WO2023273127A1 - 一种模具用冷却棒组件及模具内导热管回路结构 - Google Patents

一种模具用冷却棒组件及模具内导热管回路结构 Download PDF

Info

Publication number
WO2023273127A1
WO2023273127A1 PCT/CN2021/133314 CN2021133314W WO2023273127A1 WO 2023273127 A1 WO2023273127 A1 WO 2023273127A1 CN 2021133314 W CN2021133314 W CN 2021133314W WO 2023273127 A1 WO2023273127 A1 WO 2023273127A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
cooling
mold
hole
heat pipe
Prior art date
Application number
PCT/CN2021/133314
Other languages
English (en)
French (fr)
Inventor
梁正华
林连明
王华良
Original Assignee
浙江凯华模具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110736127.XA external-priority patent/CN113523198A/zh
Priority claimed from CN202110736124.6A external-priority patent/CN113547710B/zh
Application filed by 浙江凯华模具有限公司 filed Critical 浙江凯华模具有限公司
Publication of WO2023273127A1 publication Critical patent/WO2023273127A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D15/00Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould

Definitions

  • the invention relates to the technical field of mold manufacturing, in particular to a cooling rod assembly for a mold and a circuit structure of a heat-conducting pipe in the mold.
  • plastic molding molds even aluminum alloy die-casting molds, it includes an upper mold with a cavity, a core matched with the cavity, a lower mold for fixing the core, and a connected cavity on the upper mold.
  • the sprue the lower mold is equipped with an ejection mechanism for ejecting the product.
  • the molding machine injects molten high-temperature plastic or aluminum alloy into the cavity through the sprue, and the desired product is formed after cooling. Due to thermal expansion and contraction, the cooled product will be wrapped on the core.
  • the upper , The lower mold is separated, and the ejection mechanism of the lower mold can eject the product wrapped on the core, and the operator or the manipulator can take out the product.
  • a corresponding cooling system needs to be installed on the mold to cool the cavity and core of the mold through cooling water, so as to improve the molding efficiency and molding quality of the product.
  • the cooling system usually includes a cooling device with cooling water
  • the upper mold is provided with a cooling water channel close to the cavity
  • the lower mold is provided with an inlet cooling water channel and an outlet cooling water channel
  • a cooling water inlet pipe and a cooling water channel are provided in the core.
  • the cooling water return pipe, the inlet cooling water channel of the lower mold is connected with the cooling water inlet pipe of the core
  • the cooling return water pipe of the mold core is connected with the outlet cooling water channel of the lower mold.
  • the above-mentioned cooling system can effectively cool most of the molds, for some relatively slender cores—especially for some cores used to form blind holes with smaller apertures, and for some For molds with relatively slender cores in the punch—especially for some cores used to form blind holes with small apertures, it is difficult to install cooling water inlet pipes and cooling return water pipes inside the cores at the same time. As a result, it is difficult to cool the cores. Many times, people can only give up cooling these cores, resulting in slow cooling of the product in this part, which cannot be cooled synchronously with other parts, affecting the molding efficiency, and affecting the product due to inconsistent cooling shrinkage. the quality of.
  • the object of the present invention is to provide a cooling rod assembly for a mold and a heat pipe circuit structure in the mold, which can quickly and effectively cool small-sized cores, which is beneficial to improving production efficiency and product quality.
  • the technical solution adopted by the present invention to achieve its first invention objective is: a cooling rod assembly for a mold, which is suitable for cooling the core in the mold.
  • the cooling rod assembly includes two A heat pipe with a closed end, one end of the heat pipe is a heat-absorbing end for extending into the cooling hole of the core, and the other end is a heat-dissipating end for extending into the mold cooling water channel, and the heat pipe is provided with a phase change liquid and Capillary structure, the boiling point of the phase change liquid is between 45°-60°.
  • the mold includes an upper mold with a cavity and a lower mold with a core, the cooling water channel has a water inlet and a water outlet, and the cooling water channel is arranged in the lower mold.
  • the mold includes an upper mold with a cavity and a lower mold with a core
  • the lower mold includes a cooling channel with a water inlet and a water outlet.
  • the present invention sets a cooling hole extending upward from the lower end of the core on the core, and sets a heat-conducting tube with both ends closed in the cooling hole, and the heat-conducting tube is filled with Phase change fluid between °-60°. In this way, when the mold is formed, the temperature of the core will be transferred to the heat-absorbing end of the heat pipe, so that the temperature of the phase change liquid in the heat pipe will rise above the boiling point.
  • the phase change liquid will change from liquid to gas, thereby absorbing a large amount of The heat, the pressure of the gaseous phase change liquid rises rapidly, so that it quickly flows to the cooling end, and the cooling end extending into the cooling water channel transfers heat to the cooling water, so that the gaseous phase change liquid condenses into a liquid state, and the capillary tube
  • the structure can use the capillary effect to make the phase change liquid in the heat dissipation end flow back to the heat absorption end, so that the heat at the end of the core can be quickly dissipated through the cooling water, so that the core can be integrated with other parts. Synchronous cooling can not only improve the cooling and molding efficiency of the mold, but also improve the molding quality of the product.
  • the heat-conducting tube is made of red copper
  • a sintered layer is provided on the inner wall of the heat-conducting tube, and the sintered layer constitutes the capillary structure.
  • Copper has good thermal conductivity, which is beneficial to conduct the heat of the core to the heat pipe.
  • the sintered layer can form a large number of interconnected honeycomb pores on the inner wall of the heat-conducting pipe, thereby forming a good capillary effect, and the sintered layer has good strength and long service life.
  • the diameter of the inner hole of the heat pipe increases gradually from the heat dissipation end to the heat absorption end, so that the inner hole becomes a conical hole with a taper of 0.02-0.03, and a A number of heat dissipation fins evenly distributed in the circumferential direction, conical positioning protrusions are respectively provided on both ends of the heat transfer tube, the positioning protrusions at the upper end of the heat transfer tube are against the bottom surface of the cooling hole, and the positioning protrusions at the lower end of the heat transfer tube are against the side of the cooling water channel When cooling water flows through the cooling channel, it impacts the cooling fins, thereby driving the heat pipe to rotate.
  • the diameter of the inner hole of the heat-conducting pipe increases gradually from the heat-dissipating end to the heat-absorbing end, so that the inner hole of the heat-conducting pipe becomes a conical hole with a taper of 0.02-0.03.
  • a number of heat dissipation fins evenly distributed in the circumferential direction are arranged on the circumferential surface of the heat dissipation end of the heat pipe. In this way, when cooling water flows through the cooling water channel, the water flow hits the cooling fins, thereby driving the heat transfer tube to rotate.
  • the phase change liquid in the heat transfer tube follows the rotation to generate a radial centrifugal force, making the phase change liquid close to the inner wall of the heat transfer tube. , and then make the phase change liquid flow along the inclined inner wall of the heat pipe to the heat-absorbing end automatically.
  • the cooling fins will accelerate the transfer of heat from the heat pipe to the cooling water. That is to say, the cooling fins can not only accelerate the heat dissipation, but also act like turbine blades, so that the flowing cooling water can drive the heat pipe to rotate quickly.
  • the two ends of the heat pipe are respectively provided with conical positioning protrusions, so that the center of the heat pipe can be positioned in the cooling hole of the core, and at the same time, the frictional resistance during rotation can be significantly reduced.
  • the lower mold is provided with a transition hole passing through the cooling channel at the position corresponding to the cooling hole, a sealing ring surrounding the transition hole is provided between the lower end surface of the core and the lower mold, and a cooling ring is provided between the heat pipe and the cooling hole. Fitting clearance that communicates with a transition hole. Since a sealing ring surrounding the transition hole is provided between the lower end face of the core and the lower mold, the transition hole and the matching gap can be effectively sealed to avoid leakage of cooling water.
  • the cooling water in the cooling water channel can enter the fit gap between the cooling hole of the core and the heat pipe, so that the heat of the core can be quickly transferred to the heat pipe, and at the same time, it can effectively avoid the heat transfer caused by the heat pipe and the cooling hole. Causes frictional resistance when the heat pipe rotates.
  • a heat pipe circuit structure in a mold suitable for cooling the core, including the above-mentioned cooling rod assembly for the mold.
  • the mold includes an upper mold with a cavity and a lower mold with a punch, the core is arranged in the upper mold or in the punch of the lower mold, the core is provided with cooling holes, the A cooling water channel is arranged inside the mold, and the axis of the cooling hole intersects with the axis of the cooling water channel.
  • the cooling water channel is respectively arranged in the upper mold and the lower mold, and the cooling water channel includes a water inlet and a water outlet; the lower mold is provided with a transition hole passing through the cooling water channel at the position of the corresponding cooling hole.
  • a sealing ring surrounding the transition hole is provided between the end face and the lower mold, and a matching gap communicating with the transition hole is provided between the heat pipe and the cooling hole.
  • the heat pipe circuit structure in the mold is suitable for cooling the core
  • the mold includes an upper mold with a cavity and a lower mold with a punch
  • the core is arranged in the upper mold or the punch of the lower mold
  • the core is provided with a cooling hole
  • the upper mold and the lower mold are respectively provided with a cooling water channel including a water inlet and a water outlet
  • a heat conduction tube made of red copper with both ends closed is arranged in the cooling hole
  • One end of the heat-conducting pipe is a heat-absorbing end extending into the cooling hole of the core, and the other end is a heat-dissipating end extending into the cooling water channel.
  • the heat-conducting pipe is provided with a phase change liquid, and a sintering layer is provided on the inner wall of the heat-conducting pipe.
  • the boiling point of the phase-change liquid is between 45°-60°.
  • the core transfers heat to the heat-absorbing end of the heat pipe, so that the phase-change liquid in the heat-absorbing end is vaporized, and the gaseous phase
  • the changing liquid flows to the heat dissipation end of the heat pipe.
  • the cooling water enters the cooling water channel from the water inlet and flows out of the cooling water channel from the water outlet, it cools the heat dissipation end extending into the cooling water channel.
  • the gaseous phase change liquid at the heat dissipation end The condensate is liquid, and then flows back to the endothermic end under the capillary action of the sintered layer.
  • the present invention sets a cooling hole extending upward from the lower end of the core on the core, and sets a heat transfer tube with both ends closed in the cooling hole, and the heat transfer tube is filled with Phase change fluid between -60°.
  • the temperature of the core will be transferred to the heat-absorbing end of the heat pipe, so that the temperature of the phase change liquid in the heat pipe will rise above the boiling point.
  • the phase change liquid will change from liquid to gas, thereby absorbing a large amount of The heat, the pressure of the gaseous phase change liquid rises rapidly, so that it quickly flows to the cooling end, and the cooling end extending into the cooling water channel transfers heat to the cooling water, so that the gaseous phase change liquid condenses into a liquid state, and the capillary tube
  • the structure can use the capillary effect to make the phase change liquid in the heat dissipation end flow back to the heat absorption end, so that the heat at the end of the core can be quickly dissipated through the cooling water, so that the core can be integrated with other parts. Synchronous cooling can not only improve the cooling and molding efficiency of the mold, but also improve the molding quality of the product.
  • the heat pipe is made of red copper, which has good thermal conductivity, which is beneficial to conduct the heat of the core to the heat pipe.
  • a sintered layer is provided on the inner wall of the heat-conducting pipe, and the sintered layer can form a large number of interconnected honeycomb holes on the inner wall of the heat-conducting pipe, thereby forming a good capillary effect, and the sintered layer has good strength and long service life, and The flow of the gaseous phase change fluid in the heat pipe will not be hindered.
  • the present invention is applicable to the core of the lower mold, or the core of the upper mold.
  • the diameter of the inner hole of the heat pipe increases gradually from the heat dissipation end to the heat absorption end, so that the inner hole becomes a conical hole with a taper of 0.02-0.03, and a A number of heat dissipation fins evenly distributed in the circumferential direction, conical positioning protrusions are respectively provided on both ends of the heat transfer tube, the positioning protrusions at the upper end of the heat transfer tube are against the bottom surface of the cooling hole, and the positioning protrusions at the lower end of the heat transfer tube are against the side of the cooling water channel When cooling water flows through the cooling channel, it impacts the cooling fins, thereby driving the heat pipe to rotate.
  • the diameter of the inner hole of the heat-conducting pipe increases gradually from the heat-dissipating end to the heat-absorbing end, so that the inner hole of the heat-conducting pipe becomes a conical hole with a taper of 0.02-0.03.
  • a number of heat dissipation fins evenly distributed in the circumferential direction are arranged on the circumferential surface of the heat dissipation end of the heat pipe. In this way, when cooling water flows through the cooling water channel, the water flow hits the cooling fins, thereby driving the heat transfer tube to rotate.
  • the phase change liquid in the heat transfer tube follows the rotation to generate a radial centrifugal force, making the phase change liquid close to the inner wall of the heat transfer tube. , and then make the phase change liquid flow along the inclined inner wall of the heat pipe to the heat-absorbing end automatically.
  • the cooling fins will accelerate the transfer of heat from the heat pipe to the cooling water. That is to say, the heat dissipation fins can not only accelerate heat dissipation, but also act like turbine blades, so that the flowing cooling water can drive the heat pipe to rotate rapidly.
  • the two ends of the heat pipe are respectively provided with conical positioning protrusions, so that the center of the heat pipe can be positioned in the cooling hole of the core, and at the same time, the frictional resistance during rotation can be significantly reduced.
  • the lower mold is provided with a transition hole passing through the cooling channel at the position corresponding to the cooling hole, a sealing ring surrounding the transition hole is provided between the lower end surface of the core and the lower mold, and a cooling ring is provided between the heat pipe and the cooling hole. Fitting clearance that communicates with a transition hole. Since a sealing ring surrounding the transition hole is provided between the lower end face of the core and the lower mold, the transition hole and the matching gap can be effectively sealed to avoid leakage of cooling water.
  • the cooling water in the cooling water channel can enter the fit gap between the cooling hole of the core and the heat pipe, so that the heat of the core can be quickly transferred to the heat pipe, and at the same time, it can effectively avoid the heat transfer caused by the heat pipe and the cooling hole. Causes frictional resistance when the heat pipe rotates.
  • the heat pipe is made by the following steps:
  • step b Repeat step b until the inner hole of the copper tube is close to the mandrel, at this time the inner hole of the copper tube is conical;
  • the inner diameters of the copper tubes formed in the prior art are consistent, and conventional machining methods are not suitable for secondary processing of the inner holes of the long and thin copper tubes.
  • the present invention creatively utilizes the copper tubes inserted into the mandrels inside several extrusion wheels for extrusion processing, so that the inner diameter of the copper tubes can be conveniently reduced and matched with the conical mandrels, thereby making the copper tubes
  • the inner bore of the tube forms the desired conical bore.
  • the inner hole of the copper tube is a conical hole, so it is convenient for the mandrel to be pulled out from the big end of the inner hole of the copper tube.
  • the present invention has the following beneficial effects: the small-sized core can be cooled quickly and effectively, which is not only conducive to improving production efficiency, but also can improve product quality.
  • Fig. 1 is a kind of structural representation of the present invention
  • Fig. 2 is a schematic diagram of a cooperative structure of the heat pipe, the lower mold and the core;
  • Fig. 3 is a schematic diagram of the manufacturing principle of the heat pipe
  • a cooling rod assembly for a mold is suitable for cooling the core of an injection molding or even an aluminum alloy die-casting mold.
  • the mold in this embodiment is an injection molding mold, and the mold includes An upper mold 1 with a cavity 11 and a lower mold 2 with a core 4 , the lower mold includes a cooling channel 3 with a water inlet 31 and a water outlet 32 .
  • an upwardly extending cooling hole 41 is provided on the end surface where the core is connected to the lower mold, and the axis of the cooling hole intersects the axis of the cooling channel.
  • the cooling rod assembly includes a heat pipe 5 arranged in the cooling hole and closed at both ends.
  • One end of the heat pipe is a heat-absorbing end 51 extending into the cooling hole of the core, and the other end is a heat-dissipating end 52 extending into the cooling water channel.
  • a phase-change liquid and a capillary structure are arranged in the heat-conducting tube, and the boiling point of the phase-change liquid is between 45°-60°.
  • acetone can be used as the phase-change liquid, and its boiling point is 56.12°.
  • the temperature of the core will be transferred to the heat-absorbing end of the heat pipe, so that the temperature of the phase change liquid in the heat pipe will rise above the boiling point, and the phase change liquid will change from liquid to gas at this time.
  • a substance can absorb a large amount of heat when it changes phase, and its temperature remains unchanged. That is to say, when the temperature of the phase change fluid reaches the boiling point, it changes from a liquid state to a gas state, while the temperature remains unchanged.
  • the pressure of the gaseous phase change liquid rises rapidly, so that it quickly flows to the cooling end, and the cooling end extending into the cooling channel transfers heat to the cooling water, so that the gaseous phase change liquid condenses into a liquid state, and the capillary structure can Using the capillary effect to make the phase change fluid in the cooling end flow back to the heat-absorbing end, so that the heat at the end of the core can be quickly dissipated through the cooling water, so that the core can be cooled synchronously with other parts. It can not only improve the cooling and forming efficiency of the mold, but also improve the forming quality of the product.
  • the heat pipe is made of red copper, which is beneficial to transfer the heat of the core to the heat pipe.
  • a sintered layer is provided on the inner wall of the heat conduction pipe, the sintered layer constitutes the capillary structure, and the sintered layer can form a large number of interconnected honeycomb pores on the inner wall of the heat conduction pipe, thereby forming a good capillary effect, And the sintered layer has good strength and long service life.
  • the sintered layer is attached to the inner sidewall of the heat pipe, and therefore, does not affect the flow of the gaseous phase change fluid.
  • a number of heat dissipation fins 54 evenly distributed in the circumferential direction are provided on the circumferential surface of the heat-conducting tube, and conical positioning protrusions 53 are respectively provided on the two ends of the heat-conducting tube, and the positioning protrusions on the upper end of the heat-conducting tube abut against the cooling hole.
  • the positioning protrusion at the lower end of the heat pipe abuts against the side wall of the cooling water channel.
  • the cooling fins can also accelerate the conduction of heat from the heat pipe to the cooling water. That is to say, the heat dissipation fins can not only accelerate heat dissipation, but also act like turbine blades, so that the flowing cooling water can drive the heat pipe to rotate rapidly.
  • the conical positioning protrusions on both ends of the heat pipe can make the center positioning of the heat pipe in the cooling hole of the core, and at the same time significantly reduce the frictional resistance when it rotates.
  • the transition hole 21 is provided with a sealing ring 22 surrounding the transition hole between the lower end surface of the core and the lower mold.
  • the fit gap should communicate with the transition hole. Since a sealing ring around the transition hole is provided between the lower end surface of the core and the lower mold, the transition hole and the effective sealing of the matching gap can be ensured, and the leakage of cooling water can be avoided.
  • the cooling water in the cooling water channel can enter the fit gap between the cooling hole of the core and the heat pipe, so that the heat of the core can be quickly transferred to the heat pipe, and at the same time, it can effectively avoid the heat transfer caused by the heat pipe and the cooling hole. Causes frictional resistance when the heat pipe rotates.
  • a heat pipe circuit structure in a mold is suitable for cooling the core of an injection molding or even an aluminum alloy die-casting mold.
  • the mold in this embodiment is an injection molding mold, and the mold It includes an upper mold 1 with a cavity 11 and a lower mold 2 with a convex mold 23 , and the lower mold includes a cooling channel 3 with a water inlet 31 and a water outlet 32 .
  • the core 4 is arranged in the punch of the lower mold, and the end surface of the core connected with the lower mold is provided with an upwardly extending cooling hole 41 , and the axis of the cooling hole intersects the axis of the cooling water channel.
  • a heat pipe 5 with both ends closed and made of copper is provided in the cooling hole.
  • One end of the heat pipe is a heat-absorbing end 51 extending into the cooling hole of the core, and the other end is a heat-dissipating end 52 extending into the cooling water channel.
  • a phase-change liquid is provided inside the heat pipe, and the boiling point of the phase-change liquid is between 45°-60°.
  • acetone can be used as the phase-change liquid, and its boiling point is 56.12°.
  • the sintered layer can form a large number of interconnected honeycomb holes on the inner wall of the heat pipe, thereby forming a good capillary effect, that is to say, the sintered layer at this time constitutes the inside of the heat pipe. capillary structure.
  • the temperature of the core will be transferred to the heat-absorbing end of the heat pipe, so that the temperature of the phase change liquid in the heat pipe will rise above the boiling point, and the phase change liquid will change from liquid to gas at this time.
  • a substance can absorb a large amount of heat when it changes phase, and its temperature remains unchanged. That is to say, when the temperature of the phase change fluid reaches the boiling point, it changes from a liquid state to a gas state, while the temperature remains unchanged.
  • the pressure of the gaseous phase change liquid rises rapidly, so that it quickly flows to the cooling end, and the cooling end extending into the cooling water channel transfers heat to the cooling water, so that the gaseous phase change liquid condenses into a liquid state, and the sintered layer can be Using the capillary effect to make the phase change fluid in the cooling end flow back to the heat-absorbing end, so that the heat at the end of the core can be quickly dissipated through the cooling water, so that the core can be cooled synchronously with other parts. It can not only improve the cooling and molding efficiency of the mold, but also improve the molding quality of the product.
  • heat pipe of the present invention can be used not only on the core of the lower mold, but also on the core of the upper mold.
  • a number of heat dissipation fins 54 evenly distributed in the circumferential direction are provided on the circumferential surface of the heat-conducting tube, and conical positioning protrusions 53 are respectively provided on the two ends of the heat-conducting tube, and the positioning protrusions on the upper end of the heat-conducting tube abut against the cooling hole.
  • the positioning protrusion at the lower end of the heat pipe abuts against the side wall of the cooling water channel.
  • the cooling fins can also accelerate the conduction of heat from the heat pipe to the cooling water. That is to say, the heat dissipation fins can not only accelerate heat dissipation, but also act like turbine blades, so that the flowing cooling water can drive the heat pipe to rotate rapidly.
  • the conical positioning protrusions on both ends of the heat pipe can make the center positioning of the heat pipe in the cooling hole of the core, and at the same time significantly reduce the frictional resistance when it rotates.
  • the transition hole 21 is provided with a sealing ring 22 surrounding the transition hole between the lower end surface of the core and the lower mold.
  • the fit gap should communicate with the transition hole. Since a sealing ring surrounding the transition hole is provided between the lower end face of the core and the lower mold, the transition hole and the matching gap can be effectively sealed to avoid leakage of cooling water.
  • the cooling water in the cooling water channel can enter the fit gap between the cooling hole of the core and the heat pipe, so that the heat of the core can be quickly transferred to the heat pipe, and at the same time, it can effectively avoid the heat transfer caused by the heat pipe and the cooling hole. Causes frictional resistance when the heat pipe rotates.
  • the copper heat pipe can be made by clamping and pushing mechanism and extruding mechanism, wherein the clamping and pushing mechanism includes a worktable 6, which is movably arranged on the workbench for clamping the heat pipe.
  • Clamping head 7, the clamping head is associated with the drive motor, so that the clamping head can drive the heat pipe to rotate, and we call the side of the clamping head used to clamp the heat pipe as the front side, and the other side as the front side. rear side.
  • the clamping head can be a drill chuck on a drill press.
  • the extruding mechanism then comprises the introduction plate 61 that is vertically arranged on the front side of the clamping head, the introduction plate is provided with an extrusion hole 611 that can pass through the heat pipe, and the front side of the introduction plate is provided with 3 surrounding extrusion holes
  • the extrusion wheels 8 whose axes are evenly distributed are associated with a synchronous radial movement mechanism so that all the extrusion wheels can move radially synchronously.
  • the synchronous radial movement mechanism includes a three-jaw chuck with three jaws, and a rotatable extrusion wheel is arranged on the jaws.
  • the processing steps of the heat pipe are as follows:
  • a conical mandrel 9 Insert a conical mandrel 9 with a large end and a small end in a cylindrical copper tube.
  • the large end of the mandrel is adapted to the inner hole of the copper tube, and the small end of the mandrel is matched with the inner hole of the copper tube. There are gaps in between.
  • the taper of the mandrel should match the taper (0.02-0.03) of the inner hole of the heat pipe, and the mandrel is made of steel wire and has been quenched so that its surface has sufficient hardness;
  • the clamping head uses the clamping head to clamp the end of the copper tube corresponding to the large end of the mandrel. At this time, the clamping head drives the copper tube to rotate, and at the same time makes the end of the copper tube corresponding to the small end of the mandrel enter the vertically set guide plate In the extrusion hole, the copper tube is radially squeezed by extrusion wheels evenly distributed around the axis of the extrusion hole, so that the diameter of the copper tube is gradually reduced;
  • step b Repeat step b until the inner hole of the copper tube is close to the mandrel, at this time the inner hole of the copper tube is conical;
  • the inner diameters of the copper tubes formed in the prior art are consistent, and conventional machining methods are not suitable for secondary processing of the inner holes of the long and thin copper tubes.
  • the present invention creatively utilizes the copper tubes inserted into the mandrels inside several extrusion wheels for extrusion processing, so that the inner diameter of the copper tubes can be conveniently reduced and matched with the conical mandrels, thereby making the copper tubes
  • the inner bore of the tube forms the desired conical bore.
  • the inner hole of the copper tube is a conical hole, so it is convenient for the mandrel to be pulled out from the big end of the inner hole of the copper tube.
  • the shape of the extrusion wheel should adopt a truncated conical shape with a taper matching that of the mandrel, so that the copper tube can fully fit the outer wall of the heat pipe after extrusion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

一种模具用冷却棒组件及一种包括上述模具用冷却棒组件的模具内导热管回路结构,适用于对模具内型芯(4)的冷却,冷却棒组件包括用于设置在模具型芯冷却孔(41)内且两端封闭的导热管(5),所述导热管(5)一端为用于伸入型芯冷却孔(41)内部的吸热端(51),另一端为用于伸入模具冷却水道的散热端(52),所述导热管(5)内设有相变液和毛细管结构,所述相变液的沸点在45°-60°之间。

Description

一种模具用冷却棒组件及模具内导热管回路结构 技术领域
本发明涉及模具制造技术领域,具体涉及一种模具用冷却棒组件及模具内导热管回路结构。
背景技术
我们知道,现有的日常生活用品或者工业用品,大多是通过模塑成型得到的,以提高生产效率,降低制造成本。对于塑料成型模具、甚至是铝合金压铸模具而言,其通过包括一个具有型腔的上模、与型腔配合的型芯,用于固定型芯的下模,上模上设有连通型腔的浇道,下模上设有用于顶出产品的顶出机构。成型机将熔融的高温塑胶或铝合金通过浇道注入型腔内,冷却后即形成所需的产品,由于热胀冷缩的缘故,冷却后的产品会包裹在型芯上,此时,上、下模分开,下模的顶出机构即可将包裹在型芯上的产品顶出,操作人员、或者机械手即可取出产品。
由于熔融的塑胶或者铝合金具有大量的热量,因此,模具上还需要设置相应的冷却系统,通过冷却水对模具的型腔、型芯进行冷却,以便提高产品的成型效率和成型质量。
在现有技术中,冷却系统通常包括一个具有冷却水的冷却装置,上模上设置靠近型腔的冷却水道,在下模上设置进冷却水道和出冷却水道,在型芯内设置冷却进水管和冷却回水管,下模的进冷却水道与型芯的冷却进水管相连接,型芯的冷却回水管与下模的出冷却水道相连接。当冷却水通过上模的冷却水道时,即可对上模的型腔进行冷却;而冷却水通过下模一端的进冷却水道进入型芯内部的冷却进水管,再由冷却回水管将换热后升温的冷却水向外流出,并通过下模另一端的出冷却水道回流到冷却装置内换热冷却。
上述冷却系统虽然可以对大部分的模具进行有效的冷却,但是对于一些较为细长的型芯而言——尤其是一些用于成型孔径较小的盲孔的型芯而言,以及对于一些在凸模内设有较为细长的型芯的模具而言——尤其是一些用于成型孔径较小的盲孔的型芯而言,在型芯内部难以同时设置冷却进水管和冷却回水管,从而造成型芯冷却的困难,好多时候,人们只能放弃对这些型芯进行冷却,从而造成该部位产品冷却速度慢,无法与其它部位同步冷却,影响成型效率,因冷却收缩的不一致而影响产品的质量。
发明内容
本发明的目的是为了提供一种模具用冷却棒组件及模具内导热管回路结构,可对小尺寸的型芯进行快速有效的冷却,既有利于提高生产效率,又可提升产品的质量。
本发明实现其第一个发明目的所采用的技术方案是:一种模具用冷却棒组件,适用于对 模具内型芯的冷却,冷却棒组件包括用于设置在模具型芯冷却孔内且两端封闭的导热管,所述导热管一端为用于伸入型芯冷却孔内部的吸热端,另一端为用于伸入模具冷却水道的散热端,所述导热管内设有相变液和毛细管结构,所述相变液的沸点在45°-60°之间。
所述模具包括具有型腔的上模和具有型芯的下模,所述冷却水道具有进水口和出水口,所述的冷却水道设置在下模内。
作为现有技术,模具包括具有型腔的上模和具有型芯的下模,并且下模包括具有进水口和出水口的冷却水道。为了使型芯得到有效的冷却,本发明在型芯上设置由型芯下端面向上延伸的冷却孔,并在冷却孔内内设置两端封闭的导热管,而导热管内充注有沸点在45°-60°之间的相变液。这样,在模具成型时,型芯的温度会传导给导热管的吸热端,从而使导热管内的相变液升温至沸点以上,此时的相变液由液体变为气体,从而可吸收大量的热量,变成气态的相变液的压力迅速上升,从而快速流动至散热端,伸入冷却水道的散热端则将热量传导给冷却水,从而使气态的相变液冷凝成液态,而毛细管结构则可利用毛细管效应使散热端内的相变液重新回流至吸热端,如此循环,即可快速地将型芯端部的热量通过冷却水散发出去,从而使型芯能和其它部位实现同步冷却,即可提升模具的冷却和成型效率,又可提升产品的成型质量。
作为优选,所述导热管由紫铜制成,在导热管的内侧壁设有烧结层,所述烧结层构成所述的毛细管结构。紫铜具有良好的导热性能,从而有利于将型芯的热量传导到导热管上。特别是烧结层可在导热管道的内侧壁形成大量相互连通的蜂窝状小孔,从而构成良好的毛细效果,并且烧结层的强度好,使用寿命长。
作为优选,所述导热管内孔的孔径由散热端至吸热端逐渐增大,从而使所述内孔成为锥度在0.02-0.03之间的圆锥孔,在导热管的散热端圆周面上设有若干在周向上均匀分布的散热翅,导热管的两端面分别设有圆锥形的定位凸起,导热管上端的定位凸起抵靠冷却孔底面,导热管下端的定位凸起抵靠冷却水道侧壁,当冷却水道内有冷却水流过时,冲击散热翅,从而带动导热管转动。
本发明使导热管内孔的孔径由散热端至吸热端逐渐增大,从而使导热管的内孔成为锥度在0.02-0.03之间的圆锥孔。并且在导热管的散热端圆周面上设有若干在周向上均匀分布的散热翅。这样,当冷却水道内有冷却水流过时,水流冲击散热翅,从而带动导热管转动,此时,导热管内的相变液跟随转动而产生径向的离心力,使相变液紧贴导热管内侧壁,进而使相变液沿着倾斜的导热管内侧壁自动向吸热端流动。此外,散热翅会加速导热管的热量传导给冷却水。也就是说,散热翅既可起到加快散热的作用,又可起到类似涡轮叶片的作用,使流动 的冷却水可驱动导热管快速转动。
另外,导热管的两端面分别设有圆锥形的定位凸起,从而可使导热管在型芯的冷却孔内实现中心定位,同时显著地减小其转动时的摩擦阻力。
作为优选,所述下模在对应冷却孔位置设有贯通冷却水道的过渡孔,在型芯下端面与下模之间设有围绕过渡孔的密封圈,在导热管和冷却孔之间设有与过渡孔连通的配合间隙。由于在型芯下端面与下模之间设有围绕过渡孔的密封圈,因此,可确保过渡孔、配合间隙的有效密封,避免冷却水的外泄。
特别是,冷却水道的冷却水可进入型芯的冷却孔与导热管之间的配合间隙内,从而可将型芯的热量快速传递给导热管,同时有效的避免因导热管与冷却孔的配合造成导热管转动时的摩擦阻力。
本发明实现其第二个发明目的所采用的技术方案:一种模具内导热管回路结构,适用于对型芯的冷却,包括上述所述的模具用冷却棒组件。
作为优选,所述模具包括具有型腔的上模和具有凸模的下模,所述型芯设置在上模内或者下模的凸模内,所述型芯设有冷却孔,所述的模具内部设置有冷却水道,冷却孔的轴线与冷却水道的轴线相交叉。
作为优选,所述冷却水道分别设置在上模和下模内,并且冷却水道包括有进水口和出水口;所述下模在对应冷却孔位置设有贯通冷却水道的过渡孔,在型芯下端面与下模之间设有围绕过渡孔的密封圈,在导热管和冷却孔之间设有与过渡孔连通的配合间隙。
该模具内导热管回路结构,适用于对型芯的冷却,所述模具包括具有型腔的上模和具有凸模的下模,所述型芯设置在上模内或者下模的凸模内,所述型芯设有冷却孔,所述上模和下模分别设有包括进水口和出水口的冷却水道,在所述冷却孔内设有两端封闭且由紫铜制成的导热管,所述导热管一端为伸入型芯冷却孔内部的吸热端,另一端为伸入冷却水道的散热端,所述导热管内设有相变液,在导热管的内侧壁设有烧结层,所述相变液的沸点在45°-60°之间,当模具成型时,型芯将热量传递给导热管的吸热端,从而使吸热端内的相变液气化,气态的相变液流动至导热管的散热端,与此同时,冷却水由进水口进入冷却水道、由出水口流出冷却水道时,并对伸入冷却水道的散热端进行冷却,散热端气态的相变液冷凝呈液态,然后在烧结层的毛细作用下回流至吸热端。
为了使型芯得到有效的冷却,本发明在型芯上设置由型芯下端面向上延伸的冷却孔,并在冷却孔内设置两端封闭的导热管,而导热管内充注有沸点在45°-60°之间的相变液。这样,在模具成型时,型芯的温度会传导给导热管的吸热端,从而使导热管内的相变液升温至沸点 以上,此时的相变液由液体变为气体,从而可吸收大量的热量,变成气态的相变液的压力迅速上升,从而快速流动至散热端,伸入冷却水道的散热端则将热量传导给冷却水,从而使气态的相变液冷凝成液态,而毛细管结构则可利用毛细管效应使散热端内的相变液重新回流至吸热端,如此循环,即可快速地将型芯端部的热量通过冷却水散发出去,从而使型芯能和其它部位实现同步冷却,即可提升模具的冷却和成型效率,又可提升产品的成型质量。
特别是,导热管由紫铜制成,紫铜具有良好的导热性能,从而有利于将型芯的热量传导到导热管上。并且在导热管的内侧壁设有烧结层,烧结层可在导热管道的内侧壁形成大量相互连通的蜂窝状小孔,从而构成良好的毛细效果,并且烧结层的强度好,使用寿命长,并且不会阻碍气态的相变液在导热管内的流动。
需要说明的是,本发明适用于下模的型芯,或者上模的型芯。
作为优选,所述导热管内孔的孔径由散热端至吸热端逐渐增大,从而使所述内孔成为锥度在0.02-0.03之间的圆锥孔,在导热管的散热端圆周面上设有若干在周向上均匀分布的散热翅,导热管的两端面分别设有圆锥形的定位凸起,导热管上端的定位凸起抵靠冷却孔底面,导热管下端的定位凸起抵靠冷却水道侧壁,当冷却水道内有冷却水流过时,冲击散热翅,从而带动导热管转动。
本发明使导热管内孔的孔径由散热端至吸热端逐渐增大,从而使导热管的内孔成为锥度在0.02-0.03之间的圆锥孔。并且在导热管的散热端圆周面上设有若干在周向上均匀分布的散热翅。这样,当冷却水道内有冷却水流过时,水流冲击散热翅,从而带动导热管转动,此时,导热管内的相变液跟随转动而产生径向的离心力,使相变液紧贴导热管内侧壁,进而使相变液沿着倾斜的导热管内侧壁自动向吸热端流动。此外,散热翅会加速导热管的热量传导给冷却水。也就是说,散热翅既可起到加快散热的作用,又可起到类似涡轮叶片的作用,使流动的冷却水可驱动导热管快速转动。
另外,导热管的两端面分别设有圆锥形的定位凸起,从而可使导热管在型芯的冷却孔内实现中心定位,同时显著地减小其转动时的摩擦阻力。
作为优选,所述下模在对应冷却孔位置设有贯通冷却水道的过渡孔,在型芯下端面与下模之间设有围绕过渡孔的密封圈,在导热管和冷却孔之间设有与过渡孔连通的配合间隙。由于在型芯下端面与下模之间设有围绕过渡孔的密封圈,因此,可确保过渡孔、配合间隙的有效密封,避免冷却水的外泄。
特别是,冷却水道的冷却水可进入型芯的冷却孔与导热管之间的配合间隙内,从而可将型芯的热量快速传递给导热管,同时有效的避免因导热管与冷却孔的配合造成导热管转动时 的摩擦阻力。
作为优选,所述导热管采用如下步骤制成:
a.在一根紫铜管内插入一端大、一端小的圆锥形芯棒,所述芯棒的大端与紫铜管内孔适配,芯棒的小端与紫铜管的内孔之间具有间隙;
b.用导热管夹持推送机构夹紧紫铜管,并使紫铜管一边旋转、一边使对应芯棒小端的一端进入竖直设置的导入板的挤压孔内,紫铜管受到3-4个围绕挤压孔的轴线均匀分布的挤压轮的径向挤压,从而使紫铜管的管径逐渐缩小;
c.重复步骤b,直至紫铜管的内孔贴靠芯棒,此时紫铜管的内孔呈圆锥形;
d.分别夹持芯棒的大端和对应芯棒小端的紫铜管,并抽拉芯棒,即可方便地使芯棒与紫铜管分离。
可以理解的是,在现有技术中形成的紫铜管内径是一致的,而常规的机加工方式也不适合对细长的紫铜管内孔进行二次加工。本发明创造性地利用若干挤压轮内内部插入芯棒的紫铜管进行挤压加工,从而可使紫铜管的内径方便地缩小,并与圆锥形的芯棒相适配,从而使紫铜管的内孔形成所需要的圆锥孔。
特别是,紫铜管的内孔为圆锥孔,因而方便芯棒从紫铜管内孔的大端向外抽出。
因此,本发明具有如下有益效果:可对小尺寸的型芯进行快速有效的冷却,既有利于提高生产效率,又可提升产品的质量。
附图说明
图1是本发明的一种结构示意图;
图2是导热管与下模以及型芯的一种配合结构示意图;
图3是导热管的制造原理示意图;
图中:1、上模,11、型腔,2、下模,21、过渡孔,22、密封圈,23、凸模,3、冷却水道,31、进水口,32、出水口,4、型芯41、冷却孔,411、配合间隙,5、导热管,51、吸热端,52、散热端,53、定位凸起,54、散热翅,6、工作台,61、导入板,611、挤压孔,7、夹持头,8、挤压轮,9、芯棒。
具体实施方式
下面结合附图与具体实施方式对本发明做进一步的描述。
如图1、图2所示,一种模具用冷却棒组件,适用于对注塑成型、甚至是铝合金压铸成型模具的型芯的冷却,在本实施例中的模具为注塑成型模具,模具包括具有型腔11的上模1和具有型芯4的下模2,下模包括具有进水口31和出水口32的冷却水道3。此外,型芯与下 模连接的端面设有向上延伸的冷却孔41,并且冷却孔的轴线与冷却水道的轴线相交叉。
具体地,冷却棒组件包括设置在冷却孔内且两端封闭的导热管5,导热管一端为伸入型芯冷却孔内部的吸热端51,另一端为伸入冷却水道的散热端52,导热管内设有相变液和毛细管结构,相变液的沸点在45°-60°之间,优选地,相变液可采用丙酮,其沸点为56.12°。
在模具注塑成型时,型芯的温度会传导给导热管的吸热端,从而使导热管内的相变液升温至沸点以上,此时的相变液由液体变为气体。我们知道,物质在相变时可吸收大量的热量,并且其温度保持不变。也就是说,当相变液的温度到达沸点时,其由液态变为气态,而温度则保持不变。变成气态的相变液的压力迅速上升,从而快速流动至散热端,伸入冷却水道的散热端则将热量传导给冷却水,从而使气态的相变液冷凝成液态,而毛细管结构则可利用毛细管效应使散热端内的相变液重新回流至吸热端,如此循环,即可快速地将型芯端部的热量通过冷却水散发出去,从而使型芯能和其它部位实现同步冷却,即可提升模具的冷却和成型效率,又可提升产品的成型质量。
本实施例中,导热管由紫铜制成,从而有利于将型芯的热量传导到导热管上。此外,在导热管的内侧壁设有烧结层,所述烧结层构成所述的毛细管结构,烧结层可在导热管道的内侧壁形成大量相互连通的蜂窝状小孔,从而构成良好的毛细效果,并且烧结层的强度好,使用寿命长。特别是,烧结层附着在导热管的内侧壁上,因此,不会影响气态的相变液的流动。
进一步地,我们可使导热管内孔的孔径由散热端至吸热端逐渐增大,从而使所述内孔成为锥度在0.02-0.03之间的圆锥孔。此外,在导热管的散热端圆周面上设有若干在周向上均匀分布的散热翅54,导热管的两端面分别设置圆锥形的定位凸起53,导热管上端的定位凸起抵靠冷却孔底面,导热管下端的定位凸起抵靠冷却水道侧壁。这样,当冷却水道内有冷却水流过时,冷却水流冲击散热翅,从而带动导热管转动。此时,导热管内的相变液跟随转动而产生径向的离心力,使相变液紧贴导热管内侧壁,进而使相变液沿着倾斜的导热管内侧壁自动向吸热端流动。当然,散热翅还可加速导热管的热量传导给冷却水。也就是说,散热翅既可起到加快散热的作用,又可起到类似涡轮叶片的作用,使流动的冷却水可驱动导热管快速转动。
另外,导热管的两端面圆锥形的定位凸起,可使导热管在型芯的冷却孔内实现中心定位,同时显著地减小其转动时的摩擦阻力。
为了方便导热管在冷却孔内的转动,同时有利于型芯的热量向导热管传递,我们可使导热管和冷却孔之间设有配合间隙411,下模在对应冷却孔位置设有贯通冷却水道的过渡孔21,在型芯下端面与下模之间设有围绕过渡孔的密封圈22。当然,配合间隙应连通过渡孔。由于 在型芯下端面与下模之间设有围绕过渡孔的密封圈,因此,可确保过渡孔、配合间隙的有效密封,避免冷却水的外泄。
特别是,冷却水道的冷却水可进入型芯的冷却孔与导热管之间的配合间隙内,从而可将型芯的热量快速传递给导热管,同时有效的避免因导热管与冷却孔的配合造成导热管转动时的摩擦阻力。
如图1、图2所示,一种模具内导热管回路结构,适用于对注塑成型、甚至是铝合金压铸成型模具的型芯的冷却,在本实施例中的模具为注塑成型模具,模具包括具有型腔11的上模1和具有凸模23的下模2,下模包括具有进水口31和出水口32的冷却水道3。此外,所述型芯4设置在下模的凸模内,型芯与下模连接的端面设有向上延伸的冷却孔41,并且冷却孔的轴线与冷却水道的轴线相交叉。
另外,在冷却孔内设有两端封闭且由紫铜制成的导热管5,导热管一端为伸入型芯冷却孔内部的吸热端51,另一端为伸入冷却水道的散热端52,导热管内设有相变液,相变液的沸点在45°-60°之间,本实施例中,相变液可采用丙酮,其沸点为56.12°。在导热管的内侧壁设有烧结层,烧结层可在导热管道的内侧壁形成大量相互连通的蜂窝状小孔,从而构成良好的毛细效果,也就是说,此时的烧结层构成导热管内部的毛细管结构。
在模具注塑成型时,型芯的温度会传导给导热管的吸热端,从而使导热管内的相变液升温至沸点以上,此时的相变液由液体变为气体。我们知道,物质在相变时可吸收大量的热量,并且其温度保持不变。也就是说,当相变液的温度到达沸点时,其由液态变为气态,而温度则保持不变。变成气态的相变液的压力迅速上升,从而快速流动至散热端,伸入冷却水道的散热端则将热量传导给冷却水,从而使气态的相变液冷凝成液态,而烧结层则可利用毛细管效应使散热端内的相变液重新回流至吸热端,如此循环,即可快速地将型芯端部的热量通过冷却水散发出去,从而使型芯能和其它部位实现同步冷却,既可提升模具的冷却和成型效率,又可提升产品的成型质量。
需要说明的是,本发明的导热管既可用在下模的型芯上,也可用在上模的型芯上。
进一步地,我们可使导热管内孔的孔径由散热端至吸热端逐渐增大,从而使所述内孔成为锥度在0.02-0.03之间的圆锥孔。此外,在导热管的散热端圆周面上设有若干在周向上均匀分布的散热翅54,导热管的两端面分别设置圆锥形的定位凸起53,导热管上端的定位凸起抵靠冷却孔底面,导热管下端的定位凸起抵靠冷却水道侧壁。这样,当冷却水道内有冷却水流过时,冷却水流冲击散热翅,从而带动导热管转动。此时,导热管内的相变液跟随转动而产生径向的离心力,使相变液紧贴导热管内侧壁,进而使相变液沿着倾斜的导热管内侧壁自动 向吸热端流动。当然,散热翅还可加速导热管的热量传导给冷却水。也就是说,散热翅既可起到加快散热的作用,又可起到类似涡轮叶片的作用,使流动的冷却水可驱动导热管快速转动。
另外,导热管的两端面圆锥形的定位凸起,可使导热管在型芯的冷却孔内实现中心定位,同时显著地减小其转动时的摩擦阻力。
为了方便导热管在冷却孔内的转动,同时有利于型芯的热量向导热管传递,我们可使导热管和冷却孔之间设有配合间隙411,下模在对应冷却孔位置设有贯通冷却水道的过渡孔21,在型芯下端面与下模之间设有围绕过渡孔的密封圈22。当然,配合间隙应连通过渡孔。由于在型芯下端面与下模之间设有围绕过渡孔的密封圈,因此,可确保过渡孔、配合间隙的有效密封,避免冷却水的外泄。
特别是,冷却水道的冷却水可进入型芯的冷却孔与导热管之间的配合间隙内,从而可将型芯的热量快速传递给导热管,同时有效的避免因导热管与冷却孔的配合造成导热管转动时的摩擦阻力。
如图3所示,紫铜的导热管可利用夹持推送机构、挤压机构制成,其中的夹持推送机构包括一个工作台6、可移动地设置在工作台上用于夹持导热管的夹持头7,夹持头与驱动电机相关联,从而使夹持头可带动导热管转动,并且我们将夹持头用于夹持导热管的一侧称为前侧,另一侧称为后侧。夹持头可以采用钻床上的钻夹头。挤压机构则包括竖直地设置在夹持头前侧的导入板61,导入板上设有可穿过导热管的挤压孔611,在导入板的前侧设有3个围绕挤压孔的轴线均匀分布的挤压轮8,所述挤压轮与一个同步径向移动机构相关联,从而使所有的挤压轮可同步地径向移动。具体地,同步径向移动机构包括具有三个卡爪的三爪卡盘,卡爪上设有可转动的挤压轮。导热管的加工步骤如下:
a.在一根圆柱形的紫铜管内插入一端大、一端小的圆锥形芯棒9,所述芯棒的大端与紫铜管内孔适配,芯棒的小端与紫铜管的内孔之间具有间隙。当然,芯棒的锥度应和导热管内孔的锥度(0.02-0.03)相匹配,并且芯棒因采用钢质线材制成,同时经过淬火处理,使其表面具有足够的硬度;
b.用夹持头夹紧紫铜管对应芯棒大端的一端,此时的夹持头一边带动紫铜管旋转、一边使紫铜管对应芯棒小端的一端进入竖直设置的导入板的挤压孔内,紫铜管受到围绕挤压孔的轴线均匀分布的挤压轮的径向挤压,从而使紫铜管的管径逐渐缩小;
c.重复步骤b,直至紫铜管的内孔贴靠芯棒,此时紫铜管的内孔呈圆锥形;
d.分别夹持芯棒的大端和对应芯棒小端的紫铜管,并抽拉芯棒,即可方便地使芯棒与紫 铜管分离。
可以理解的是,在现有技术中形成的紫铜管内径是一致的,而常规的机加工方式也不适合对细长的紫铜管内孔进行二次加工。本发明创造性地利用若干挤压轮内内部插入芯棒的紫铜管进行挤压加工,从而可使紫铜管的内径方便地缩小,并与圆锥形的芯棒相适配,从而使紫铜管的内孔形成所需要的圆锥孔。
特别是,紫铜管的内孔为圆锥孔,因而方便芯棒从紫铜管内孔的大端向外抽出。
需要说明的是,挤压轮的外形应采用锥度与芯棒的锥度适配的圆锥台形,以便在对紫铜管挤压后能充分贴合导热管外侧壁。

Claims (10)

  1. 一种模具用冷却棒组件,适用于对模具内型芯(4)的冷却,其特征是,冷却棒组件包括用于设置在模具型芯冷却孔(41)内且两端封闭的导热管(5),所述导热管(5)一端为用于伸入型芯冷却孔(41)内部的吸热端(51),另一端为用于伸入模具冷却水道(3)的散热端(52),所述导热管(5)内设有相变液和毛细管结构,所述相变液的沸点在45°-60°之间。
  2. 根据权利要求1所述的一种模具用冷却棒组件,其特征是,所述导热管(5)由紫铜制成,在导热管(5)的内侧壁设有烧结层,所述烧结层构成所述的毛细管结构。
  3. 根据权利要求1或2所述的一种模具用冷却棒组件,其特征是,所述导热管(5)内孔的孔径由散热端(52)至吸热端(51)逐渐增大,从而使所述内孔成为锥度在0.02-0.03之间的圆锥孔。
  4. 根据权利要求3所述的一种模具用冷却棒组件,其特征是,在导热管(5)的散热端圆周面上设有若干在周向上均匀分布的散热翅(54),导热管(5)的两端面分别设有圆锥形的定位凸起(53),导热管(5)上端的定位凸起(53)抵靠冷却孔(41)底面,导热管(5)下端的定位凸起(53)抵靠冷却水道(3)侧壁,当冷却水道(3)内有冷却水流过时,冲击散热翅(54),从而带动导热管(5)转动。
  5. 一种模具内导热管回路结构,适用于对型芯的冷却,其特征在于,包括权利要求1所述的模具用冷却棒组件。
  6. 根据权利要求5所述的一种模具内导热管回路结构,其特征是,所述模具包括具有型腔(11)的上模(1)和具有凸模(23)的下模(2),所述型芯(4)设置在上模内或者下模的凸模(23)内,所述型芯(4)设有冷却孔(41),所述的模具内部设置有冷却水道(3),冷却孔(41)的轴线与冷却水道(3)的轴线相交叉。
  7. 根据权利要求5所述的一种模具内导热管回路结构,其特征是,所述冷却水道(3)分别设置在上模(1)和下模(2)内,并且冷却水道(3)包括有进水口(31)和出水口(32);所述下模(2)在对应冷却孔(41)位置设有贯通冷却水道的过渡孔(21),在型芯(4)下端面与下模(2)之间设有围绕过渡孔(21)的密封圈(22),在导热管(5)和冷却孔(41)之间设有与过渡孔(21)连通的配合间隙(411)。
  8. 根据权利要求7所述的一种模具内导热管回路结构,其特征是,所述导热管(5)由紫铜制成,在导热管(5)的内侧壁设有烧结层,所述烧结层构成所述的毛细管结构;当模具成型时,型芯将热量传递给导热管的吸热端,从而使吸热端内的相变液气化,气态的相变液流动至导热管的散热端,与此同时,冷却水由进水口进入冷却水道、由出水口流出冷却水道时,并对伸入冷却水道的散热端进行冷却,散热端气态的相变液冷凝呈液态,然后在烧结层的毛细作用 下回流至吸热端。
  9. 根据权利要求5所述的一种模具内导热管回路结构,其特征是,所述导热管内孔的孔径由散热端(52)至吸热端(51)逐渐增大,从而使所述内孔成为锥度在0.02-0.03之间的圆锥孔,在导热管的散热端圆周面上设有若干在周向上均匀分布的散热翅(54),导热管(5)的两端面分别设有圆锥形的定位凸起(53),导热管上端的定位凸起抵靠冷却孔底面,导热管下端的定位凸起抵靠冷却水道侧壁,当冷却水道内有冷却水流过时,冲击散热翅,从而带动导热管转动。
  10. 根据权利要求6至9任意一项所述的一种模具内导热管回路结构,其特征是,所述导热管采用如下步骤制成:
    a.在一根紫铜管内插入一端大、一端小的圆锥形芯棒,所述芯棒的大端与紫铜管内孔适配,芯棒的小端与紫铜管的内孔之间具有间隙;
    b.用导热管夹持推送机构夹紧紫铜管,并使紫铜管一边旋转、一边使对应芯棒小端的一端进入竖直设置的导入板的挤压孔内,紫铜管受到3-4个围绕挤压孔的轴线均匀分布的挤压轮的径向挤压,从而使紫铜管的管径逐渐缩小;
    c.重复步骤b,直至紫铜管的内孔贴靠芯棒,此时紫铜管的内孔呈圆锥形;
    d.分别夹持芯棒的大端和对应芯棒小端的紫铜管,并抽拉芯棒,即可方便地使芯棒与紫铜管分离。
PCT/CN2021/133314 2021-06-30 2021-11-26 一种模具用冷却棒组件及模具内导热管回路结构 WO2023273127A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110736127.XA CN113523198A (zh) 2021-06-30 2021-06-30 一种模具内导热管回路结构
CN202110736127.X 2021-06-30
CN202110736124.6A CN113547710B (zh) 2021-06-30 2021-06-30 一种模具用冷却棒组件
CN202110736124.6 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023273127A1 true WO2023273127A1 (zh) 2023-01-05

Family

ID=84690188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133314 WO2023273127A1 (zh) 2021-06-30 2021-11-26 一种模具用冷却棒组件及模具内导热管回路结构

Country Status (1)

Country Link
WO (1) WO2023273127A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102397987A (zh) * 2011-11-23 2012-04-04 北京交通大学 一种自调温模具及其使用方法
CN103769557A (zh) * 2014-01-03 2014-05-07 宁波埃利特模具制造有限公司 一种铝合金压铸模具
CN203664626U (zh) * 2014-01-03 2014-06-25 宁波埃利特模具制造有限公司 一种发动机支架铝合金压铸模具
CN203664627U (zh) * 2014-01-03 2014-06-25 宁波埃利特模具制造有限公司 一种汽车变速箱壳体铝合金压铸模具
CN203664628U (zh) * 2014-01-03 2014-06-25 宁波埃利特模具制造有限公司 一种发动机缸体铝合金压铸模具
JP2015155101A (ja) * 2014-02-20 2015-08-27 株式会社デンソー 鋳造方法、及び、鋳造装置
CN111702146A (zh) * 2020-06-30 2020-09-25 江苏理工学院 一种铝合金压铸模具型芯电磁阀喷射式冷却装置
CN113523198A (zh) * 2021-06-30 2021-10-22 浙江凯华模具有限公司 一种模具内导热管回路结构
CN113547710A (zh) * 2021-06-30 2021-10-26 浙江凯华模具有限公司 一种模具用冷却棒组件

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102397987A (zh) * 2011-11-23 2012-04-04 北京交通大学 一种自调温模具及其使用方法
CN103769557A (zh) * 2014-01-03 2014-05-07 宁波埃利特模具制造有限公司 一种铝合金压铸模具
CN203664626U (zh) * 2014-01-03 2014-06-25 宁波埃利特模具制造有限公司 一种发动机支架铝合金压铸模具
CN203664627U (zh) * 2014-01-03 2014-06-25 宁波埃利特模具制造有限公司 一种汽车变速箱壳体铝合金压铸模具
CN203664628U (zh) * 2014-01-03 2014-06-25 宁波埃利特模具制造有限公司 一种发动机缸体铝合金压铸模具
CN104923760A (zh) * 2014-01-03 2015-09-23 宁波埃利特模具制造有限公司 一种可降低包模力的铝合金压铸模具
JP2015155101A (ja) * 2014-02-20 2015-08-27 株式会社デンソー 鋳造方法、及び、鋳造装置
CN111702146A (zh) * 2020-06-30 2020-09-25 江苏理工学院 一种铝合金压铸模具型芯电磁阀喷射式冷却装置
CN113523198A (zh) * 2021-06-30 2021-10-22 浙江凯华模具有限公司 一种模具内导热管回路结构
CN113547710A (zh) * 2021-06-30 2021-10-26 浙江凯华模具有限公司 一种模具用冷却棒组件

Similar Documents

Publication Publication Date Title
US10286448B2 (en) High-performance tool cooling system
CN208178394U (zh) 一种压铸模具
CN204800905U (zh) 模具冷却系统
CN108189352A (zh) 便于冷却的注塑模具
WO2023273127A1 (zh) 一种模具用冷却棒组件及模具内导热管回路结构
CN113523198A (zh) 一种模具内导热管回路结构
CN113547710B (zh) 一种模具用冷却棒组件
CN215998594U (zh) 一种冷却排气两用分流锥
CN206543871U (zh) 一种间接水冷却接头
CN101848624B (zh) 液冷散热装置
CN210189168U (zh) 一种丝杆及其冷却系统
CN207013703U (zh) 一种轮毂模具胎环水冷却装置
CN114850592B (zh) 一种模具模芯螺纹加工车床
CN219944559U (zh) 一种压铸机料筒组件
CN214321755U (zh) 一种压铸模具模内模芯环形冷却结构
CN218395815U (zh) 浇铸内模及浇铸模具
CN219425586U (zh) 一种生产高温合金棒材的模具
CN115348805B (zh) 一种渐变式吸液芯平板微热管及其制备方法
CN215969865U (zh) 一种载带用的卷盘模具
CN110947927B (zh) 空腔传导热式耐高温金属压铸模具
CN207643632U (zh) 折流管及注塑模具型芯冷却装置
CN112247103B (zh) 一种螺旋折流板的加工装置及加工装置的制造设备和制造方法
CN209738202U (zh) 水冷型模具之上模散热结构
CN220763454U (zh) 一种快速冷却模具
CN212884868U (zh) 一种可快速冷却成型的螺母模具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE