CN111961957B - 一种既具耐海水腐蚀又具抗大变形的x80级管线钢板及其制造方法 - Google Patents

一种既具耐海水腐蚀又具抗大变形的x80级管线钢板及其制造方法 Download PDF

Info

Publication number
CN111961957B
CN111961957B CN202010607603.3A CN202010607603A CN111961957B CN 111961957 B CN111961957 B CN 111961957B CN 202010607603 A CN202010607603 A CN 202010607603A CN 111961957 B CN111961957 B CN 111961957B
Authority
CN
China
Prior art keywords
steel plate
rolling
cooling
percent
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010607603.3A
Other languages
English (en)
Other versions
CN111961957A (zh
Inventor
蒋昌林
诸建阳
苗丕峰
林涛
白云
徐伟明
潘贵明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangyin Xingcheng Special Steel Works Co Ltd
Original Assignee
Jiangyin Xingcheng Special Steel Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangyin Xingcheng Special Steel Works Co Ltd filed Critical Jiangyin Xingcheng Special Steel Works Co Ltd
Priority to CN202010607603.3A priority Critical patent/CN111961957B/zh
Publication of CN111961957A publication Critical patent/CN111961957A/zh
Application granted granted Critical
Publication of CN111961957B publication Critical patent/CN111961957B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明涉及一种既具耐海水腐蚀又具抗大变形的X80级管线钢板及其制造方法,元素成分质量百分配比:C:0.01‑0.039%,Si:0.15~0.25%,Mn:0.5~0.9%,S:≤0.001%,P:0.001~0.02%,Al≤0.045%,Cr:0.4~0.90%,0.05≤Nb+V+Ti≤0.1%,Ni:0.46~1.0%,Cu:0.20~0.35%,Ca:≤0.002%,且Ca/S为1~2,N:≤0.0046%,Mo:0.08~0.2%,余量为Fe及不可避免的杂质元素;所述钢板的组织为晶粒度11级以上的低碳贝氏体组织为主。钢板以两阶段控轧成型,热轧完成后,先后采用DQ快冷和ACC慢冷,以调控金相转变,以期获得极具有抗腐蚀性能又具有抗变形能力的X80管线钢。

Description

一种既具耐海水腐蚀又具抗大变形的X80级管线钢板及其制 造方法
技术领域
本发明涉及管线钢板及其制造方法,尤其涉及抗大变形、耐海水腐蚀的X80级管线钢板及其制造方法,本方法也适合X80级以下同类性能管线钢板。
背景技术
目前世界需求的能源中化石能源还占能源结构中的主体地位,近年来世界经济的急速增长极大带动了化石能源需求的急速增长,为满足化石能源的巨大需求,随着多年陆地开采日渐枯竭。能源开采已转向海洋。海底管道与陆地管道不同,除通常的力学性能外,还需要纵向性能要求,同时,还需要抗压溃性能,并具有高韧性特点。同时由于海洋腐蚀环境很强,一旦钢管腐蚀,将严重影响钢管的使用寿命,另外,海洋也是较具容易引起HIC裂纹的服役环境。
申请号CN2009100760066.8,CN201210327206、CN2009100760066.8等专利号公开的方法均采用驰豫等方法获得铁素体+贝氏体双相组织,具有较好的抗大变形特性,但由于该组织为两相组织,且这种两相组织由于沿轧制方向具有明显的带状,因而抗腐蚀特性很差。
申请号为CN200610024179.X申请专利,虽然显示出一定的抗海水腐蚀性能,但其组织为铁素体+珠光体,且未加入Ni,没有Ni产品的点蚀性无法预知。同时该组织不具备抗大变形的能力,不具备抵抗因海底运动对管道的变形能力。
发明内容
本发明的目的是要提供一种既具抗大变形又具抗海水腐蚀的X80级管线钢板及其制造方法,其中钢板的制造方法有适用于X80钢级以下的管线钢板。
本发明解决上述问题所采用的技术方案为:一种既具耐海水腐蚀又具抗大变形的X80级管线钢板,钢板的元素成分质量百分配比:C:0.01-0.039%,Si:0.15~0.25%,Mn:0.5~0.9%,S:≤0.001%,P:0.001~0.02%,Al≤0.045%,Cr:0.4~0.90%,0.05≤Nb+V+Ti≤0.1%,Ni:0.46~1.0%,Cu:0.20~0.35%,Ca:≤0.002%,且Ca/S为1~2,N:≤0.0046%,Mo:0.08~0.2%,余量为Fe及不可避免的杂质元素;所述钢板的组织为晶粒度11级以上的低碳贝氏体组织为主。组织中还含有不超过5vt%的铁素体和不超过5vt%的M-A岛状组织。
钢板的横向屈服强度Rt0.5:490~550MPa,横向抗拉强度Rm:≥675MPa,横向屈强比Rt0.5/Rm≤0.78-20℃夏比冲击功≥350J,-20℃落锤剪切面积SA%≥90%;纵向屈服强度460~530MPa;纵向抗拉强度≥660MPa,纵向屈强比Rt0.5/Rm≤0.79;具有优异的抗大变形性能:均匀延伸率UEL不低于10%;耐海水腐蚀性能优异:平均厚度腐蚀率不高于0.35mm/年。
本发明既具抗大变形又耐海水腐蚀X80级管线钢板的化学成分是这样确定的:
C:是钢中最经济、最基本的强化元素,通过固溶强化和析出强化可明显提高钢的强度,但对钢的韧性及延性以及焊接性能带来不利影响,因此管线钢的发展趋势是不断降低C含量,考虑到抗大变形钢组织的特性,为保证获得一定量的贝氏体组织,需要将C控制在适当的范围内,本发明中将C含量控制在0.01-0.039%。
Si:是钢中的脱氧元素,并以固溶强化形式提高钢的强度,而且有利于钢的耐腐蚀性能。当Si含量较低时,脱氧效果较差,Si含量较高时,会造成韧性降低。本发明Si含量控制为0.15~0.25%。
Mn:通过固溶强化提高钢的强度,是管线钢中弥补因C含量降低而引起强度损失的最主要的元素,Mn同时还是扩大γ相区的元素,可降低钢的γ→α相变温度,有助于获得细小的相变产物,可提高钢的韧性,降低韧脆性转变温度,Mn也是提高钢淬透性的元素。考虑到Mn在连铸时的特点及对腐蚀的影响,本发明中Mn含量设计在0.5-0.9%范围,从而避开Mn造成的偏析,以免在钢板心部因偏析会形成腐蚀通道,从而大幅降低耐腐蚀性能.其所造成的强度损失可通过其他元素的添加来弥补。
Al:主要是起固氮和脱氧作用。Al与N接合形成的AlN可以有效地细化晶粒,但含量过高会损害钢的韧性而且热加工性变差。因此,本发明控制其含量(Alt)在0.045%以内,优选0.02~0.045%的范围。
Cr:是铁素体形成元素,同时Cr还可提高钢的淬透性,考虑到Cr在点蚀中的行为,本发明将Cr控制在0.4~0.90%。
Nb:是对晶粒细化作用非常明显的元素。通过Nb的固溶拖曳可延迟钢的γ→α相转变,在热轧过程中Nb(C,N)应变诱导析出可阻碍奥氏体的回复、再结晶,经快速冷却使未再结晶区轧制的形变奥氏体在相变时形成细小的相变产物,以提高钢材的强度和韧性,本发明通过C的含量确定Nb含量。
V:具有较高的析出强化和较弱的晶粒细化作用,在Nb、V、Ti三种微合金元素复合使用时,V主要起析出强化作用。
Ti:属于较强的固N元素,Ti/N的化学计量比为3.42,利用0.02%左右的Ti就可固定钢中60ppm以下的N,在板坯连铸过程中即可形成TiN析出相,这种细小的析出相可有效阻止板坯在加热过程中奥氏体晶粒的长大,有助于提高Nb在奥氏体中的固溶度,同时可改善焊接热影响区的冲击韧性,是管线钢中不可缺少的元素。
Mo:可抑制γ→α相变时铁素体相的形成,对控制相变起到重要作用,同时也是提高钢的淬透性元素。本发明将Mo控制在0.08~0.20%范围内。
S、P:S是管线钢中不可避免的杂质元素,易形成偏析、夹杂等缺陷,会给钢板的韧性以及热加工性带来不利的影响,应尽量减少其含量。加入适量的Ca可将管线钢中的长条形硫化物夹杂转变为球状的CaS夹杂,一方面显著降低硫在晶界的偏聚,另一方面通过形成球状CaS,从而基本消除MnS,从而消除因MnS形成的腐蚀通道,提高耐海水腐蚀性能,但加入过多的钙反而会因对炉衬侵蚀造成增加管线钢中的夹杂物的风险,对韧性的提高不利,Ca≤0.002%,使管线钢获得较好的韧性。考虑到P对耐海水腐蚀有利影响,但过高的P会对低温冲击韧性特别是落锤性能造成影响,本发明控制P0.001-0.02%,降低P所来带的对耐腐蚀性能的降低通过其他方式进行弥补,
Cu、Ni:可通过固溶强化提高钢的强度,Ni的加入一方面可提高钢的韧性,同时改善Cu在钢中易引起的热脆性,另一方面,Ni的加入可提高淬透性,另外,考虑到Ni、Cu分别在海水中的行为及对点蚀等的影响,本发明将Cu控制在0.2~0.35%;Ni控制在0.46~1.0%。
N:是对韧性有害的杂质元素,为了得到优良的低温韧性,本发明控制其在钢中的含量≤0.0046%。
本发明另外提供一种管线钢的制造方法,工艺步骤如下:
(1)铸造化学成分与钢板成品化学成分相符的连铸坯,将连铸坯加热至1150-1180℃,保温3~4小时,出炉;
(2)高压水除鳞后进行两阶段轧制:第一阶段为再结晶区轧制,开轧温度为1130~1180℃,经多道次轧制后,终轧温度为1030~1080℃,并控制有两道次变形率≥19%;第二阶段为非再结晶区轧制,开轧温度为830~900℃,终轧温度为750~840℃,非再结晶区轧制的累积变形率≥60%;
(3)轧制完成后,采用DQ+ACC冷却工艺先后冷却钢板,DQ的冷速为25-36℃/s,冷却至钢板表面温度下降至Ar3以下30℃,此阶段组织由奥氏体相变为低碳贝氏体,并伴有少量铁素体生成;ACC的冷却速度为8-17℃/s,在此冷却阶段,突然减小冷却速度促使碳在不同晶相重新分配,铁素体中的碳重新回到剩余奥氏体中,剩余奥氏体重新获得碳的分配继续相变为低碳贝氏体,同时在组织中形成非连续的硬相组织,而且通过减小冷却速度能够延缓组织应力,改善板型;
(4)冷却的终冷温度控制在不高于350℃,随后温矫,最后空冷至室温即获得既具耐海水腐蚀又具抗大变形的管线钢板。
本发明的特点在于:
充分结合各主要元素及各金相组织对力学性能和抗腐蚀性能的影响,结合不同组织对耐海水腐蚀的影响机理。在元素配合方面,利用Cr、Ni、Cu、P元素提高点蚀电位,并改善微区环境,促进某种羟基化合物生成来保护基体。
在晶相组织设计方面,利用低碳贝氏体,这种组织较均匀,以便其与其他组织间形成较小的电势差,抑制形成微电池的倾向性,抑制形成腐蚀通道,从而获得较好的耐腐蚀性能。另外,本发明管线钢组织中除了极细的(晶粒度11级以上)低碳贝氏体组织外,还存在少量的极细铁素体+极细M-A(岛状组织),软硬相搭配,根据位错理论,因而表现出低屈强比和高均匀延伸率的特性,使具有优异的抗大变形性能。
上述极细贝氏体为主的组织需要同时考虑特别是C、Mo、Cr等元素对钢的淬透性影响,元素和冷却工艺的结合才是获得该组织的必要条件。
附图说明
图1为传统采用驰豫空冷获得的X80管线钢板的近表面进行组织图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述,所述实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
实施例1
将与所制管线钢板化学成分相符的钢水经连铸机连铸出厚度为不大于370mm的连铸坯,所得连铸坯的化学成分按照质量百分比计包括:C:0.01%,Si:0.25%,Mn:0.9%,S≤0.0008%,P:0.018%,Al:0.03%,Cr:0.45%,Nb+V+Ti:0.06%,Ni:0.46%,Cu:0.25%,Ca:≤0.0016%,Ca/S=2,N:≤0.0046%,Mo:0.13%,余量为Fe及不可避免的杂质元素。
把连铸坯加热至1180℃,保温3.5小时,出炉,20MPa高压水除鳞后进行两阶段轧制:第一阶段为再结晶区轧制,开轧温度为1180℃,分7道次轧制,其中两道次轧制的变形率≥19%,终轧温度为1050℃,再结晶区轧制后所得中间坯的厚度为90mm;第二阶段为非再结晶区轧制,开轧温度为850℃,终轧温度为810℃,非再结晶区轧制的累积变形率≥60%,所得管线钢板成品的厚度为22mm;轧制完成后,先用DQ快冷,冷速为30℃/s,冷却到690℃,随后采用ACC继续冷却,冷速为15℃/s,终冷温度为350℃,最后空冷至室温。所得管线钢的组织为以极细贝氏体为主的组织,组织中含有不超过5vt%的铁素体和不超过5vt%的M-A组织,其厚度方向组织形貌与图1所示的采用常规弛豫空冷制得的X80级管线钢相比,组织更加均匀、晶粒度11-12级。
实施例2
将与所制管线钢板化学成分相符的钢水经连铸机连铸出厚度为不大于370mm的连铸坯,所得连铸坯的化学成分按照质量百分比计包括:C:0.03%,Si:0.15%,Mn:0.78%,S=0.0005%,,P:0.012%,Al:0.03%,Cr:0.80%,Nb+V+Ti:0.08%,Ni:1.0%,Cu:0.20%,Ca:=0.001%,Ca/S=2,N:≤0.0046%,Mo:0.18%,余量为Fe及不可避免的杂质元素。
把连铸坯加热至1150℃,保温3.0小时,出炉,20MPa高压水除鳞后进行两阶段轧制:第一阶段为再结晶区轧制,开轧温度为1150℃,分5道次轧制,其中两道次轧制的变形率≥17%,终轧温度为1030℃,再结晶区轧制后所得中间坯的厚度为95mm;第二阶段为非再结晶区轧制,开轧温度为850℃,终轧温度为830℃,非再结晶区轧制的累积变形率≥60%,所得管线钢板成品的厚度为26.4mm;轧制完成后,直接DQ+ACC冷却,先用DQ,进行冷却,冷速为32℃/s,冷却到670℃,随后采用ACC继续冷却,冷速为14℃/s,终冷温度为290℃,最后空冷至室温。所得管线钢的组织为以极细贝氏体为主的组织,还含有少量极细铁素体+M-A组织,软硬相结合。
实施例3
将与所制管线钢板化学成分相符的钢水经连铸机连铸出厚度为不大于370mm的连铸坯,所得连铸坯的化学成分按照质量百分比计包括:C:0.039%,Si:0.25%,Mn:0.6%,S=0.0008%,,P:0.015%,Al:0.03%,Cr:0.40%,Nb+V+Ti:0.10%,Ni:1.0%,Cu:0.25%,Ca:=0.0008%,Ca/S=1,N:≤0.0046%,Mo:0.10%,余量为Fe及不可避免的杂质元素。
把连铸坯加热至1160℃,保温4小时,出炉,20MPa高压水除鳞后进行两阶段轧制:第一阶段为再结晶区轧制,开轧温度为1180℃,分5道次轧制,其中两道次轧制的变形率≥17%,终轧温度为1050℃,再结晶区轧制后所得中间坯的厚度为110mm;第二阶段为非再结晶区轧制,开轧温度为870℃,终轧温度为840℃,非再结晶区轧制的累积变形率≥60%,所得管线钢板成品的厚度为33mm;轧制完成后,直接DQ+ACC冷却,先用DQ,进行冷却,冷速为25℃/s,冷却到690℃,随后采用ACC继续冷却,冷速为18℃/s,终冷温度为280℃,最后空冷至室温。所得管线钢的组织为以晶粒度11级-12级的低碳贝氏体为主的组织,组织中含有不超过5vt%的铁素体和不超过5vt%的M-A组织。
尽管以上详细地描述了本发明的优选实施例,但是应该清楚地理解,对于本领域的技术人员来说,本发明可以有各种更改和变化,并且本发明公开的制造方法能够推广至X80级以下的管线钢,例如X70、X60等。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种既具耐海水腐蚀又具抗大变形的X80级管线钢板的制造方法,其特征在于:钢板的元素成分质量百分配比:C:0.01-0.039%,Si:0.15~0.25%,Mn:0.5~0.9%,S:≤0.001%,P:0.001~0.02%,Al≤0.045%,Cr:0.4~0.90%,0.05≤Nb+V+Ti≤0.1%,Ni:0.46~1.0%,Cu:0.20~0.35%,Ca:≤0.002%,且Ca/S为1~2,N:≤0.0046%,Mo:0.08~0.2%,余量为Fe及不可避免的杂质元素;所述钢板的组织为晶粒度11级以上的低碳贝氏体组织为主;所述方法包括以下步骤:
(1)铸造化学成分与钢板成品化学成分相符的连铸坯,将连铸坯加热至1150-1180℃,保温3~4小时,出炉;
(2)高压水除鳞后进行两阶段轧制:第一阶段为再结晶区轧制,开轧温度为1130~1180℃,经多道次轧制后,终轧温度为1030~1080℃,并控制有两道次变形率≥19%;第二阶段为非再结晶区轧制,开轧温度为830~900℃,终轧温度为750~840℃,非再结晶区轧制的累积变形率≥60%;
(3)轧制完成后,采用DQ+ACC冷却工艺先后冷却钢板,DQ的冷速为25-36℃/s,冷却至钢板表面温度下降至Ar3以下30℃,此阶段组织由奥氏体相变为低碳贝氏体,并伴有少量铁素体生成;ACC的冷却速度为8-17℃/s,在此冷却阶段,突然减小冷却速度促使碳重新分配,剩余奥氏体重新获得碳的分配继续相变为低碳贝氏体,同时在组织中形成非连续的硬相组织,而且通过减小冷却速度能够延缓组织应力,改善板型;
(4)冷却的终冷温度控制在不高于350℃,随后温矫,最后空冷至室温即获得既具耐海水腐蚀又具抗大变形的管线钢板。
2.根据权利要求1所述的X80级管线钢板的制造方法,其特征在于:Al:0.02~0.045%。
3.根据权利要求1所述的X80级管线钢板的制造方法,其特征在于:组织中还含有不超过5vt%的铁素体和不超过5vt%的M-A岛状组织。
CN202010607603.3A 2020-06-29 2020-06-29 一种既具耐海水腐蚀又具抗大变形的x80级管线钢板及其制造方法 Active CN111961957B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010607603.3A CN111961957B (zh) 2020-06-29 2020-06-29 一种既具耐海水腐蚀又具抗大变形的x80级管线钢板及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010607603.3A CN111961957B (zh) 2020-06-29 2020-06-29 一种既具耐海水腐蚀又具抗大变形的x80级管线钢板及其制造方法

Publications (2)

Publication Number Publication Date
CN111961957A CN111961957A (zh) 2020-11-20
CN111961957B true CN111961957B (zh) 2022-04-05

Family

ID=73361037

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010607603.3A Active CN111961957B (zh) 2020-06-29 2020-06-29 一种既具耐海水腐蚀又具抗大变形的x80级管线钢板及其制造方法

Country Status (1)

Country Link
CN (1) CN111961957B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964991B (zh) * 2019-12-07 2021-02-26 江阴兴澄特种钢铁有限公司 一种兼具抗hic和抗大变形的管线钢及其制造方法
CN113564462B (zh) * 2021-06-29 2022-05-20 鞍钢股份有限公司 耐晶间腐蚀组织均匀高碳奥氏体不锈钢板及其制造方法
CN116005071B (zh) * 2022-12-27 2024-05-24 南阳汉冶特钢有限公司 一种x80止裂钢板及其生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250713A (zh) * 2014-09-19 2014-12-31 江阴兴澄特种钢铁有限公司 一种x80级抗大变形管线钢板及其制造方法
CN104789887A (zh) * 2015-04-02 2015-07-22 江阴兴澄特种钢铁有限公司 一种超厚规格抗hic及抗ssccx65管线钢板及其制造方法
CN110964991A (zh) * 2019-12-07 2020-04-07 江阴兴澄特种钢铁有限公司 一种兼具抗hic和抗大变形的管线钢及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250713A (zh) * 2014-09-19 2014-12-31 江阴兴澄特种钢铁有限公司 一种x80级抗大变形管线钢板及其制造方法
CN104789887A (zh) * 2015-04-02 2015-07-22 江阴兴澄特种钢铁有限公司 一种超厚规格抗hic及抗ssccx65管线钢板及其制造方法
CN110964991A (zh) * 2019-12-07 2020-04-07 江阴兴澄特种钢铁有限公司 一种兼具抗hic和抗大变形的管线钢及其制造方法

Also Published As

Publication number Publication date
CN111961957A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
CN109957712B (zh) 一种低硬度x70m管线钢热轧板卷及其制造方法
CN111961957B (zh) 一种既具耐海水腐蚀又具抗大变形的x80级管线钢板及其制造方法
CN113549828B (zh) 一种低屈强比超高强海工钢及其制造方法
KR101331976B1 (ko) 인성이 우수한 후육 내사워 라인 파이프용 강판의 제조 방법
EP1546417A1 (en) High strength seamless steel pipe excellent in hydrogen-induced cracking resistance and its production method
CN110964991B (zh) 一种兼具抗hic和抗大变形的管线钢及其制造方法
CN109161790A (zh) 一种酸性条件下使用的高级别高韧性管件钢板及其制造方法
KR101360467B1 (ko) 저온 파괴인성 및 균일연신율이 우수한 라인파이프용 강판 및 그 제조방법
CN112575158B (zh) 一种高塑性厚规格管线钢板及其制造方法
CN109957714B (zh) 强度和低温韧性优良的管线用钢及其制造方法
CA3047937A1 (en) Steel material for welded steel pipe, having excellent longitudinal uniform elongation, manufacturing method therefor, and steel pipe using same
CN113549846A (zh) 一种低温性能优异的550MPa级海工钢及其制造方法
KR101778406B1 (ko) 극저온인성이 우수한 후물 고강도 라인파이프 강재 및 제조방법
JP2022510214A (ja) 冷間加工性及びssc抵抗性に優れた超高強度鋼材及びその製造方法
CN113549827A (zh) 一种低温韧性优异的fh690级海工钢及其制造方法
US7416617B2 (en) High strength seamless steel pipe excellent in hydrogen-induced cracking resistance
CA3086838C (en) Steel material for low yield ratio, high-strength steel pipe having excellent low-temperature toughness, and manufacturing method therefor
KR100951249B1 (ko) 수소응력균열 저항성과 저온인성이 우수한 후판강재 및 그제조방법
JP3244984B2 (ja) 低降伏比を有する低温靱性に優れた高強度ラインパイプ用鋼
CN111074155B (zh) 一种高强度抗硫化氢腐蚀油井管钢及其制备方法
CN112195396A (zh) 一种兼具抗hic及耐冲刷深海钻探隔水管用x80管线用钢板及其制造方法
JPH0941074A (ja) 低温靭性の優れた超高張力鋼
CN115558863B (zh) 一种屈服强度≥750MPa的低屈强比海工钢及其生产工艺
CN113637922A (zh) 一种经济型低屈强比高强度钢及其制造方法
CN109628854A (zh) 一种超快冷工艺生产钢板的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant