has a tendency to accumulate hydrogen. In the realm, ribbon-like organization can also induce hydrogen accumulation.
  • the HIC resistance performance is tested according to the corresponding NACE standards. The steel plate has many HIC cracks along different thickness directions, and the HIC resistance performance is not ideal.
  • the present invention provides a pipeline steel with HIC resistance and large deformation resistance and a manufacturing method thereof in accordance with the above-mentioned prior art, which can be adapted to the product development of pipeline steel plates of steel grade X80 and below.
  • the pipeline steel has low yield ratio, high uniform elongation, high stress ratio and other characteristics of resistance to large deformation, while showing good resistance to HIC.
  • the technical solution adopted by the present invention to solve the above problems is: a pipeline steel with HIC resistance and large deformation resistance, characterized in that the alloy composition used is C: 0.015 ⁇ 0.039%, Si: 0.15 ⁇ 0.35%, Mn: 1.6 ⁇ 1.9%, S: ⁇ 0.002%, P: ⁇ 0.012%, Al: 0.02 ⁇ 0.045%, Cr: 0.15 ⁇ 0.35%, 0.05 ⁇ Nb+V+Ti ⁇ 0.1%, Nb, V ⁇ Ti is not 0, Ni: 0.15 ⁇ 0.50%, Cu: 0.01 ⁇ 0.25%, Ca: ⁇ 0.002%, N: ⁇ 0.0046%, Mo: 0.01 ⁇ 0.20%, the balance is Fe and inevitable impurity elements .
  • the Nb content is determined according to the C content according to niobium carbide, and the Ti content is determined according to the N content according to the Ti/N stoichiometric ratio of 3.42.
  • the product is a bainite single-phase structure, and the bainite grain size is 11.5 to 12 grades.
  • the transverse yield strength of the product of the present invention Rt0.5: 490 ⁇ 550MPa, the transverse tensile strength Rm: ⁇ 710Mpa, the transverse yield ratio Rt0.5/Rm ⁇ 0.78, Charpy impact energy at -20°C ⁇ 350J, -20°C Drop weight shear area SA% ⁇ 90%; longitudinal yield strength 460 ⁇ 530MPa; longitudinal tensile strength ⁇ 690Mpa, longitudinal uniform elongation Uel ⁇ 11%, longitudinal yield ratio ⁇ 0.77; longitudinal stress ratio Rt1.5/Rt0. 5 ⁇ 1.18, Rt2.0/Rt1.0 ⁇ 1.1; and the product's HIC resistance performance: soaked in NACE TM0284-2004A solution for 96 hours, crack length rate%: 0, crack width rate%: 0, crack sensitivity rate% : 0.
  • C It is the most economical and basic strengthening element in steel. Solid solution strengthening and precipitation strengthening can significantly increase the strength of steel, but it has an adverse effect on the toughness, ductility and welding performance of steel. Therefore, the development trend of pipeline steel is Continuously reduce the C content, taking into account the characteristics of the anti-large deformation steel structure, in order to ensure that a specific bainite structure is obtained, C needs to be controlled within an appropriate range. In the present invention, the C content is controlled to ⁇ 0.039%, preferably 0.015- 0.039%.
  • Si It is a deoxidizing element in steel, and improves the strength of steel in the form of solid solution strengthening, and is beneficial to the corrosion resistance of steel.
  • the Si content is controlled to be 0.15-0.35%.
  • Mn Improve the strength of steel through solid solution strengthening. It is the most important element in pipeline steel to compensate for the strength loss caused by the decrease in C content. Mn is also an element that expands the ⁇ phase region and can reduce the ⁇ transformation temperature of steel. , Helps to obtain fine phase transformation products, can improve the toughness of steel, reduce the ductile-brittle transition temperature, Mn is also an element that improves the hardenability of steel. In the present invention, the Mn content is designed to be in the range of 1.6-1.9%.
  • Al Mainly plays the role of nitrogen fixation and deoxidation. AlN formed by joining Al and N can effectively refine crystal grains, but too high a content will impair the toughness of steel and deteriorate hot workability. Therefore, the present invention controls its content (Alt) in the range of 0.02 to 0.045%.
  • Cr is a ferrite forming element, and at the same time, Cr can also improve the hardenability of steel.
  • the present invention controls Cr to be 0.15-0.35%.
  • Nb It is an element that has a very significant effect on crystal grain refinement.
  • the ⁇ phase transformation of steel can be delayed by the solid solution drag of Nb, and the Nb(C, N) strain-induced precipitation can hinder the recovery and recrystallization of austenite during the hot rolling process. After rapid cooling, the unrecrystallized zone can be rolled.
  • the prepared deformed austenite forms fine phase transformation products during phase transformation to improve the strength and toughness of the steel.
  • the present invention determines the Nb content by the C content, and the Nb and C content are determined according to a 1:1 relationship.
  • V It has high precipitation strengthening and weaker grain refinement.
  • V mainly plays a role of precipitation strengthening.
  • Ti It is a strong solid N element.
  • the stoichiometric ratio of Ti/N is 3.42.
  • Ti can fix N in steel below 60ppm, and TiN precipitates can be formed during slab continuous casting. This fine precipitation phase can effectively prevent the growth of austenite grains in the slab during heating, help increase the solid solubility of Nb in austenite, and improve the impact toughness of the welding heat-affected zone. It is an indispensable element in pipeline steel.
  • Mo It can inhibit the formation of ferrite phase during the ⁇ phase transformation, and plays an important role in controlling the phase transformation. It is also an element that improves the hardenability of steel. In the present invention, Mo is controlled within the range of 0.01 to 0.20%.
  • S and P are unavoidable impurity elements in pipeline steel, which are easy to form defects such as segregation and inclusions, which will adversely affect the toughness and hot workability of the steel plate, so their content should be minimized.
  • Adding a proper amount of Ca can transform the elongated sulfide inclusions in the pipeline steel into spherical CaS inclusions, which can significantly reduce the segregation of sulfur at the grain boundaries.
  • Ca can reduce the brittleness of the pipeline steel and improve the hot crack resistance of the pipeline steel during casting. It is very beneficial, but adding too much calcium will increase the inclusions in the pipeline steel, which is detrimental to the improvement of toughness.
  • the invention controls P ⁇ 0.012%, S ⁇ 0.002%, and Ca ⁇ 0.002%, so that the pipeline steel can obtain better toughness.
  • Cu and Ni The strength of steel can be improved by solid solution strengthening.
  • the addition of Ni can improve the toughness of steel, and at the same time, it can improve the hot brittleness that Cu can cause in steel.
  • the addition of Ni can improve the hardenability.
  • Cu is controlled at 0.01 to 0.25%; Ni is controlled at 0.15 to 0.50%.
  • N is an impurity element harmful to toughness.
  • the present invention controls its content in steel ⁇ 0.0046%.
  • the manufacturing method of the pipeline steel with HIC resistance and large deformation resistance in this application firstly smelt molten steel conforming to the design of chemical composition, cast a continuous casting slab with the chemical composition of the molten steel in accordance with the chemical composition of the finished steel plate, and heat the continuous casting slab to 1120 ⁇ 1160°C, heat preservation for 3 to 4 hours, then out of the furnace; after high-pressure water descaling, two-stage rolling is carried out: the first stage is rolling in the recrystallization zone, and the opening temperature is 1110-1150°C.
  • the conveying speed of the billet roller table after rolling should take into account that the steel plate undergoes microstructure dislocation movement after the austenite is sufficiently deformed to obtain a microstructure with different densities of dislocations at different grain positions, so as to provide a very fine bainite structure. Growth conditions.
  • the advantages of the present invention are: according to the anti-HIC mechanism and hydrogen trap theory, to achieve good anti-HIC performance, it is better to need a relatively single uniform structure, and according to the mechanism of resistance to large deformation, the organization needs to be Only with excellent synergistic deformation ability in deformation can it have excellent resistance to large deformation.
  • the bainite needs to be very small in order to exert a good synergistic deformation effect between the grains during the deformation process, so as to obtain excellent resistance to large deformation.
  • the pipeline steel developed by the present invention has a uniform and extremely fine bainite structure, and the structure grain size reaches 11.5 or more. Compared with a dual-phase structure, H is not easy to aggregate, and thus exhibits good HIC resistance.
  • Fig. 1 is a structure diagram of an X80 pipeline steel plate with HIC and large deformation resistance according to an embodiment of the present invention
  • Figure 2 shows the near-surface microstructure of X80 pipeline steel obtained by conventional relaxation air cooling.
  • the following embodiments take X80 steel grade pipeline steel as an example.
  • the molten steel that is consistent with the chemical composition of the pipeline steel plate is continuously cast by a continuous casting machine to produce a continuous casting slab with a thickness of not more than 370mm.
  • the chemical composition of the obtained continuous casting slab includes: C: 0.015%, Si: 0.28% in terms of mass percentage. , Mn: 1.6%, S ⁇ 0.002%, P ⁇ 0.012%, Al: 0.03%, Cr: 0.35%, Nb+V+Ti: 0.06%, Ni: 0.50%, Cu: 0.15%, Ca: ⁇ 0.002% , N: ⁇ 0.0046%, Mo: 0.13%, the balance is Fe and unavoidable impurity elements.
  • the continuous casting slab is heated to 1150°C, held for 3.5 hours, and then discharged.
  • two-stage rolling is carried out: the first stage is rolling in the recrystallization zone, the opening temperature is 1150°C, and rolling is divided into 7 passes , The deformation rate of the two-pass rolling is ⁇ 19%, the final rolling temperature is 1050°C, and the thickness of the intermediate billet obtained after rolling in the recrystallization zone is 90mm; the second stage is rolling in the non-recrystallization zone, and the opening temperature is 850°C, the final rolling temperature is 810°C, the cumulative deformation rate of rolling in the non-recrystallization zone is ⁇ 70%, and the thickness of the finished pipeline steel plate is 22mm; after the rolling is completed, the 60m long roller table is in accordance with 1.1m/s The conveying speed of the roller table sends the steel plate into the cooling system.
  • the structure of the obtained pipeline steel is very fine bainite with a grain size of 11.5.
  • the thickness direction microstructure is shown in Figure 1, which is similar to the ferrite produced by traditional relaxation air cooling as shown in Figure 2. Compared with the bainite dual-phase structure X80 pipeline steel, the structure is more uniform and the bainite grains are smaller.
  • transverse yield strength Rt0.5 540MPa
  • longitudinal tensile strength Rm: 730Mpa longitudinal uniform elongation Uel 11%
  • longitudinal yield ratio 0.70
  • the molten steel conforming to the chemical composition of the pipeline steel plate is continuously cast by a continuous casting machine to produce a continuous casting slab with a thickness of not more than 370mm.
  • the chemical composition of the obtained continuous casting slab includes: C: 0.03%, Si: 0.30% in terms of mass percentage. , Mn: 1.6%, S ⁇ 0.002%, P ⁇ 0.012%, Al: 0.03%, Cr: 0.25%, Nb+V+Ti: 0.06%, Ni: 0.25%, Cu: 0.15%, Ca: ⁇ 0.002% , N: ⁇ 0.0046%, Mo: 0.13%, the balance is Fe and unavoidable impurity elements.
  • the continuous casting slab is heated to 1150°C, held for 3.5 hours, and then discharged.
  • two-stage rolling is carried out: the first stage is rolling in the recrystallization zone, the opening temperature is 1150°C, and rolling is divided into 7 passes , The deformation rate of the two-pass rolling is ⁇ 19%, the final rolling temperature is 1050°C, and the thickness of the intermediate billet obtained after rolling in the recrystallization zone is 90mm; the second stage is rolling in the non-recrystallization zone, and the opening temperature is 850°C, the final rolling temperature is 810°C, the cumulative deformation rate of rolling in the non-recrystallization zone is ⁇ 70%, and the thickness of the finished pipeline steel plate is 22mm; after the rolling is completed, the 60m long roller table is in accordance with 1.1m/s The conveying speed of the roller table sends the steel plate into the cooling system.
  • the structure of the obtained pipeline steel is very fine bainite with a grain size of 11.5.
  • the thickness direction microstructure is shown in Figure 1, which is similar to the ferrite produced by traditional relaxation air cooling as shown in Figure 2. Compared with the bainite dual-phase structure X80 pipeline steel, the structure is more uniform and the bainite grains are smaller.
  • the molten steel consistent with the chemical composition of the pipeline steel plate is continuously cast by a continuous casting machine to produce a continuous casting slab with a thickness of about 370mm.
  • the chemical composition of the resulting continuous casting slab includes: C: 0.033%, Si: 0.25%, Mn : 1.8%, S ⁇ 0.002%, P ⁇ 0.012%, Al: 0.03%, Cr: 0.25%, Nb+V+Ti: 0.08%, Ni: 0.3%, Cu: 0.12%, Ca: ⁇ 0.002%, N: ⁇ 0.0046%, Mo: 0.20%, the balance is Fe and unavoidable impurity elements.
  • the continuous casting slab is heated to 1150°C, kept for 3.0 hours, and then discharged.
  • two-stage rolling is carried out: the first stage is rolling in the recrystallization zone, and the opening temperature is 1150°C, and rolling is divided into 5 passes , The deformation rate of two-pass rolling is ⁇ 17%, the final rolling temperature is 1030°C, and the thickness of the intermediate billet obtained after rolling in the recrystallization zone is 95mm; the second stage is rolling in the non-recrystallization zone, and the opening temperature is 850°C, the final rolling temperature is 830°C, the cumulative deformation rate of rolling in the non-recrystallization zone is ⁇ 60%, and the thickness of the finished pipeline steel plate is 26.4mm; after the rolling is completed, the 60m-long roller table is 1.55m/s
  • the steel plate is sent to the cooling system at a roller conveyor speed that is directly quenched by water.
  • the molten steel that is consistent with the chemical composition of the pipeline steel plate is continuously cast through a continuous casting machine to produce a continuous casting slab with a thickness of not more than 370mm.
  • the chemical composition of the resulting continuous casting slab includes: C: 0.039%, Si: 0.25% in terms of mass percentage. , Mn: 1.85%, S ⁇ 0.002%, P ⁇ 0.012%, Al: 0.03%, Cr: 0.25%, Nb+V+Ti: 0.10%, Ni: 0.45%, Cu: 0.25%, Ca: ⁇ 0.002 %, N: ⁇ 0.0046%, Mo: 0.20%, the balance is Fe and unavoidable impurity elements.
  • the continuous casting slab is heated to 1160°C, kept for 4 hours, and then discharged.
  • two-stage rolling is carried out: the first stage is rolling in the recrystallization zone, the opening temperature is 1140°C, and rolling is divided into 5 passes , The deformation rate of the two-pass rolling is ⁇ 17%, the final rolling temperature is 1050°C, and the thickness of the intermediate billet obtained after rolling in the recrystallization zone is 110mm; the second stage is rolling in the non-recrystallization zone, and the opening temperature is 870°C, the final rolling temperature is 840°C, the cumulative deformation rate of rolling in the non-recrystallization zone is ⁇ 60%, and the thickness of the finished pipeline steel plate is 33mm; after the rolling is completed, the 85m long roller table is in accordance with the 2.0m/s The conveying speed of the roller table sends the steel plate into the cooling system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种兼具抗HIC和抗大变形的管线钢,合金成分按重量百分比计为C:0.015~0.039%,Si:0.15~0.35%,Mn:1.6~1.9%,S:≤0.002%,P:≤0.012%,Al:0.02~0.045%,Cr:0.15~0.35%,0.05≤Nb+V+Ti≤0.1%,Nb、V、Ti均不为0,Ni:0.15~0.50%,Cu:0.01~0.25%,Ca:≤0.002%,N:≤0.0046%,Mo:0.01~0.20%,余量为Fe及不可避免的杂质元素,具有贝氏体单相组织,且贝氏体的晶粒度为11.5级以上。产品的横向屈强比Rt0.5/Rm≤0.78,-20℃夏比冲击功≥350J,-20℃落锤剪切面积SA%≥90%;纵向均匀延伸率Uel≥11%,纵向屈强比≤0.77;纵向应力比Rt1.5/Rt0.5≥1.18、Rt2.0/Rt1.0≥1.1;抗HIC性能:在NACE TM0284-2004 A溶液下浸泡96小时,裂纹长度率%:0,裂纹宽度率%:0,裂纹敏感率%:0。

Description

一种兼具抗HIC和抗大变形的管线钢及其制造方法 技术领域
本发明属于铁基合金技术领域,具体涉及一种管线钢。
背景技术
管道运输是石油、天然气最经济最合理的输送方式。长输送管线不仅要经过不同温度区域,还需要经过地震冻土带、泥石流、山体滑坡等自然灾害引起的地层运动地区,因此要求管道除满足高强度、高韧性的要求外,还需要具备相对较高的抗大变形能力,才能适应传输地质环境。
抗大变形管线钢是管线钢发展最具挑战性的研究领域之一,要求管线钢具有更高的抗压缩和拉伸应变的性能。大量的研究证明,在基本强塑性衡量性能参数,如屈服强度、抗拉强度及延伸率之外,能够衡量其抗大变形的主要指标为“均匀塑性变形延伸率Ue≥10%、屈强比Rt0.5/Rm≤0.80”等。
针对“抗大变形”这一要求,申请号CN2009100760066.8,CN201210327206、CN2009100760066.8等专利文献公开的管线钢均涉及采用驰豫等方法获得铁素体+贝氏体的双相组织,具有较好的抗大变形特性,但由于该组织为两相组织,见图2,且该两相组织由于沿轧制方向具有明显的带状,因而抗HIC性能不理想,双向组织存在容易聚集氢的境界,带状组织也能诱导氢的聚集。对于铁素体+贝氏体这种双相组织的管线钢,经NACE相应的标准进行抗HIC性能检测,钢板沿厚度不同方向均具有较多的HIC裂纹,抗HIC性能不理想。
发明内容
本发明针对上述现有技术提供一种兼具抗HIC和抗大变形的管线钢及其制造方法,可以适应X80及以下钢级的管线钢板的产品开发。使管线钢具有低屈强比、高均匀延伸率、高应力比等抗大变形特征外,同时表现出良好的抗HIC性能。
本发明解决上述问题所采用的技术方案为:一种兼具抗HIC和抗大变形的管线钢,其特征在于:采用的合金成分按重量百分比计为C:0.015~0.039%,Si:0.15~0.35%,Mn:1.6~1.9%,S:≤0.002%,P:≤0.012%,Al:0.02~0.045%,Cr:0.15~0.35%, 0.05≤Nb+V+Ti≤0.1%,Nb、V、Ti均不为0,Ni:0.15~0.50%,Cu:0.01~0.25%,Ca:≤0.002%,N:≤0.0046%,Mo:0.01~0.20%,余量为Fe及不可避免的杂质元素。
Nb的含量根据C含量按照碳化铌确定,Ti的含量根据N含量按照Ti/N的化学计量比3.42进行确定。
进一步地,产品为贝氏体单相组织,且贝氏体的晶粒度为11.5级至12级。
本发明的产品的横向屈服强度Rt0.5:490~550MPa,横向抗拉强度Rm:≥710Mpa,横向屈强比Rt0.5/Rm≤0.78,-20℃夏比冲击功≥350J,-20℃落锤剪切面积SA%≥90%;纵向屈服强度460~530MPa;纵向抗拉强度≥690Mpa,纵向均匀延伸率Uel≥11%,纵向屈强比≤0.77;纵向应力比Rt1.5/Rt0.5≥1.18、Rt2.0/Rt1.0≥1.1;且产品的抗HIC性能:在NACE TM0284-2004A溶液下浸泡96小时,裂纹长度率%:0,裂纹宽度率%:0,裂纹敏感率%:0。
本发明管线钢的化学成分设计依据如下:
C:是钢中最经济、最基本的强化元素,通过固溶强化和析出强化可明显提高钢的强度,但对钢的韧性及延性以及焊接性能带来不利影响,因此管线钢的发展趋势是不断降低C含量,考虑到抗大变形钢组织的特性,为保证获得特定的贝氏体组织,需要将C控制在适当的范围内,本发明中将C含量控制在≤0.039%,优选0.015-0.039%。
Si:是钢中的脱氧元素,并以固溶强化形式提高钢的强度,而且有利于钢的耐腐蚀性能。当Si含量较低时,脱氧效果较差,Si含量较高时,会造成韧性降低。本发明Si含量控制为0.15~0.35%。
Mn:通过固溶强化提高钢的强度,是管线钢中弥补因C含量降低而引起强度损失的最主要的元素,Mn同时还是扩大γ相区的元素,可降低钢的γ→α相变温度,有助于获得细小的相变产物,可提高钢的韧性,降低韧脆性转变温度,Mn也是提高钢淬透性的元素。本发明中Mn含量设计在1.6-1.9%范围。
Al:主要是起固氮和脱氧作用。Al与N接合形成的AlN可以有效地细化晶粒,但含量过高会损害钢的韧性而且热加工性变差。因此,本发明控制其含量(Alt)在0.02~0.045%的范围。
Cr:是铁素体形成元素,同时Cr还可提高钢的淬透性,本发明将Cr控制在0.15~0.35%。
Nb:是对晶粒细化作用非常明显的元素。通过Nb的固溶拖曳可延迟钢的γ→α相 转变,在热轧过程中Nb(C,N)应变诱导析出可阻碍奥氏体的回复、再结晶,经快速冷却使未再结晶区轧制的形变奥氏体在相变时形成细小的相变产物,以提高钢材的强度和韧性,本发明通过C的含量确定Nb含量,Nb与C含量按照1:1的关系确定。
V:具有较高的析出强化和较弱的晶粒细化作用,在Nb、V、Ti三种微合金元素复合使用时,V主要起析出强化作用。
Ti:属于较强的固N元素,Ti/N的化学计量比为3.42,利用0.02%左右的Ti就可固定钢中60ppm以下的N,在板坯连铸过程中即可形成TiN析出相,这种细小的析出相可有效阻止板坯在加热过程中奥氏体晶粒的长大,有助于提高Nb在奥氏体中的固溶度,同时可改善焊接热影响区的冲击韧性,是管线钢中不可缺少的元素。
Mo:可抑制γ→α相变时铁素体相的形成,对控制相变起到重要作用,同时也是提高钢的淬透性元素。本发明将Mo控制在0.01~0.20%范围内。
S、P:是管线钢中不可避免的杂质元素,易形成偏析、夹杂等缺陷,会给钢板的韧性以及热加工性带来不利的影响,应尽量减少其含量。加入适量的Ca可将管线钢中的长条形硫化物夹杂转变为球状的CaS夹杂,显著降低硫在晶界的偏聚,Ca对降低管线钢脆性和提高管线钢铸造时的抗热裂型是十分有益的,但加入过多的钙反而会增加管线钢中的夹杂物,对韧性的提高不利。本发明控制P≤0.012%,S≤0.002%,Ca≤0.002%,使管线钢获得较好的韧性。
Cu、Ni:可通过固溶强化提高钢的强度,Ni的加入一方面可提高钢的韧性,同时改善Cu在钢中易引起的热脆性,另一方面,Ni的加入可提高淬透性,本发明将Cu控制在0.01~0.25%;Ni控制在0.15~0.50%。
N:是对韧性有害的杂质元素,为了得到优良的低温韧性,本发明控制其在钢中的含量≤0.0046%。
本申请兼具抗HIC和抗大变形的管线钢的制造方法:先冶炼符合化学成分设计的钢水,将钢水铸造化学成分与钢板成品化学成分相符的连铸坯,将连铸坯加热至1120~1160℃,保温3~4小时,出炉;高压水除鳞后进行两阶段轧制:第一阶段为再结晶区轧制,开轧温度为1110~1150℃,经多道次轧制后,终轧温度控制在1030~1080℃,控制粗轧两道次轧制变形率≥19%;第二阶段为非再结晶区轧制,开轧温度为830~900℃,终轧温度控制在750~840℃,第二阶段的轧制累积变形率≥70%;轧制完成后,根据奥氏体微观组织的变化经45m-95m长的辊道按照辊道输送速度V=a*H将钢板送入冷却系统,适中H为钢板厚度mm,a=0.05-0.08m/(s*mm);
在冷却系统中,先直接淬火,直接淬火后将钢坯空冷至Ar 3温度,然后快速冷却,终冷温度控制在280℃以下,带温矫直,最后空冷至室温即获得既具HIC又具抗大变形X80级管线钢板。
轧制后钢坯辊道输送速度应考虑到钢板在奥氏体足够变形后经微观组织位错运动获得位错在不同晶粒部位密度不同的微观组织,以便为获得非常细小的贝氏体组织提供生长条件。
与现有技术相比,本发明的优点在于:根据抗HIC机理及氢陷阱理论,要实现良好的抗HIC性能,最好需要比较单一均匀的组织,而根据抗大变形的机理,需要组织在变形中具有优异的协同变形的能力,才能具有较优异的抗大变形的能力,经研究证实,某些低碳贝氏体中具有兼具这两种性能的能力。根据变形机理,需要贝氏体非常细小,才能在变形过程中发挥晶粒间良好协同变形效应,从而获得优异的抗大变形性能。为获得这种非常细小的贝氏体,需要在成分和工艺上进行设计。本发明开发的管线钢,组织为均一的极细小的贝氏体,组织晶粒度达到11.5级以上,与双相组织相比,H不容易聚集,因而表现出良好的抗HIC性能。
附图说明
图1为本发明实施例兼具HIC又具抗大变形X80级管线钢板的组织图;
图2为传统采用驰豫空冷获得的X80级管线钢的近表面组织图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述,下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
以下实施例以X80钢级的管线钢为例,X80钢级以下的钢级,比如X70、X60等性能和生产难度均要低于X80,在本申请中不做一一列举。
实施例1
将与所制管线钢板化学成分相符的钢水经连铸机连铸出厚度为不大于370mm的连铸坯,所得连铸坯的化学成分按照质量百分比计包括:C:0.015%,Si:0.28%,Mn:1.6%,S≤0.002%,P≤0.012%,Al:0.03%,Cr:0.35%,Nb+V+Ti:0.06%,Ni:0.50%,Cu:0.15%,Ca:≤0.002%,N:≤0.0046%,Mo:0.13%,余量为Fe及不可 避免的杂质元素。
把连铸坯加热至1150℃,保温3.5小时,出炉,20MPa高压水除鳞后进行两阶段轧制:第一阶段为再结晶区轧制,开轧温度为1150℃,分7道次轧制,其中两道次轧制的变形率≥19%,终轧温度为1050℃,再结晶区轧制后所得中间坯的厚度为90mm;第二阶段为非再结晶区轧制,开轧温度为850℃,终轧温度为810℃,非再结晶区轧制的累积变形率≥70%,所得管线钢板成品的厚度为22mm;轧制完成后,经60m长的辊道按照1.1m/s的辊道输送速度将钢板送入冷却系统,先直接入水淬火,出水后空冷至至Ar 3温度,然后ACC快速冷却,终冷温度为250℃,最后空冷至室温。所得管线钢的组织为极细小贝氏体,晶粒度为11.5级,其厚度方向组织形貌如图1所示,与图2所示的采用传统弛豫空冷制得的铁素体+贝氏体的双相组织X80级管线钢相比,组织更加均匀、贝氏体晶粒更加细小。经检测,其强度和塑性指标如下:横向屈服强度Rt0.5:540MPa;抗拉强度Rm:740MPa,横向屈强比Rt0.5/Rm=0.76;纵向屈服强度510MPa,-20℃夏比冲击功=450J,SA%(-20℃)=90%;纵向抗拉强度Rm:730Mpa纵向均匀延伸率Uel=11%;纵向屈强比=0.70;纵向Rt1.5/Rt0.5=1.25,Rt2.0/Rt1.0=1.16,抗HIC试验结果如表1所示。
实施例2
将与所制管线钢板化学成分相符的钢水经连铸机连铸出厚度为不大于370mm的连铸坯,所得连铸坯的化学成分按照质量百分比计包括:C:0.03%,Si:0.30%,Mn:1.6%,S≤0.002%,P≤0.012%,Al:0.03%,Cr:0.25%,Nb+V+Ti:0.06%,Ni:0.25%,Cu:0.15%,Ca:≤0.002%,N:≤0.0046%,Mo:0.13%,余量为Fe及不可避免的杂质元素。
把连铸坯加热至1150℃,保温3.5小时,出炉,20MPa高压水除鳞后进行两阶段轧制:第一阶段为再结晶区轧制,开轧温度为1150℃,分7道次轧制,其中两道次轧制的变形率≥19%,终轧温度为1050℃,再结晶区轧制后所得中间坯的厚度为90mm;第二阶段为非再结晶区轧制,开轧温度为850℃,终轧温度为810℃,非再结晶区轧制的累积变形率≥70%,所得管线钢板成品的厚度为22mm;轧制完成后,经60m长的辊道按照1.1m/s的辊道输送速度将钢板送入冷却系统,先直接入水淬火,出水后空冷至至Ar 3温度,然后ACC快速冷却,终冷温度为250℃,最后空冷至室温。所得管线钢的组织为极细小贝氏体,晶粒度为11.5级,其厚度方向组织形貌如图1所示,与图2所示的采用传统弛豫空冷制得的铁素体+贝氏体的双相组织X80级管线钢相比,组织更加均匀、 贝氏体晶粒更加细小。经检测,其强度和塑性指标如下:横向屈服强度Rt0.5:535MPa;抗拉强度Rm:735MPa,横向屈强比Rt0.5/Rm=0.76;纵向屈服强度500MPa,-20℃夏比冲击功=450J,SA%(-20℃)=90%;纵向抗拉强度Rm:730Mpa纵向均匀延伸率Uel=12%;纵向屈强比=0.68;纵向Rt1.5/Rt0.5=1.27,Rt2.0/Rt1.0=1.17,抗HIC试验结果如表1所示。
实施例3
将与所制管线钢板化学成分相符的钢水经连铸机连铸出厚度约370mm的连铸坯,所得连铸坯的化学成分按照质量百分比计包括:C:0.033%,Si:0.25%,Mn:1.8%,S≤0.002%,,P≤0.012%,Al:0.03%,Cr:0.25%,Nb+V+Ti:0.08%,Ni:0.3%,Cu:0.12%,Ca:≤0.002%,N:≤0.0046%,Mo:0.20%,余量为Fe及不可避免的杂质元素。
把连铸坯加热至1150℃,保温3.0小时,出炉,20MPa高压水除鳞后进行两阶段轧制:第一阶段为再结晶区轧制,开轧温度为1150℃,分5道次轧制,其中两道次轧制的变形率≥17%,终轧温度为1030℃,再结晶区轧制后所得中间坯的厚度为95mm;第二阶段为非再结晶区轧制,开轧温度为850℃,终轧温度为830℃,非再结晶区轧制的累积变形率≥60%,所得管线钢板成品的厚度为26.4mm;轧制完成后,经60m长的辊道按照1.55m/s的辊道输送速度将钢板送入冷却系统,先直接入水淬火,出水后空冷至至Ar 3温度,然后ACC快速冷却,终冷温度为270℃,最后空冷至室温。所得管线钢的组织为极细贝氏体。经检测,其强度和塑性指标如下:横向屈服强度Rt0.5:510MPa;抗拉强度Rm:705MPa,横向屈强比Rt0.5/Rm=0.72;纵向屈服强度505MPa,-20℃夏比冲击功=380J,SA%(-20℃)=96%;纵向抗拉强度Rm:700Mpa纵向均匀延伸率Uel=12.5%;纵向屈强比=0.72;纵向Rt1.5/Rt0.5=1.22,Rt2.0/Rt1.0=1.18,抗HIC试验结果如表1所示。
实施例4
将与所制管线钢板化学成分相符的钢水经连铸机连铸出厚度为不大于370mm的连铸坯,所得连铸坯的化学成分按照质量百分比计包括:C:0.039%,Si:0.25%,Mn:1.85%,S≤0.002%,,P≤0.012%,Al:0.03%,Cr:0.25%,Nb+V+Ti:0.10%,Ni:0.45%,Cu:0.25%,Ca:≤0.002%,N:≤0.0046%,Mo:0.20%,余量为Fe及不可 避免的杂质元素。
把连铸坯加热至1160℃,保温4小时,出炉,20MPa高压水除鳞后进行两阶段轧制:第一阶段为再结晶区轧制,开轧温度为1140℃,分5道次轧制,其中两道次轧制的变形率≥17%,终轧温度为1050℃,再结晶区轧制后所得中间坯的厚度为110mm;第二阶段为非再结晶区轧制,开轧温度为870℃,终轧温度为840℃,非再结晶区轧制的累积变形率≥60%,所得管线钢板成品的厚度为33mm;轧制完成后,经85m长的辊道按照2.0m/s的辊道输送速度将钢板送入冷却系统,先直接入水淬火,出水后空冷至至Ar 3温度,然后ACC快速冷却,终冷温度为280℃,最后空冷至室温。所得管线钢的组织为极细贝氏体,经检测,其强度和塑性指标如下:横向屈服强度Rt0.5:485MPa;抗拉强度Rm:710MPa,横向屈强比Rt0.5/Rm=0.68;纵向屈服强度475Mpa,-20℃夏比冲击功=420J,SA%(-20℃)=85%;纵向抗拉强度Rm:695MPa纵向均匀延伸率Uel=12.5%;纵向屈强比=0.68;纵向Rt1.5/Rt0.5=1.23,Rt2.0/Rt1.0=1.17,抗HIC试验结果如表1所示。
表1各实施例X80管线钢的抗HIC性能
Figure PCTCN2020088281-appb-000001

Claims (5)

  1. 一种兼具抗HIC和抗大变形的管线钢,其特征在于:采用的合金成分按重量百分比计为C:0.015~0.039%,Si:0.15~0.35%,Mn:1.6~1.9%,S:≤0.002%,P:≤0.012%,Al:0.02~0.045%,Cr:0.15~0.35%,0.05≤Nb+V+Ti≤0.1%,Nb、V、Ti均不为0,Ni:0.15~0.50%,Cu:0.01~0.25%,Ca:≤0.002%,N:≤0.0046%,Mo:0.01~0.20%,余量为Fe及不可避免的杂质元素。
  2. 根据权利要求1所述的兼具抗HIC和抗大变形的管线钢,其特征在于:产品为贝氏体单相组织,且贝氏体的晶粒度为11.5级至12级。
  3. 根据权利要求1所述的兼具抗HIC和抗大变形的管线钢,其特征在于:产品的横向屈服强度Rt0.5:490~550MPa,横向抗拉强度Rm:≥710Mpa,横向屈强比Rt0.5/Rm≤0.78,-20℃夏比冲击功≥350J,-20℃落锤剪切面积SA%≥90%;纵向屈服强度460~530MPa;纵向抗拉强度≥690Mpa,纵向均匀延伸率Uel≥11%,纵向屈强比≤0.77;纵向应力比Rt1.5/Rt0.5≥1.18、Rt2.0/Rt1.0≥1.1;
    且产品的抗HIC性能:在NACE TM0284-2004 A溶液下浸泡96小时,裂纹长度率%:0,裂纹宽度率%:0,裂纹敏感率%:0。
  4. 一种制造权利要求1-3中任一权项所述的兼具抗HIC和抗大变形的管线钢的方法,其特征在于:
    铸造化学成分与钢板成品化学成分相符的连铸坯,将连铸坯加热至1120~1160℃,保温3~4小时,出炉;高压水除鳞后进行两阶段轧制:第一阶段为再结晶区轧制,开轧温度为1110~1150℃,经多道次轧制后,终轧温度控制在1030~1080℃,控制粗轧两道次轧制变形率≥19%;第二阶段为非再结晶区轧制,开轧温度为830~900℃,终轧温度控制在750~840℃,第二阶段的轧制累积变形率≥70%;轧制完成后,根据奥氏体微观组织的变化按照辊道输送速度V=a*H将钢板送入冷却系统,适中H为钢板厚度mm,a=0.05-0.08m/(s*mm);
    在冷却系统中,先直接淬火,直接淬火后将钢坯空冷至Ar 3温度,然后快速冷却,终冷温度控制在280℃以下,带温矫直,最后空冷至室温即获得既具HIC又具抗大变形X80级管线钢板。
  5. 根据权利要求4所述的兼具抗HIC和抗大变形的管线钢的制造方法,其特征在 于:冷却系统中,快速冷却采用ACC水冷。
PCT/CN2020/088281 2019-12-07 2020-04-30 一种兼具抗hic和抗大变形的管线钢及其制造方法 WO2021109439A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20896953.5A EP4015669A4 (en) 2019-12-07 2020-04-30 HIC RESISTANT AND LARGE DEFORMATION RESISTANT PIPE STEEL AND METHOD FOR PREPARING IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911245533.5A CN110964991B (zh) 2019-12-07 2019-12-07 一种兼具抗hic和抗大变形的管线钢及其制造方法
CN201911245533.5 2019-12-07

Publications (1)

Publication Number Publication Date
WO2021109439A1 true WO2021109439A1 (zh) 2021-06-10

Family

ID=70033279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088281 WO2021109439A1 (zh) 2019-12-07 2020-04-30 一种兼具抗hic和抗大变形的管线钢及其制造方法

Country Status (3)

Country Link
EP (1) EP4015669A4 (zh)
CN (1) CN110964991B (zh)
WO (1) WO2021109439A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913695A (zh) * 2021-10-13 2022-01-11 鞍钢股份有限公司 耐腐蚀抗疲劳水下油气采输用管线钢及其生产方法
CN115181907A (zh) * 2022-07-06 2022-10-14 鞍钢股份有限公司 一种高强度高应变强化型含v管线宽厚板及其生产方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964991B (zh) * 2019-12-07 2021-02-26 江阴兴澄特种钢铁有限公司 一种兼具抗hic和抗大变形的管线钢及其制造方法
CN111690801B (zh) * 2020-05-25 2021-11-02 中天钢铁集团有限公司 一种获得全贝氏体组织的合金工具钢盘条生产工艺
CN111961957B (zh) * 2020-06-29 2022-04-05 江阴兴澄特种钢铁有限公司 一种既具耐海水腐蚀又具抗大变形的x80级管线钢板及其制造方法
CN114836683B (zh) * 2022-03-22 2023-09-15 江阴兴澄特种钢铁有限公司 一种适用于湿硫化氢环境的高强度高韧性低屈强比管线钢钢板及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102011064A (zh) * 2010-11-18 2011-04-13 中国石油天然气集团公司 一种x80级低温管件用钢及其制备和应用
JP2012241267A (ja) * 2011-05-24 2012-12-10 Jfe Steel Corp 高圧縮強度鋼管及びその製造方法
CN104451446A (zh) * 2014-12-05 2015-03-25 武汉钢铁(集团)公司 一种厚规格高强韧性贝氏体工程用钢及其生产方法
JP2015189984A (ja) * 2014-03-27 2015-11-02 Jfeスチール株式会社 低降伏比高強度高靭性鋼板、低降伏比高強度高靭性鋼板の製造方法および鋼管
CN107406948A (zh) * 2015-03-26 2017-11-28 杰富意钢铁株式会社 结构管用厚壁钢板、结构管用厚壁钢板的制造方法和结构管
CN108342651A (zh) * 2018-04-02 2018-07-31 首钢集团有限公司 一种耐微生物腐蚀管线钢板及其制备方法
CN108342655A (zh) * 2017-01-22 2018-07-31 宝山钢铁股份有限公司 一种调质型抗酸管线钢及其制造方法
CN110284066A (zh) * 2019-07-24 2019-09-27 宝钢湛江钢铁有限公司 一种薄规格低屈强比管线钢及其制造方法
CN110964991A (zh) * 2019-12-07 2020-04-07 江阴兴澄特种钢铁有限公司 一种兼具抗hic和抗大变形的管线钢及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565420B2 (ja) * 2012-02-02 2014-08-06 新日鐵住金株式会社 ラインパイプ用uoe鋼管
CN104250713B (zh) * 2014-09-19 2017-01-11 江阴兴澄特种钢铁有限公司 一种x80级抗大变形管线钢板及其制造方法
JP6222041B2 (ja) * 2014-10-30 2017-11-01 Jfeスチール株式会社 耐hic性能に優れた極厚鋼板およびその製造方法
CN109252089B (zh) * 2018-08-20 2020-11-06 安阳钢铁股份有限公司 一种应变设计管线钢x65钢板及其生产方法
CN109128065B (zh) * 2018-09-25 2020-07-21 湖南华菱湘潭钢铁有限公司 一种深海管道用中厚钢板的生产方法
CN111961957B (zh) * 2020-06-29 2022-04-05 江阴兴澄特种钢铁有限公司 一种既具耐海水腐蚀又具抗大变形的x80级管线钢板及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102011064A (zh) * 2010-11-18 2011-04-13 中国石油天然气集团公司 一种x80级低温管件用钢及其制备和应用
JP2012241267A (ja) * 2011-05-24 2012-12-10 Jfe Steel Corp 高圧縮強度鋼管及びその製造方法
JP2015189984A (ja) * 2014-03-27 2015-11-02 Jfeスチール株式会社 低降伏比高強度高靭性鋼板、低降伏比高強度高靭性鋼板の製造方法および鋼管
CN104451446A (zh) * 2014-12-05 2015-03-25 武汉钢铁(集团)公司 一种厚规格高强韧性贝氏体工程用钢及其生产方法
CN107406948A (zh) * 2015-03-26 2017-11-28 杰富意钢铁株式会社 结构管用厚壁钢板、结构管用厚壁钢板的制造方法和结构管
CN108342655A (zh) * 2017-01-22 2018-07-31 宝山钢铁股份有限公司 一种调质型抗酸管线钢及其制造方法
CN108342651A (zh) * 2018-04-02 2018-07-31 首钢集团有限公司 一种耐微生物腐蚀管线钢板及其制备方法
CN110284066A (zh) * 2019-07-24 2019-09-27 宝钢湛江钢铁有限公司 一种薄规格低屈强比管线钢及其制造方法
CN110964991A (zh) * 2019-12-07 2020-04-07 江阴兴澄特种钢铁有限公司 一种兼具抗hic和抗大变形的管线钢及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913695A (zh) * 2021-10-13 2022-01-11 鞍钢股份有限公司 耐腐蚀抗疲劳水下油气采输用管线钢及其生产方法
CN115181907A (zh) * 2022-07-06 2022-10-14 鞍钢股份有限公司 一种高强度高应变强化型含v管线宽厚板及其生产方法

Also Published As

Publication number Publication date
EP4015669A4 (en) 2022-12-21
EP4015669A1 (en) 2022-06-22
CN110964991A (zh) 2020-04-07
CN110964991B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2021109439A1 (zh) 一种兼具抗hic和抗大变形的管线钢及其制造方法
RU2588755C2 (ru) Стальная полоса с низким отношением предела текучести к пределу прочности и высокой ударной вязкостью и способ ее производства
JP5499733B2 (ja) 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法
JP5195469B2 (ja) 低温靭性に優れた厚肉高張力熱延鋼板の製造方法
WO2010087511A1 (ja) 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法
CN104250713B (zh) 一种x80级抗大变形管线钢板及其制造方法
JP5499731B2 (ja) 耐hic性に優れた厚肉高張力熱延鋼板及びその製造方法
JP5418251B2 (ja) 耐hic性に優れた厚肉高張力熱延鋼板の製造方法
CN111996449B (zh) 一种塑韧性优异的管线用厚板及其生产方法
JP5553093B2 (ja) 低温靭性に優れた厚肉高張力熱延鋼板
CN104603313A (zh) 焊接热影响部ctod特性优异的高张力厚钢及其制造方法
JP2010196165A (ja) 低温靭性に優れた極厚高張力熱延鋼板およびその製造方法
CN111893386B (zh) 基于塑变和抗压溃性设计深水管线用厚板及其生产方法
JP5401863B2 (ja) 低温靭性に優れた厚肉高張力熱延鋼板の製造方法
EP3889304B1 (en) High strength thick steel plate for linepipe having excellent low temperature toughness and ductility as well as low yield ratio, and method thereof
JP2011179042A (ja) 低温靭性に優れた厚肉高張力熱延鋼板の製造方法
JP2020509181A (ja) 低温靭性及び後熱処理特性に優れた耐サワー厚板鋼材及びその製造方法
JP2018127646A (ja) 高強度熱延鋼板およびその製造方法
JP5347540B2 (ja) 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法
WO2017094593A1 (ja) 溶接熱影響部の低温靭性劣化および溶接熱影響部の硬さを抑制した高降伏強度を有する非調質鋼板
JPH10298707A (ja) 高靭性高張力鋼およびその製造方法
JP5533025B2 (ja) 低温靭性に優れた厚肉高張力熱延鋼板の製造方法
RU2793945C1 (ru) Трубопроводная сталь, обладающая как стойкостью к hic, так и большим сопротивлением деформации, и способ ее производства
JP3836919B2 (ja) 低温靭性の優れた極厚高強度ベンド管の製造法
JPH09296216A (ja) 耐水素誘起割れ性に優れた高強度鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020896953

Country of ref document: EP

Effective date: 20220316

NENP Non-entry into the national phase

Ref country code: DE